
 
 
 

UNIVERSITÀ DEGLI STUDI DI SALERNO 
 

DIPARTIMENTO DI FISICA 
 
 

DOTTORATO DI RICERCA IN FISICA 
 

IX CICLO 
ANNO ACCADEMICO 2009/2010 

 
 

TESI DI DOTTORATO IN FISICA 
 

 
FLAVOR MIXING IN QUANTUM FIELD THEORY 

AND QUANTUM INFORMATION 
 
 
 
 

 
 
 
 
 
 
Tutor:                                                                     Candidato: 
Prof. Silvio De Siena                                                 Dott. Marco Di Mauro 
                                                                                    
Coordinatore: 
Prof. Giuseppe Grella 
 



 
 
 
                      ἓν οἶδα ὅτι οὐδὲν οἶδα 
 
               (Socrates, paraphrased from Plato’s Apology) 
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Introduction

The recent experimental observation of neutrino oscillations has set a milestone in high energy
physics, being the first-ever evidence of a phenomenon not described by the now nearly half
a century old Standard Model. Its theoretical description is, like the analog mixing of quarks
(which is instead included in the Standard Model to take into account the observed neutral
meson oscillations and the associated CP violation), implemented by writing down a mixing
transformation which, as the name suggests, mixes fields whose quanta have different masses.
It is this mass difference which gives rise to the phenomenon of oscillations; we shall indeed see
that it can be made to disappear by taking equal masses1.
A full theoretical understanding of the phenomenon of mixing can be possible only in the
framework of Quantum Field Theory, standard Quantum Mechanics being unsuitable to de-
scribe superpositions of states of different masses due to the Bargmann superselection rule2.
This observation led to much work in this direction in the last 16 years, resulting most notably
in the discovery of a nontrivial nonperturbative vacuum structure associated with mixing and
of well defined flavor states describing mixed particles. These states have been shown to be
compatible with flavor conservation in the production and detection vertices, consistently with
the Standard Model. This implies that the flavor vacuum has to be taken as the physical one
if lepton conservation in the Standard Model vertices is to be preserved.

One of the most striking properties of this vacuum lies in the fact that it has nonzero
energy density due to the presence of a condensate. This has been shown to be a potential
candidate to give contributions to the cosmological constant. The observation that this vacuum
energy density is always positive definite leads to the observation that the same will be true
also in supersymmetric (SUSY) theories which contain particle mixing. Such theories, even if
mixing is preserving supersymmetry (SUSY), will then show a (nonperturbative) spontaneous
supersymmetry breaking. That this is the case has recently been proven in a simple model,
but there are quite strong reasons to believe that it be a general phenomenon. Being mixing
a fundamental component of supersymmetric extensions of the Standard Model, this fact is of
obvious phenomenological relevance.

1Of course this refers to the renormalized masses; it could well be possible to start with fields having equal

bare masses, which are then rendered different by radiative corrections. This will not concern us in this work as

we are going to treat only effective Lagrangians just suited for describing the mixing, not investigating possible

mechanisms from which mass differences and mixing itself originate.
2Nevertheless, an approximated description (which actually predates the field theoretical one) is possible

in Quantum Mechanics; it will be shown that the full treatment reduces to the quantum mechanical one in

the ultrarelativistic limit. Unfortunately, the fact that neutrinos in fact are always ultrarelativistic in practice

makes an experimental observation of the field theoretical corrections very hard.
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There still are many points to be clarified concerning flavor states, such as their interpreta-
tion as representation of the Poincaré group and their entanglement properties. The study of
the latter properties constitutes a new point of view on the mixing of particles and has already
led to some intriguing results which in some cases constitute a genuine generalization of known
results in Quantum Information Theory. This points out the relevance of mixed particles to
this subject, at least on the theoretical side, the actual use of neutrinos in place of photons
in quantum experiments or as quantum computation devices being not convenient, essentially
because of the difficulty of handling neutrinos as opposed to photons.

Some additional work in this direction has lead to the observation that time evolution of
flavor neutrino states dynamically generates entanglement. This is referred to as dynamical
entanglement, as opposed to the static entanglement referred to in the previous paragraph.
Current work is focusing on the use of the so–called dynamic symmetry approach to quantum
entanglement, pioneered by A. Klyachko, which has the nice feature of giving a neat description
of quantum entanglement in terms of a very compelling physical picture, valid for pure states of
general multipartite systems3 (known criteria of characterization of multipartite entanglement
are somewhat artificial). Most of the referred work is done in the simpler framework of Quantum
Mechanics, the extension to Quantum Field Theory being somewhat tricky due to the nontrivial
vacuum structure uncovered in that context. Nevertheless, some progress along this direction
has been achieved recently thanks to the dynamic symmetry approach, and the development
of these results is under current investigation.

On the Poincaré front, the problem reduces to the fact that mixed particles cannot be
considered on-shell, thus they cannot be classified as representations of the Poincaré group,
leading in this way to a clash with relativistic symmetry. Recently a big step towards the
resolution of this problem has been made by implementing mixing as the interaction of a
multiplet of fields with some external field. Preliminary work in this direction points at a
vector field as the responsible of mixing, at the same time unraveling an approximate non
abelian gauge structure hidden in mixing (which may be connected to another hidden gauge
structure recently discovered in particle mixing, related to a geometric phase); this gauge
symmetry becomes exact in the maximal mixing limit. We have been able to show that by
rewriting mixing in this way, it is possible to regard mixed particles as on-shell like any other
particle, thus recovering a Poincaré structure. In the process one ambiguity which is inherent
to the formulation of quantum field mixing is lifted. In this framework, the Lorentz violation
associated to mixing re–emerges as the preferred frame singled out by the external vector field,
thus losing its fundamental character.

Concerning the nature of this vector field, there is much room for speculation. For exam-
ple, it may be seen (at least in the two flavor case) as a kind of “birefringent” medium with
respect to neutrinos, which acts on the two flavors in the same way an ordinary birefringent
medium acts on the two polarization states of a photon. Another possible interpretation (not
necessarily incompatible with the previous one) sees the vector field as being a component
of dark matter. This picture opens the possibility of a position dependent oscillation length,
due to inhomogeinities of the distribution of the vector field over intergalactic distances, and
this may be put under observational test by looking for example at neutrinos produced by an

3with the restriction that the Hilbert space be finite dimensional
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extragalactic supernova. Work in this direction is in progress.
A third possible interpretation suggested by the formalism, which goes in the opposite

direction consists in viewing the vector field as a fictitious one, which would be employed
to write down mixing as a kind of Aharonov–Bohm interaction, much in the same way as
fractional statistics in 2 + 1 dimensions can be written in terms of a fictitious non dynamical
gauge field described by a Chern–Simons Lagrangian. This interpretation, while very appealing
theoretically, presents nontrivial technical difficulties and has not been pursued yet.

As an added bonus, this formalism allows us to give a fairly clear thermodynamical inter-
pretation of mixing. While such an interpretation has been already suggested in chapters 2 and
3, these results seem to be a consistent step forward.

The present work consists of five chapters.
Chapters 1 and 2 review the necessary background material concerning the formulation

of mixing, both in the quantum mechanical and in the field theoretical instances. Especially
in the quantum mechanical case, this is by now standard material and has been included for
completeness.

In chapters 3–5 work based on the formalism exposed in the first two chapters is exposed.
These chapters are independent on each other and can be read in any order.

In Chapter 3 we use the formalism developed in Chapter 2 to show how the vacuum structure
associated to mixing can lead to dynamical SUSY breaking. Some speculations concerning the
role of mixing as a viable mechanism for SUSY breaking from the phenomenological point of
view are outlined.

In Chapter 4 we study mixing from the point of view of Quantum Information Theory. A
lightning introduction to the necessary quantum information theoretical tools, such as mul-
tipartite quantum entanglement, single particle entanglement and the dynamical symmetry
approach is provided, with the only purpose of preparing the ground and without any claim
of completeness. Most of this chapter will make use of the approximate quantum mechanical
approach to mixing, but also the preliminary results obtained in the field theoretical case are
outlined.

In Chapter 5 we attempt the formulation of mixing as the effect of a background vector field
and show how this new point of view can be used to address the problems with Poincaré invari-
ance raised by the usual formulation. Some phenomenological consequences are outlined. The
thermodynamical interpretation suggested by this formalism will be deferred to an appendix
in which the simpler quantum mechanical instance is studied.
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The author’s own contribution is exposed in chapters 3–5, and can be embedded in three
largely independent research lines.

In particular, chapter 3 is based on Ref.[49], which is currently under the process of peer
review. The possibility of spontaneous SUSY breaking induced by flavor mixing is pointed out,
a general conjecture is proposed and a proof of it is provided in a simple case. Hints are given
concerning the generalization of the proof to more complicated situations.

Chapter 4 and appendix A are mainly based on Refs.[28] and [25]. In these papers the bases
of static entanglement in flavor mixing in quantum mechanics are given, and the properties of
flavor states as entangled states are studied in the two, three and four flavor cases. The effect
of decoherence on the amount of entanglement in these states is studied as well by using a
more realistic wave packet approach. Sections 4.3.2, 4.9, 4.10, 4.11 have been included as they
constitute the background to some work in progress in which the author is involved.

Chapter 5 and appendix B are based on Refs.[31] and [32]. It is shown how viewing fermion
mixing as the effect of the interaction with an external field helps to solve some problems with
the standard approach and in addition leads to lift an ambiguity present in it. The actual
implementation of this program is shown to unveil an approximate hidden gauge structure in
fermion mixing. Possible phenomenological consequences of this approach are given. Some links
between this approach and optical analogues of neutrino oscillations, as well as to some current
work in Quantum Gravity Phenomenology, are pointed out. Also, a possible thermodynamical
interpretation is outlined in the simpler case of Quantum Mechanics. The extension to the
bosonic instance, which still constitutes work in progress, is outlined. Some loosely related
work, which however has not been included in the present thesis, and concerning the Lorentz
invariance properties of the exact oscillation formulas, is contained in [30] and has been reviewed
in [28].
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Chapter 1

Introduction to particle mixing

The SU(3) × SU(2) × U(1) Standard Model of Particle Physics [53] is probably the most
successful theoretical construction for what concerns the matching with experimental results.
Besides matching these results with unprecedented accuracy, it also allowed to predict some new
phenomena, such as neutral current weak processes, new quarks and leptons and corrections to
deep inelastic scattering of electrons on hadrons. All experimental observations have been found
in agreement with it, apart from one, neutrino oscillations. This one fact is the main subject
of this work. In fact, in the last years experimenters have finally established that neutrinos
can change their flavors in their route from the source to the detector. Despite having been
suggested by B. Pontecorvo back in the fifties (see e.g [15]), this phenomenon is not included
in the Standard Model. In fact it depends crucially on the neutrinos (or at least two of them)
to have nonzero masses, while in the Standard Model they are treated as massless. While it
is possible to incorporate neutrino masses in the Standard Model without difficulty, this raises
some theoretical issues such as the explanation of the smallness of neutrino masses with respect
to the masses of the other particles. Some explanations such as the seesaw mechanism have
been proposed, but this issue is not completely settled and will probably involve some nontrivial
physics beyond the Standard Model (see e.g. [114]). Also the origin of the oscillations, which
are the manifestation of mixing in the neutrino sector i.e. of a mismatch between flavor and
mass of these particles, is not known.

The phenomenon of mixing and oscillations is not exclusive of neutrinos, but also shows in
the hadronic sector of the Standard Model. In fact, the d, s and b quarks are mixed (quark
mixing, unlike neutrino mixing, has been included in the formulation of the Standard Model
since the seventies [44, 96]), and the same is true for some neutral meson like the K0 − K̄0

couple. How the meson mixing parameters emerge from the quark ones is a major unsolved
problem of contemporary Particle Physics, being related to the strong coupling behavior of
quarks confined in mesons.

In this work we will not try to explain such problems as the origin of mixing or the derivation
of meson mixing parameters (although we attempt to explain mixing as the effect of some
background field in chapter 5, this merely shifts the problem of its origin to the problem of
the origin of this background field). Instead, we will take particle mixing (both bosonic and
fermionic) as given and try to see which consequences arise from this, in particular in connection

1



with the definition of the flavor states of mixed particles.

1.1 Mixing in Quantum Mechanics

In this section we review the standard formalism of particle mixing in Quantum Mechanics,
pioneered by B. Pontecorvo in 1958 (described for example in [15] to which we refer for details)
in view of the applications to be described in chapter 4. The starting point are the mixing
relations among the states:

|νe〉 = |ν1〉 cos θ + |ν2〉 sin θ (1.1)

|νµ〉 = −|ν1〉 sin θ + |ν2〉 cos θ, (1.2)

(where θ is the mixing angle) assuming that the neutrinos are ultrarelativistic (which is always
verified in practice). Starting from these we can derive the Bilenky–Pontecorvo oscillation
formulae, which give the probability of transition between one state and the other as a function
of the time elapsed since the production:

Pνe→νe(t) = Pνµ→νµ(t) = 1− sin2 2θ sin2

(
∆ω

2
t

)
, (1.3)

Pνe→νµ(t) = Pνµ→νe(t) = sin2 2θ sin2

(
∆ω

2
t

)
, (1.4)

where ∆ω = ω1 − ω2 ≡ E1 − E2 is the energy difference.
Written in this way, these formulae are unsuited for the description of the experimental

situation, as the elapsed time is not directly accessible to measurements. It is thus preferable
to express them in terms of the spatial distance between the production and the detection
events. In the ultrarelativistic approximation one has L = ct and

Pνe→νe(R) = Pνµ→νµ(R) = 1− 1

2
sin2 2θ

(
1− cos

2πR

L

)
, (1.5)

Pνe→νµ(R) = Pνµ→νe(R) =
1

2
sin2 2θ

(
1− cos

2πR

L

)
, (1.6)

where p is the momentum of the neutrinos in the beam and the quantity

L ≡ 4πp

|m2
1 −m2

2|
(1.7)

is called oscillation length, and gives the length scale at which the oscillation probability from
one flavor to the other is appreciably different from zero. This is the relevant scale in the
description of the oscillation phenomenon, and as a consequence of the small values of the
neutrino masses it is a macroscopic quantity.

The oscillation formulae are straightforwardly generalized to the case of N flavor mixing,
described by a unitary N ×N matrix U :

Pνα→νβ(E,R) =
∑

k

|Uαk|2|Uβk|2 + 2Re
∑

k>j

U∗
αkUβkUαjU

∗
βj e

−i∆φkj(E,R) , (1.8)

2



with the phase differences

∆φkj(E,R) =
∆m2

kj R

2E
, (1.9)

Even if this is the approach we will be mostly using in the following, it should be borne in
mind that, since it uses plane waves, it’s not very realistic and has to be thought at best as an
approximation.

The situation can be made more realistic by using wave packets. For example one can use
a Gaussian wave packet:

〈να;p|να〉 ≡ ψα(p;pα, σpP ) =
1

[
√
2πσpP ]

3
2

exp

[
−(p− pα)

2

4σ2
pP

]
, (1.10)

where one is assuming that the width σpP is the same for all the species of massive neutrinos
we are considering in the production (P) process, and it is the same along all three directions.
In this approach the ultrarelativistic neutrino approximation is made in the following way
[157, 74, 73]:

Eα ≈ E + ξ
m2
α

2E
, p ≈ E − (1− ξ)

m2
α

2E
, (1.11)

from which:

vα ≈ 1− m2
α

2E2
, (1.12)

where E is the energy determined by the kinematics of the production process for a massless
neutrino and ξ is an order one dimensionless parameter which is determined by the energy
momentum conservation in the production process.

The probability to detect a flavor l′ neutrino in the point x is given by [157]:

Pνl→νl′
(x) =

2∑

α=β=1

|Ul′β|2|Ulα|2 + 2
∑

α>β

|U∗
l′αUlαUl′βU

∗
lβ| cos

(
2π

x

Loscαβ
− ϕαβll′

)

×e
−
(

x

Lcoh
αβ

)2

e
−2π2ξ2

(

σx
Losc
αβ

)2

. (1.13)

By comparison with (1.8) we see the appearance of new length parameters besides the oscillation
lengths:

Lcohαβ
.
=

4
√
2σxE

2

|∆m2
αβ |

. (1.14)

called coherence length. We also notice the presence of two additional factors, the second of
which is a damping factor

Fαβ
.
= e

−2π2ξ2
(

σx
Losc
αβ

)2

. (1.15)

This factor is equal to one if σx << |Loscαβ |, otherwise it goes to zero. So this is a necessary
condition to detect oscillations, otherwise the oscillation term gets erased and one remains with
a constant transition probability Pνl→ν′l

(x) =
∑2

α=1 |Ul′β|2|Ul′α|2. The presence of this term
reflects the fact that in order for the oscillation phenomenon to be observed, the localization

3



of both the source and the detector has to be in regions much smaller than the scale set by the
oscillation lengths.

The other factor

e
−
(

x

Lcoh
αβ

)2

(1.16)

is due to the fact that wave packets with different momenta have different group velocities.
When x ≃ Lcoh grows this factor gets damped. This means that after some time the mass
eigenstate wave packets do not overlap significantly any more, so they cannot interfere to
produce the oscillations. This observation allow to predict the coherence length without having
to compute the probability (1.13). If we consider two wave packets whose centres initially
coincide and having the same width σxP , whose group velocity difference is ∆v = |v1 − v2|, we
expect that after a distance

R =
2σxP
∆v

v1 + v2
2

, (1.17)

their overlap will be negligible. Of course this is just a rough estimate. In fact (1.14) shows that
the coherence length is proportional to σx =

√
σ2
xP + σ2

xD, not just to σxP as in (1.17). This
means that it is possible to increase the coherence length by accurately measuring the particle
momenta, as such measurements increase σxD. This is a beautiful example of the possibility
to restore coherence through a measurement. Indeed, the influence of the detector allows the
interference of two wavepackets which have negligible overlap. It is not anyway possible to
increase indefinitely the coherence length by increasing σx as the latter has to be much smaller
than the coherence length for the oscillations to be detectable.

We furthermore notice that in the plane wave framework one has σx → ∞ which would
erase the oscillations.
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Chapter 2

Mixing in Quantum Field Theory

In this chapter we will develop the quantum field theoretical formalism for describing the
mixing of quantum fields which have different masses. For definiteness we shall mostly talk
about two Dirac neutrinos, but the results can be extended to the case of charged bosons, of
three flavors with CP violation and to neutral fields. The general theory of mixing, valid for
fields of arbitrary spin, has been developed in [89], giving qualitatively similar results albeit
with increased technical complexity. A more detailed review of this material can be found in
[45]

Although the quantum mechanical treatment described in the previous chapter is a very
useful approximation, it is very important to notice that it is not rigorous. In fact, the very
superposition of states describing different mass particles is not allowed in ordinary quantum
mechanics due to the well known Bargmann superselection rule. In general the use of quantum
mechanics in a typically relativistic situation such as the description of neutrinos is questionable.
The only justification for its use appears to be its accuracy, which as far as we know is due to
an accident and not to some fundamental reason. Another issue concerns the proper definition
of the flavor states and of their Fock space in this framework. It has been shown in fact that
the use of the quantum mechanical formalism leads to flavor violation in the production and
detection vertices when oscillating particles are involved.

Even though the formulation of the problem in the framework of QFT has some phenomeno-
logical consequences as it predicts a correction in the oscillation formulae (unfortunately, at least
in the case of neutrinos these correction are probably too small to be detectable in the near
future), its main advantages concern the theoretical point of view. Besides being intrinsically
relativistic and thus allowing to overcome the Bargmann rule, this framework allows to give
a proper definition of the flavor states which avoids conflict with tree level flavor conservation
in the Standard Model processes. Moreover, it has been possible to put this framework on a
mathematically rigorous basis [81].

The field theoretical formalism of particle mixing is a very nice example of the existence of
unitarily inequivalent representations of the canonical commutator relations in QFT. In fact,
it was first shown in [39] that the Fock space of flavor states is unitarily inequivalent to the
Fock space of mass eigenstates in the infinite volume limit1. Flavor states and in particular

1This situation is analogous to that found in many different situations of physical interest, such as supercon-
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the flavor vacuum have the structure of condensates of pairs of massive particles and have the
structure of generalized coherent states [124].

In the following we will treat the two Dirac fermion (neutrino) case rather in detail and just
briefly outline the extension to other situations of interest, referring to the cited literature for
details. A pivotal role is played by the flavor charges, which we will study in the next section.
Flavor neutrino states will be defined as the eigenstates of these charges.

2.1 Flavor charges of mixed neutrinos

2.1.1 Massive neutrinos

Let us consider for the moment the situation in which we have just one lepton generation.
Obviously in this situation there is no mixing.

Consider the decay processW+ → e++νe. Below the spontaneous symmetry breaking scale
the relevant terms in the Lagrangian density for weak interactions are

L = L0 + Lint (2.1)

where L0 is the free lepton Lagrangian:

ν̄e(x)(iγµ∂
µ −mνe)νe(x) + ē(x)(iγµ∂

µ −me)e(x), (2.2)

where ν̄e(x) = ν†eγ0, me and mνe are the electron and electron neutrino mass respectively. Lint
is the charged current interaction term:

Lint =
g

2
√
2

[
W+
µ (x)ν̄e(x)γµ(1− γ5)e(x) + h.c

]
. (2.3)

The Lagrangian (3.13) is obviously invariant under U(1) phase transformations:

e(x) → eiαe(x), νe(x) → eiανe(x), α ∈ R, (2.4)

so the Noether charges :

Qtot
e = Qνe +Qe, (2.5)

Qνe(t) ≡
∫
d3xν†e(x)νe(x), (2.6)

Qe(t) ≡
∫
d3xe†(x)e(x), (2.7)

are conserved (we use the notation x0 = t (c = 1)). By using the equal time commutation
relations:

[Qνe(t),Lint(x)] = −[Qe(t),Lint(x)] (2.8)

ductivity, thermal field theory, quantum field theory on curved spacetimes and black hole physics, spontaneous

symmetry breakdown and phase transitions, quantum dissipative systems and so on (see [35] for a recent com-

prehensive review), so it is really ubiquitous and at the root of many physical phenomena.
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we find

[Qtot
e ,Lint(x)] = 0 (2.9)

which expresses the conservation of lepton charge in weak charged current processes. We also
have:

[Qtot
e ,L0(x)] = 0. (2.10)

which means that in any process described by (3.13) the electron neutrino state |νe〉 is an
eigenstate of the flavor charge Qνe , provided of course its energy is under the threshold necessary
for it to decay through the vertex (2.3).

Let us now switch to the situation in which there are two flavors and mixing. The Lagrangian
keeps the form (3.13), where now the kinetic terms are:

L0 = (ν̄e, ν̄µ) (iγµ∂
µ −Mν)

(
νe
νµ

)
+ (ē, µ̄) (iγµ∂

µ −Ml)

(
e
µ

)
, (2.11)

in which the mass matrices of neutrinos and charged leptons appear:

Mν =

(
mνe mνeµ

mνeµ mνµ

)
; Ml =

(
me 0
0 mµ

)
. (2.12)

Notice that the neutrino mass matrix is non diagonal.
The interaction Lagrangian is now given by:

Lint =
g

2
√
2

[
W+
µ (x) νe(x) γ

µ (1− γ5) e(x) +W+
µ (x) νµ(x) γ

µ (1− γ5)µ(x) + h.c.
]

(2.13)

and, unlike L0, is diagonal in the neutrino fields νe and νµ. The total Lagrangian L is invariant
under the combined phase rotations:

e(x) → eiαe(x) , νe(x) → eiανe(x) , (2.14)

µ(x) → eiαµ(x) , νµ(x) → eiανµ(x) . (2.15)

which are generated by:

Qe(t) =

∫
d3x e†(x)e(x) , Qνe(t) =

∫
d3x ν†e(x)νe(x) , (2.16)

Qµ(t) =

∫
d3xµ†(x)µ(x) , Qνµ(t) =

∫
d3x ν†µ(x)νµ(x) , (2.17)

respectively. As a consequence of this invariance we have:

[Qtot
l , L(x)] = 0 , (2.18)

where Qtot
l is the total flavor Noether charge:

Qtot
l = Qνe(t) +Qνµ(t) +Qe(t) +Qµ(t) = Qtot

e (t) + Qtot
µ (t) , (2.19)
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Qtot
e (t) = Qνe(t) +Qe(t) , Qtot

µ (t) = Qνµ(t) +Qµ(t) . (2.20)

This invariance guarantees that the total lepton number is conserved. The flavor charges (2.17)
have the same structure with and without mixing. The free Lagrangian L0 is not separately
invariant under the phase rotations (2.14) and (2.15), due to the fact that the neutrino mass
matrix is nondiagonal. In fact:

[Qtot
e (t) , L0(x)] 6= 0 , (2.21)

[Qtot
µ (t) , L0(x)] 6= 0 . (2.22)

The same is not true for the interaction Lagrangian, which commutes with both the electron
and muon lepton charges with or without mixing:

[Qtot
e (t) , Lint(x)] = 0 , (2.23)

[Qtot
µ (t) , Lint(x)] = 0. (2.24)

This means that the considerations made in the preceding case to define flavor states of neutrinos
can be repeated in this case: even when there is mixing, a flavor neutrino state is defined in the
production vertex as an eigenstate of the corresponding flavor charge, namely Qνe for electron
neutrinos and Qνµ for muon neutrinos. For this situation to be physically realized the spatial
extension of the neutrino source must be much smaller than the oscillation length. Being the
oscillation length very big, this is the typical experimental situation.

2.1.2 Mixed neutrinos and definition of flavor charges

Let us now concentrate on the neutrino sector of the above Lagrangian. Being the interaction
Lagrangian diagonal in the flavor fields, it will be sufficient to consider only L0. Let us suppose
for now that there is no mixing i.e. that also the free Lagrangian is diagonal. It will then
describe two free Dirac fields of masses m1 and m2:

Lν(x) = ν̄m(x)
(
i 6∂ −Md

ν

)
νm(x) , (2.25)

where νTm = (ν1, ν2) and Md
ν = diag(m1, m2). This Lagrangian is obviously invariant under

global U(1) transformations of the type ν
′

m(x) = eiανm(x), to which is associated the conserved
charge Qν =

∫
I0(x)d3x (con Iµ(x) = ν̄m(x)γ

µνm(x)), which is the total lepton number of the
neutrinos.

Consider now the global SU(2) transformation:

ν ′m(x) = eiαj ·τjνm(x) j = 1, 2, 3. (2.26)

where αj are real parameters and τj = σj/2, where σj are the Pauli matrices. Being m1 6= m2

this is not a symmetry of Lν ; its on-shell variation is:

δLν = iαj ν̄m(x)
[
τj, M

d
ν

]
νm(x) = −αj∂µJµm,j(x) , (2.27)

8



where the currents are given by:

Jµm,j(x) = ν̄m(x) γ
µ τj νm(x) , j = 1, 2, 3. (2.28)

The corresponding Noether charges are in principle not conserved:

Qm,j(t) =

∫
d3x J0

m,j(x) , (2.29)

and they form a representation of the su(2) algebra:

[Qm,i(t), Qm,j(t)] = iεijkQm,k(t). (2.30)

The Casimir operator of this algebra is proportional to the above defined total conserved charge:

Qm,0 =
1

2
Qν (2.31)

Actually, being [Md
ν , τ3] = 0, Qm,3 is also conserved. By looking at the explicit expression for

this charge we see that the charges Qν1 and Qν2 of the ν1 and ν2 fields respectively (which are
just the flavor charges in the no mixing case) are separately conserved, which is obvious being
these fields free. These charges can be obtained by suitably combining the above defined SU(2)
charges:

Qν1 ≡ 1

2
Qν + Qm,3 ; Qν2 ≡ 1

2
Qν − Qm,3 . (2.32)

Qνi =

∫
d3x ν†i (x) νi(x) , (2.33)

where i = 1, 2.
Let us now switch to the non diagonal case:

Lν(x) = ν̄f(x) (i 6∂ −Mν) νf(x) , (2.34)

where νTf = (νe, νµ) . Let us repeat the same steps. The on-shell variation of this Lagrangian
under the global SU(2) transformation

ν ′f(x) = eiαj ·τjνf(x) j = 1, 2, 3 , (2.35)

is given by:
δLν(x) = iαj ν̄f (x) [τj ,Mν ] νf(x) = −αj∂µJµf,j(x) , (2.36)

where
Jµf,j(x) = ν̄f (x) γ

µ τj νf (x) , j = 1, 2, 3 . (2.37)

The resulting charges

Qf,j(t) =

∫
d3x J0

f,j(x) (2.38)
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close again the su(2) algebra but now Qf,3(t) is time-dependent. From the physical point of
view this corresponds to an exchange of charge between νe and νµ which of course is just the
neutrino oscillation phenomenon. The time dependent flavor charges for the mixed fields are
given by [34]:

Qνe(t) =
1

2
Qν +Qf,3(t) , Qνµ(t) =

1

2
Qν −Qf,3(t) , (2.39)

Qνσ(t) =

∫
d3x ν†σ(x) νσ(x) , (2.40)

where σ = e, µ and Qνe(t) + Qνµ(t) = Qν . The flavor charges (2.40) reduce to (2.17) in the
diagonal case.

The SU(2) structure just discussed is very important as it links the flavor charges to the
mixing generator we shall encounter in the next section.

2.2 Mixing transformations of fermion fields and vac-

uum structure

In this section we shall study the mixing transformations of fermions and the corresponding
vacuum structure in the context of QFT. For simplicity we shall consider only the two flavor
case.

The Lagrangian (2.34) is diagonalizable to (2.25) by means of the mixing transformations

νe = ν1 cos θ + ν2 sin θ (2.41)

νµ = −ν1 sin θ + ν2 cos θ, (2.42)

where νe and νµ are definite flavor Dirac fields and ν1 and ν2 are Dirac fields with definite
masses, m1 and m2 respectively. The latter admit the usual Fourier expansion:

νi(x) =
1√
V

∑

k,r

[urk,iα
r
k,i(t) + vr−k,iβ

r†
−k,i(t)], i = 1, 2, (2.43)

where V is the volume. In the following we shall restrict our system in a box of finite volume,
and the infinite volume limit will be taken in the end. We have

αrk,i(t) = αrk,ie
ik·x, βr†−k,i(t) = βr†−k,ie

−ik·x (2.44)

u1k,i =

(
ωk,i +mi

2ωk,i

) 1
2




1
0

k3
ωk,i+mi

k1+ik2
ωk,i+mi


 ; u2k,i =

(
ωk,i +mi

2ωk,i

) 1
2




0
1
k1−ik2
ωk,i+mi

−k3
ωk,i+mi


 (2.45)

v1−k,i =

(
ωk,i +mi

2ωk,i

) 1
2




−k3
ωk,i+mi
−k1−ik2
ωk,i+mi

1
0


 ; v2−k,i =

(
ωk,i +mi

2ωk,i

) 1
2




−k1+ik2
ωk,i+mi

k3
ωk,i+mi

0
1


 (2.46)
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and

ωk,i =
√

k2 +m2
i . (2.47)

The ladder operators αrk,i and β
r
k,i, i = 1, 2 , r = 1, 2 annihilate the vacuum |0〉1,2 ≡ |0〉1⊗ |0〉2:

αrk,i|0〉12 = βrk,i|0〉12 = 0. The canonical anticommutation relations are

{
ναi (x), ν

β†
j (y)

}
t=t′

= δ3(x− y)δαβδij , α, β = 1, ...4, (2.48)

or equivalently:
{
αrk,i, α

s†
q,j

}
= δkqδrsδij ;

{
βrk,i, β

s†
q,j

}
= δkqδrsδij, i, j = 1, 2. (2.49)

and all other anticommutators vanish. The orthonormality and completeness relations for the
spinors are:

ur†k,iu
s
k,i = vr†k,iv

s
k,i = δrs, (2.50)

ur†k,iv
s
−k,i = vr†−k,iu

s
k,i = 0, (2.51)

∑

r

(urk,iu
r†
k,i + vr−k,iv

r†
−k,i) = 1. (2.52)

Eqs. (2.41) relate the two mass terms

H1,2 = m1ν
†
1ν1 +m1ν

†
2ν2 (2.53)

He,µ = meeν
†
eνe +mµµν

†
µνµ +meµ(ν

†
eνµ + ν†µνe), (2.54)

where

mee = m1 cos
2 θ +m2 sin

2 θ, (2.55)

mµµ = m1 sin
2 θ +m2 cos

2 θ, (2.56)

meµ = (m2 −m1) sin θ cos θ. (2.57)

This shows that mixed fields, unlike massive fields, are interacting, which is a fundamental
difference from the point of view of QFT, Being the interaction terms quadratic in the fields,
it’s possible to treat the system noperturbatively.

QFT lives on two levels. The underlying dynamics (i.e. the Lagrangian and the correspond-
ing equations of motion) is given in terms of the Heisenberg (interacting) fields. On the other
hand the physical observables are expressed in terms of asymptotic IN (or OUT) fields, also
called physical or free fields. In the LSZ formalism IN fields (resp. OUT fields) are obtained
by making the weak limit of the Heisenberg fields t → −∞ (resp t → −∞). The meaning of
the weak limit is that the realization of the underlying dynamics in terms of the free fields is
representation dependent. This representation dependence takes roots in the fact that in QFT
the canonical commutation relations have an infinite number of unitarily inequivalent repre-
sentations (UIRs), which is a basic feature of QFT 2[136, 135]. Since physical observables are

2This happens because the hypoteses of the Stone–von Neumann theorem of QM break down in the case of

systems with an infinite number of degrees of freedom.
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described in terms of asymptotic fields, different UIRs describe different phases of the system.
The typical example are theories exhibiting spontaneous symmetry breaking (SSB), where the
same Heisenberg fields describe both the symmetric and the ordered phase. To obtain phys-
ically relevant results a careful study of the Haag expansion (also known as dynamical map)
which links Heisenberg and free fields. In particular, the assumption that free and interacting
fields share the same vacuum and the same Fock representation turns out to be wrong (this
latter result is the celebrated Haag’s theorem [80]).

For the reasons briefly outlined above the mixing relations (2.41) need a careful analysis,
which is what we shall do in the following. We shall study the relation between the Fock spaces
H1,2 and He,µ, which refer to the fields ν1, ν2 and νe, νµ respectively, in the infinite volume
limit. From what we said above we see that these two spaces describe a free and an interacting
theory respectively, so we expect that they will become orthogonal in this limit.

First of all, let us rewrite the relations (2.41) in the form:

ναe (x) = G−1
θ (t)να1Gθ(t) (2.58)

ναµ (x) = G−1
θ (t)να2Gθ(t) (2.59)

where G(θ) is the generator of the mixing transformations and it is given by:

Gθ(t) = exp

[
θ

∫
d3x

(
ν†1(x)ν2(x)− ν†2(x)ν1(x)

)]
, (2.60)

and it is a unitary operator at finite volume: G−1
θ (t) = G−θ(t) = G†

θ(t). This object generates
a canonical transformation since the canonical anticommutation relations (2.48) are preserved.
Eq. (2.60) can be verified by double differentiation with respect to θ:

d2ναe /dθ
2 = −ναe , d2ναµ/dθ

2 = −ναµ , (2.61)

and solving these two differential equations with the initial conditions:

ναe |θ=0 = να1 , dναe /dθ|θ=0 = να2 and ναµ |θ=0 = να2 , dναµ/dθ|θ=0 = −να1 , (2.62)

From its very definiton Gθ(t) is an element of the group SU(2). Indeed, by defining the
operators:

S+(t) ≡
∫
d3x ν†1(x)ν2(x) , S−(t) ≡

∫
d3x ν†2(x)ν1(x) = (S+)

† , (2.63)

it is possible to write:
Gθ(t) = exp[θ(S+ − S−)] . (2.64)

By introducing the operator:

S3 ≡
1

2

∫
d3x

(
ν†1(x)ν1(x)− ν†2(x)ν2(x)

)
, (2.65)

and the Casimir operator

S0 ≡
1

2

∫
d3x

(
ν†1(x)ν1(x) + ν†2(x)ν2(x)

)
, (2.66)
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we see that the su(2) algebra is closed:

[S+(t), S−(t)] = 2S3 , [S3, S±(t)] = ±S±(t) , [S0, S3] = [S0, S±(t)] = 0 . (2.67)

By using the Fourier expansions Fourier (2.43) we get:

S+(t) ≡
∑

k

Sk
+(t) =

∑

k

∑

r,s

(
ur†k,1(t)u

s
k,2(t)α

r†
k,1α

s
k,2 + vr†−k,1(t)u

s
k,2(t)β

r
−k,1α

s
k,2+

+ur†k,1(t)v
s
−k,2(t)α

r†
k,1β

s†
−k,2 + vr†−k,1(t)v

s
−k,2(t)β

r
−k,1β

s†
−k,2

)
, (2.68)

S−(t) ≡
∑

k

Sk
−(t) =

∑

k

∑

r,s

(
ur†k,2(t)u

s
k,1(t)α

r†
k,2α

s
k,1 + vr†−k,2(t)u

s
k,1(t)β

r
−k,2α

s
k,1+

+ur†k,2(t)v
s
−k,1(t)α

r†
k,2β

s†
−k,1 + vr†−k,2(t)v

s
−k,1(t)β

r
−k,2β

s†
−k,1

)
, (2.69)

S3 ≡
∑

k

Sk
3 =

1

2

∑

k,r

(
αr†k,1α

r
k,1 − βr†−k,1β

r
−k,1 − αr†k,2α

r
k,2 + βr†−k,2β

r
−k,2

)
, (2.70)

S0 ≡
∑

k

Sk
0 =

1

2

∑

k,r

(
αr†k,1α

r
k,1 − βr†−k,1β

r
−k,1 + αr†k,2α

r
k,2 − βr†−k,2β

r
−k,2

)
. (2.71)

The su(2) algebra is closed for every k component:

[
Sk
+(t), S

k
−(t)

]
= 2Sk

3 ,
[
Sk
3 (t), S

k
±(t)

]
= ±Sk

±(t),
[
Sk
0 , S

k
3

]
=
[
Sk
0 , S

k
±
]
= 0, (2.72)

[
Sk
±(t), S

p
±(t)

]
=
[
Sk
3 (t), S

p
±(t)

]
=
[
Sk
3 , S

p
3

]
= 0, k 6= p (2.73)

which means that the original su(2) algebra splits in mutually commuting suk(2) algebras,
given by (2.72). The group structure is then

⊗
k SUk(2).

The relation between the Hilbert spaces H1,2and He,µ let us consider a generic matrix
element of say να1 (x), 1,2〈a|να1 (x)|b〉1,2, where |a〉1,2, |b〉1,2 ∈ H1,2. By using the inverse of the
first of the (2.58) we get:

1,2〈a|Gθ(t) ν
α
e (x) G

−1
θ (t)|b〉1,2 ≡ 1,2〈a|να1 (x)|b〉1,2 . (2.74)

Being νe defined on He,µ, this equation shows that Gθ(t)
−1|a〉1,2 ∈ He,µ, so we see that G−1

θ (t)
maps H1,2 in He,µ:

G−1
θ (t) : H1,2 7→ He,µ. (2.75)

In particular this is true for the vacuum |0〉1,2 :

|0(t)〉e,µ = G−1
θ (t) |0〉1,2 , (2.76)

where |0(t)〉e,µ is the vacuum of He,µ which will be referred to as the flavor vacuum. Let us
remark that all these manipulations are done at finite volume V , so that they are mathematically
well defined.
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Being Gθ(t) a linear operator, we can define the ladder operators of the fields νe(x) and
νµ(x) at any given time by:

αrk,e(t) |0(t)〉e,µ = G−1
θ (t) αrk,1 |0〉1,2 = 0,

αrk,µ(t) |0(t)〉e,µ = G−1
θ (t) αrk,2 |0〉1,2 = 0,

βrk,e(t) |0(t)〉e,µ = G−1
θ (t) βrk,1 |0〉1,2 = 0, (2.77)

βrk,µ(t) |0(t)〉e,µ = G−1
θ (t) βrk,2 |0〉1,2 = 0,

from which follows the dynamical map:

αrk,e(t) ≡ G−1
θ (t) αrk,1 Gθ(t),

αrk,µ(t) ≡ G−1
θ (t) αrk,2 Gθ(t),

βrk,e(t) ≡ G−1
θ (t) βrk,1 Gθ(t), (2.78)

βrk,µ(t) ≡ G−1
θ (t) βrk,2 Gθ(t).

This allows us to expand the flavor fields in the same spinor bases used for ν1 and ν2 (we shall
see later that this is not the only possibility, which gives rise to an ambiguity):

νe(x, t) =
1√
V

∑

k,r

eik.x
[
urk,1α

r
k,e(t) + vr−k,1β

r†
−k,e(t)

]
, (2.79)

νµ(x, t) =
1√
V

∑

k,r

eik.x
[
urk,2α

r
k,µ(t) + vr−k,2β

r†
−k,µ(t)

]
. (2.80)

The explicit expression of the dynamical map (2.78) is:

αrk,e(t) = cos θ αrk,1 + sin θ
∑

s

[
ur†k,1(t)u

s
k,2(t) α

s
k,2 + ur†k,1(t)v

s
−k,2(t) β

s†
−k,2

]

αrk,µ(t) = cos θ αrk,2 − sin θ
∑

s

[
ur†k,2(t)u

s
k,1(t) α

s
k,1 + ur†k,2(t)v

s
−k,1(t) β

s†
−k,1

]

βr−k,e(t) = cos θ βr−k,1 + sin θ
∑

s

[
vs†−k,2(t)v

r
−k,1(t) β

s
−k,2 + us†k,2(t)v

r
−k,1(t) α

s†
k,2

]
(2.81)

βr−k,µ(t) = cos θ βr−k,2 − sin θ
∑

s

[
vs†−k,1(t)v

r
−k,2(t) β

s
−k,1 + us†k,1(t)v

r
−k,2(t) α

s†
k,1

]
.

which in the reference frame such that k = (0, 0, |k|) simplifies in:

αrk,e(t) = cos θ αrk,1 + sin θ
(
U∗
k(t) α

r
k,2 + ǫr Vk(t) β

r†
−k,2

)

αrk,µ(t) = cos θ αrk,2 − sin θ
(
Uk(t) α

r
k,1 − ǫr Vk(t) β

r†
−k,1

)

βr−k,e(t) = cos θ βr−k,1 + sin θ
(
U∗
k(t) β

r
−k,2 − ǫr Vk(t) α

r†
k,2

)
(2.82)

βr−k,µ(t) = cos θ βr−k,2 − sin θ
(
Uk(t) β

r
−k,1 + ǫr Vk(t) α

r†
k,1

)
,
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where ǫr = (−1)r and we defined:

Uk(t) ≡ ur†k,2(t)u
r
k,1(t) = vr†−k,1(t)v

r
−k,2(t)

Vk(t) ≡ ǫr ur†k,1(t)v
r
−k,2(t) = −ǫr ur†k,2(t)vr−k,1(t) (2.83)

These coefficients have the structure:

Vk(t) = |Vk| ei(ωk,2+ωk,1)t , Uk(t) = |Uk| ei(ωk,2−ωk,1)t; (2.84)

and

|Uk| =

(
ωk,1 +m1

2ωk,1

) 1
2
(
ωk,2 +m2

2ωk,2

) 1
2
(
1 +

k2

(ωk,1 +m1)(ωk,2 +m2)

)
(2.85)

|Vk| =

(
ωk,1 +m1

2ωk,1

) 1
2
(
ωk,2 +m2

2ωk,2

) 1
2
(

k

(ωk,2 +m2)
− k

(ωk,1 +m1)

)
(2.86)

|Uk|2 + |Vk|2 = 1. (2.87)

We have thus unraveled the structure of the mixing transformation at the level of the ladder
operators. It has the structure of a Bogoliubov transformation with coefficients Uk and Vk com-
bined with a rotation with angle θ. It is possible to disentangle the Bogoliubov transformation
and the rotation only partially [39], so these transformations are more complicated than the
usual Bogoliubov transformations which appear in many physical situations.

The operator G−1(θ) = exp[θ(S− − S+)] is the generator of the generalized coherent states
of SU(2) [124]. Thus Eq.(2.76) shows that the flavor vacuum is such a coherent state.

Let us give the explicit expression of the flavor vacuum at t = 0 in the chosen reference
frame. By using the Gaussian decomposition, G−1(θ) can be written as:

exp[θ(S− − S+)] = exp(− tan θ S+) exp(−2 ln cos θ S3) exp(tan θ S−) (2.88)

where 0 ≤ θ < π
2
. Then (2.76) can be rewritten as

|0〉e,µ =
∏

k

|0〉ke,µ =
∏

k

exp(− tan θ Sk
+) exp(−2 ln cos θ Sk

3 ) exp(tan θ Sk
−)|0〉1,2 . (2.89)

After some algebra [39] we get the following expression for |0〉e,µ in terms of Sk
± and Sk

3 :

|0〉e,µ =
∏

k

|0〉ke,µ =
∏

k

[
1 + sin θ cos θ

(
Sk
− − Sk

+

)
+

1

2
sin2 θ cos2 θ

(
(Sk

−)
2 + (Sk

+)
2
)
+

− sin2 θSk
+S

k
− +

1

2
sin3 θ cos θ

(
Sk
−(S

k
+)

2 − Sk
+(S

k
−)

2
)
+

1

4
sin4 θ(Sk

+)
2(Sk

−)
2

]
|0〉1,2 .

(2.90)

Being G−1
θ (t) a unitary operator, |0〉e,µ is normalized. Before expanding this expression in

terms of the ladder operators let us compute the scalar product 1,2〈0|0〉e,µ. We obtain

1,2〈0|0〉e,µ =
∏

k

(
1− sin2 θ 1,2〈0|Sk

+S
k
−|0〉1,2 +

1

4
sin4 θ 1,2〈0|(Sk

+)
2(Sk

−)
2|0〉1,2

)
, (2.91)
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where

1,2〈0|Sk
+S

k
−|0〉1,2 =

= 1,2〈0|
(
∑

σ,τ

∑

r,s

[
vσ†−k,1(t)u

τ
k,2(t)

] [
us†k,2(t)v

r
−k,1(t)

]
βσ−k,1α

τ
k,2α

s†
k,2β

r†
−k,1

)
|0〉1,2 =

=
∑

r,s

| vr†−k,1(t)u
s
k,2(t) |2 ≡ 2|Vk|2 . (2.92)

and

1,2〈0|(Sk
+)

2(Sk
−)

2|0〉1,2 = 2|Vk|4 . (2.93)

The function Vk, defined in (2.83), is plotted in Fig. 2.1. We will see shortly that it is

proportional to the density of the flavor vacuum condensate. |Vk|2 depends on k only through
its modulus k, it is limited in the interval [0, 1[, has a maximum in |k| = √

m1m2 which defines
the characteristic scale of the condensate. Moreover, |Vk|2 = 0 when m1 = m2 in accordance
with the fact that in that case there is no mixing. We also notice that |Vk|2 → 0 in the limit
k → ∞.

We have:

1,2〈0|0〉e,µ =
∏

k

(
1− sin2 θ |Vk|2

)2 ≡
∏

k

Γ(k) = (2.94)

=
∏

k

eln Γ(k) = e
∑

k
ln Γ(k).

The properties of |Vk|2 imply that Γ(k) < 1 for any k, m1, m2. By exploiting the usual relation∑
k → V

(2π)3

∫
d3k, we take the infinite volume limit:

lim
V→∞ 1,2〈0|0〉e,µ = lim

V→∞
e

V

(2π)3

∫

d3k ln Γ(k)
= 0 (2.95)

which shows the orthogonality of the two vacua in the limit. Being the orthogonality due to the
IR contributions as it is an infinite volume effect, the result is not dependent on large momenta,
so it is not necessary to consider the problem of the regularization of the UV divergence in the
integral of ln Γ(k)). Of course the two vacua are not orthogonal any more when θ = 0 or
m1 = m2.

Eq.(2.95) is an expression of the unitary inequivalence of the two representations in the
infinite volume limit and shows the nontrivial nature of the mixing transformations. These
induce a nontrivial structure in the flavor vacuum, which turns out to be a generalized SU(2)
coherent state. We thus understand how rough an approximation is to identify the flavor
vacuum with the vacuum of the definite mass fields, since it leads to the loss of the coherent
state structure of the vacuum and of its physical consequences. This is an approximation even
in the case of finite volume.
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Figure 2.1: Fermionic condensation density |Vk|2 as a function of k with sample values of the

mass parameters m1 and m2.

Continuous line: m1 = 1 , m2 = 100

Dashed line: m1 = 10 , m2 = 100

The complete expression of the flavor vacuum is:

|0〉e,µ =
∏

k

∏

r

[
(1− sin2 θ |Vk|2)− ǫr sin θ cos θ |Vk|(αr†k,1βr†−k,2 + αr†k,2β

r†
−k,1) +

+ ǫr sin2 θ |Vk||Uk|(αr†k,1βr†−k,1 − αr†k,2β
r†
−k,2) + sin2 θ |Vk|2αr†k,1βr†−k,2α

r†
k,2β

r†
−k,1

]
|0〉1,2.

(2.96)

It appears that this expression involves four different particle–antiparticle pairs having zero
total momentum and spin. This vacuum structure is more complex than the one found in
systems which involve the usual Bogoliubov transformation e.g. the BCS theory. This is due
to the more complicated structure of the transformations involved.

The condensation density of the flavor vacuum is given by:

e,µ〈0|αr†k,iαrk,i|0〉e,µ = e,µ〈0|βr†k,iβrk,i|0〉e,µ = sin2 θ |Vk|2 , i = 1, 2 . (2.97)

It is instructive to see how it is possible to partially disentangle the rotation from the
Bogoliubov transformation [39].

Let us do the following ansätze:

|Uk| ≡ cosΘk , |Vk| ≡ sinΘk , 0 ≤ Θk <
π

4
(2.98)

ei(ω1−ω2)t ≡ eiψ , e2iω1t ≡ eiφ1 , e2iω2t ≡ eiφ2 (2.99)
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so that the (2.82) become

αrk,e = B−1
2 R−1αrk,1RB2 (2.100)

βr−k,e = B−1
2 R−1βr−k,1RB2

αrk,µ = B−1
1 R−1αrk,2RB1 (2.101)

βr−k,µ = B−1
1 R−1βr−k,2RB1

where

R = exp

{
θ
∑

k,r

[(
αr†k,1α

r
k,2 + βr†−k,1β

r
−k,2

)
eiψ −

(
αr†k,2α

r
k,1 + βr†−k,2β

r
−k,1

)
e−iψ

]}
(2.102)

B1 = exp

{
−
∑

k,r

Θk ǫ
r
[
αrk,1β

r
−k,1 e

−iφ1 − βr†−k,1α
r†
k,1 e

iφ1
]}

(2.103)

B2 = exp

{
∑

k,r

Θk ǫ
r
[
αrk,2β

r
−k,2 e

−iφ2 − βr†−k,2α
r†
k,2 e

iφ2
]}

(2.104)

Using these relations and noting the invariance property R|0〉1,2 = |0〉1,2, we can split the
sectors {|0(Θ)〉1} and {|0(Θ)〉2} from the complete representation space {|0〉e,µ} : {|0(Θ)〉1} ⊗
{|0(Θ)〉2} ⊂ {|0〉e,µ}.

The two states |0(Θ)〉1 and |0(Θ)〉2 are obtained as follows:

|0(Θ)〉1 ≡ B−1
1 (Θ)|0〉1 =

∏

k,r

(
cosΘk + ǫr eiφ1 sinΘk β

r†
−k,1α

r†
k,1

)
|0〉1, (2.105)

|0(Θ)〉2 ≡ B−1
2 (Θ)|0〉2 =

∏

k,r

(
cosΘk − ǫr eiφ2 sin Θk β

r†
−k,2α

r†
k,2

)
|0〉2. (2.106)

which have the same structure of the thermal fundamental state of Thermo Field Dynamics
(TFD) for fermions3. We thus get a thermal type structure of the vacuum state for mixed
particles, which gives us the possibility to give a thermodynamic like treatment of the mixing
phenomenon. This connection between mixing and temperature keeps popping out in different
investigations, as for example the ones described in chapters 3 and 5. This seems to be a hint
of something very deep concerning mixing and maybe the structure of QFT itself.

2.3 Flavor states of mixed neutrinos and exact oscilla-

tion formulae

After discussing the properties of the flavor vacuum, let us turn to the flavor states of the
neutrinos. They are defined as the eigenstates of the flavor charges defined in section 2.1. We
will see that they are also eigenstates of the momentum operators, but they are not eigenstates

3This is also the form of the BCS fundamental state.
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of the Hamiltonian, causing problems with the usual interpretation of mixed particles in terms
of representations of the Poincaré group. We will postpone a possible solution of this problem
until chapter 5, where we will see that it can be overcome by considering mixing as due to the
interaction with an external field. We will concentrate on single particle states, the extension
to multiparticle states being straightforward.

Let us briefly discuss the no mixing case first. The normal ordered charge operators for the
fields ν1 and ν2 are:

: Qνi :≡
∫
d3x : ν†i (x) νi(x) =

∑

r

∫
d3k

(
αr†k,iα

r
k,i − βr†−k,iβ

r
−k,i

)
, (2.107)

where i = 1, 2 and : .. : denotes normal ordering with respect to the vacuum |0〉1,2. The single
particle states of definite mass neutrinos are defined as:

|νrk,i〉 = αr†k,i|0〉1,2, i = 1, 2, (2.108)

and they are eigenstates of Qν1 and Qν2. These can be identified as the leptonic charges of the
neutrinos in the no mixing case.

In the mixed case the situation is subtler. Flavor neutrino single particle states are defined
as the eigenstates of the charges Qνσ(t) at a given time t. These charges are related to the ones
of unmixed neutrinos by the relations:

Qνe(t) = cos2 θ Qν1 + sin2 θ Qν2 + sin θ cos θ

∫
d3x

[
ν†1(x)ν2(x) + ν†2(x)ν1(x)

]
,(2.109)

Qνµ(t) = sin2 θ Qν1 + cos2 θ Qν2 − sin θ cos θ

∫
d3x

[
ν†1(x)ν2(x) + ν†2(x)ν1(x)

]
.(2.110)

We notice that the last term of these expressions coincides with the charge Qm,1 defined in
(2.29). This term prevents from constructing eigenstates of the charges Qνσ(t) in the Hilbert
space H1,2. This fact, together with the unitary inequivalence of the mass and flavor vacua,
is a necessary and rigorous consequence of the fact that neutrinos are described by quantum
relativistic fields. We just have to learn to live with it.

The normal ordered flavor charge operators are written as:

:: Qνσ(t) ::≡
∫
d3x :: ν†σ(x) νσ(x) :: =

∑

r

∫
d3k

(
αr†k,νσ(t)α

r
k,νσ(t) − βr†−k,νσ

(t)βr−k,νσ(t)
)
,

(2.111)
where σ = e, µ, and :: ... :: denotes normal ordering with respect to the vacuum |0〉e,µ. These
operators are diagonal in the flavor ladder operators constructed in the previous section through
the mixing generator. The normal ordering :: ... :: of a given operator A is defined in the usual
way:

:: A ::≡ A − e,µ〈0|A|0〉e,µ . (2.112)

Observe that :: Qνσ(t) :: = G−1
θ (t) : Qνj : Gθ(t), with (σ, j) = (e, 1), (µ, 2), and

:: Qν :: = :: Qνe(t) :: + :: Qνµ(t) :: = : Qν1 : + : Qν2 : = : Qν : . (2.113)
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As anticipated, flavor neutrino states are defined as the eigenstates of Qνσ at reference time
t = 0:

|νrk,σ〉 ≡ αr†k,νσ(0)|0(0)〉e,µ, σ = e, µ (2.114)

and analogous for the antiparticles. We have:

:: Qνe(0) :: |νrk,e〉 = |νrk,e〉 , :: Qνµ(0) :: |νrk,µ〉 = |νrk,µ〉,

:: Qνe(0) :: |νrk,µ〉 = 0 = :: Qνµ(0) :: |νrk,e〉 , :: Qνσ(0) :: |0〉e,µ = 0. (2.115)

The flavor states |νrk,e〉 and |νrk,µ〉 at time t = 0 in the reference frame such that k = (0, 0, |k|)
have the following explicit expressions:

|νrk,e〉 ≡ αr†k,e(0)|0〉e,µ = (2.116)

=
[
cos θ αr†k,1 + |Uk| sin θ αr†k,2 − ǫr |Vk| sin θ αr†k,1αr†k,2βr†−k,1

]
G−1

k,s 6=r(θ)
∏

p6=k

G−1
p (θ)|0〉1,2,

|νrk,µ〉 ≡ αr†k,µ(0)|0〉e,µ = (2.117)

=
[
cos θ αr†k,2 − |Uk| sin θ αr†k,1 + ǫr |Vk| sin θ αr†k,1αr†k,2βr†−k,2

]
G−1

k,s 6=r(θ)
∏

p6=k

G−1
p (θ)|0〉1,2 ,

where G(θ, t) =
∏

p

∏2
s=1Gp,s(θ, t). The third term of these states represents a many particle

component, which is suppressed in the ultrarelativistic limit |k| ≫ √
m1m2 .

At this point we can give the exact oscillation formulae by computing the expectation value
of the flavor charges on the flavor states in the Heisenberg representation. The result is [41]:

Qk
νe→νe(t) = 〈νrk,e| :: Qνe(t) :: |νrk,e〉 =

∣∣∣
{
αrk,e(t), α

r†
k,e(0)

}∣∣∣
2

+
∣∣∣
{
βr†−k,e(t), α

r†
k,e(0)

}∣∣∣
2

= 1− sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
+ |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
,(2.118)

Qk
νe→νµ(t) = 〈νrk,e| :: Qνµ(t) :: |νrk,e〉 =

∣∣∣
{
αrk,µ(t), α

r†
k,e(0)

}∣∣∣
2

+
∣∣∣
{
βr†−k,µ(t), α

r†
k,e(0)

}∣∣∣
2

= sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
+ |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
. (2.119)

The conservation of the total flavor charge is guaranteed by:

Qk
νe→νe(t) +Qk

νe→νµ(t) = 1. (2.120)

The differences of these formulae with respect to the Pontecorvo ones are the momentum depen-
dence (through the Bogoliubov coefficients) of the amplitudes and the presence of an additional
oscillating term, containing the sum of the frequencies in addition to the term containing their
difference. In the ultrarelativistic limit we have |Uk|2 −→ 1 and |Vk|2 −→ 0, so that the
additional term gets suppressed and the usual oscillation formulae are recovered.
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2.4 Exact flavor states and flavor conservation

In this Section, following [17] to which we refer for the details, we sketch the computation of
the amplitudes of the following two decays at tree level:

W+ → e+ + νe , (2.121)

W+ → e+ + νµ , (2.122)

where neutrinos are produced through charged current processes. Despite being obtained in a
particular case, the results are valid for any neutrino production process. Our purpose is to
show that the flavor states defined in section 2.3 do not lead to a violation of lepton number
conservation in the three level production vertices, consistently with the Standard Model. This
is to be contrasted with the case of the Pontecorvo states defined in Chapter 1, which instead
do produce a relevant lepton number violation in the vertices [17] (see also [19, 116].

Remember the definition of the flavor states:

|νrk,σ〉 ≡ αr†k,νσ |0〉f , σ = e, µ . (2.123)

Moreover we have, at time t, |νrk,σ(t)〉 = eiH0tαr†k,σ|0〉f .
In the scattering theory for finite range potentials, it is assumed [88] that the interaction

Hamiltonian Hint(x) can be switched off adiabatically as x0in → −∞ and x0out → +∞ so that the
initial and final states can be represented by the eigenstates of the free Hamiltonian. However,
in the present case and more generally in the decay processes where the mixed neutrinos are
produced, the application of the adiabatic hypothesis leads to erroneous conclusions (as made in
[102]). Indeed, the flavor neutrino field operators do not have the mathematical characterization
necessary to be defined as asymptotic field operators acting on the massive neutrino vacuum.
Moreover, the flavor states |νrk,σ〉 are not eigenstates of the free Hamiltonian. Therefore, the
integration limits in the amplitudes of decay processes where mixed neutrinos are produced
must be chosen so that the time interval ∆t = x0out−x0in is much shorter than the characteristic
neutrino oscillation time tosc: ∆t≪ tosc.

The calculation is performed considering at the first order of the perturbation theory the
amplitudes of the decays (2.121) and (2.122).

In general, if |ψi〉 and |ψf 〉 denote initial and final states, the probability amplitude 〈ψf |e−iHt|ψi〉
is given by

〈ψf |e−iHt|ψi〉 = 〈eiH0tψf |eiH0te−iHt|ψi〉 = 〈eiH0tψf |UI(t)|ψi〉 . (2.124)

Here the time evolution operator UI(t) in the interaction picture is given approximatively by

UI(t) ≃ 1− i

∫ t

0

dt′Hint(t
′) , (2.125)

with Hint(t) = eiH0tHinte
−iH0t interaction hamiltonian in the interaction picture. In the fol-

lowing H0 is the free part of the Hamiltonian for the fields involved in the decays (2.121) and
(2.122) and the relevant interaction Hamiltonian is given by [53]:

Hint(x) = − g√
2
W+
µ (x)J

µ+
W (x) + h.c. = − g

2
√
2
W+
µ (x)νe(x)γ

µ(1− γ5)e(x) + h.c.,

(2.126)
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where W+(x), e(x) and νe(x) are the fields of the boson W+, the electron and the flavor
(electron) neutrino, respectively.

Let us consider the process W+ → e+ + νe and the states defined in Eq.(2.123). The
amplitude of the decay at first order in perturbation theory is given by4

AW+→e++νe = 〈νrk,e, esq|
[
−i
∫ x0out

x0in

d4xHint(x)

]
|W+

p,λ〉 (2.127)

= W 〈0| 〈νrk,e(x0in)| 〈esq|
{ i g

2
√
2

∫ x0out

x0in

d4x

[
W+
µ (x)νe(x)γ

µ(1− γ5)e(x)
]}

|W+
p,λ〉 |0〉e |0(x0in)〉f .

The final result is [17]:

AW+→e++νe =
i g

2
√
2(2π)3/2

δ3(p− q− k)

∫ x0out

x0in

dx0
εp,µ,λ√
2EW

p

×
{
cos2 θ e−iωk,1x

0
in urk,1 γ

µ(1− γ5) vsq,e e
−i(EW

p −Ee
q−ωk,1)x

0

+ sin2 θ
[
e−iωk,2x

0
in |Uk| urk,2 γµ(1− γ5) vsq,e e

−i(EW
p −Ee

q−ωk,2)x
0

+ eiωk,2x
0
in εr |Vk| vr−k,2 γ

µ(1− γ5) vsq,e e
−i(EW

p −Ee
q+ωk,2)x

0
]}

. (2.128)

Next we consider the process W+ → e+ + νµ. By using the Hamiltonian (2.126), we have
now

AW+→e++νµ = 〈νrk,µ, esq|
[
−i
∫ x0out

x0in

d4xHint(x)

]
|W+

p,λ〉 (2.129)

= W 〈0| 〈νrk,µ(x0in)| 〈esq|
{ i g

2
√
2

×
∫ x0out

x0in

d4x
[
W+
µ (x)νe(x)γ

µ(1− γ5)e(x)
]}

|W+
p,λ〉 |0〉e |0(x0in)〉f .

and the final result is:

AW+→e++νµ =
i g

2
√
2(2π)3/2

δ3(p− q− k) sin θ cos θ

∫ x0out

x0in

dx0
εp,µ,λ√
2EW

p

×
[
e−iωk,2x

0
in urk,2 γ

µ(1− γ5) vsq,e e
−i(EW

p −Ee
q−ωk,2)

4Note that in the case of the flavor states, because of the orthogonality of the Hilbert spaces at differ-

ent times [39], instead of Eq.(2.124) the amplitude should be defined as 〈ψσ(x
0
out

)|e−iH(x0

out
−x

0

in
)|ψσ(x

0
in
)〉 =

〈ψσ(x
0
in
)|UI(x

0
out, x

0
in
)|ψσ(x

0
in
)〉.
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− e−iωk,1x
0
in |Uk| urk,1 γµ(1− γ5) vsq,e e

−i(EW
p −Ee

q−ωk,1)

+ eiωk,1x
0
inεr |Vk| vr−k,1γ

µ(1− γ5)vsq,e e
−i(EW

p −Ee
q+ωk,1)

]
. (2.130)

Let us now consider the amplitudes given by (2.128), (2.130) for short time intervals ∆t.
The physical meaning of such a time scale ∆t is represented by the relation 1

Γ
≪ ∆t ≪ Losc,

where Γ is the W+ decay width and Losc is the typical flavor oscillation length. Given the
experimental values of Γ and Losc, this interval is well defined. In the following, when we use
the expression “short time limit”, we refer to the time scale defined above. Of course, energy
fluctuations are constrained by the Heisenberg uncertainty relation, where ∆t is the one given
above. We will see that the use of the exact flavor states gives results which agree with lepton
charge conservation in the production vertex. On the other hand, the same computation gives
a clear violation of the lepton charge when the Pontecorvo states are used [17]. The origin of
such a violation is due to the fact that the Pontecorvo flavor states are defined by use of the
vacuum state |0〉1,2 for the massive neutrino states.

Let us first consider the decay W+ → e+ + νe. We obtain the following result at first order
in ∆t:

AW+→e++νe ≃ i g

2
√
2(2π)3/2

εp,µ,λ√
2EW

p

δ3(p− q− k) ∆t × (2.131)

×
{
cos2 θ urk,1 + sin2 θ

[
|Uk| urk,2 + εr |Vk| vr−k,2

]}
γµ(1− γ5) vsq,e.

The final result is

AW+→e++νe ≃ i g

2
√
2(2π)3/2

εp,µ,λ√
2EW

p

δ3(p− q− k) ∆t urk,1 γ
µ(1− γ5) vsq,e . (2.132)

This amplitude resembles the one for the production of a free neutrino with mass m1.

Let us now turn to the process W+ → e+ + νµ. Proceeding in a similar way as above, we
obtain

AW+→e++νµ ≃ i g

4
√
2(2π)3/2

εp,µ,λ√
2EW

p

δ3(p− q− k) ∆t sin 2θ

×
[
urk,2 − |Uk| urk,1 + εr |Vk| vr−k,1

]
γµ(1− γ5) vsq,e , (2.133)

in the short time limit.
It is possible to show [17] that the quantity in square brackets vanishes identically i.e.

AW+→e++νµ ≃ 0 . (2.134)

This proves that, in the short time limit, the use of the exact flavor states leads to the
conservation of lepton charge in the production vertex in agreement with what we expected
from the Standard Model.
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2.5 Generalization of the mixing transformations

In Section 2.2 we have expressed the flavor fields νe and νµ in the same bases as the (free) fields
with definite masses ν1 and ν2, respectively. As we have anticipated, this is actually a special
choice, and that a more general possibility exists, as noticed first in [67, 68]. This ambiguity
has no physical consequences (at least in the two flavor case) since the observable quantities
turn out not to be affected. Anyway, as we will show in chapter 5, a different point of view will
allow us to lift this ambiguity.

Let us introduce the notation. As we saw, the fields νe and νµ can be written in the following
form:

νσ(x) = G−1
θ (t) νj(x)Gθ(t) =

1√
V

∑

k,r

[
urk,jα

r
k,σ(t) + vr−k,jβ

r†
−k,σ(t)

]
eik·x,

(2.135)

where (σ, j) = (e, 1), (µ, 2) and

(
αrk,σ(t)

βr†−k,σ(t)

)
= G−1

θ (t)

(
αrk,j(t)

βr†−k,j(t)

)
Gθ(t) (2.136)

The explicit expression of the flavor annihilation operators is (in the reference frame k =
(0, 0, |k|)):



αrk,e(t)
αrk,µ(t)

βr†−k,e(t)

βr†−k,µ(t)


 =




cθ sθ |Uk| 0 sθ ǫ
r |Vk|

−sθ |Uk| cθ sθ ǫ
r |Vk| 0

0 −sθ ǫr |Vk| cθ sθ |Uk|
−sθ ǫr |Vk| 0 −sθ |Uk| cθ







αrk,1(t)
αrk,2(t)

βr†−k,1(t)

βr†−k,2(t)


 (2.137)

where cθ ≡ cos θ, sθ ≡ sin θ.

The point is that in the expansion Eq.(2.135) one could use eigenfunctions associated with
arbitrary masses µσ, and therefore not necessarily the same as the masses which appear in the
Lagrangian. Indeed, the transformation Eq.(2.136) can be generalized [67, 68] by writing the
flavor fields as

νσ(x) =
1√
V

∑

k,r

[
urk,σα̃

r
k,σ(t) + vr−k,σβ̃

r†
−k,σ(t)

]
eik·x, (2.138)

where uσ and vσ are spinors with a given mass µσ. We denote by a tilde the generalized
flavor operators [67, 68] in order to distinguish them from the ones defined in Eq.(2.136). The
expansion (2.135) corresponds to the particular choice µe ≡ m1, µµ ≡ m2.

The relation between the general flavor and the mass operators is now:

(
α̃rk,σ(t)

β̃r†−k,σ(t)

)
= K−1

θ,µ(t)

(
αrk,j(t)

βr†−k,j(t)

)
Kθ,µ(t) , (2.139)
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with (σ, j) = (e, 1), (µ, 2), where Kθ,µ(t) is the generator of the transformations (2.41) and can
be expressed as

Kθ,µ(t) = Iµ(t)Gθ(t) (2.140)

Iµ(t) =
∏

k,r

exp



i
∑

(σ,j)

ξkσ,j

[
αr†k,j(t)β

r†
−k,j(t) + βr−k,j(t)α

r
k,j(t)

]


 (2.141)

with

ξkσ,j ≡ (χσ − χj)/2, cotχσ = |k|/µσ, cotχj = |k|/mj. (2.142)

For µe ≡ m1, µµ ≡ m2, we have Iµ(t) = 1.
The explicit matrix form of the flavor operators is [67, 68]:




α̃rk,e(t)
α̃rk,µ(t)

β̃r†−k,e(t)

β̃r†−k,µ(t)


 =




cθ ρ
k
e1 sθ ρ

k
e2 icθ λ

k
e1 isθ λ

k
e2

−sθ ρkµ1 cθ ρ
k
µ2 −isθ λkµ1 icθ λ

k
µ2

icθ λ
k
e1 isθ λ

k
e2 cθ ρ

k
e1 sθ ρ

k
e2

−isθ λkµ1 icθ λ
k
µ2 −sθ ρkµ1 cθ ρ

k
µ2







αrk,1(t)
αrk,2(t)

βr†−k,1(t)

βr†−k,2(t)


 (2.143)

where cθ ≡ cos θ, sθ ≡ sin θ and

ρkabδrs ≡ cos

(
χa − χb

2

)
δrs = ur†k,au

s
k,b = vr†−k,av

s
−k,b (2.144)

iλkabδrs ≡ i sin

(
χa − χb

2

)
δrs = ur†k,av

s
−k,b = vr†−k,au

s
k,b (2.145)

with a, b = 1, 2, e, µ.
Since ρk12 = |Uk| and iλk12 = ǫr|Vk|, etc., the operators (2.143) reduce to the ones in (2.137)

when µe ≡ m1 and µµ ≡ m2
5.

The generalization of the flavor vacuum, which is annihilated by the general flavor operators
given by Eq.(2.139), is [67, 68]:

|0̃(t)〉e,µ ≡ K−1
θ,µ(t)|0〉1,2 . (2.146)

Of course, when µe ≡ m1 and µµ ≡ m2, this state reduces to the flavor vacuum |0(t)〉e,µ above
defined.

The relation between the general flavor operators of Eq.(2.139) and the flavor operators of
Eq.(2.136) is [67, 68]:

(
α̃rk,σ(t)

β̃r†−k,σ(t)

)
= J−1

µ (t)

(
αrk,σ(t)

βr†−k,σ(t)

)
Jµ(t) , (2.147)

Jµ(t) =
∏

k,r

exp



i
∑

(σ,j)

ξkσ,j

[
αr†k,σ(t)β

r†
−k,σ(t) + βr−k,σ(t)α

r
k,σ(t)

]


 . (2.148)

5In performing such an identification, one should take into account that the operators for antiparticles differ

for a minus sign, related to the different spinor bases used in the expansions (2.135) and (2.138). Such a sign

difference is however irrelevant in what follows.

25



We have thus shown that the Hilbert space for the flavor fields is not unique: an infinite
number of vacua (and consequently infinitely many Hilbert spaces) can be generated by in-
troducing the arbitrary mass parameters µe, µµ. It is obvious that physical quantities must
not depend on these parameters. Indeed the exact oscillation formulae are independent of the
arbitrary mass parameters [40]. We have in fact the equalities

∣∣∣
{
α̃rk,e(t), α̃

r†
k,e(0)

}∣∣∣
2

+
∣∣∣
{
β̃r†k,e(t), α̃

r†
k,e(0)

}∣∣∣
2

=

=
∣∣∣
{
αrk,e(t), α

r†
k,e(0)

}∣∣∣
2

+
∣∣∣
{
βr†−k,e(t), α

r†
k,e(0)

}∣∣∣
2

, (2.149)

∣∣∣
{
α̃rk,µ(t), α̃

r†
k,e(0)

}∣∣∣
2

+
∣∣∣
{
β̃r†−k,µ(t), α̃

r†
k,e(0)

}∣∣∣
2

=

=
∣∣∣
{
αrk,µ(t), α

r†
k,e(0)

}∣∣∣
2

+
∣∣∣
{
βr†−k,µ(t), α

r†
k,e(0)

}∣∣∣
2

, (2.150)

which ensure the cancellation of the arbitrary mass parameters.
The important point for the full understanding of the result (2.149), (2.150) is that the

charge operators Qνσ are the Casimir operators with respect to the Bogoliubov transformation
(2.147) and so they are invariant under the action of the Bogoliubov generator (2.148), i.e.

Q̃νσ = Qνσ , where Q̃νσ ≡ α̃†
σα̃σ − β̃†

σβ̃σ. Besides the direct computations leading to Eqs.
(2.149), (2.150), such an invariance provides a strong and immediate proof of the independence
of the oscillation formula from the µσ parameters. Thus, the expectation values of the flavor
charge operators are the only physical relevant quantities in the context of the above theory,
all other operators having expectation values depending on the arbitrary parameters above
introduced.

2.6 Boson mixing

The nontrivial nature of the mixing transformations manifests itself also in the case of boson
field mixing (e.g. neutral kaons). The main difference with respect to the fermionic case is
in the condensate structure of the flavor vacuum. Until we are restricted to considerations
in the framework of the Standard Model, this case is to be considered as an effective theory,
since the mixed bosons are composite objects, and their mixing is to be traced back to the
underlying quark mixing6. In the wider framework of a supersymmetric theory it is possible to
have mixing of fundamental scalars. This is the situation we will consider in the next chapter.
For generality, let us consider the mixing of two generic complex scalar fields [18], leaving the
case of real fields to a later section.

We can easily extend the analysis of the currents and charges of fermions to the case of
bosons. Let us consider the Lagrangian density

L(x) = ∂µΦ
†
m(x)∂

µΦm(x) − Φ†
m(x)MdΦm(x) (2.151)

6The problem of deriving the meson mixing parameters from the quark mixing parameters is an unsolved

one since it involves nontrivial QCD strong coupling effects, see e.g.[130, 131]
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Figure 2.2: Boson condensation density |Vk|2 as a function of k and for sample values of the

mass parameters m1 e m2.

Continuous line: m1 = 1 , m2 = 10

Dashed line: m1 = 2 , m2 = 10

where ΦTm = (φ1, φ2) are complex andMd = diag(m2
1, m

2
2). We have:

Φ′
m(x) = eiαj τj Φm(x) (2.152)

δL(x) = i αj Φ
†
m(x) [τj , Md] Φm(x) = −αj ∂µ Jµm,j(x) , (2.153)

Jµm,j(x) = iΦ†
m(x) τj

↔
∂µ Φm(x) , j = 1, 2, 3. (2.154)

As in the fermion case the corresponding charges Qm,j(t) close the su(2) algebra and the boson
mixing generator is proportional to Qm,2(t).

The vacuum structure and the exact flavor oscillation formulae is determined in the same
way as in the fermion case. The mixing relations

φA(x) = cos θ φ1(x) + sin θ φ2(x)

φB(x) = − sin θ φ1(x) + cos θ φ2(x) (2.155)

(where the suffixes A and B denote generically the mixed fields) imply the existence of a
nontrivial vacuum which once again has the structure of a SU(2) generalized coherent state.

The main difference is in the form of the Bogoliubov coefficients:

Uk(t) ≡ |Uk| ei(ωk,2−ωk,1)t , Vk(t) ≡ |Vk| ei(ωk,1+ωk,2)t (2.156)

|Uk| ≡
1

2

(√
ωk,1
ωk,2

+

√
ωk,2
ωk,1

)
, |Vk| ≡

1

2

(√
ωk,1
ωk,2

−
√
ωk,2
ωk,1

)
(2.157)
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|Uk|2 − |Vk|2 = 1 , (2.158)

which results in a different expression of the condensation density

A,B
〈0(t)|a†k,iak,i|0(t)〉A,B

= sin2 θ |Vk|2, i = 1, 2 , (2.159)

The function |Vk|2 is plotted in Fig. 2.2 with sample values for the masses. It has its maximum

in |k| = 0 (|Vmax|2 = (m1−m2)2

4m1m2
and |Vk|2 ≃

(
∆m2

4|k|2
)2

for |k|2 ≫ m2
1
+m2

2

2
.

The single particle mixed boson state with flavor A is:

|ak,A〉 ≡ a†k,A(0) |0〉A,B
(2.160)

which is an eigenstate of the flavor charges (σ = A,B)

Qσ(t) =

∫
d3k

(
a†k,σ(t)ak,σ(t) − b†−k,σ(t)b−k,σ(t)

)
, (2.161)

with eigenvalues one and zero respectively. An analogous definition is of course given for the
state with flavor B.

Moreover
A,B

〈0|Qσ(t) |0〉A,B
= 0 and

Qk,σ(t) ≡ 〈ak,A|Qσ(t) |ak,A〉 =
∣∣∣
[
ak,σ(t), a

†
k,A(0)

]∣∣∣
2

−
∣∣∣
[
b†−k,σ(t), a

†
k,A(0)

]∣∣∣
2

. (2.162)

The exact oscillation formulae are:

Qk,A(t) = 1 − sin2(2θ) |Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
(2.163)

+ sin2(2θ) |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)
,

Qk,B(t) = sin2(2θ) |Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
(2.164)

− sin2(2θ) |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)
.

2.7 Mixing and oscillations of Majorana fermions

Now let us consider situations in which the mixed fields are neutral i.e. Majorana spinors and
real scalars [38].

As we have seen, in the derivation of the oscillation formulae by use of the flavor Hilbert
space a central role is played by the flavor charges [34]. However, these charges vanish identically
in the case of neutral fields. We will see that in this case their role is taken by the momentum
operators, and the oscillation formulae we will obtain match those obtained in the charged field
case. Since the results obtained are analogous to the one found in the charged case exists, it
is customary to use the terms “flavor fields”, “flavor states” and “flavor vacuum” also in the
neutral case.
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Let us start with the Majorana spinor case. Besides being useful in the discussion of the
supersymmetric case in the next chapter, this case has an intrinsic importance since it is still
not known wether the neutrinos we observe are Dirac or Majorana particles.

Let us briefly recall the definition of Majorana spinors. The charge-conjugation operator C
is defined as satisfying the relations

C−1γµ C = −γTµ , C† = C−1 , CT = −C . (2.165)

from which we define the charge conjugate ψc of the spinor ψ as

ψc(x) ≡ γ0 C ψ∗(x) . (2.166)

A Majorana fermionis is defined as a field that satisfies the Dirac equation

(i 6∂ −m)ψ = 0 (2.167)

and the self-conjugation relation

ψ = ψc . (2.168)

The two equations (2.167) and (2.168) ensure that the Majorana field is a neutral fermion field.
The dynamics is ruled by the Lagrangian:

L(x) = ψ̄f (x)(i 6∂ −M)ψf (x) = ψ̄m(x)(i 6∂ −Md)ψm(x) , (2.169)

with ψTf = (νe, νµ) being the flavor fields and M =

(
me meµ

meµ mµ

)
. The flavor fields are

connected to the free fields ψTm = (ν1, ν2) with Md = diag(m1, m2) by the mixing rotation:

νe(x) = ν1(x) cos θ + ν2(x) sin θ , (2.170)

νµ(x) = −ν1(x) sin θ + ν2(x) cos θ . (2.171)

The Fourier expansion of the free fields is given by [114]

νi(x) =
∑

r=1,2

∫
d3k

(2π)
3
2

eik·x
[
urk,i(t)α

r
k,i + vr−k,i(t)α

r†
−k,i

]
, i = 1, 2. (2.172)

where urk,i(t) = e−iωk,iturk,i, v
r
k,i(t) = eiωk,itvrk,i, with ωk,i =

√
k2 +m2

i . In order for the Majorana
condition (2.168) to be satisfied, the four spinors must also satisfy the following condition:

vsk,i = γ0 C(u
s
k,i)

∗ ; usk,i = γ0 C(v
s
k,i)

∗ . (2.173)

By proceeding in the by now standard way we get the same result we got in the Dirac case.
In particular the Bogoliubov coefficients are:

Uk(t) ≡ |Uk| ei(ωk,2−ωk,1)t , Vk(t) ≡ |Vk| ei(ωk,2+ωk,1)t , (2.174)
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|Uk| ≡
(
ωk,1 +m1

2ωk,1

) 1
2
(
ωk,2 +m2

2ωk,2

) 1
2
(
1 +

|k|2
(ωk,1 +m1)(ωk,2 +m2)

)
, (2.175)

|Vk| ≡
(
ωk,1 +m1

2ωk,1

) 1
2
(
ωk,2 +m2

2ωk,2

) 1
2
( |k|
(ωk,2 +m2)

− |k|
(ωk,1 +m1)

)
, (2.176)

|Uk|2 + |Vk|2 = 1 . (2.177)

The flavor fields can be expanded as:

νσ(x) =
∑

r=1,2

∫
d3k

(2π)
3
2

eik·x
[
urk,j(t)α

r
k,σ(t) + vr−k,j(t)α

r†
−k,σ(t)

]
, (2.178)

with σ, j = (e, 1), (µ, 2) and the flavor annihilation operators given by (for k = (0, 0, |k|)):

αrk,e(t) ≡ G−1
θ (t) αrk,1 Gθ(t) = cos θ αrk,1 + sin θ

(
U∗
k(t)α

r
k,2 + ǫrVk(t)α

r†
−k,2

)
,

αrk,µ(t) ≡ G−1
θ (t) αrk,2 Gθ(t) = cos θ αrk,2 − sin θ

(
Uk(t)α

r
k,1 − ǫrVk(t)α

r†
−k,1

)
.

(2.179)

We define the state for a mixed Majorana particle with definite flavor, spin and momentum
as:

|αrk,e(t)〉 ≡ αr†k,e(t)|0(t)〉e,µ. (2.180)

We notice that the following quantity is constant in time:
∣∣∣
{
αrk,e(t), α

r†
k,e(t

′)
}∣∣∣

2

+
∣∣∣
{
αr†−k,e(t), α

r†
k,e(t

′)
}∣∣∣

2

+

+
∣∣∣
{
αrk,µ(t), α

r†
k,e(t

′)
}∣∣∣

2

+
∣∣∣
{
αr†−k,µ(t), α

r†
k,e(t

′)
}∣∣∣

2

= 1 . (2.181)

The corresponding of Eq.(2.181) for Dirac fields, was consistently interpreted as expressing
the conservation of total charge. In the present case we are dealing with a neutral field and
thus the charge operator vanishes identically. Nevertheless the quantities in Eq.(2.181) are well
defined and are the Majorana field counterpart of the corresponding ones for the case of Dirac
fields. Thus we look for a physical interpretation of such oscillating quantities.

Let us consider the momentum operator defined as

P j ≡
∫
d3x T 0j(x), (2.182)

where the energy–momentum tensor for the fermion field, T µν , is defined by

T µν ≡ iψ̄γν∂µψ. (2.183)

For the free fields ψi we have:

Pi =

∫
d3xψ†

i (x)(−i∇)ψi(x) =

∫
d3k

∑

r=1,2

k
(
αr†k,iα

r
k,i − αr†−k,iα

r
−k,i

)
, i = 1, 2 .

(2.184)
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We then define the momentum operator for mixed fields:

Pσ(t) =

∫
d3xψ†

σ(x)(−i∇)ψσ(x) =

∫
d3k

∑

r=1,2

k
(
αr†k,σ(t)α

r
k,σ(t)− αr†−k,σ(t)α

r
−k,σ(t)

)
,

(2.185)

with σ = e, µ. We have

Pσ(t) = G−1
θ (t)PiGθ(t) (2.186)

and the conservation of total momentum as a consequence of

Pe(t) +Pµ(t) = P1 +P2 ≡ P , [P, Gθ(t)] = 0 , [P, H ] = 0 . (2.187)

We now consider the expectation values on the flavor state |αrk,e〉 ≡ |αrk,e(0)〉. At time t = 0,
this state is an eigenstate of the momentum operator Pe(0):

Pe(0) |αrk,e〉 = k |αrk,e〉 . (2.188)

At t 6= 0 the expectation value for the momentum (normalized to initial value) gives:

Pe
k,σ(t) ≡

〈αrk,e|Pσ(t)|αrk,e〉
〈αrk,e|Pσ(0)|αrk,e〉

=
∣∣∣
{
αrk,σ(t), α

r†
k,e(0)

}∣∣∣
2

+
∣∣∣
{
αr†−k,σ(t), α

r†
k,e(0)

}∣∣∣
2

, (2.189)

with σ = e, µ, which is the same form of the expression one obtains for the expectation values
of the flavor charges in the case of Dirac fields [41]. The flavor vacuum expectation value of
the momentum operator Pσ(t) vanishes at all times:

e,µ〈0|Pσ(t)|0〉e,µ = 0 , σ = e, µ . (2.190)

The explicit calculation of the oscillating quantities Pe
k,σ(t) gives:

Pe
k,e(t) = 1− sin2 2θ

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
+ |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
,

(2.191)

Pe
k,µ(t) = sin2 2θ

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
+ |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
, (2.192)

in complete agreement with the Dirac field case [41].

2.8 Mixing of neutral bosons

Let us now consider the mixing of two real scalar fields [38]. The situation is analogous to the
Majorana fermion case.
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The Lagrangian is:

L(x) =
1

2
[∂µφA(x)]

2 − 1

2
m2
Aφ

2
A(x) +

1

2
[∂µφB(x)]

2 (2.193)

− 1

2
m2
Bφ

2
B(x) − m2

ABφA(x)φB(x)

=
1

2
[∂µφ1(x)]

2 − 1

2
m2

1φ
2
1(x) +

1

2
[∂µφ2(x)]

2 − 1

2
m2

2φ
2
2(x) (2.194)

where φA, φB are flavor fields and φ1, φ2 are massive fields, with masses m1 and m2 respectively.
The mixing transformations are:

φA(x) = cos θ φ1(x) + sin θ φ2(x)

φB(x) = − sin θ φ1(x) + cos θ φ2(x) , (2.195)

We havem2
A = m2

1 cos
2 θ+m2

2 sin
2 θ, m2

B = m2
2 cos

2 θ+m2
1 sin

2 θ, m2
AB = (m2

2−m2
1) sin θ cos θ.

The Fourier expansions of the fields φ1, φ2 are (x0 ≡ t):

φj(x) =

∫
d3k

(2π)
3
2

1√
2ωk,j

(
ak,j e

−iωk,jt + a†−k,j e
iωk,jt

)
eik·x , j = 1, 2 , (2.196)

while the ones for the flavor fields are:

φσ(x) =

∫
d3k

(2π)
3
2

1√
2ωk,j

(
ak,σ(t) e

−iωk,jt + a†−k,σ(t) e
iωk,jt

)
eik·x , (2.197)

where we use the notation σ, j = (A, 1), (B, 2) and we have

ak,A(t) = cos θak,1 + sin θ
(
Û∗
k(t)ak,2 + V̂k(t)a

†
−k,2

)
, (2.198)

ak,B(t) = cos θak,2 − sin θ
(
Ûk(t) ak,1 − V̂k(t)a

†
−k,1

)
, (2.199)

where the Bogoliubov coefficients are the same as in the charged scalar case:

Ûk(t) ≡ |Ûk| ei(ωk,2−ωk,1)t , V̂k(t) ≡ |V̂k| ei(ωk,1+ωk,2)t , (2.200)

|Ûk| ≡
1

2

(√
ωk,1
ωk,2

+

√
ωk,2
ωk,1

)
, |V̂k| ≡

1

2

(√
ωk,1
ωk,2

−
√
ωk,2
ωk,1

)
, (2.201)

|Ûk|2 − |V̂k|2 = 1 (2.202)

We observe that the following quantity is constant in time:

∣∣∣
[
ak,A(t), a

†
k,A(t

′)
]∣∣∣

2

−
∣∣∣
[
a†−k,A(t), a

†
k,A(t

′)
]∣∣∣

2

(2.203)

+
∣∣∣
[
ak,B(t), a

†
k,A(t

′)
]∣∣∣

2

−
∣∣∣
[
a†−k,B(t), a

†
k,A(t

′)
]∣∣∣

2

= 1 .

32



As in the Majorana field case, we define the momentum operator. defined as usual as [88]:
P j ≡

∫
d3xΘ0j(x), with Θµν ≡ ∂µφ∂νφ− gµν

[
1
2
(∂φ)2 − 1

2
m2φ2

]
. For the free fields φi we have:

Pi =

∫
d3x πi(x)∇φi(x) =

∫
d3k

k

2

(
a†k,iak,i − a†−k,ia−k,i

)
, i = 1, 2. (2.204)

where πi(x) = ∂0φi(x) are the conjugate momenta. The momentum operators for mixed fields
are:

Pσ(t) =

∫
d3x πσ(x)∇φσ(x) =

∫
d3k

k

2

(
a†k,σ(t)ak,σ(t) − a†−k,σ(t)a−k,σ(t)

)
, (2.205)

where σ = A,B.and we have:
Pσ(t) = G−1

θ (t)PiGθ(t). (2.206)

The total momentum is conserved:

PA(t) + PB(t) = P1 + P2 ≡ P , [P , Gθ(t)] = 0 , [P , H ] = 0 . (2.207)

We have:

PA(0) |ak,A〉 = k |ak,A〉 , (2.208)

and we can define the quantities:

PA
σ (t) ≡ 〈ak,A|Pσ(t)|ak,A〉

〈ak,A|Pσ(0)|ak,A〉
=
∣∣∣
[
ak,σ(t), a

†
k,A(0)

]∣∣∣
2

−
∣∣∣
[
a†−k,σ(t), a

†
k,A(0)

]∣∣∣
2

. (2.209)

In the end we get the oscillation formulae:

PA
k,A(t) = 1− sin2(2θ)

[
|Ûk|2 sin2

(
ωk,2 − ωk,1

2
t

)
− |V̂k|2 sin2

(
ωk,2 + ωk,1

2
t

)]
(2.210)

PA
k,B(t) = sin2(2θ)

[
|Ûk|2 sin2

(
ωk,2 − ωk,1

2
t

)
− |V̂k|2 sin2

(
ωk,2 + ωk,1

2
t

)]
. (2.211)

which agree with the analogues for charged bosons (2.164-2.165).
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Chapter 3

Flavor mixing induced spontaneous

Supersymmetry breaking

The flavor vacuum, which is the physical vacuum for describing the mixing consistently with
lepton charge conservation in the Standard Model, has a striking properties which will be the
subject of this chapter. In fact, as a consequence of its condensate structure, it has a nonva-
nishing energy density, which is positive definite both for fermions and bosons. This suggests
that a supersymmetric model containing mixed fields may display a spontaneous breaking of
supersymmetry (SUSY) [49] (see also[112]). It is indeed well known that the order parameter
for SUSY is just the vacuum energy density, which has to be non negative as an immediate con-
sequence of the SUSY algebra. Moreover, this spontaneous breaking would be nonperturbative
in nature, being triggered by a nonperturbative phenomenon such as mixing. As pointed out by
Witten [154], if SUSY is to have some chances to be relevant from the phenomenological point
of view, it has to be broken by a nonperturbative effect. This observation, together with the
fact that mixing is definitely a fact of Nature, implies that mixing could be considered a viable
candidate to explain why SUSY is not seen at our scales and open the way to the construction
of some phenomenologically relevant model.

In the following we shall state precisely the conjecture and prove it for a simple model [49].
Some inherent aspects, such as the nature of the Goldstone spinor associated to the breaking,
will not be addressed since at the time of writing they are the subject of ongoing work. Before
embarking in our task, we will give a short introduction to SUSY breaking, with the purpose
of preparing the ground to our discussion and without any claim of completeness. Also, we will
not attempt to give an introduction to SUSY since this would lead us too far away. For these
topics we refer to the excellent existing literature (see e.g. [147, 145, 133]).

3.1 Spontaneous and dynamical supersymmetry break-

ing: general aspects

It is a fact that our world is not supersymmetric. Were it not so, every known particle would
have an equal mass superpartner which would have been observed. In view of the many ad-
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vantages that SUSY would offer if it played a rôle in our world, such as providing solutions
or at least improvements of fine tuning problems such as the hierarchy problem [143] and the
cosmological constant problem [144, 117], it is desirable to have some mechanism of breaking
of this symmetry such that all these advantages be kept, while at the same time explaining
the failure in its direct observation. Over the last three decades, many such mechanisms have
been proposed and intensively studied (see e.g. [129] or [133] for excellent reviews), but to the
author’s knowledge none of these has lead to some compelling phenomenological model.

The first mechanisms for spontaneous SUSY breaking have been proposed by Fayet–Ilipoulos
[65] and by O’ Raifeartaigh [122], respectively for theories involving vector (gauge) supermulti-
plets and chiral supermultiplets. These mechanisms work at the tree (i.e. classical level). The
peculiar nature of SUSY, in particular the perturbative nonrenormalization theorems valid for
supersymmetric theories [78] imply that it if SUSY is unbroken at the tree level, it will be
unbroken at any order of perturbation theory, thus preventing a radiative correction induced
breaking like the Coleman–Weinberg mechanism [55] for ordinary symmetries. On the other
hand, it is possible to have a breaking of SUSY triggered by nonperturbative effects [154] such
as instantons1 [1].

A necessary and sufficient condition for the spontaneous breaking of SUSY is the nonvan-
ishing vacuum energy. This can be understood intuitively by noting that the vacuum quantum
fluctuations of fermion and bosons quantum fields have opposite signs, so that in a theory
which enjoys a symmetry between these fields these fluctuations should cancel. This also intu-
itively explains the nonrenormalization theorems since bosonic and fermionic loops again have
opposite signs, thus ensuring the vanishing of radiative corrections.

From a more rigorous point of view, this condition is a direct consequence of the SUSY
algebra. In the simplest instance (which is the only of our concern) this algebra contains
four Hermitian fermionic charges (usually called supercharges) Qα, α = 1, . . . , 4, which form a
Majorana spinor Q (in this chapter we adopt the 4−component notation and we also adopt all
the conventions of [149, 148] for convenience) and which satisfy the anticommutation relations

{Q,Q} = 2(γµC)P
µ (3.1)

where C is the charge conjugation matrix and P µ is the 4−momentum operator, with P 0 = H .
This implies that

H =
1

8
Tr(Cγ0 {Q,Q}), (3.2)

i.e. the Hamiltonian is expressed as the sum of the squares of Hermitian operators. This means
that the energy of any state is positive or zero. A state can have zero energy only if it is
annihilated by all of the Q’s, i.e.

Qα|ψ〉 = 0 ⇒ 〈ψ|H|ψ〉 = 1

8
〈ψ|Tr(Cγ0 {Q,Q})|ψ〉 = 0. (3.3)

Such a state will be the minimum energy state of the theory i.e. its vacuum, and will be SUSY–
preserving. If on the other hand the vacuum of the theory does not have vanishing energy

1In fact, if SUSY is to be of some help in solving the hierarchy problem it would be desirable that it be

broken dynamically (see [154] for a discussion).
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density, it is not annihilated by all the supercharges, meaning that SUSY is spontaneously
broken. This means that vacuum energy can be consistently considered as the order parameter
of SUSY, being zero for unbroken symmetry and nonzero for broken symmetry.

In the following sections we will show in a simple case that the flavor vacuum in a classically
supersymmetric theory with mixing has a nonvanishing vacuum energy density, thus meaning
that the flavor vacuum spontaneously breaks SUSY. This means that mixing constitutes a new
possible mechanism to attain SUSY breaking. Since the existence of the flavor vacuum is a
nonperturbative effect and the theory is supersymmetric at the classical level, this should be
classified as a dynamical SUSY breaking mechanism. An interesting direction to pursue is the
construction of a realistic phenomenological model including this mechanism.

3.2 Spontaneous supersymmetry breaking induced by

flavor mixing

3.2.1 General conjecture

In the following we shall limit ourselves to the two flavor case. The generalization to the
three flavor case is straightforward and does not add anything. Consider for definiteness a
supersymmetric Lagrangian L(ψ1, B1;ψ2, B2) describing two massive supermultiplets Φi with
fermionic and bosonic components generically denoted by ψi and Bi respectively, with i = 1, 2
and with m1 6= m2. Since the model is supersymmetric we have:

〈0|H|0〉 = 0, (3.4)

which implies Qα|0〉 = 0. Here |0〉 = |0〉1 ⊗ |0〉2 is the vacuum state for H , the Hamiltonian
corresponding to L. As already discussed Eq.(3.4) is a necessary signature of SUSY. Suppose
that the two supermultiplets are mixed in the usual way:

Φa = cos θ Φ1 + sin θ Φ2 = G−1(θ)Φ1G(θ); (3.5)

Φb = − sin θ Φ1 + cos θ Φ2 = G−1(θ)Φ2G(θ),

where Φa and Φb are fields with definite flavor and G(θ) denotes the appropriate mixing gen-
erator2. We assume that both fermions and bosons mix with the same angle, so we should
not spoil the supersymmetry of the Lagrangian; we shall see that this is the case in our simple
model and argue that this is the case in general. The mixing should also not induce sponta-
neously breaking of SUSY at tree level, hence, due to nonrenormalization theorems [78], SUSY
is preserved at any perturbative order [129]. Nonetheless, as we have seen many times by now,
mixed fields live in the flavor vacuum, which we here generically denote with

|0〉f = G−1(θ)|0〉 , (3.6)

2Since this generator depends on the fields, the rhs of (3.5) is just a bookkeeping notation; it is not known

yet whether it is possible to write down a mixing generator which universally acts in the required way on all

the components of a given supermultiplet. This would be another interesting point to develop.
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and the vacua |0〉f and |0〉 are unitarily inequivalent in the infinite volume limit. They are
orthogonal and |0〉f shows its condensate of quanta of fields with definite mass. We conjecture
that the expectation value of the Hamiltonian on such vacuum is always of the form:

f〈0|H|0〉f = h(θ,m1 −m2) ≥ 0 (3.7)

with h = 0 only if θ = 0 or m1 = m2, hence SUSY is dynamically broken by the nontrivial
mixing, the effect shown by (3.7) relying entirely on the nonperturbative nature of the quantum
corrections.

3.2.2 Mixing of two free chiral supermultiplets

Let us now prove our conjecture explicitly for the simple case of two free massive chiral super-
multiplets, described by the Wess–Zumino Lagrangian. The field content is: two free Majorana
fermions ψi, two free real scalars Si, two free real pseudoscalars Pi, two scalar dummy fields Fi
and two pseudoscalar dummy fields Gi, (i = 1, 2) and the Lagrangian is:

L = − i

2
ψ̄1 6∂ψ1 −

1

2
∂µS1∂

µS1 − 1

2
∂µP1 ∂

µP1 +
1

2
F 2
1 +

1

2
G2

1

+m1

(
F1S1 + G1P1 −

i

2
ψ̄1 ψ1

)
+ (1 → 2) . (3.8)

Although the field content of the theory is the same as that of a N = 2 hypermultiplet, which
is made out of two N = 1 chiral supermultiplets, the SU(2)R symmetry for us is explicitly
broken by the request of having m1 6= m2, hence we are not dealing with a N = 2 SUSY theory
but rather with two copies of a free N = 1 Wess–Zumino theory3. For this reason we consider
the following SUSY transformations that leave invariant (up to a surface term, as customary)
the off-shell Lagrangian (3.8):

δSi = iᾱψi , δPi = iᾱγ5ψi; (3.9)

δψi = ∂µ(Si − γ5Pi)γ
µα + (Fi + γ5Gi)α; (3.10)

δFi = iᾱγµ∂µψi , δGi = iᾱγ5γ
µ∂µψi (3.11)

where i = 1, 2, and the parameter α is a Majorana spinor.
The off-shell formulation is crucial for showing that SUSY is untouched by the mixing at

the Lagrangian level. Of course, the dynamical information resides in the on-shell expressions
that are recovered by using the Euler-Lagrange equations for the dummy fields,

F on
i = −miSi , Gon

i = −miPi, i = 1, 2 , (3.12)

in the Lagrangian (3.8) to obtain

L = − i

2
ψ̄1 ( 6∂ +m1)ψ1 − 1

2
∂µS1 ∂

µS1 − 1

2
m2

1 S
2
1 − 1

2
∂µP1 ∂

µP1 − 1

2
m2

1 P
2
1 + (1 → 2)

= − i

2
ψ̄ ( 6∂ +Md)ψ − 1

2
∂µS ∂

µS − 1

2
ST M2

d S − 1

2
∂µP ∂

µP − 1

2
P T M2

d P , (3.13)

3This observation suggests that maybe the origin of mixing can be looked for in some N = 2 supersymmetric

model with spontaneous breaking of the SU(2)R symmetry. We will not pursue this point any further.
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(here ψ = (ψ1, ψ2)
T , S = (S1, S2)

T , P = (P1, P2)
T , and Md = diag(m1, m2)) and in the expres-

sions for the transformations (3.10) and (3.11). Note that the transformations (3.11) become
identities satisfied when the fermions are on-shell, while (3.10) becomes

δψi = ∂µ(Si − γ5Pi)γ
µα−mi(Si + γ5Pi)α . (3.14)

The transformations (3.9) are untouched by this procedure. The on-shell Lagrangian (3.13) is
invariant under (3.9) and (3.14).

ψf = Uψ, Sf = US, Pf = UP, Ff = UF, Gf = UG, (3.15)

where ψf = (ψa, ψb)
T , etc., F = (F1, F2)

T , G = (G1, G2)
T , and U =

(
cos θ sin θ
− sin θ cos θ

)
. With

these the Lagrangian (3.8) can be written as

L = − i

2
ψ̄a 6∂ψa −

1

2
∂µSa∂

µSa − 1

2
∂µPa ∂

µPa +
1

2
F 2
a +

1

2
G2
a

+ ma

(
FaSa +GaPa −

i

2
ψ̄a ψa

)
+ (a→ b)

+ mab

(
FaSb + FbSa +GaPb +GbPa −

i

2
ψ̄a ψb −

i

2
ψ̄b ψa

)
= L0 + Lmix , (3.16)

where ma = m1 cos
2 θ +m2 sin

2 θ, mb = m1 sin
2 θ +m2 cos

2 θ, and mab = (m2 −m1) sin θ cos θ,
while, due to linearity of both the SUSY transformations (3.9)-(3.11) and the mixing transfor-
mations (3.15) we have (σ = a, b):

δSσ = iᾱψσ , δPσ = iᾱγ5ψσ; (3.17)

δψσ = ∂µ(Sσ − γ5Pσ)γ
µα+ (Fσ + γ5Gσ)α; (3.18)

δFσ = iᾱγµ∂µψσ , δGσ = iᾱγ5γ
µ∂µψσ (3.19)

i.e. off-shell the mixed fields transform just like the unmixed ones under SUSY. The first terms
of L in (3.16) (first line), denoted with L0 have the same functional form of the unmixed
Lagrangian (3.8), where all functions are evaluated in the new variables Sσ, etc.. This is as it
must be, because the mixing transformations are not a symmetry of L but rather a redefinition
of the fields, which in general changes the functional form of the Lagrangian.

On the other hand, it might appear that the form invariance of the SUSY transformations
(3.17)-(3.19) only guarantees the invariance of the first line in (3.16) descending directly from
the invariance of (3.8) under (3.9)-(3.11). In other words, it appears that Lmix explicitly breaks
SUSY. In fact, it is not so. It is straightforward to see that Lmix is invariant on its own under
(3.17) - (3.19), δLmix = ∂µ(iᾱmab[(Sb + γ5Pb)γ

µψa + (a↔ b)]).

The on–shell expressions for the dummy fields in the mixed case are (compare with (3.12))

F on
σ = −mσSσ −mστSτ , Gon

σ = −mσPσ −mστPτ , (3.20)
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where σ, τ = a, b and τ 6= σ and the on-shell expression for the fermionic transformation (3.18)
is now (compare with (3.14))

δψσ = ∂µ(Sσ − γ5Pσ)γ
µα−mσ(Sσ + γ5Pσ)α−mστ (Sτ + γ5Pτ )α , (3.21)

with σ, τ = a, b and τ 6= σ (the other transformations (3.17) and (3.19) have exactly the same
fate as the corresponding ones in the unmixed case (3.9) and (3.11), respectively). From this
we conclude that the on-shell Lagrangian obtained by using (3.20) in (3.16) has the following
form

L = − i

2
ψ̄f ( 6∂ +M)ψf − 1

2
∂µSf ∂

µSf − 1

2
STf M

2 Sf − 1

2
∂µPf ∂

µPf − 1

2
P T
f M

2 Pf , (3.22)

with M =

(
ma mab

mab mb

)
, is left invariant by the on-shell transformations (3.17) and (3.21).

Notice that (3.22) coincides with the Lagrangian obtained by implementing the mixing trans-
formations directly on the on-shell unmixed Lagrangian (3.13), as it should be.

We emphasize again that a crucial role here is played here by the linearity of SUSY trans-
formations. That is the reason why the mixing transformations (3.15) commute with the SUSY
transformations (3.9)-(3.11) allowing for SUSY to be preserved in the mixed Lagrangian (3.22).
This is a very robust result and can be easily applied to more general situations. For instance,
interaction terms can be accommodated with no changes in this formalism without spoiling
such a linearity. Indeed, we just need to work with dummy fields both in the Lagrangian and
in the transformation rules, as we did here for the massive free Wess–Zumino case, and only
later move to the dynamical fields.

3.2.3 Consequences for vacuum energy and SUSY phenomenology

Having established the SUSY of the mixed Lagrangian, in what follows we shall not need the off–
shell expressions and we shall refer only to the on–shell Lagrangians, fields and transformations.
We shall now quantize the fields and compute the expectation value of the Hamiltonian on the
flavor vacuum to prove that SUSY is spontaneously broken.

The Fourier expansions of the fields are (i = 1, 2):

ψi(x) =

2∑

r=1

∫
d3k

(2π)
3
2

eikx
[
urk,i(t)α

r
k,i + vr−k,i(t)α

†r
−k,i

]
, (3.23)

Si(x) =

∫
d3k

(2π)
3
2

1√
2ωk,i

eikx
[
bk,ie

−iωk,it + b†−k,ie
iωk,it

]
, (3.24)

Pi(x) =

∫
d3k

(2π)
3
2

1√
2ωk,i

eikx
[
ck,ie

−iωk,it + c†−k,ie
iωk,it

]
, (3.25)

where vrk,i = γ0C(u
r
k,i)

∗ and urk,i = γ0C(v
r
k,i)

∗ by the Majorana condition and the operators αrk,i,

bk,i and ck,i annihilate the vacuum |0〉 = |0〉ψ ⊗ |0〉S ⊗ |0〉P . Clearly the expectation value of
the Hamiltonian on this vacuum is zero, as proven by a straightforward computation:

〈0|Hψ|0〉 = −
∫
d3k (ωk,1 + ωk,2), (3.26)
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and

〈0|HB|0〉 =
∫
d3k (ωk,1 + ωk,2), (3.27)

where HB = HS +HP , so that:

〈0|(Hψ +HB)|0〉 = 0. (3.28)

The mixing transformations (3.15) can be written as:

ψσ(x) ≡ G−1
ψ (θ) ψi(x) Gψ(θ) , (3.29)

Sσ(x) ≡ G−1
S (θ) Si(x) GS(θ) , (3.30)

Pσ(x) ≡ G−1
P (θ) Pi(x) GP (θ) , (3.31)

respectively, where (σ, i) = (a, 1), (b, 2), and G−1
ψ (θ), G−1

S (θ), G−1
P (θ), are the generators of the

mixing transformations [39]–[18],[50], which are given by:

Gψ(θ) = exp

[
θ

2

∫
d3x

(
ψ†
1(x)ψ2(x)− ψ†

2(x)ψ1(x)
)]

; (3.32)

GS(θ) = exp

[
−iθ

∫
d3x(πS1 (x)S2(x)− πS2 (x)S1(x))

]
; (3.33)

GP (θ) = exp

[
−iθ

∫
d3x(πP1 (x)P2(x)− πP2 (x)P1(x))

]
, (3.34)

where with πSi (x) and π
P
i (x) we have denoted the conjugate momenta of the fields Si(x) and

Pi(x), respectively.
The flavor annihilation operators are defined as αrk,σ ≡ G−1

ψ (θ) αrk,i Gψ(θ), bk,σ
≡ G−1

S (θ) bk,i GS(θ), and ck,σ ≡ G−1
P (θ) ck,i GP (θ). They annihilate the flavor vacuum |0〉f ≡

|0〉ψf ⊗ |0〉Sf ⊗ |0〉Pf , where:

|0〉ψf ≡ G−1
ψ (θ) |0〉ψ , |0〉Sf ≡ G−1

S (θ) |0〉S , |0〉Pf ≡ G−1
P (θ) |0〉P , (3.35)

are the flavor vacua of the fields ψσ(x), Sσ(x), Pσ(x), respectively.
As by now is well known, the vacuum |0〉f has a condensate structure [16] and we have the

following condensation densities:

f〈0|αr†k,iαrk,i|0〉f = sin2 θ |V ψ
k |2, (3.36)

f〈0|b†k,ibk,i|0〉f = f 〈0|c†k,ick,i|0〉f = sin2 θ |V B
k |2, (3.37)

where i = 1, 2 and the reference frame in which k = (0, 0, |k|) has been adopted for convenience.
Let us rewrite the moduli of the two Bogoliubov coefficients V ψ

k and V B
k appearing in

Eqs.(3.36) and (3.37):

|V ψ
k | = (ωk,1 +m1)− (ωk,2 +m2)

2
√
ωk,1ωk,2(ωk,1 +m1)(ωk,2 +m2)

|k| , |V B
k | = 1

2

(√
ωk,1
ωk,2

−
√
ωk,2
ωk,1

)
. (3.38)
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Figure 3.1: (A) SUSY preserving shifts of the zero-point energies. (B) Schematic behaviors of

the mixing-induced shifts that break SUSY in the vacuum. Notice that the breaking is present

also in the case that ∆F = ∆B.

The expectation value of the fermionic part of H is given by [16]:

f 〈0|Hψ|0〉f = −
∫
d3k (ωk,1 + ωk,2) (1− 2 |V ψ

k |2 sin2 θ) , (3.39)

while for the bosonic part we obtain:

f 〈0|HB|0〉f =

∫
d3k (ωk,1 + ωk,2) (1 + 2 |V B

k |2 sin2 θ) . (3.40)

Combining Eqs.(3.39) and (3.40) we have the result:

f〈0|(Hψ + HB)|0〉f = 2 sin2 θ

∫
d3k (ωk,1 + ωk,2) (|V ψ

k |2 + |V B
k |2) , (3.41)

which is different from zero and positive when θ 6= 0 and m1 6= m2.
This proves our conjecture for the case in point. As clear from the above, the reason of this

spontaneous SUSY breaking are the condensates that both, the fermionic and the bosonic, lift
the zero point energy (not respecting SUSY as shown schematically in Fig. 3.1). This effect is
unreachable by a perturbative analysis and is thus entirely nonperturbative. This is as it must
be: the mixed Lagrangian (3.16) is uncapable of giving spontaneous SUSY breaking at the
perturbative level, being Fσ = 0 = Gσ [122], so it is necessary that nonperturbative corrections
dynamically induce the breaking.

3.3 Discussion

Being based on a specific model, this is only a very partial proof of the conjecture but it is
reasonable to argue that the mechanism shown here for the Wess–Zumino model is actually
model–independent at least when SUSY can be implemented linearly hence the mixing trans-
formations commute with it (which is the case for most of the known models). Indeed, the
qualitative features of the mixing of higher spin fields are the same as those presented here [89]:
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in the flavor vacuum those fields condense and shift the zero point energy always of a positive
amount, whether they are bosons or fermions. Having shown here that the breaking mechanism
induced by mixing is based precisely on this “SUSY asymmetric” vacuum condensate effect of
Fig. 3.1 and it does not depend on the explicit form of the functions in (3.38), since in (3.39)–
(3.41) only their squares appear, we can attempt to say that the presence of supermultiplets
containing higher spin fields should not alter the final outcome. Another possible issue with
the general case is whether in the presence of interactions (as it is compulsory in a realistic
model), fields condense in the flavor vacuum in a way that spoils the spontaneous breaking.
Unfortunately, the explicit expressions of the functions corresponding to those in (3.38) in this
case are not easy to obtain but it seems very unlikely that interaction could restore SUSY in
the vacuum by modifying the condensates from the free case of Fig. 3.1 (B) to that of Fig. 3.1
(A).

Having clarified that, a more urgent task than a complete proof of the conjecture (which,
nonetheless, is surely one direction worth investigating) would be to probe this conjecture
within phenomenologically relevant models. This latter program is the way to test whether it
is realistic to consider mixing as the actual responsible for SUSY breaking.

Other directions to investigate are the connection of the SUSY breaking illustrated here with
the well known SUSY breaking induced by a nonzero temperature, discussed for example in [56]
and in [43] (and to compare this connection to the analogous connection between mixing and
temperature made in chapter 5 [31]), and the possible cosmological implications of Eq.(3.41)
(in a non supersymmetric context it has been shown that the flavor vacuum energy can be
interpreted as a new dark energy component of the universe [46], [48]). Further analysis of
these aspects will be done elsewhere.

The results we have just exposed seem to be in contrast with the well known Seiberg non-
renormalization theorem [128], which for our purposes states that a supersymmetric model
which just contains chiral supermultiplets does not display SUSY breaking even at nonpertur-
bative level. We remark that the derivation of this result is based on the concept of Wilsonian
effective action (see e.g. [153]) which is defined through the use of the functional integral. A
proper discussion of this issue would need a way to include in the functional integral the uni-
tarily inequivalent vacua such as the flavor vacuum. At the time of writing this question has
not been answered yet, even if some partial work in this direction has been done [7] (see also
[108] for a discussion in the context of spontaneous breaking of ordinary symmetries). More
work in this direction is surely needed, due to the intrinsic importance of this issue.
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Chapter 4

Entanglement properties of flavor

states

In this chapter we will mostly describe mixing in the Quantum Mechanics context, in order
to avoid the subtleties due to the unitary inequivalence of the flavor and mass Hilbert spaces.
Our aim is to give a different point of view on flavor neutrino states. In fact, also in the
quantum mechanical case they have the structure of non separable states, that is, they are
entangled states. It is then natural to try to use entanglement to characterize flavor states.
They represent an instance of single particle entangled states.

The fact that flavor states of mixed particles are entangled states has been already pointed
out several times in the literature, see e.g. [87, 57, 103] (for a review see [14]). However, in
the context of particle physics entanglement has been mainly discussed in relation to the Bell
inequalities and to decoherence, in particular for the K0K̄0 meson system.

Before starting the description of flavor states as entangled states we will briefly review
multipartite entanglement and single partite entanglement, which are the main tools we use in
our treatment. Another approach to entanglement, based on uncertainities, will be outlined
and applied to the mixing case. Our treatment of entanglement will be necessarily sketchy due
to the enormous amount of literature, to which we refer for details.

4.1 Multipartite entanglement measures

While entanglement of pure quantum states of bipartite systems is very well characterized by
the von Neumann entropy EvN = −Tr[ρ1 log2 ρ1], where ρ1 = Tr2[ρ12] is the reduced density
matrix, or any monotone of this entropy as linear entropy, the same is not true for mixed
states of bipartite systems or for states of multipartite systems (in this case it is difficult to
characterize entanglement already for pure states). This last case is of particular interest for
us since flavor states in the case of mixing of three or more particles are multipartite entangled
states.

For bipartite mixed states, several entanglement measures have been proposed [9, 138, 141].
Although providing interesting operative definitions, the entanglement of formation and of
distillation [9] are very hard to compute. A celebrated result is the Wootters formula for the
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entanglement of formation for two-qubit mixed states [155]. An alternative measure, closely
related to the entanglement of formation, is the concurrence (the entanglement of formation is a
monotonically increasing function of the concurrence) [54]. The same difficulties of computation
are encountered with the relative entropy of entanglement [138]. At present a computable
entanglement monotone is the logarithmic negativity EN , based on the requirement of positivity
of the density operator under partial transposition EN = log2 ‖ ρ̃12 ‖1, where ‖ · ‖1 denotes the
trace norm, i.e. ‖ O ‖1= Tr[

√
O†O] for any Hermitian operator O [141]. The so-called bona

fide density matrix ρ̃12 is obtained through the partial transposition with respect to one mode,
say mode 2, of ρ12, i.e. ρ̃12 ≡ ρPT 2

12 . Given an arbitrary orthonormal product basis |i1 , j2〉,
the matrix elements of ρ̃12 are determined by the relation 〈i1 , j2|ρ̃12|k1 , l2〉 = 〈i1 , l2|ρ12|k1 , j2〉.
Obviously, for pure states such a measure provides the same results as the von Neumann
entropy.

The quantification of entanglement in the multipartite case also turns out to be a difficult
task, and at the time of writing no clear definition for it exists, though much progress has
been achieved and many possible measures have been proposed. Also at the qualitative level
interesting results have been obtained concerning the different inequivalent ways a multipartite
system can be entangled, especially in the case where the subsystems are qubits, which is
of direct interest to us as flavor states can be seen as multiqubit states. It has been shown
[61, 139] that in the three qubit case two classes of genuine tripartite entanglement (as opposed
to bipartite entanglement between pairs of qubits) exist, called GHZ and W classes from the
names of their maximally entangled representatives. In the four qubit case the number of
classes is nine.

Some of the proposed entanglement measures for multipartite systems are natural gener-
alizations of the ones used for bipartite systems, while others are specific for the multipartite
case (see e.g. [125, 86] for a review). In the following we shall outline the definitions of the
ones we will be using. In section 4.10 we shall outline a very promising characterization, known
as dynamical symmetry approach, which besides having a clear physical interpretation (unlike
many other proposed measures), seems to be quite general, in fact general enough to allow its
utilization in some simple field theoretical situations, as we shall see in the case of two fla-
vor mixing. In this case the application of the dynamical symmetry approach provides a very
beautiful example of characterization of entanglement in a quantum field theoretical situation.

Average von Neumann entropy In our analysis of flavor states we will consider pure finite
dimensional states. Following [113, 42, 127, 119, 64] we will characterize their entanglement
through measures performed on all the possible bipartitions of the system. Since we shall limit
ourselves to pure states, we will define as a proper measure of multipartite entanglement a
functional of the von Neumann entropy1 on a given bipartition of the system. Let ρ = |ψ〉〈ψ|
be the density matrix corresponding to the pure state |ψ〉 describing the quantum system S
divided in N parts i.e. S = {S1, S2, . . . , SN}. Let us consider the bipartition of this system in
two subsystems SAn = {Siq , Si2, . . . , Sin}, with 1 ≤ i1 < i2 < . . . < in ≤ N (1 ≤ n < N), and

1As the von Neumann entropy cannot distinguish classical correlations from quantum ones, it is unsuitable

to quantify entanglement of mixed states.
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SBN−n
= {Sj1, Sj2, . . . , SjN−n

}, with 1 ≤ j1 < j2 < . . . < jN−n ≤ N , and iq 6= jp, and let

ρAn ≡ ρi1,i2,...,in = TrBN−n
[ρ] = Trj1,j2,...,jN−n

[ρ] (4.1)

be the reduced density matrix with respect to the subsystem SBN−n
. We can compute the von

Neumann entropy associated to this bipartition:

E
(An;BN−n)
vN = −TrAn [ρAn log2 ρAn ] (4.2)

The averaged von Neumann entropy is thus defined as:

〈E(n:N−n)
vN 〉 =

(
N
n

)−1 ∑

An

E
(An;BN−n)
vN , (4.3)

where the sum is performed over all possible bipartitions of the systems in two subsystems
having respectively n and N − n elements, with 1 ≤ n < N .

Average linear entropy A very important entanglement measure, also given in terms of
bipartite entanglement measures, is the so–called global entanglement defined in [113], which is
defined as the sum of the concurrences between one qubit and the others, and can be expressed
as the linear entropy averaged on subsystems [42]. This measure was generalized in [126]
where a set of average linear entropies of all possible bipartitions of the system was considered.
Another approach [64] is based on the distribution of purity of a subsystem on all the possible
bipartitions of the total system.

Let us now define linear entropy and average linear entropy. Linear entropy can be consid-
ered as a first order expansion of von Neumann entropy. Let as before S = {S1, S2, . . . , SN}
be our N−partite system and SAn = {Si1 , Si2, . . . , Sin}, with 1 ≤ i1 < i2 < . . . < in ≤ N
(1 ≤ n < N), and SBN−n

= {Sj1, Sj2, . . . , SjN−n
}, with 1 ≤ j1 < j2 < . . . < jN−n ≤ N , and

iq 6= jp a given bipartition, and ρ = |ψ〉〈ψ| a given pure density matrix. Let

ρAn ≡ ρi1,i2,...,in = TrBN−n
[ρ] = Trj1,j2,...,jN−n

[ρ] (4.4)

be the reduced density matrix of the subsystem SAn otained by tracing over SBN−n
. The linear

entropy associated to this bipartition is defined as

S
(An;BN−n)
L (ρ) =

d

d− 1
(1− TrAn[ρ

2
An

]) , (4.5)

where d = min{dimSAn , dimSBN−n
} = min{2n, 2N−n} is the dimension of the Hilbert space.

Linear entropy is related to von Neumann entropy EvN by the relation EvN = −xlog2x− (1−
x)log2(1− x), with x = 1+

√
1−SL

2
.

For the generic reduced state ρ of a two level system we have SL = 2[1−Tr(ρ2)] = 4Detρ =
4λ1(1− λ1), where λ1 is one of the two non negative eigenvalues of ρ and we used the relation
λ1 + λ2 = 1.

Now the average linear entropy can be defined as:

〈S(n:N−n)
L (ρ)〉 =

(
N
n

)−1 ∑

An

S
(An;BN−n)
L (ρ) , (4.6)

where the sum is performed over all possible bipartitions of the system having n and N − n
elements.
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Average logarithmic negativity As well known, the entropic measures cannot be used to
quantify the entanglement of mixed states. In order to measure the multipartite entanglement
of mixed states, and following the same procedure as in the previous subsection, we introduce
a generalized version of the logarithmic negativity [141]. Let ρ be a multipartite mixed state
associated with a system S, partitioned into N parties. Again we consider the bipartition of
the N -partite system S into two subsystems SAn and SBN−n

. We denote by

ρ̃An ≡ ρPT BN−n = ρPT j1,j2,...,jN−n (4.7)

the bona fide density matrix, obtained by the partial transposition of ρ with respect to the
parties belonging to the subsystem SBN−n

. The logarithmic negativity associated with the
fixed bipartition will be given by

E
(An;BN−n)
N = log2 ‖ ρAn log2 ρ̃An ‖1 . (4.8)

Finally, we define the average logarithmic negativity

〈E(n:N−n)
N 〉 =

(
N
n

)−1 ∑

An

E
(An;BN−n)
N , (4.9)

where the sum is intended over all the possible bipartitions of the system.

4.1.1 Three qubit system

As we will see, flavor neutrino states in Quantum Mechanic can be seen as multiqubit states.
Let us briefly review the classification of entangled states of a three qubit system. It has been
shown [54] that the three qubit states showing genuine tripartite entanglement fall into two
classes which are inequivalent under Stochastic Local Operations and Classical Communication
(SLOCC) (see e.g [115]). These two classes are known as GHZ and W class respectively, from
the names of their maximally entangled representatives.

The GHZ (Greenberger–Horne–Zeilinger, [77]) state is given by:

|GHZ〉 = 1√
2
(|000〉+ |111〉). (4.10)

It is a remarkable state, as it has many interesting properties. It is maximally entangled in var-
ious senses. For example, it maximally violates Bell-type inequalities, the mutual information
of the results of the measurements is maximal and it is maximally stable against white noise.
Moreover it is possible, starting from this state, to obtain locally and with probability one an
EPR state shared by any of the three parts. Anyway the entanglement of this state is very
fragile against the loss of one of the parties. Upon performing a partial trace over one of the
parts, the remaining two will be in a separable state.

The W state is given by:

|W 〉 = 1√
3
(|001〉+ |010〉+ |100〉); (4.11)
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Also this state has some interesting properties. A partial trace with respect to any of the
parties gives a mixed bipartite state. Corresponding to the variety of measured that have been
proposed to quantify the entanglement of mixed states, there are various ways to quantify the
bipartite entanglement of this resulting state. Many of these criteria agree on the fact that the
state |W 〉 contains the highest possible bipartite entanglement with respect to any other state
(pure or mixed) of three qubits, so it is more robust than the GHZ state against loss of one of
the parties. All the reduced density matrices of |W 〉 are equal, and given by:

ρAB =
2

3
|Ψ+〉〈Ψ+|+ 1

3
|00〉〈00|, (4.12)

where |Ψ+〉 = (1/
√
2)(|01〉+ |10〉) is a Bell state i.e. is a maximally two qubit entangled state.

Let us compute the average von Neumann entropy on these states. Being N = 3 odd, it is
only possible to consider unbalanced bipartitions. We have:

E
(3)
21 ≡ E

(A2;B1)
vN (ρW (3)) = 〈E(2:1)

vN (ρW (3))〉 = log2 3−
2

3
≃ 0.918296 , (4.13)

E
(A2;B1)
vN (ρGHZ(3)) = 〈E(2:1)

vN (ρGHZ(3))〉 = 1 . (4.14)

For the classification of states of four or more qubits we refer to the literature. See e.g.
[139] for the four qubit case.

The generalizations to the case of N qubits of the GHZ and W states are given by:

|GHZ(N)〉 =
1√
2
(|000 . . . 0〉+ |111 . . .1〉) , (4.15)

|W (N)〉 =
1√
N
(|100 . . . 0〉+ |010 . . .0〉+ |001 . . . 0〉+ . . .+ |000 . . . 1〉) . (4.16)

They share the same properties of their N = 3 counterparts.

4.2 Single particle entanglement

While the usual discussions of entanglement concern composite systems with spatially separated
components, in the context of flavor mixing we are considering states which describe single
particles.

A common mistake which used to be made in the literature is the statement that to have
entangled states it is necessary to have more than one particle. This is due to misunderstandings
in the entanglement concept. As by now it has been established, it is possible [137, 134] to have
entanglement in single particle states. Mode entanglement defined for single-photon states of the
radiation field or associated with systems of identical particles has been discussed in Ref. [156].
The concept of mode entanglement in single-particle states has been widely discussed and
is by now well established [156, 137, 134]. Successful experimental realizations using single-
photon states have been reported as well [104]. Moreover, remarkably, the nonlocality of single-
photon states has been experimentally demonstrated [82], verifying a theoretical prediction
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[132]. Furthermore, the existing schemes to probe nonlocality in single-particle states have
been generalized to include massive particles of arbitrary type [60].

The point is that entanglement is not an absolute property of quantum states, but rather
a property relative to a given set of subsystems, i.e. to a tensor product structure of the
Hilbert space. Even a very simple system like a couple of qubits has an infinite number of
tensor product structures, so that a generic quantum state of this system can be entangled
or not depending on which structure we choose to use (this is related to the choice of the Lie
algebra in the dynamic symmetry approach which will be discussed in section 4.10). In fact
the following general result holds:

Theorem 1 Let |ψ〉 be a quantum state in the finite dimensional space H of non prime di-

mension d = mn. Then there exist a tensor product structure H ≡ Vm ⊗Wn such that |ψ〉 is

factorizable

Of course, the tensor product structure should be chosen so to correspond to physically
measurable degrees of freedom, between which there can be entanglement. Examples of such
degrees of freedom can be the positions of two particles, but an equally valid example is given
by the occupation numbers of some quantum field. In this case there is entanglement not
between particles, but between the (more fundamental) modes of the field, of which particles
are the manifestation. Another possibility is given by the position and the spin of an electron.
Between them it is possible to have entanglement.

Let us consider for example a photon which hits a beam splitter. If one of the spatial modes
passes through the beam splitter while the second one gets reflexed, the quantum state of the
system is (in the occupation number notation)

|ψ〉AB =
1√
2
(|0〉A|1〉B + |1〉A|0〉B), (4.17)

which is nothing but a Bell state for a two mode system. In this example the relevant subsystems
for considering entanglement are the two spatial modes: their state is not factorizable. It is
natural to ask wether it is possible to perform measures of Bell inequalities on this system. The
answer to this question turns out to be affirmative. The state (4.17) can be used [134] to create
locally an entangled two particle state, which can then be used to perform measurements on
Bell inequalities. All this can be performed without involving additional photons.

A possible physical realization of this situation can be obtained by putting in the locations
where the two modes A and B are two cavities, each of which contains an atom (the two atoms
can be different) prepared in its ground state |g〉. Experimental techniques are available such
that the photon enters the cavity and excites the atom to a state |e〉 with a 100% efficiency. If
both atoms are initially in the state |g〉 we can construct the composite state

|φ〉AB =
1√
2
(|g〉A|e〉B + |e〉A|g〉B), (4.18)

where now A and B refer to the locations of the atoms. This is a clearly entangled state. The
composite state of the two photonic modes is not relevant any more since now both modes will
be in the state |0〉.
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Since this transfer can be seen as part of the measuring apparatus, the Bell inequality
experiment is directly performed on the two mode photon state. The final result is that the
state (4.17) contains entanglement if the modes A and B are spatially separated (i.e. the photon
is delocalized). The entanglement is between the modes A and B, not between the photon and
the vacuum as we could think.

The previous example, although makes evident that it is possible to have entanglement in
single particle states, is based on the nonlocality of the initial photon. Actually the identification
of entanglement and nonlocality is another common misconception commonly found in the
literature. In fact we will now consider an example which will show that the separation of the
positions is not a condition to have entanglement. The only condition is the nonseparability of
the states. In the following example there will be a violation of Bell inequalities that cannot
be considered as a manifestation of nonlocality.

Let us consider a photon with its polarization at 45 with respect to some reference axis.
In the occupation number notation, this time with respect to the horizontally and vertically
polarized modes, this photon is described by the state (4.17). If the two modes have polariza-
tions for example of 45 and 135, the state is separable, otherwise it is entangled. By using a
beam splitter it is possible to spatially separate the two modes and go back to the preceding
procedure. As the beam splitter is part of the measuring apparatus, we can affirm that we
measured entanglement in one spatial position. The beam splitter does generate nonlocality
(it delocalizes the photon), but it is not correct to say that it generates entanglement. It is
already present in the photon. We can interpret the beam splitter as a device which changes
the tensor product structure i.e. it converts the modes that are being measured in other modes
which exhibit entanglement.

4.3 Flavor states as entangled states: static and dynamic

entanglement

Let us now see how entanglement is associated to neutrino mixing and oscillations in the simpler
case of Quantum Mechanics (see [24] for a recent review). In the following we consider the case
of two flavors, leaving the treatment of multiflavor (i.e. multipartite) case to later sections. In
our case case, the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix reduces to the 2 × 2
rotation Pontecorvo matrix U(θ),

U(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, (4.19)

which as we saw in chapter 1 connects the neutrino states with definite flavor with those with
definite masses:

|ν(f)〉 = U(θ) |ν(m)〉 (4.20)

where |ν(f)〉 = (|νe〉, |νµ〉)T and |ν(m)〉 = (|ν1〉, |ν2〉)T .
Both {|να〉} and {|νi〉} are orthonormal, i.e. 〈να|νβ〉 = δα,β and 〈νi|νj〉 = δi,j .
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We now establish the following correspondence with two-qubit states (a tensor product
symbol ⊗ is understood):

|ν1〉 ≡ |1〉1|0〉2 ≡ |10〉, |ν2〉 ≡ |0〉1|1〉2 ≡ |01〉, (4.21)

where |〉i denotes states in the Hilbert space for neutrinos with mass mi. Thus, the occupa-
tion number allows to interpret the flavor states as constituted by entangled superpositions
of the mass eigenstates. Quantum entanglement as usual emerges as a direct consequence of
the superposition principle. It is important to remark that the Fock space associated with the
neutrino mass eigenstates is physically well defined. In fact, at least in principle, the mass
eigenstates can be produced or detected in experiments performing extremely precise kinemat-
ical measurements [90]. In this framework, as discussed in Ref. [25], the quantum mechanical
state (4.45) is entangled in the field modes, although being a single-particle state.

In the dynamical regime, we saw in chapter 1 as flavor mixing (and neutrino mass differences)
generates the phenomenon of neutrino oscillations. The mass eigenstates |νj〉 have definite
masses mj and definite energies ωj . Their propagation can be described by plane wave solutions
of the form |νj(t)〉 = e−iωjt|νj〉. The time evolution of the flavor neutrino states Eq.(4.20) is
given by:

|ν(f)(t)〉 = Ũ(t)|ν(f)〉 , Ũ(t) ≡ U(θ)U0(t)U(θ)−1 , (4.22)

where |ν(f)〉 are the flavor states at t = 0, U0(t) = diag(e−iω1t, e−iω2t), and Ũ(t = 0) = 1I.
Remember that at time t, the probability associated with the transition να → νβ is

Pνα→νβ(t) = |〈νβ|να(t)〉|2 = |Ũαβ(t)|2 , (4.23)

where α, β = e, µ . Let us rewrite the explicit form for the transition probabilities in the two
flavor case:

Pνe→νe(t) = 1− sin2(2θ) sin2

(
ω2 − ω1

2
t

)
, (4.24)

Pνe→νµ(t) = sin2(2θ) sin2

(
ω2 − ω1

2
t

)
. (4.25)

Flavor neutrino states are well defined in the context of Quantum Field Theory (QFT),
where they are obtained as eigenstates of the flavor neutrino charges [39, 41]. We discussed
how in the relativistic limit, the exact QFT flavor states reduce to the usual Pontecorvo flavor
states Eq.(4.20): flavor modes are thus legitimate and physically well-defined individual entities
and mode entanglement can be defined and studied in analogy with the static case of Ref.[25].
We can thus establish the following correspondence with two-qubit states:

|νe〉 ≡ |1〉e|0〉µ, |νµ〉 ≡ |0〉e|1〉µ. (4.26)

States |0〉α and |1〉α correspond, respectively, to the absence and the presence of a neutrino
in mode α. Entanglement is thus established among flavor modes, in a single-particle setting.
Eq. (4.80) can then be recast as

|να(t)〉 = Ũαe(t)|1〉e|0〉µ + Ũαµ(t)|0〉e|1〉µ , (4.27)
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with the normalization condition
∑

β |Ũαβ(t)|2 = 1 (α, β = e, µ). The time-evolved states

|ν(f)(t)〉 are entangled superpositions of the two flavor eigenstates with time-dependent coef-
ficients. Thus, flavor oscillations can be related to bipartite (flavor) entanglement of single-
particle states [23].

To summarize, the flavor neutrino state at a given time, say |νe(t)〉 for definiteness, can
be regarded as an entangled state either in terms of the mass eigenstates or in terms of the
flavor eigenstates (at a fixed time). In the first instance, which was studied in detail for
the multipartite case in [25], we have a static entanglement, in the sense that the result of
the entanglement measures on the state |νe(t)〉 do not depend on time. In the second case,
considered for the general three flavor case in [23], the entanglement varies with time as it is
related to the oscillations of flavor(s). Let us now discuss both cases in the two flavor case by
using the standard entropic measures of bipartite entanglement. The extension to more than
two flavors of both kinds of entanglement will be the subject of later sections, as will be the
use of the dynamical symmetry approach to entanglement to the dynamic entanglement of two
flavors in both QM and QFT. The extension of the latter approach to multiflavor cases is the
subject of ongoing work.

4.3.1 Static entanglement

Let us study the entanglement properties of the Pontecorvo states using the standard entropic
measures of bipartite entanglement. We will use both von Neumann and linear entropy, the
latter giving results which are particular cases of the ones obtained in the multipartite case.
Recall the explicit expression of these states:

|νe〉 = cos θ |ν1〉 + sin θ |ν2〉 (4.28)

|νµ〉 = − sin θ |ν1〉 + cos θ |ν2〉 , (4.29)

With the identification (4.21) they can be written as

|νe〉 = cos θ |1〉1|0〉2 + sin θ |0〉1|1〉2 (4.30)

|νµ〉 = − sin θ |1〉1|0〉2 + cos θ |0〉1|1〉2. (4.31)

The density matrices associated to these states are of course:

ρ(e) ≡ |νe〉〈νe| ; ρ(µ) ≡ |νµ〉〈νµ|. (4.32)

The reduced density matrices obtained by tracing out ν2 are:

ρ
(e)
1 = cos2 θ |1〉1 1〈1|1 + sin2 θ |0〉1 1〈0| (4.33)

ρ
(µ)
1 = sin2 θ |1〉1 1〈1| + cos2 θ |0〉1 1〈0|, (4.34)

while the ones obtained by tracing out ν1 are:

ρ
(e)
2 = cos2 θ |0〉2 2〈0| + sin2 θ |1〉2 2〈1| (4.35)

ρ
(µ)
2 = sin2 θ |0〉2 2〈0| + cos2 θ |1〉2 2〈1| (4.36)
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where we used the usual definition ρe1 ≡ Tr2(ρ
e) =

∑
j 2〈j|(|νe〉〈νe|)|j〉2. The von Neumann

entropies relative to these states are given by the usual definition S(ρ) = −Tr(ρ log2 ρ) and
are:

S(ρ
(e)
1 ) = S(ρ

(µ)
1 ) = − cos2 θ log2 cos

2 θ − sin2 θ log2 sin
2 θ (4.37)

In the maximal mixing case θ = π
4
, the two Pontecorvo states are maximally entangled, and

they coincide with the |Ψ+〉 and |Ψ−〉 states in the Bell basis:

|Φ±〉 =
1√
2
(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B) (4.38)

|Ψ±〉 =
1√
2
(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B) . (4.39)

The linear entropies associated to the electron neutrino state are equal:

S
(1;2)
L (ρe) = 2

(
1− Tr1[(ρ

(e)
1 )2]

)
= sin2(2θ), (4.40)

S
(2;1)
L (ρe) = 2

(
1− Tr2[(ρ

(e)
2 )2]

)
= sin2(2θ), (4.41)

and similar results hold for the muon neutrino state. The above results are particular cases of
the more general ones obtained for the three flavor neutrino states in Ref.[25] and exposed in
the following sections, where it was found that such states can be classified as generalized W
states.

Eqs.(4.40)-(4.41) express the fact that flavor neutrino states at any time can be regarded as
entangled superpositions of the mass qubits |νi〉, where the entanglement is a function of the
mixing angle only.

4.3.2 Dynamic entanglement

Let us now turn to the dynamic entanglement arising in connection with flavor oscillations [23].
To this aim, we rewrite the electron neutrino state |νe(t)〉 as

|νe(t)〉 = Ũee(t) |νe〉 + Ũeµ(t)|νµ〉 , (4.42)

where |νe〉, |νµ〉 are the flavor neutrino states at time t = 0 and are now taken as the relevant
qubits (see Eq.(4.26)). By proceeding in a similar way as we did for the static case, we arrive
at the following expression for the linear entropies associated to the above state:

S
(µ;e)
L (ρe) = S

(e;µ)
L (ρe) = 4|Ũee(t)|2 |Ũeµ(t)|2

= 4|Ũee(t)|2 (1− |Ũee(t)|2) (4.43)

Eq.(4.43) establishes that the linear entropy of the reduced state is equal to the product of
the two-flavor transition probabilities given in Eqs.(4.81)-(4.25). It is remarkable that simple
expressions similar to those of Eq. (4.43) hold also for the three flavor case [23].
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Figure 4.1: (Color online) Linear entropy S
(e;µ)
L (ρe) (full) as a function of the scaled time

T = 2Et
∆m2

12
. The mixing angle θ is fixed at the experimental value sin2 θ = 0.314. The transition

probabilities Pνe→νe (dashed) and Pνe→νµ (dot-dashed) are reported as well for comparison.

Note also that, for any reduced state ρ of a two-level system one has that SL = 2[1 −
Tr(ρ2)] = 4Detρ = 4λ1(1 − λ1), where λ1 is one of the two non-negative eigenvalues of ρ, and
the relation λ1 + λ2 = 1 has been exploited. Comparing with Eq. (4.43), one sees that the
transition probabilities coincide with the eigenvalues of the reduced state density matrix.

In Fig. 4.1 we show the behavior ofS
(e;µ)
L (ρe) as a function of the scaled, dimensionless time

T = 2Et
∆m2

12
. In the same figure, we also report the behavior of the transition probabilities Pνe→νe

and Pνe→νµ. The plots have a clear physical interpretation. At time T = 0, the entanglement
is zero, the global state of the system is factorized, and the two flavors are not mixed. For
T > 0, flavors start to oscillate and the entanglement is maximal at largest mixing: Pνe→νe =
Pνe→νµ = 0.5, and minimum at T = π.

4.4 Flavor states as generalized W states

Now we turn to the study of static entanglement in the multiflavor case. We will consider
generalized W states of the form:

|W (N)(α1, α2, . . . , αN)〉 =
N∑

k=1

αk |δ1,k, δ2,k, . . . , δN,k〉 ≡
N∑

k=1

αk |ν(N)
k 〉 ,

N∑

k=1

|αk|2 = 1 ,

(4.44)
in particular in the cases N = 3, 4. Although the N = 3 case is the physically relevant one, the
N = 4 case is worth studying because of some additional subtleties.

4.4.1 Generalized W (3) states from the CKM matrix

In this subsection we discuss the N = 3 case. For the coefficients {αk} we shall use the
well–known Cabibbo–Kobayashi–Maskawa (CKM) parametrization [53]:

|νf 〉 = U(θ̃, δ) |νm〉 (4.45)
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U(θ̃, δ) =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 , (4.46)

where |νf 〉 = (|νe〉, |νµ〉, |ντ 〉)T are the definite flavor states and |νm〉 = (|ν1〉, |ν2〉, |ν3〉)T
are the definite mass states.

In Eqs. (4.45) and (4.46) we used the following short notation: (θ̃, δ) ≡ (θ12,
θ13, θ23; δ), cij ≡ cos θij and sij ≡ sin θij . The mixing matrix is parametrized by three mixing
angles θ13, θ23 and a phase δ, in total four parameters. It is possible to show that maximal
mixing is attained for [95]:

θmax12 =
π

4
; θmax23 =

π

4
; θmax13 = arccos

√
2

3
; δmax =

π

2
. (4.47)

For these values of the parameters the CKM matrix elements all have the same value 1√
3
.

We define the generalizedW states of three qubits through application of the matrix defined
below, which is obtained from the CKM matrix where the third column has been multiplied
by eiδ:

|W (3)(θ̃; δ)〉 ≡ U (3f)(θ̃, δ) |ν(3)〉 (4.48)

U (3f)(θ̃, δ) = U(θ̃, δ)




1 0 0
0 1 0
0 0 eiδ


 (4.49)

=




c12c13 s12c13 s13
−s12c23 − c12s23s13e

iδ c12c23 − s12s23s13e
iδ s23c13e

iδ

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13e
iδ


 ,

where |W (3)(θ̃; δ)〉 =
(
|W (3)

e (θ̃, δ)〉, |W (3)
µ (θ̃, δ)〉, |W (3)

τ (θ̃, δ)〉
)T

e |ν(3)〉 =
(
|ν(3)1 〉, |ν(3)2 〉, |ν(3)3 〉

)T
.

The two matrices (4.45) and (4.49) produce states whose entanglement properties are identical.
The reason for using the parametrization (4.49) is that when the mixing angles assume their
maximal mixing values, the first state coincides with the usual |W (3)〉 state indipendently on
the phase, and this property will turn out to be useful.

In the maximal mixing case the matrix U (3f) is:

U (3f)
max =

1√
3




1 1 1
iy iy2 i
iy2 iy i


 . (4.50)

where y = exp (2iπ/3). In this case the states |W (3)
2 (θ̃, δ)〉, |W (3)

3 (θ̃, δ)〉 contain the same amount
of entanglement as |W (3)〉:

E
(A2;B1)
vN (|W (3)(θ̃max; δmax)〉) = 〈E(2:1)

vN (|W (3)(θ̃max; δmax)〉)〉 = E
(3)
21 , (4.51)

where E
(3)
21 is defined in (4.13). In general the three flavor states |W (3)

1 (θ̃, δ)〉, |W (3)
2 (θ̃, δ)〉 and

|W (3)
3 (θ̃, δ)〉 defined in (4.48) represent generalized |W 〉 states.
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In the next section we shall analyze the entanglement properties of the states |W (3)
α (θ̃, δ)〉

and their behavior as the mixing parameters vary. Before doing this, let us construct the
analogues of the states |W (3)

α (θ̃, δ)〉 in the four flavor case.

4.4.2 Generalized W (4) states

In the N = 4 case the associated mixing matrix will depend on 9 independent parameters, of
which 6 mixing angles and 3 phases: (θ̃; δ̃) =
(θ12, θ13, θ14, θ23, θ24, θ34; δ14, δ23, δ34). We can build this matrix as the product of elementary
matrices:

U (4f)(θ̃; δ̃) = U34(θ34, δ34)U24(θ24)U23(θ23, δ23)U14(θ14, δ14)U13(θ13)U12(θ12)Uδ(δ14) , (4.52)

where

Uδ(δ14) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiδ14


 ; U12 =




cos θ12 sin θ12 0 0
− sin θ12 cos θ12 0 0

0 0 1 0
0 0 0 1


 ;

U13 =




cos θ13 0 sin θ13 0
0 1 0 0

− sin θ13 0 cos θ13 0
0 0 0 1




U14 =




cos θ14 0 0 e−iδ14 sin θ14
0 1 0 0
0 0 1 0

−eiδ14 sin θ14 0 0 cos θ14


 ;

U23 =




1 0 0 0
0 cos θ23 e−iδ23 sin θ23 0
0 −eiδ23 sin θ23 cos θ23 0
0 0 0 1


 (4.53)

U24 =




1 0 0 0
0 cos θ24 0 sin θ24
0 0 1 0
0 − sin θ24 0 cos θ24


 ;

U34 =




1 0 0 0
0 1 0 0
0 0 cos θ34 e−iδ34 sin θ34
0 0 −eiδ34 sin θ34 cos θ34


 .

As before we define the generalized W states as follows:

|W (4)(θ̃; δ̃)〉 ≡ U (4f)(θ̃; δ̃) |ν(4)〉 . (4.54)
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The maximal mixing case is attained when the parameters assume the values

θmax12 = θmax34 =
π

4
; θmax14 = θmax23 =

π

6
; θmax13 = arccos

√
2

3
; (4.55)

θmax24 = arcsin

√
1

3
; δmax14 = φ; δmax23 = π − φ; δmax34 = φ . (4.56)

and in this case all the elements of the matrix (4.52) assume their maximal value 1/2. In

correspondence of the values (4.55) and (4.56), U
(4f)
max(φ) takes the simple form

U (4f)
max(φ) =

1

2




1 1 1 1
−1 1 −eiφ eiφ

−1 −1 1 1
1 −1 −eiφ eiφ


 . (4.57)

All the states |W (4)(θ̃max; δ̃max)〉 contain the same amount of entanglement of the usual |W (4)〉
state:

E
(A3:B1)
vN (|W (4)(θ̃max; δ̃max)〉) = 〈E(3:1)

vN (|W (4)(θ̃max; δ̃max)〉)〉 = E
(4)
31 . (4.58)

E
(A2:B2)
vN (|W (4)(θ̃max; δ̃max)〉) = 〈E(2:2)

vN (|W (4)(θ̃max; δ̃max)〉)〉 = E
(4)
22 , (4.59)

where the bipartition (A2 , B2) and (A3 , B1) ha been considered. As in the three qubit case,

the state |W (4)
1 (θ̃; δ̃)〉 reduces to the usual |W (4)〉 when the mixing angles assume their maximal

mixing values (4.55), independently of the phases δij .

4.5 The role of phases in the W (N) state entanglement

Let us now study the correlation properties of the W−like states defined in (4.48) and (4.54).
These properties are completely determined by the mixing angles θij and by the phases δij .

We observed that our definition of generalized |W (N)〉 states is characterized by the fact that
the usual |W (N)〉 state can be obtained by the first row of the mixing matrix by setting the

mixing angles to their maximal mixing values, i.e. |W (N)〉 = |W (N)
1 (θ̃max; δ̃)〉. In other words,

in general an N − 1−dimensional subspace exists which is orthogonal to the state |W (N)〉 and
is generated by the vectors

{
|W (N)

2 (θ̃max; δ̃)〉, . . . |W (N)
N (θ̃max; δ̃)〉

}
. We will study the entangle-

ment properties of this subclass of generalized |W (N)〉 states, which are parametrized just by
the phases of the mixing matrix. We will not treat the general case of varying mixing angles
as well.

4.5.1 States W
(3)
k (θmaxij ; δ)

Let us study how the entanglement of the states defined throught the matrix (4.48) depends
on the phase δ. Let us set the mixing angles to their maximal mixing values θmaxi given by
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(4.47). We thus obtain the three orthogonal generalized W states |W (3)
q (δ)〉 ≡ |W (3)

q (θ̃max; δ)〉
(q = 1, 2, 3), of which the first state coincides with the usual W state. With this choice of the
parameters, the matrix U (3f) assumes the form:

U (3f)(δ) =
1√
3




1 1 1

−1
2
(
√
3 + eiδ) 1

2
(
√
3− eiδ) eiδ

1
2
(
√
3− eiδ) −1

2
(
√
3 + eiδ) eiδ


 . (4.60)

Now let us compute the quantities E
(A2:B1)
vN and 〈E(2:1)

vN 〉 defined by (4.2) and (4.3). We
obtain:

E
(1,2:3)
vN 1 = E

(1,3:2)
vN 1 = E

(2,3:1)
vN 1 = E

(1,2:3)
vN 2 = E

(1,2:3)
vN 3 = log2 3−

2

3
, (4.61)

E
(1,3:2)
vN 2 = E

(2,3:1)
vN 3 = −

(
1

3
− cos δ

2
√
3

)
log2

[
1

3
− cos δ

2
√
3

]

−
(
2

3
+

cos δ

2
√
3

)
log2

[
2

3
+

cos δ

2
√
3

]
, (4.62)

E
(2,3:1)
vN 2 = E

(1,3:2)
vN 3 = −

(
2

3
− cos δ

2
√
3

)
log2

[
2

3
− cos δ

2
√
3

]

−
(
1

3
+

cos δ

2
√
3

)
log2

[
1

3
+

cos δ

2
√
3

]
, (4.63)

wher the notation (i, j : k) represents the explicit composition of the bipartitions A2 =
{Si, Sj}and B1 = {Sk}, with i, j, k = 1, 2, 3 and i 6= j 6= k. We introduced the synthetic

notation E
(i,j:k)
vN q ≡ E

(i,j:k)
vN (|W (3)

q (δ)〉).
Notice that the correlation properties of the states |W (3)

q (δ)〉, with q = 2, 3 depend on δ.

Consider for example the state |W (3)
2 (δ)〉. In Fig. 4.2, the plots I and II represent respectively

the behavior of E
(i,j:k)
vN 2 and 〈E(2:1)

vN 2〉 as functions of δ in the range [−π, π]
While E

(1,2:3)
vN 2 (dotted line) assumes the constant value E

(3)
21 (the same of the state |W (3)〉),

the quantities E
(1,3:2)
vN 2 (dashed line) and E

(2,3:1)
vN 2 (mixed line) vary with δ, attaining the absolute

minimum 1 in δ1 = ± arccos
(
− 1√

3

)
± 2pπ and δ2 = ± arccos

(
1√
3

)
± 2pπ (with p an integer),

respectively. This means that the state |W (3)
2 (δi)〉, with i = 1, 2, contains in a given bipartition

maximal entanglement which coincides with the amount of entanglement contained in the state
|GHZ(3)〉, which is bigger than the amount of entanglement contained in theW state. Moreover,

for a given range of δ, one of the two quantities stays higher than E
(3)
21 . On the other hand Fig.

4.2 II, shows that the average von Neumann entropy 〈E(2:1)
vN 2〉 is always lower than the reference

value E
(3)
21 , assuming this maximal value in δ = π

2
± pπ.

We thus saw that the phase δ can be used to concentrate entanglement in a particular
bipartition,thus getting a “squeezing” of entanglement, at the expenses of the average von
Neumann entropy.
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Figure 4.2: I-II Plots of E
(i,j:k)
vN 2 e 〈E(2:1)

vN 2〉 as functions of δ. I shows the values of E
(i,j:k)
vN 2

corresponding to the following values of i, j, k: (a) i = 1, j = 2, e k = 3 (dotted line); (b) i = 1,

j = 3, e k = 2 (dashed line); (c) i = 2, j = 3, e k = 1 (mixed line). E
(1,2:3)
vN 2 is constant and

assumes the reference value E
(3)
21 = 0.918296. In II, the average entropy 〈E(2:1)

vN 2〉 assumes its

maximal value E
(3)
21 (dotted line) in δ = π

2
± pπ, with p integer.

4.5.2 States W
(4)
k (θmaxij ; δlm)

The class of W -like states for N = 4, given by (4.54), gives a bigger arena to explore, since the
number of degrees of freedom grows. We proceed in the same way as in sect. 4.5.1, that is,
we fix the mixing angles to their maximal values given by θmaxij , leaving the phases δij as free

parameters. The matrix U (4f)(θ̃; δ̃) assumes the form:

U (4f)(δ̃) =
1

2
(4.64)

×




1 1 1 1

−1 − z14
3
− z∗23

3
1− z14

3
− z∗23

3
−z14

3
+

2z∗23
3

z14
−1

2
+ z23

2
− z14z∗34

3
+

z∗23z
∗

34

6
+

z∗34
2

−1
2
− z23

2
− z14z∗34

3
+

z∗23z
∗

34

6
− z∗34

2
1− z14z∗34

3
− z∗23z

∗

34

3
z∗34z14

1
2
− z14

3
+

z∗23
6
− z23z34

2
+ z34

2
−1

2
− z14

3
+

z∗23
6
+ z23z34

2
+ z34

2
−z14

3
− z∗23

3
− z34 z14




where zij ≡ eiδij . The analytic expressions of the entanglement measures of the states

|W (4)
q (δ̃)〉 ≡ |W (4)

q (θ̃max; δ̃)〉 (q = 1, . . . , 4) are given in appendix A. As anticipated, the state

|W (4)
1 (δ̃)〉 coincides with the usual |W (4)〉.
Let us analyze the dependence of the phases δ14 and δ23 of the entanglement measures

corresponding to the state |W (4)
2 (δ̃)〉. In Fig. 4.3 the plots I–III respectively show E

(1,2:3,4)
vN 2 ,

E
(1,3:2,4)
vN 2 and E

(1,4:2,3)
vN 2 as functions of δ14 and δ23; plot IV shows the behavior of the averaged

entropy 〈E(2:2)
vN 2〉. Entanglement assumes the maximal value 1 at the values given by (4.56), that

is δ14 + δ23 = ±pπ, with p an odd integer. Moreover, while E
(1,2:3,4)
vN 2 displays an oscillating

behavior along the direction parallel to the vector (δ14, δ23) = (1, 1), the quantities E
(1,3:2,4)
vN 2 ,

E
(1,4:2,3)
vN 2 , and 〈E(2:2)

vN 2〉 display a periodic array of holes.
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Figure 4.3: I-IV Plots of E
(i,j:k,l)
vN 2 and 〈E(2:2)

vN 2〉 as functions of the phases δ14 and δ23.

Let us now consider the entropies corresponding to the unbalanced bipartitions E
(i:j,k,l)
vN 2 ,

shown in Fig. 4.4. As in the three qubit case, entanglement (which stays in the range [E
(4)
31 , 1])

can be concentrated in the bipartitions (1 : 2, 3, 4) and (2 : 1, 3, 4), to the expense of the

averaged entropy 〈E(1:3)
vN 2〉, which takes the maximal value E

(4)
31 in δ14 + δ23 = ±pπ.
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Figure 4.4: I-IV Plots of the entropies E
(i:j,k,l)
vN 2 and of their averages 〈E(1:3)

vN 2〉 as functions of the
phases δ14 and δ23. The plot of E

(4:1,2,3)
vN 2 was omitted, as this quantity assumes the constant

value E
(4)
31 .

This effect is best seen in Fig.4.5 where we display sections of the surfaces of Fig. 4.4 which
belong to the plane δ14 = δ23. In the range [−π, π], both E

(1:2,3,4)
vN 2 (dotted line) and E

(2:1,3,4)
vN 2

(dashed line) can be higher than the value E
(4)
31 , and they take their maximal value 1 in the

points δa = ± arccos
[
3
2
(
√
2−1)

]
and δb = ± arccos

[
− 3

2
(
√
2−1)

]
respectively. As in the three

qubit case, the average entropy, which displays an oscillating behavior, stays under the value
E

(4)
31 , which is attained in δ = ±π

2
.

The states |W (4)
3 (δ̃)〉 and |W (4)

4 (δ̃)〉 depends nontrivially on all the phases δij , so they show
a richer entanglement structure. In both cases we find effects similar to the ones just studied
in the case of |W (4)

2 (δ̃)〉.
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Figure 4.5: Plots of the entropies E
(1:2,3,4)
vN 2 (dotted line), E

(2:1,3,4)
vN 2 (dashed line), E

(3:1,2,4)
vN 2 (mixed

line with one dot), E
(4:1,2,3)
vN 2 (mixed line with two dots), and their averages 〈E(1:3)

vN 2〉 (continuous
line) as functions of the phase δ ≡ δ14 = δ23.

4.6 W (N) state entanglement with random phases

In the preceding section we have showed how the presence of the phases in generalized W states
can lead to an increase of the entanglement of a given bipartition in correspondence of some
value of the phases.

Let us now study the effect of a statistical distribution of phases on the entanglement of
such states. This is useful for two reasons. It gives a “global” picture of the generalized W
states as a function of the states, and it allows to estimate the robustness of the entanglement
increase against variations of the control parameters which are the phases. We will consider
the cases of a uniform distribution and of a Gaussian distribution.

In Fig. 4.6 we show the histograms of the state |W (3)
2 (δ)〉. In Fig. 4.7 and 4.8 we show

the histograms of the state |W (4)
4 (δ̃)〉 respectively for the balanced and unbalanced bipartition.

In Fig. 4.9, we consider the entropy of the state |W (4)
4 (δ̃)〉 (for unbalanced bipartitions) in the

situation in which the distributions of the phases δ14, δ23, δ34 are Gaussian.
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Figure 4.6: I-IV Histograms of E
(i,j:k)
vN 2 and 〈E(2:1)

vN 2〉 for δ randomly distributed [0, π].
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Figure 4.7: I-IV Histograms of E
(i,j:k,l)
vN 4 and 〈E(2:2)

vN 4〉 for randomly distributed phases in the

interval [0, π].
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Figure 4.9: I-IV Histograms of E
(i:j,k,l)
vN 4 and 〈E(1:3)

vN 4〉 for a Gaussian distribution of phases

δ14, δ23, δ34 with mean values δ̄ij and variances σij . I: 〈E(1:3)
vN 4〉 for δ̄ij = π

2
and σij = 0.3.

II: E
(3:1,2,4)
vN 4 for δ̄ij =

π
2
and σij = 0.3. III: E

(3:1,2,4)
vN 4 for δ̄ij = arccos

[
3
2
(
√
2 − 1)

]
and σij = 0.3.

IV: E
(1:2,3,4)
vN 4 for δ̄ij = 0 and σij = 0.2.

.
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4.7 Quantification of entanglement in quark and neu-

trino mixing

In this section we are going to quantify the amount of entanglement that is present in quark
and neutrino mixing which is described by the flavor states defined by Eq.(4.45). In the case of
neutrinos, for the parameters we will take the experimental values as given in [121, 118, 107, 66].
In the case of quarks the mixing angles of the CKM matrix are given by [118]:

θCKM12 = 13.0o ± 0.1o , θCKM13 = 0.2o ± 0.1o , θCKM23 = 2.4o ± 0.1o . (4.65)

A CP violation measure has given the following value for the phase [121]

δCKM = 1.05± 0.24 . (4.66)

In table 4.1 we list the von Neumann entropies E
(i,j;k)
vN α , with α = d′, s′, b′ and i, j, k = d, s, b,

and 〈E(2:1)
vN α〉 corresponding to the states (4.45), with the mixing angles and the phase fixed to

4.65) and (4.66) respectively, without taking into account the experimental errors.

α E
(d,s;b)
vN α E

(d,b;s)
vN α E

(s,b;d)
vN α 〈E(2:1)

vN α〉
d’ 0.0002 0.2889 0.2890 0.1927

s’ 0.0185 0.2960 0.2887 0.2011

b’ 0.0186 0.0180 0.0010 0.0126

Table 4.1: Von Neumann entropies E
(i,j;k)
vN α and 〈E(2:1)

vN α〉 (α = d′, s′, b′) for the quark mixing

states.

Entanglement stays low. It concentrates on the bipartitions (d, b; s) and (s, b; d) of the states
|d′〉 and |s′〉, while it is very small for the state |b′〉.

In the case of neutrinos, recent estimates for the PMNS matrix parameters are expressed
by [66]:

sin2 θMNSP
12 = 0.314(1

+0.18
−0.15

) , sin2 θMNSP
13 = (0.8

+2.3
−0.8

)× 10−2 , (4.67)

sin2 θMNSP
23 = 0.45(1

+0.35
−0.20

) . (4.68)

The lepton mixing phase δMNSP is still undetermined, so it could in principle assume any value
in the interval [0, 2π). In table 4.2, using (4.68) (without considering experimental errors) and
for arbitrary δMNSP , we give the entropies corresponding to the neutrino flavor states. The
presence of intervals is due to the possibility of choosing the phase.

By comparing 4.1 and 4.2, we observe that in neutrino mixing there is more entanglement
and a more homogeneous distribution with respect to the quark case. On the other hand, in
the neutrino case there are big uncertainities. Moreover, the value of the mixing angle θMNSP

13
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α E
(1,2;3)
vN α E

(1,3;2)
vN α E

(2,3;1)
vN α 〈E(2:1)

vN α〉
e 0.0672 0.8948 0.9038 0.5995

µ 0.9916 0.9220− 0.9813 0.5679− 0.7536 0.8469− 0.8891

τ 0.9939 0.8397− 0.9352 0.4784− 0.6922 0.8025− 0.8419

Table 4.2: Von Neumann entropies E
(i,j;k)
vN α and 〈E(2:1)

vN α〉 (α = e, µ, τ) for the states associated to

neutrino mixing.

is crucial, because the entropies depend on the phase only if this angle does not vanish. It is
thus interesting to study the behavior of entanglement by taking into account the experimental
uncertainities in the mixing angles. To do this we assume that the angles θMNSP

ij assume
Gaussianly distributed random values, and as mean values we take the experimentally measured
values. For example, in Fig.4.10 we plot E

(i,j;k)
vN µ and 〈E(2:1)

vN µ〉 as functions of the free parameter

δMNSP ≡ δ.

Figure 4.10: I-IV Plots of E
(i,j;k)
vN µ and 〈E(2:1)

vN µ〉 as functions of δ. θMNSP
ij are random variables

distributed according to Gaussian distributions centered around the mean values θ
MNSP

ij , given

by the experimental values (4.68), with standard deviation σij =
δθMNSP

ij

3
. The uncertainities

δθMNSP
ij are fixed to the maximum between the left and right interval given in Eq. (4.68).

Continuous thick lines represent the entropies with θMNSP
ij = θ

MNSP

ij and zero uncertainity.

We notice that the entanglement corresponding to the bipartitions (1, 2; 3) and (1, 3; 2) stays
high, (I and II); on the other hand, the bipartition (2, 3; 1) has lower entanglement (III), so that
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the average global entanglement decreases (IV). We conclude that in the µ system the parts 2
and 3 are more strongly correlated than the couples 1, 2 and 1, 3. A similar analysis can be
performed for the systems e and τ .

4.8 Decoherence in neutrino oscillations

The above results have been obtained in the plane wave approximation. In this approximation,
these results hold for any given time. However, as we have discussed in chapter 1, a more realistic
description of the phenomenon cab be achieved using the wave packet approach outlined there.
As we have discussed, the fact that the three massive neutrinos have different masses leads to
different propagation speeds of the packets, so the coherent interference effects which lead to
the oscillations decrease in time. This will lead in turn to the disappearance of the oscillation
phenomenon and to the vanishing of multipartite entanglement. In this section we are going
to study this situation.

Let us consider for simplicity only one spatial dimension. A neutrino with definite flavor,
propagating along the x direction, is described by the state:

|να(x, t)〉 =
∑

j

Uα,jψj(x, t)|νj〉, (4.69)

where the Uα,j is the corresponding element of the mixing matrix, |νj〉 is the mass eigenstate
with mass mj , and ψj(x, t) is its wave function. Assuming that the momentum of the massive
neutrino |νj〉 has a Gaussian distribution ψj(p), the wave function is given by:

ψj(x, t) =
1√
2π

∫
dpψj(p)e

ipx−iEj(p)t, (4.70)

ψj(p) =
1

(2πσ2
p)

1/4
e−(1/(4σ2p))(p−pj)2 , (4.71)

where pj is the average momentum, σp is the momentum uncertainity, and Ej(p) =
√
p2 +m2

j .

The density matrix associated with the pure state Eq. (4.69) writes:

ρα(x, t) = |να(x, t)〉〈να(x, t)| . (4.72)

If the inequality σp ≪ E2
j (pj)/mj holds, the energy Ej(p) can be approximated by Ej(p) ≃

Ej + vj(p − pj), with Ej ≡
√
p2j +m2

j , and vj ≡ ∂Ej(p)

∂p
|p=pj =

pj
Ej

is the group velocity of the

wave packet of the massive neutrino |νj〉. In this case, the integration over p in Eq. (4.70) is
Gaussian and can be easily performed, yielding the following expression for ρα(x, t)

ρα(x, t) =
1√
2πσ2

x

∑

j,k

UαjU
∗
αke

−i(Ej−Ek)t+i(pj−pk)x− 1

4σ2
x
[(x−vjt)2+(x−vkt)2]|νj〉〈νk| , (4.73)

where σx = (2σp)
−1. In the instance of extremely relativistic neutrinos, the following approxi-

mations are usually assumed

Ej ≃ E + ξ
m2
j

2E
, pj ≃ E − (1− ξ)

m2
j

2E
, vj ≃ 1− m2

j

2E2
j

(4.74)
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where E is the neutrino energy in the limit of zero mass, and ξ is a dimensionless constant
depending on the characteristic of the production process [72, 73]. The density matrix (4.73)
provides a space-time description of neutrino dynamics. However, in realistic situations, it is
convenient to consider the corresponding stationary process, which is associated with the time-
independent density matrix ρα(x) obtained by the time average of ρα(x, t) [73]. By taking into
account Eq. (4.74), and by computing a Gaussian integration over the time, the density matrix
becomes [73]

ρα(x) =
∑

j,k

UαjU
∗
αk exp

[
−i∆m

2
jkx

2E
−
(

∆m2
jkx

4
√
2E2σx

)2

−
(
ξ

∆m2
jk

4
√
2Eσp

)2
]
|νj〉〈νk| , (4.75)

with ∆m2
jk = m2

j −m2
k. The density matrix (4.75) can be used to study, in the wave packet

approach, the phenomenon of neutrino oscillations for stationary neutrino beams [72, 73, 71].
Here, we intend to analyze the coherence of the quantum superposition of the neutrino mass
eigenstates, by looking at the spatial behavior of the multipartite entanglement of the state
(4.75). By establishing the identification |νi〉 = |δi,1〉1|δi,2〉2|δi,3〉3 ≡ |δi,1δi,2δi,3〉 (i = 1, 2, 3),
we can easily construct from Eq. (4.75) the matrix with elements 〈lmn|ρα(x)|ijk〉, where
i, j, k, l,m, n = 0, 1. Let us notice that the density matrix ρα(x) describes a mixed state,
whose non-diagonal elements are suppressed by a Gaussian function of x. An appropriate
quantifier of multipartite entanglement for the state ρα(x) is based on the set of logarithmic

negativities defined above. We analytically compute the quantities E
(i,j;k)
N α , for i, j, k = 1, 2, 3

and i 6= j 6= k, and the average logarithmic negativity 〈E(2:1)
N α 〉, for the neutrino states with

flavor α = e, µ, τ . We assume for the mixing angles θMNSP
ij the experimental values (4.68).

The squared mass differences are fixed at the experimental values reported in Ref. [66]:

∆m2
21 = δm2 , ∆m2

31 = ∆m2 +
δm2

2
, ∆m2

32 = ∆m2 − δm2

2
,

δm2 = 7.92× 10−5 eV 2 , δm2 = 2.6× 10−3 eV 2 . (4.76)

The parameters E and σp in Eq. (4.75) are fixed at the values E = 10GeV and σp = 1GeV .
Moreover, although depending on the particular production process [69], the parameter ξ is
put to zero for simplicity. In Fig. 4.11, we plot the logarithmic negativities for the electronic
neutrino, i.e. E

(i,j;k)
N e as function of the distance x. The bipartitions (1, 3; 2) and (2, 3; 1), see

panel I, exhibit a high entanglement content (> 0.93) that keeps almost constant for x . 108m;
finally, it goes to zero for x ≈ 3× 109m. The bipartition (1, 2; 3) exhibits a low entanglement
(< 0.24), that goes to zero for x ≈ 9 × 107m. Furthermore, let us remark that the the

logarithmic negativities E
(i,j;k)
N e and 〈E(2:1)

N e 〉 for the electronic neutrino are independent of the
CP-violating phase δ.

In the muonic and tauonic instances, the independence from the CP-violating phase δ holds
no more. Therefore, first we choose to study the quantum correlations of these states for δ = 0;
then we consider separately the influence of a non-zero δ. In Fig. 4.12, we plot the logarithmic
negativities for the muonic and tauonic neutrinos as functions of the distance x with δ = 0. We
see that the spatial behavior of multipartite entanglement for muonic and tauonic neutrinos are
similar. The logarithmic negativities E

(1,2;3)
N µ and E

(1,2;3)
N τ are initially close to 1, and they go to
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Figure 4.11: (Color online) The logarithmic negativities E
(i,j;k)
N e for all possible bipartitions and

the average logarithmic negativity 〈E(2:1)
N e 〉 as functions of the distance x. The quantities E(1,3;2)

N e

(dashed line) and E
(2,3;1)
N e (dot-dashed line), see panel I, show a high amount of entanglement

content in the corresponding bipartitions, and seem to be superimposed. In panel II we plot

a zoom of E
(1,3;2)
N e and E

(2,3;1)
N e to observe the differences in their behaviors: the two curves are

initially separated, and then they superimpose each other. The bipartition (1, 2; 3), associated

with the quantity E
(1,2;3)
N e (dotted line), exhibits the lowest amount of entanglement. The

full line corresponds to the average logarithmic negativity 〈E(2:1)
N e 〉. The mixing angles θMNSP

ij

and the squared mass differences ∆m2
ij are fixed at the experimental values (4.68) and (4.76),

respectively. We assume the values E = 10GeV , σp = 1GeV , and ξ = 0 for the remaining

parameters in Eq. (4.75). All the plotted quantities are independent of the CP-violating phase

δ, that can be assumed arbitrary. The x axis is in logarithmic scale, and the dimensions are

meters.

zero for x ≈ 108m. On the other side, E
(1,3;2)
N µ , E

(2,3;1)
N µ , E

(1,3;2)
N τ , and E

(2,3;1)
N τ exhibit alternating

regimes with slowly decreasing slope and with rapidly decreasing slope; moreover, all vanish
for x ≈ 3× 109m.

The average logarithmic negativity 〈E(2:1)
N α 〉 can be used to define a decoherence length Ldecoh

as

Ldecoh : 〈E(2:1)
N α 〉 (Ldecoh) = 0 . (4.77)

From Figs. 4.11, 4.12, for assigned experimental parameters, we see that the common deco-
herence length for the neutrinos of flavor α = e, µ, τ can be estimated at a value of Ldecoh ≈
3× 106Km.

Finally, we consider the influence of a non-vanishing phase δ in determining the spatial
behavior of multipartite entanglement of stationary neutrino beams. To this aim, in Fig. 4.13
we plot the logarithmic negativities for the muonic neutrino E

(1,3;2)
N µ and E

(2,3;1)
N µ , with δ fixed

at the values δ = 0, π
2
, π. The behavior of E

(1,2;3)
N µ is not reported as it is independent of δ. We

observe that the CP-violating phase δ does not lead to a change of the decoherence length Ldecoh.
However, we see that it may lead a lowering or an increasing of the amount of entanglement in
a given bipartition, in agreement with the results obtained for the instance of static neutrinos.
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Figure 4.12: (Color online) The logarithmic negativities E
(i,j;k)
N α for all possible bipartitions and

the average logarithmic negativity 〈E(2:1)
N α 〉, with α = µ, τ , as functions of the distance x. In

panel I we plot the negativities for the muonic neutrino. The bipartition (1, 2; 3), associated

with the quantity E
(1,2;3)
N µ (dotted line), shows the highest initial amount of entanglement, that

goes to zero for a lower of x with respect to the other bipartitions. E
(1,3;2)
N µ (dashed line) and

E
(2,3;1)
N µ (dot-dashed line) show peculiar behaviors, that consist in alternating slowly decreasing

and rapidly decreasing slopes. The average logarithmic negativity 〈E(2:1)
N µ 〉 (full line) summarizes

the behavior of the global entanglement. In panel II we plot the negativities for the tauonic

neutrino; The behaviors of the negativies for the tauonic instance are similar to the negativities

for the muonic instance. The curves associated to a given bipartition are plotted with the

same plotstyle. The mixing angles θMNSP
ij and the squared mass differences ∆m2

ij are fixed at

the experimental values (4.68) and (4.76), respectively. We assume the values E = 10GeV ,

σp = 1GeV , and ξ = 0 for the remaining parameters in Eq. (4.75). The CP-violating phase δ

is put to zero. The x axis is in logarithmic scale, and the dimensions are meters.

Similar results can be obtained for the tauonic instance.

4.9 Dynamic entanglement in the three flavor case

Let us write again the flavor states (4.45):

|νf 〉 = U(θ̃, δ) |νm〉 (4.78)

U(θ̃, δ) =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 , (4.79)

Their time evolution is given by:

|ν(f)(t)〉 = U(θ̃, δ)U0(t)U(θ̃, δ)−1 |ν(f)〉 ≡ Ũ(t)|ν(f)〉 , (4.80)
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Figure 4.13: (Color online) The logarithmic negativities E
(1,3;2)
N µ (panel I) and E

(2,3;1)
N µ (panel

II) as functions of the distance x for different choices of the CP-violating phase δ: (a) δ = 0

(dotted line); (b) δ = π
2
(dashed line); (b) δ = π (dot-dashed line). E

(1,2;3)
N µ is independent of

δ. The mixing angles θMNSP
ij , the squared mass differences ∆m2

ij , the parameters E, σp, and ξ

are fixed as in Figs. 4.11 and 4.12. The x axis is in logarithmic scale, and the dimensions are

meters.

where |ν(f)〉 are the flavor states at t = 0, U0(t) = diag(e−iE1t, e−iE2t, e−iE3t), and Ũ(t) =

U(θ̃, δ)U0(t)U(θ̃, δ)−1, con Ũ(t = 0) = I. The transition probability relative to να → νβ is
given by:

Pνα→νβ(t) = |〈νβ|να(t)〉|2 = |Ũαβ(t)|2 . (4.81)

In the notation Ũαβ(t) the index α = e, µ, τ refers to the time evolution of the initial state
with flavor α, while β = e, µ, τ denotes the flavor at time t. Eq. (4.80) can be rewritten in the
W−like form:

|να(t)〉 = Ũαe(t)|1〉e|0〉µ|0〉τ + Ũαµ(t)|0〉e|1〉µ|0〉τ
+ Ũατ (t)|0〉e|0〉µ|1〉τ , α = e, µ, τ , (4.82)

where the normalization condition
∑

β |Ũαβ(t)|2 = 1 (α = e, µ, τ) is automatically satisfied.

This means that the time evolution |ν(f)(t)〉 can be seen as an entangled superposition of the
flavor eigenstates with time dependent coefficients.

By tracing for example on the τ mode we obtain:

S
(e,µ;τ)
Lα = 4|Ũατ (t)|2 (|Ũαe(t)|2 + |Ũαµ(t)|2) = 4|Ũατ (t)|2 (1− |Ũατ (t)|2) . (4.83)

The linear entropies corresponding to the other bipartitions are easily obtained by permuting
e, µ, τ . Then the average linear entropy for the state (4.82) is:

〈S(2:1)
Lα 〉 = 8

3
(|Ũαe(t)|2|Ũαµ(t)|2 + |Ũαe(t)|2|Ũατ (t)|2 + |Ũαµ(t)|2|Ũατ (t)|2). (4.84)

It is easy to generalize the relations (4.83) and (4.84) for the general N flavor case.
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4.10 Dynamic symmetry approach to quantum entan-

glement

In this section we briefly describe a characterization of quantum entanglement which is partic-
ularly appealing since it has a very clear physical interpretation and it seems to be amenable
of some generalization which could be used to study some quantum field theoretical situation.
This approach was pioneered by A. Klyachko [93, 94]. According to this approach, quantum
entanglement measures the magnitude of quantum fluctuations of certain basic observables,
thus matching the intuitive picture that entangled states are the ones that exhibit the most
non–classical behavior. As has been shown by Klyachko, this measure of entanglement is ap-
plicable to pure states of arbitrary systems and reduces to other known measures such as the
concurrence [155] in the cases in which these are applicable as well.

The starting point is the realization by Wick, Wightman and Wigner [150] that put in
question the idealized von Neumann approach to Quantum Mechanics, according to which
any Hermitian operator represents a measurable quantity. They introduced the so–called su-
perselection rules which generally express ”restrictions on the nature and scope of possible
measurements” (of which an example is the already mentioned Bargmann superselection rule).
Later Robert Hermann [83] argued that the principles of Quantum Mechanics require that
measurable observables should form a Lie algebra L of (skew–)Hermitian operators acting on
the Hilbert space H of the quantum system. This Lie algebra is known as the Lie algebra of
observables and its exponentiation G = exp(iL) is known as the dynamical symmetry group of
the quantum system. The algebra of observables is determined by the available measurements,
for example in the case of a multipartite system with spatially separated components only local
measurements are possible. Phenomena like entanglement are precisely due to the fact that
there are physical systems whose dynamical group does not act transitively on the Hilbert space
of quantum states.

Let us consider a quantum system with Hilbert space H and Lie algebra of observables L.
Given the observable X ∈ L and the quantum state |ψ〉 ∈ H , the quantum uncertainity of X
in the state |ψ〉 is given by the variance:

V (X,ψ) = 〈ψ|X2|ψ〉 − 〈ψ|X|ψ〉2. (4.85)

It is possible to choose a basis in the Lie algebra L which is orthonormal with respect to its
Cartan–Killing form (X, Y )K and define the total variance of the quantum state |ψ〉 by

V(ψ) =
∑

α

(〈ψ|X2
α|ψ〉 − 〈ψ|Xα|ψ〉2) (4.86)

which can be shown to be basis–independent. This quantity measures the overall level of the
quantum fluctuations of the system in the state |ψ〉. In the first sum of (4.86) we recognize the
Casimir operator C =

∑
αX

2
α of the Lie algebra, which as well known acts as a scalar CH in

every irreducible representation of the algebra on the vector space H. We thus get:

V(ψ) = CH −
∑

α

〈ψ|Xα|ψ〉2 (4.87)
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We can write the second sum in a more useful way. Let us consider the quantity

Xψ =
∑

α

〈ψ|Xα|ψ〉Xα (4.88)

which can be understood is the centre of the quantum fluctuations of the system in the state
ψ. For example to a spin where this operator is a suitably scaled projection of the spin onto
the mean spin direction in the state |ψ〉. This operator has the property

〈ψ|X|ψ〉 = (X,Xψ)K , ∀X ∈ L. (4.89)

which, being the Cartan–Killing form nondegenerate (for semisimple Lie algebras) uniquely
determines it, thus showing its basis independence.

From (4.87) it is possible to infer the bound

V(ψ) ≤ CH (4.90)

which is saturated if and only if

〈ψ|X|ψ〉 = 0 ∀X ∈ L (4.91)

Of particular importance for our purposes is the case of multipartite systems. These are
described by a tensor product Hilbert space H =

⊗
AHA. If we assume that we have full access

to the local degrees of freedom the relevant Lie algebra is
⊕

A su(HA). In this case it is possible
to show [94] that the total variance takes the form

V(ψ) =
∑

A

[dimHA − TrHA
(ρ2A)]. (4.92)

where ρA are the reduced density matrices associated to the various subsystems. For such sys-
tems (4.91) implies that all one party reduced states are completely disordered. In other words,
there exists a basis such that the reduced state is given by a diagonal matrix ρA corresponding
to a uniform probability distribution. This is a well known characterization of entangled states.
Thus (4.91) is usually referred to as entanglement equation and the corresponding states, which
saturate the bound (4.90), are called completely entangled states.

Completely entangled states are those for which the total variance is maximal i.e. they are
characterized by the fact that quantum fluctuations come to their extreme. On the opposite
side there are states which have the minimal total level of quantum fluctuations. These are
the coherent states [124]. In the case of multipartite systems these states are factorizable i.e.
unentangled.

It has been noticed [93, 94] that in the case of a bipartite system the square of the concur-
rence [155] coincides with the total variance normalized to the interval [0, 1]:

C2(ψ) =
V(ψ)− Vcoh

Vent − Vcoh

(4.93)
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where Vent and Vcoh are the total variances in completely entangled and coherent states re-
spectively. Besides clarifying the physical meaning of concurrence, this suggests the following
natural measure of entanglement of pure states:

µ(ψ) =

√
V(ψ)− Vcoh

Vent − Vcoh
(4.94)

which is valid for pure states of an arbitrary multipartite system.

It is important to remark that he measure of entanglement defined in (4.94) makes sense
only for systems whose Hilbert space is finite dimensional. In the applications we will describe
in the following section this requirement is met both in the quantum mechanical and in the
field theoretical case since we restrict to single particle flavor neutrino states.

4.11 Applications to neutrino mixing in QM and QFT

In this section we will apply the dynamical approach to entanglement to the case of neutrino
mixing and oscillations (in the static and dynamic case), both in the case of QM and in the
case of QFT. Instead of the measure (4.94) we will use the total variance itself. In the quantum
mechanical case this will give a result proportional to the linear entropy, while the results
obtained in the latter case are the direct generalization of the quantum mechanical ones.

4.11.1 Quantum Mechanics

In order to apply the formalism outlined in the preceding section to the case of neutrino mixing
and oscillations we introduce the (fermionic) annihilation operator αi for a neutrino with mass
mi, with anticommutators {αi, αj} = δij . We then define neutrino states with definite masses
as:

|νi〉 ≡ α†
i |0〉m , i = 1, 2 (4.95)

where |0〉m ≡ |0〉1 ⊗ |0〉2 is the vacuum for the mass eigenstates.
Next we define the flavor annihilation operators by means of the following mixing relations:

αe(t) = cos θ α1(t) + sin θ α2(t) (4.96)

αµ(t) = − sin θ α2(t) + cos θ α1(t) (4.97)

where αi(t) = eiωitαi, with i = 1, 2.

The flavor states are given by:

|νσ(t)〉 ≡ α†
σ(t)|0〉m, σ = e, µ. (4.98)

We use in the following the notation |νσ〉 ≡ |νσ(t = 0)〉.
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The Hamiltonian for the system is given by

H = ωeeα
†
e(t)αe(t) + ωµµα

†
µ(t)αµ(t) + ωeµ

(
α†
e(t)αµ(t) + α†

µ(t)αe(t)
)

= ω1α
†
1α1 + ω2α

†
2α2 (4.99)

where we used the relations ωee = ω1 cos
2 θ + ω2 sin

2 θ , ωµµ = ω1 sin
2 θ + ω2 cos

2 θ , ωeµ =
(ω2 − ω1) sin θ cos θ .

The relevant Lie algebra to use for characterizing static entanglement is the u(1)1 ⊕ u(1)2
algebra generated by the two number operators, since all the other generators have vanishing
variance on single particle states. This choice choice is dictated by the fact that the relevant
measurements we can perform here are essentially particle countings. Alternatively we could
consider the double Weyl–Heisenberg algebra generated by {Ie, αe, α†

e, Ne; Iµ, αµ, α
†
µ, Nµ}. The

two choices are equivalent since the variances of all the other generators vanish on the single par-
ticle states. The static entanglement of the electron neutrino state |νe(t)〉 defined in Eq.(4.98),
is characterized, in the present formalism, by the variances associated with the numbers Ni,
relative to the mass qubits:

∆Ni(νe) ≡ 〈νe(t)|N2
i |νe(t)〉 − 〈νe(t)|Ni|νe(t)〉2

=
1

4
sin2(2θ) , i = 1, 2. (4.100)

This result differs by a factor 4 from that obtained by means of the linear entropy, Eqs.(4.40)-
(4.41). The total variance is

V(|νe〉) = ∆N1(νe) + ∆N2(νe) =
1

4

(
S
(1;2)
L (ρe) + S

(2;1)
L (ρe)

)
. (4.101)

In order to discuss the dynamical entanglement of the state |νe(t)〉, we need to introduce
flavor oscillations, which can be seen either in terms of overlaps of states at different times:

Pνe→νe(t) = |〈νe|νe(t)〉|2 (4.102)

Pνe→νµ(t) = |〈νµ|νe(t)〉|2 (4.103)

with Pνe→νe(t) + Pνe→νµ(t) = 1, or equivalently in terms of expectation values of number oper-
ators at time t:

Pνe→νe(t) = 〈νe|Ne(t)|νe〉 (4.104)

Pνe→νµ(t) = 〈νe|Nµ(t)|νe〉 (4.105)

Nσ(t) = α†
σ(t)ασ(t) σ = e, µ (4.106)

The explicit expressions of the transition probabilities are reminded in Eqs.(4.24),(4.25).
In analogy with the static entanglement case, dynamic entanglement can be characterized

by using the algebra u(1)e ⊕ u(1)µ generated by the two number operators, or equivalently
the double Weyl–Heisenberg algebra relative to the flavor ladder operators, whose basis is
{Ie, αe, α†

e, Ne; Iµ, αµ, α
†
µ, Nµ}, since the variances of all the other generators vanish. Flavor

entanglement is given by the variances of the above flavor numbers.
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In the electron neutrino case we find

∆Ne(νe)(t) ≡ 〈νe(t)|N2
e (t)|νe(t)〉 − 〈νe(t)|Ne(t)|νe(t)〉2 (4.107)

= Pνe→νe(t) (1− Pνe→νe(t)) = Pνe→νe(t)Pνe→νµ(t) (4.108)

with the same result for ∆Nµ(νe)(t). The above result coincides (again up to a factor 4) with
the one obtained in Eq.(4.43) by means of the linear entropy.

The total variance is given by:

V(|νe(t)〉) = ∆Ne(νe)(t) + ∆Nµ(νe)(t) = 2Pνe→νe(t)Pνe→νµ(t)

=
1

4

(
S
(µ;e)
L (ρe) + S

(e;µ)
L (ρe)

)
(4.109)

Analogous results are easily obtained for the state |νµ(t)〉.

4.11.2 Quantum Field Theory

Following what done in the QM case, we now calculate the entanglement associated to an
electron neutrino state at time t, by means of the variances of the above discussed charge
operators.

Let us start with the U(1) Noether charges Qνi , which are expected to characterize the
amount of static entanglement present in the states Eq.(2.123). In this case the relevant Lie
algebra is u(1)1 ⊕ u(1)2. We obtain:

∆Qνi(νe) = 〈νrk,e|Q2
νi
|νrk,e〉 − 〈νrk,e|Qνi|νrk,e〉2

=
1

4
sin2(2θ) , i = 1, 2. (4.110)

in perfect agreement with the quantum mechanical result Eq.(4.100). The total variance is

V(|νe〉) = ∆Qν1(νe) + ∆Qν2(νe) =
1

2
sin2(2θ). (4.111)

Next we consider dynamic entanglement, which is described by the variances of the flavor
charges defined in section 2.1. We have:

∆Qνe(νe)(t) = 〈νrk,e|Q2
νe(t)|νrk,e〉 − 〈νrk,e|Qνe(t)|νrk,e〉2

= 〈νrk,e|
[
∑

s

∫
d3p

(
αs†p,e(t)α

s
p,e(t) − βs†−p,e(t)β

s
−p,e(t)

)]2
|νrk,e〉 −

[
Qk
νe→νe(t)

]2

= 〈νrk,e|αr†k,e(t)αrk,e(t)|νrk,e〉 + 〈νrk,e|βr†−k,e(t)β
r
−k,e(t)|νrk,e〉

− 2 〈νrk,e|αr†k,e(t)αrk,e(t)βr†−k,e(t)β
r
−k,e(t)|νrk,e〉 −

[
Qk
νe→νe(t)

]2
. (4.112)

We now consider the third term in Eq.(4.112). We have:

〈νrk,e|αr†k,e(t)αrk,e(t)βr†−k,e(t)β
r
−k,e(t)|νrk,e〉 = e,µ〈0|αr†k,e(t)αrk,e(t)βr†−k,e(t)β

r
−k,e(t)|0〉e,µ
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Figure 4.14: QM vs. QFT flavor entanglement for |νe(t)〉 as a function of the scaled time

T = 2Et
∆m2

12
with θ fixed at the value sin2 θ = 0.314.

+
∣∣∣
{
αrk,e(t), α

r†
k,e(0)

}∣∣∣
2

e,µ〈0|βr†−k,e(t)β
r
−k,e(t)|0〉e,µ

−
∣∣{αrk,e(0), βr−k,e(t)

}∣∣2
e,µ〈0|αr†k,e(t)αrk,e(t)|0〉e,µ

−
{
αr†k,e(0), β

r†
−k,e(t)

}{
αrk,e(0), α

r†
k,e(t)

}
e,µ〈0|αrk,e(t)βr−k,e(t)|0〉e,µ

+
{
αrk,e(0), β

r
−k,e(t)

}{
αrk,e(t), α

r†
k,e(0)

}
e,µ〈0|αr†k,e(t)βr†−k,e(t)|0〉e,µ (4.113)

Explicit calculation of the above quantity shows that:

〈νrk,e|αr†k,e(t)αrk,e(t)βr†−k,e(t)β
r
−k,e(t)|νrk,e〉 = 〈νrk,e|βr†−k,e(t)β

r
−k,e(t)|νrk,e〉 (4.114)

so that we have

∆Qνe(νe)(t) = Qk
νe→νe(t)Qk

νe→νµ(t) (4.115)

which formally resembles the quantum mechanical result Eq.(4.107). The differences are
now due to the presence of the flavor condensate, which affects the oscillation formulae (see
Eqs.(2.118),(2.119)). In Fig. 4.14, flavor entanglement formula is plotted in the QFT case
against the corresponding QM case. The correction due to the nontrivial vacuum condensate
is evident.

As already emphasized, a serious drawback of the dynamic symmetry approach is its lim-
itation to finite dimensional Hilbert spaces, which of course prevents its use in more general
situations in which there can be creation of annihilation of particles. Nevertheless, the previous
study provides a simple, exactly solvable example of a possible extension of entanglement to
a genuine quantum field theoretical situation. Apart from the differences with QM due to the
flavor vacuum contributions, the QFT result is interesting from a more conceptual point of
view. Indeed, these results show that both the static and the dynamical entanglement arise in
connection with unitarily inequivalent representations: in the case of the static entanglement,
the flavor Hilbert space at time t to which the entangled state |νσ(t)〉 belongs, is unitarily
inequivalent to the Hilbert space for the qubit states |νi〉 [39]; on the other hand, in the case of
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dynamical entanglement, where the qubits are taken to be the flavor states at time t = 0, the
inequivalence is among the flavor Hilbert space at different times [19]. In the first case, the rel-
evant orthogonality relation is limV→∞ m〈0|0(t)〉f = 0, in the second limV→∞ f〈0(t′)|0(t)〉f = 0,
with t 6= t′.

Since the inequivalent representations are associated with a non-trivial condensate vacuum
structure, the above conjecture suggests that, in the context of QFT, many interpretational
issues connected with entanglement could be revisited in this new light. A similar point of view
has been expressed by other authors, for example in [84].

The extension of the above results to the three flavor case is under investigation [26]. In the
quantum mechanical case the relevant algebra is u(1)1⊕u(1)2⊕u(1)3 (resp. u(1)e⊕u(1)µ⊕u(1)τ )
in the static (resp. dynamic) case. The relevant charges for the QFT case are discussed in
[20, 21].
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Chapter 5

Particle mixing by external fields,

flavor states and Lorentz invariance

The subject of neutrino mixing and oscillations traditionally has tight links with Lorentz,
Poincaré and CPT violations (a very partial list of references is [29, 120, 99, 97, 92, 59, 85, 62,
58]), and to the broader emerging subject of Quantum Gravity Phenomenology [6]. Neutrinos
have often been proposed as viable probes to such subtle and small effects that are expected to
occur because of unknown and uncharted physics beyond the walls of our established knowledge
of Nature. In particular it is expected that quantum gravity induced decoherence should affect
neutrino oscillations [5, 3, 98]. Such effects have also been connected to the nontrivial flavor
vacuum structure discussed in chapter 2 [111].

Because of their nature, mixed particles are at odds with Poincaré invariance, because of the
fact that they do not have a definite mass and so they cannot be classified using the standard
wisdom descending from Wigner [151].

Let us state this more clearly, using the formalism we have been developing so far, and
focusing for definiteness on the case of neutrinos. The flavor states we have characterized and
studied, while being eigenstates of the momentum, are not eigenstates of the Hamiltonian,
so it is not possible to define as usual the mass of flavored particles as the eigenvalue of the
zero momentum Hamiltonian. This has led to a number of speculations with the purpose
of reconciling particle mixing with Poincaré invariance, for example by using some nonlinear
realization of the Lorentz group [36, 37] (along the lines of [105, 106]), or to embed it in an
appropriate symmetry structure1. In this chapter we shall show that this problem can be at
least partially overcome by considering mixing not as an intrinsic property of the particles, but
as the result of the interaction of some otherwise ordinary particles with an external field. This
is a somewhat more conservative approach than the ones mentioned above since it does not
involve some fundamental violation of relativistic symmetry but rather an effective violation
due to the non scalar nature of the background field, which selects a preferred direction, thus
being analogue of some other model present in the literature (for a review of these and other
proposals see e.g. [109]). The background field necessary to implement mixing turns out to

1Some unsuccessful attempt to embed mixed particles in some extended symmetry structure was carried out

in [30]
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be a Lie algebra valued vector field, which can be interpreted, at least in the maximal mixing
limit, as the gauge field corresponding to a symmetry group which horizontally connects the
various generations of particles. Thus our approach, besides addressing the above mentioned
problems, unveils some hidden approximate non abelian gauge structure in particle mixing,
which adds to other similar structures previously discovered, related to geometric phases [22].
Keeping this discussion in mind, in the following we will often use such gauge theoretic terms
like connection and field strength.

This background field acts like a medium with nontrivial optical properties with respect to
neutrinos. In particular in the two neutrino case, it acts on the two flavor case much like a
birefringent medium acts on the two polarization of photons. The extension of this analogy
to the three flavor case is of course not so obvious, since it would inolve such exotic concepts
as a “trirefringent” medium which would act on some sort of massive light. Nevertheless, the
emerging physical picture is very appealing.

One line of thought suggested by these consideration, which would be very interesting to in-
vestigate, is the possibility of writing down mixing as a kind of Aharonov–Bohm [4] interaction.
If this is the case, the vector field would just be a fictitious field much like the Chern–Simons
field used to embed fractional statistics in a local field theory context (see e.g. [101, 152]).

Another possibility would be to interpret the vector field as a real field which, besides sug-
gesting the above mentioned optical analogy, could be interpreted as a dark matter component.
This would open the way to cosmological applications and to spacetime dependent oscillation
length, susceptible of observational tests [28].

Both of these line of research are still in their infancy and will not be addressed at all in
this work, apart from some comments on the optical analogy.

In the next sections, we will develop the background field approach to mixing in the case of
two neutrinos and see how this allows to address the above mentioned problems. We will see
that the ambiguity in the field theoretical formalism for mixing described in section 2.5 will be
fixed in this new framework.

The extension to the cases of bosons and more than two flavors presents some technical
difficulties and is at present object of study. We will limit ourselves to a sketch of the partial
results we got in the boson case in the last section.

5.1 Neutrino mixing induced by an external vector field

We begin with the Lagrangian density describing two mixed neutrino fields:

L = ν̄e (i 6∂ −me) νe + ν̄µ (i 6∂ −mµ) νµ − meµ (ν̄e νµ + ν̄µ νe) . (5.1)

This can be consistently viewed as the interaction of the flavor neutrino fields with a constant
external Lie algebra valued vector field. The most direct way of seeing this goes through the
Euler–Lagrange equations corresponding to the Lagrangian (5.1), namely:

i∂0νe = (−iα ·∇+ βme)νe + βmeµνµ (5.2)

i∂0νµ = (−iα ·∇+ βmµ)νµ + βmeµνe, (5.3)
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where αi, i = 1, 2, 3 and β are the usual Dirac matrices in a given representation. For definite-
ness let us choose the following representation:

αi =

(
0 σi
σi 0

)
, β =

(
1I 0
0 −1I

)
, (5.4)

where σi are the Pauli matrices and 1I is the 2×2 identity matrix. The Euler–Lagrange equations
can be compactly written as follows:

iD0νf = (−iα ·∇+ βMd)νf , (5.5)

where νf = (νe, νµ)
T is the flavor doublet and Md = diag(me, mµ) is a diagonal mass matrix.

We have defined the (non-abelian) covariant derivative:

D0 := ∂0 + imeµ β σ1, (5.6)

where meµ = 1
2
tan 2θ δm, and δm := mµ −me.

We thus see that flavor mixing can be seen as an interaction of the flavor fields with an
su(2)−valued constant vector field having the following structure:

Aµ :=
1

2
Aaµσa = nµδm

σ1
2

∈ su(2), nµ := (1, 0, 0, 0)T , (5.7)

that is, having only the temporal component in spacetime and only the first component in su(2)
space. In terms of this connection, the covariant derivative can be written in the form:

Dµ = ∂µ + i g β Aµ, (5.8)

where we have defined g := tan 2θ as the coupling constant for the mixing interaction. Note
that in the case of maximal mixing (θ = π/4), the coupling constant grows to infinity while
δm goes to zero. We further note that, since the connection (5.7) is a constant, with just one
non-zero component in group space, its field strength vanishes identically:

F a
µν = ǫabcAbµA

c
ν = 0, (5.9)

with a, b, c = 1, 2, 3. The fact that, despite Fµν vanishes identically, the gauge field has physical
effects, leads to an analogy with the Aharonov–Bohm effect [4], as we already mentioned in the
introduction.

Finally, the equations of motion for the mixed fields can be cast in a manifestly covariant
form:

(iγµDµ −Md)νf = 0, (5.10)

and the Lagrangian density (5.1) has the form of the one describing a doublet of Dirac fields
in interaction with an external Yang-Mills field:

L = ν̄f (iγ
µDµ −Md)νf . (5.11)
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The energy momentum tensor associated with the flavor neutrino fields in interaction with
the external vector field can be computed by means of the standard procedure (described for
example in [100]). One finds:

T̃ρσ = ν̄f iγρDσνf − ηρσν̄f(iγ
λDλ −Md)νf . (5.12)

This expression is to be compared with the one of the canonical energy momentum tensor

Tρσ = ν̄eiγρ∂σνe − ηρσν̄e(iγ
λ∂λ −me)νe + ν̄µiγρ∂σνµ +

−ηρσ ν̄µ(iγλ∂λ −mµ)νµ + ηρσmeµ(ν̄eνµ + ν̄µνe)

= ν̄1iγρ∂σν1 − ηρσν̄1(iγ
λ∂λ −m1)ν1 + ν̄2iγρ∂σν2 − ηρσν̄2(iγ

λ∂λ −m2)ν2, (5.13)

where ηρσ = diag(+1,−1,−1,−1) is the Minkowskian metric tensor. We see that the difference

between the two is just the presence of the interaction terms in the 00 component, i.e. T00−T̃00 =
meµ(ν̄eνµ + ν̄µνe), while we have T0i = T̃0i, Tij = T̃ij .

The tensor T̃µν is not conserved on-shell. In particular we have:

∂ρT̃ρi = 0; ∂ρT̃ρ0 6= 0. (5.14)

Note that without the β matrix appearing in the covariant derivative (5.6) we would have

found: ∂µT̃µν = gFµνaj
µ
a = 0, i.e. the energy-momentum tensor would have been conserved.

In the present case [γµ, D0] 6= 0, in consequence of the presence of the β matrix in D0.
We also note that the matter current jµa has only one component in group space:

jρ1 = ν̄fγ
ρσ1
2
νf =

1

2
(ν̄eγ

ρνµ + ν̄µγ
ρνe) = Jρf,1, (5.15)

where Jρf,1 is the Noether current associated to the Lagrangian density (5.11) under the SU(2)
transformation [34]:

ν ′f = eimeµλ1
σ1
2 νf . (5.16)

Following the usual procedure, we now define a 4-momentum operator P̃ µ by taking the
0i and 00 components of T̃ µν and integrating them over 3−space. We obtain a conserved
3−momentum operator:

P̃ i =

∫
d3x T̃ 0i = i

∫
d3x ν†f∂

iνf

= i

∫
d3x ν†e∂

iνe + i

∫
d3x ν†µ∂

iνµ

≡ P̃ i
e(x0) + P̃ i

µ(x0), i = 1, 2, 3 (5.17)

and a non conserved Hamiltonian operator:

P̃ 0(x0) ≡ H̃(x0) =

∫
d3x T̃ 00 =

∫
d3x ν̄f (iγ0D0 − iγµDµ +Md) νf

=

∫
d3x ν†e (−iα ·∇+ βme) νe +

∫
d3x ν†µ (−iα ·∇+ βmµ) νµ

≡ H̃e(x0) + H̃µ(x0). (5.18)

84



We see that both the Hamiltonian and the momentum operators split in a natural way in a
contribution involving only the electron neutrino field and in another where only the muon
neutrino field appears. In such a way, we have a natural definition of a Hamiltonian and
momentum operators for each flavor field.

We remark that the tilde Hamiltonian is not the generator of time translations. This role
competes to the complete Hamiltonian H =

∫
d3xT 00, which includes the interaction term.

5.2 Recovery of the Poincaré algebra

Till now our considerations have been purely classical. Now we want to pass to the quantum
theory. Our purpose is to construct flavor neutrino states which are simultaneous eigenstates
of the 4−momentum operators above constructed and of the flavor charges. Of course this is
a highly nontrivial request. We will see that such states can indeed be constructed, but this
involves a nontrivial redefinition of the flavor vacuum which will also erase any reference to the
ν1 and ν2 fields.

As we have seen in section 2.5, the flavor neutrino field operator expansion ((σ, j) =
(e, 1)(µ, 2))

νσ(x) =

∫
d3k

(2π)3/2

∑

r

[
urk,j(x0)α

r
k,σ(x0) + vr−k,j(x0)β

r†
−k,σ(x0)

]
eik·x, (5.19)

relies on a special choice of the bases of spinors, namely those referring to the free field masses
m1, m2. It is always possible to perform a Bogoliubov transformation in order to expand the
field operators in a different basis of spinors, referring to an arbitrarily chosen couple of mass
parameters [67].

In the context of the above reformulation of mixing, it seems natural to expand the flavor
fields in the bases corresponding to the couple of masses (me, mµ). We will discover that
precisely those values are singled out by the requirement that the flavor states be eigenstates
of the Hamiltonian operator.

The new spinors are defined as the solutions of the equations:

(−α · k+mσβ)u
r
k,σ = ωk,σu

r
k,σ (5.20)

(−α · k +mσβ)v
r
−k,σ = −ωk,σv

r
−k,σ, (5.21)

where ωk,σ =
√

k2 +m2
σ. These are the momentum space version of the free Dirac equation

with mass mσ.
The flavor field operators are then expanded as follows:

νσ(x) =

∫
d3k

(2π)3/2

∑

r

[
urk,σ(x0)α̃

r
k,σ(x0) + vr−k,σ(x0)β̃

r†
−k,σ(x0)

]
eik·x, σ = e, µ, (5.22)

with urk,σ(x0) = urk,σe
−iωk,σx0, vr−k,σ(x0) = vr−k,σe

iωk,σx0 . Here and in the following the tilde
operators are those corresponding to the specific couple of mass parameters (me, mµ). With
these definitions all the calculations at a fixed instant of time x0 can be performed in exactly
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the same way they are done in the free field case. The explicit time dependence of the creation
and destruction operators, which is of course due to the interaction with the external field and
is not present in the free field case, does not create problems as the states which are acted
upon by the operators are evaluated at the same time as the operators themselves and the
commutators are all considered at equal times.

In terms of the tilde flavor ladder operators, the Hamiltonian and momentum operators
Eqs.(5.17),(5.18) read:

P̃σ(x0) =
∑

r

∫
d3k k

(
α̃r†k,σ(x0)α̃

r
k,σ(x0) + β̃r†k,σ(x0)β̃

r
k,σ(x0)

)
, (5.23)

H̃σ(x0) =
∑

r

∫
d3kωk,σ

(
α̃r†k,σ(x0) α̃

r
k,σ(x0)− β̃rk,σ(x0) β̃

r†
k,σ(x0)

)
. (5.24)

The new flavor states are defined by the action of the tilde creation operator on the tilde
flavor vacuum:

|ν̃ rk,σ(x0)〉 = α̃r†k,σ(x0)|0̃(x0)〉eµ. (5.25)

We easily find the result that these single particle states are eigenstates of both the Hamiltonian
and the momentum operator:

(
H̃σ(x0)

P̃σ(x0)

)
|ν̃ rk,σ(x0)〉 =

(
ωk,σ

k

)
|ν̃ rk,σ(x0)〉, (5.26)

making explicit the 4−vector structure.
It can be also verified that the flavor charges commute with the tilde Hamiltonian operator:

[Q̃σ(x0), H̃(x0)] = 0, as a consequence of:

[Q̃σ(x0), H̃σ′(x0)] = 0, σ, σ′ = e, µ. (5.27)

This is of course a consequence of the fact that the flavor nonconservation is entirely due to
the interaction term, which is absent in H̃ . This fact ensures the existence of a common set of
eigenstates of these operators. Indeed the flavor states (5.25) are straightforwardly seen to be
also eigenstates of the flavor charges:

Q̃σ(x0)|ν̃ rk,σ(x0)〉 = |ν̃ rk,σ(x0)〉, (5.28)

thus confirming that these are precisely the states we were looking for.

Let us now make some observations on the algebra of the generators descending from the
energy-momentum tensor (5.12). All the generators are defined in the usual way. Besides the
translation generators defined by Eqs.(5.17) and (5.18), we have the Lorentz generators, defined
as:

M̃λρ(x0) =

∫
d3x

(
T̃ 0ρxλ − T̃ 0λxρ

)
+

1

2

∫
d3x ν†fσ

λρνf = M̃λρ
e (x0) + M̃λρ

µ (x0), (5.29)
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where σµν = − i
2
[γµ, γν ]. The algebra of (equal-time) commutators of these generators will be

just the direct sum of two Poincaré algebras (we omit the specification of the instant of time):

[P̃ µ
σ , P̃

ν
σ′ ] = 0 ; [M̃µν

σ , P̃ λ
σ′ ] = iδσσ′

(
ηµλP̃ ν

σ − ηνλP̃ µ
σ

)
;

[M̃µν
σ , M̃λρ

σ′ ] = iδσσ′
(
ηµλM̃νρ

σ − ηνλM̃µρ
σ − ηµρM̃νλ

σ + ηνρM̃µλ
σ

)
, σ, σ′ = e, µ.(5.30)

Note that the above construction and the consequent Poincaré invariance, holds at a given
time x0. Thus, for each different time, we have a different Poincaré structure. This is strongly
reminiscent of a theory with a local Poincaré structure, that is, a theory of gravity. Speculations
about the possible gravitational origin of mixing will not be pursued in this work.

5.3 Phenomenological consequences

The above analysis leads us to the view that the flavor fields νe and νµ should be regarded as
fundamental. This fact has some interesting consequences at phenomenological level. Indeed,
if we consider a charged current process in which for example an electron neutrino is created,
we see that the hypothesis that mixing is due to interaction with an external field, implies that
what is created in the vertex is really |νe〉, rather than |ν1〉 or |ν2〉. As remarked above, such
an interpretation is made possible because we can regard, at any given time, flavor fields as on
shell fields, associated with masses me and mµ.

We consider the case of a beta decay process, say for definiteness tritium decay, which
allows for a direct investigation of neutrino mass. In the following we compare the various
possible outcomes of this experiment predicted by the different theoretical possibilities for the
nature of mixed neutrinos. As we shall see, the scenario described above presents significative
phenomenological differences with respect to the standard theory.

Let us then consider the decay:

A→ B + e− + ν̄e,

where A and B are two nuclei (e.g. 3H and 3He).
The electron spectrum is proportional to phase volume factor EpEepe:

dN

dK
= CEp (Q−K)

√
(Q−K)2 − m2

ν (5.31)

where E = m+K and p =
√
E2 −m2 are electron’s energy and momentum. The endpoint of

β decay is the maximal kinetic energy Kmax the electron can take (constrained by the available
energy Q = EA −EB −m ≈ mA −mB −m). In the case of tritium decay, Q = 18.6 KeV. Q is
shared between the (unmeasured) neutrino energy and the (measured) electron kinetic energy
K.It is clear that if the neutrino were massless, then mν = 0 and Kmax = Q. On the other
hand, if the neutrino were a mass eigenstate with mν = m1, then Kmax = Q−m1.

We now consider the various possibilities which can arise in the presence of mixing. If,
following the common wisdom, neutrinos with massesm1 andm2 are considered as fundamental,
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Figure 5.1: The tail of the tritium β spectrum for: - a massless neutrino (dotted line); -

fundamental flavor states (continuous line); - superposed prediction for 2 mass states (short-

dashed line): notice the inflexion in the spectrum where the most massive state switches off.

We used me = 1.75 KeV, m1 = 1 KeV, m2 = 4 KeV, θ = π/6.

the β spectrum is:

dN

dK
= CEpEe

∑

j

|Uej|2
√
E2
e −m2

j Θ(Ee −mj), (5.32)

where Ee = Q−K and Uej = (cos θ, sin θ) and Θ(Ee−mj) is the Heaviside step function. The
end point is at K = Q−m1 and the spectrum has an inflexion at K ≃ Q−m2.

If on the other hand we take flavor neutrinos as fundamental according to the above scheme,
we have that mν = me and Kmax = Q − me and the spectrum is proportional to the phase
volume factor EpEepe:

dN

dK
= CEp (Q−K)

√
(Q−K)2 − m2

e Θ(Ee −me). (5.33)

The above discussed possibilities are plotted in Fig.(5.1), together with the spectrum for
a massless neutrino, for comparison. We note that the next generation tritium beta decay
experiments will allow a sub-eV sensitivity for the electron neutrino mass [123], thus hopefully
allowing to unveil the true nature of mixed neutrinos.

Finally we point out that also in the neutrino detection process, it would be possible to
discriminate among the various scenarios above considered. In such a case, our scheme would
imply that in each detection vertex, either an electron neutrino or a muon neutrino would take
part to the process. Again, this is in contrast with the standard view, which assumes that
either ν1 or ν2 are entering in the elementary processes.
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5.4 Discussion

In the framework outlined in this chapter flavor neutrino fields are taken to be on-shell fields
with definite masses me and mµ, which are different from those of the mass eigenstates of
the standard approach, m1 and m2. Flavor oscillations then arise as a consequence of the
interaction with an external field, which acts as a sort of refractive medium which can be called
neutrino aether.

It would be interesting to explore the properties of such a medium and possible optical
analogs of this situation. A very interesting example in this respect has been given recently
in Ref.[146]. Another interesting analogy can be drawn with recent studies in which, for the
case of photons, the vacuum has been thought to act as a refractive medium in consequence of
quantum gravity fluctuations [63, 79].

The gauge structure associated to flavor mixing has the very interesting property of arising
across different fermion generations, thus having a different (“horizontal”) nature with respect
to the gauge structure of the Standard Model. The idea of horizontal (family) symmetries has
been already invoked long ago in the literature to explain mass hierarchy and mixing patterns
of quarks and leptons [11, 91], and has been connected also to such problems as dark matter
and strong CP violation [13, 12].

A natural question that comes in concerns the origin of the external vector field which causes
the mixing. This could also have some connection to quantum gravity models that sometimes
are invoked to explain the origin of mixing [110, 2].

Another outcome of our analysis is that we could recover, at least locally in time, a Poincaré
structure for the flavor states. This is possible since we could define a Hamiltonian operator
that commutes with the flavor charges, thus allowing for simultaneous eigenstates. In this
scheme where the fields νe and νµ are taken to be fundamental, one avoids any reference to
the fields ν1 and ν2. As pointed out, this leads to phenomenological consequences that can be
possibly tested in experiments on beta decay.

A final consideration concerns the interpretation of the Hamiltonian operator H̃ which, as
already remarked, does not take into account the interaction energy, i.e. the energy associated
with mixing. We can thus view H̃ as the sum of the kinetic energies of the flavor neutrinos,
or equivalently as the energy which can be extracted from flavored neutrinos by scattering
processes, the mixing energy being “frozen” (there’s no way to turn off the mixing!). This

suggests the interpretation of such a quantity as a “free” energy F ≡ H̃ , so that we can write:

H − F = TS. (5.34)

This quantity defines an entropy associated with flavor mixing. It is natural to identify the
“temperature” T with the coupling constant g = tan 2θ, thus leading to:

S =

∫
d3x ν̄fA0νf =

1

2
δm

∫
d3x (ν̄eνµ + ν̄µνe). (5.35)

The appearance of an entropy should not be surprising, since each of the two flavor neu-
trinos can be considered as an open system which presents some kind of (cyclic) dissipation.
This situation can be handled by use of well known methods of Thermo Field Dynamics [136]
developed for the study of quantum dissipative systems [52].
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The explicit expression for the expectation values of the entropy on the flavor neutrino
states is quite complicated, and thus not very illuminating. An attempt at an interpretation
of it is given in Appendix B in the much simpler context of Quantum Mechanics. There it is
shown that at a given time, the difference of the expectation values of the muon and electron
free energies is less than the total initial energy of the flavor neutrino state. The missing part
is proportional to the expectation value of the entropy.

The scenario emerged in this chapter, and in particular the last considerations, is consistent
with an interpretation of the gauge field as a reservoir, first put forward in [51].

Of course, in view of the time dependent entanglement entropy associated with neutrino
mixing and oscillations discussed in the previous chapter, it is an interesting question the one
of the connection of the latter to the entropy discussed in this chapter.

5.5 Mixing of boson fields

In this section we outline preliminary work done to get a procedure to formulate the mixing
of scalar fields in an analogous way [32]. The Lagrangian density describing the mixing of two
scalar fields is:

L(x) = ∂µΦ
†
f (x)∂

µΦf (x)− Φ†
f(x)MbΦf (x) = −Φ†

f (x)(�+Mb)Φf(x), (5.36)

where in the second equality we have integrated by parts, ΦTf = (φA, φB) and

Mb =

(
m2
A m2

AB

m2
AB m2

B

)
. (5.37)

In complete analogy to the fermion case, this Lagrangian can be diagonalized [18] by writing:

Φf (x) = UΦm(x) =

(
cos θ sin θ
− sin θ cos θ

)
Φm(x), (5.38)

where ΦTm = (φ1, φ2), so to have:

L(x) = ∂µΦ
†
m(x)∂

µΦm(x)− Φ†
m(x)M

2
dΦm(x), (5.39)

with M2
d = diag(m2

1, m
2
2) and

m2
A = m2

1 cos
2 θ +m2

2 sin
2 θ (5.40)

m2
B = m2

1 sin
2 θ +m2

2 cos
2 θ (5.41)

m2
AB = (m2

2 −m2
1) sin θ cos θ. (5.42)

In order to identify the gauge structure hidden in boson mixing, let us consider the following
identity:

M2 = (UMdU
T )2 = UMdU

TUMdU
T = UM2

dU
T =Mb. (5.43)
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where the orthogonality of U has been used. The matrices M and Md are the same as the ones
defined above in the fermion case.

We also have the relation:

(i 6∂ +Md)(i 6∂ −Md) = −(�+M2
d ) (5.44)

which, multiplied on the left by U and on the right by UT , gives:

(i 6∂ +M)(i 6∂ −M) = −(�+Mb). (5.45)

consistently with Eq. (5.43).
Now, by remembering the expression of the covariant derivative:

6D = 6∂ + imeµσ1 (5.46)

and using M̃d = diag(me, mµ), we can write the left-hand side of Eq. (5.45) as follows:

(i 6∂ +M)(i 6∂ −M) = (i 6D† + M̃d)(i 6D† − M̃d)

= − 6D† 6D − i 6D†M̃d + iM̃d 6D − M̃2
d (5.47)

that is, apart from the minus sign:

6D† 6D +meµ(me +mµ)σ1 ≡ ∆̃. (5.48)

Now we use the fact that

6D† 6D = ( 6∂ − imeµσ1)( 6∂ + imeµσ1) = �+m2
eµI (5.49)

to write:

∆̃ = �+m2
eµI + Cσ1 ≡ �+ A (5.50)

where we have defined C = mµ(me +mµ) and A = m2
eµI +Cσ1. Our purpose is to identify the

covariant derivative ∇µ such that

�+ A = ∇†
µ∇µ (5.51)

i.e. the appropriate vector field to implement boson mixing. By putting:

∇µ =

(
∂0 + igA0

∂i

)
(5.52)

we get ∇†
µ∇µ = �+g2A†

0A0, so that the new vector field must fulfill the condition g2A†
0A0 = A.

Further study along this line is in progress.
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Appendix A

Entropic measures for the states

W
(4)
q (δij)

Here we give the analytic expressions of the eigenvalues corresponding to the reduced den-
sity matrices of the states |W (4)

q (δ̃)〉 (q = 1, . . . , 4). Let λ(i:j,k,l)q and λ(i,j:k,l)q the eigenvalue

vectors associates respectively to the reduced density matrices Trj,k,l[|W (4)
q (δ̃)〉〈W (4)

q (δ̃)|] e

Trk,l[|W (4)
q (δ̃)〉〈W (4)

q (δ̃)|]. We have:

λ
(1:2,3,4)
1 = λ

(2:1,3,4)
1 = λ

(3:1,2,4)
1 = λ

(4:1,2,3)
1 = λ

(4:1,2,3)
2 = λ

(4:1,2,3)
3 = λ

(4:1,2,3)
4

=
1

4
{3 , 1} ,

λ
(1:2,3,4)
2 =

1

36

{
25− 6 cos δ14 − 6 cos δ23 − 2 cos(δ14 + δ23) ,

11 + 6 cos δ14 + 6 cos δ23 + 2 cos(δ14 + δ23)
}
,

λ
(2:1,3,4)
2 =

1

36

{
11− 6 cos δ14 − 6 cos δ23 + 2 cos(δ14 + δ23) ,

25 + 6 cos δ14 + 6 cos δ23 − 2 cos(δ14 + δ23)
}
,

λ
(3:1,2,4)
2 =

1

36

{
5− 4 cos(δ14 + δ23) , 31 + 4 cos(δ14 + δ23)

}
,

λ
(1:2,3,4)
3 =

1

72

{
16− 6 cos δ14 − 6 cos δ23 − 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34)

−6 cos(δ14 − δ23 − δ34)− 9 cos δ34 + 6 cos(δ23 + δ34) + 3 cos(2δ23 + δ34) ,

56 + 6 cos δ14 + 6 cos δ23 + 2 cos(δ14 + δ23)− 6 cos(δ14 − δ34)

+6 cos(δ14 − δ23 − δ34) + 9 cos δ34 − 6 cos(δ23 + δ34)− 3 cos(2δ23 + δ34)
}
,

λ
(2:1,3,4)
3 =

1

72

{
56− 6 cos δ14 − 6 cos δ23 + 2 cos(δ14 + δ23)− 6 cos(δ14 − δ34)
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−6 cos(δ14 − δ23 − δ34)− 9 cos δ34 − 6 cos(δ23 + δ34) + 3 cos(2δ23 + δ34) ,

16 + 6 cos δ14 + 6 cos δ23 − 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34)

+6 cos(δ14 − δ23 − δ34) + 9 cos δ34 + 6 cos(δ23 + δ34)− 3 cos(2δ23 + δ34)
}
,

λ
(3:1,2,4)
3 =

1

36

{
11 + 2 cos(δ14 + δ23)− 6 cos(δ14 − δ34)− 6 cos(δ23 + δ34) ,

25− 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34) + 6 cos(δ23 + δ34)
}
,

λ
(1:2,3,4)
4 =

1

72

{
56 + 6 cos δ14 + 6 cos δ23 + 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34)

−6 cos(δ14 − δ23 − δ34)− 9 cos δ34 − 6 cos(δ23 + δ34) + 3 cos(2δ23 + δ34) ,

16− 6 cos δ14 − 6 cos δ23 − 2 cos(δ14 + δ23)− 6 cos(δ14 − δ34)

+6 cos(δ14 − δ23 − δ34) + 9 cos δ34 − 6 cos(δ23 + δ34)− 3 cos(2δ23 + δ34)
}
,

λ
(2:1,3,4)
4 =

1

72

{
16 + 6 cos δ14 + 6 cos δ23 − 2 cos(δ14 + δ23)− 6 cos(δ14 − δ34)

−6 cos(δ14 − δ23 − δ34)− 9 cos δ34 − 6 cos(δ23 + δ34) + 3 cos(2δ23 + δ34) ,

56− 6 cos δ14 − 6 cos δ23 + 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34)

+6 cos(δ14 − δ23 − δ34) + 9 cos δ34 + 6 cos(δ23 + δ34)− 3 cos(2δ23 + δ34)
}
,

λ
(3:1,2,4)
4 =

1

36

{
25− 2 cos(δ14 + δ23)− 6 cos(δ14 − δ34)− 6 cos(δ23 + δ34) ,

11 + 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34) + 6 cos(δ23 + δ34)
}
,

λ
(1,2:3,4)
1 = λ

(1,3:2,4)
1 = λ

(1,4:2,3)
1 =

1

2
{0 , 0 , 1 , 1} ,

λ
(1,2:3,4)
2 =

1

18

{
0 , 0 , 7− 2 cos(δ14 + δ23) , 11 + 2 cos(δ14 + δ23)

}
,

λ
(1,3:2,4)
2 =

1

18

{
0 , 0 , 10− 3 cos δ14 − 3 cos δ23 + cos(δ14 + δ23) ,

8 + 3 cos δ14 + 3 cos δ23 − cos(δ14 + δ23)
}
,

λ
(1,4:2,3)
2 =

1

18

{
0 , 0 , 8− 3 cos δ14 − 3 cos δ23 − cos(δ14 + δ23) ,

10 + 3 cos δ14 + 3 cos δ23 + cos(δ14 + δ23)
}
,

λ
(1,2:3,4)
3 =

1

18

{
0 , 0 , 10 + cos(δ14 + δ23)− 3 cos(δ14 − δ34)− 3 cos(δ23 + δ34) ,

8− cos(δ14 + δ23) + 3 cos(δ14 − δ34) + 3 cos(δ23 + δ34)
}
,
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λ
(1,3:2,4)
3 =

1

72

{
0 , 0 , 38− 6 cos δ14 − 6 cos δ23 + 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34)

−6 cos(δ14 − δ23 − δ34)− 9 cos δ34 − 6 cos(δ23 + δ34) + 3 cos(2δ23 + δ34) ,

34 + 6 cos δ14 + 6 cos δ23 − 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34)

+6 cos(δ14 − δ23 − δ34) + 9 cos δ34 + 6 cos(δ23 + δ34)− 3 cos(2δ23 + δ34)
}
,

λ
(1,4:2,3)
3 =

1

72

{
0 , 0 , 34− 6 cos δ14 − 6 cos δ23 − 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34)

−6 cos(δ14 − δ23 − δ34)− 9 cos δ34 + 6 cos(δ23 + δ34) + 3 cos(2δ23 + δ34) ,

38 + 6 cos δ14 + 6 cos δ23 + 2 cos(δ14 + δ23)− 6 cos(δ14 − δ34)

+6 cos(δ14 − δ23 − δ34) + 9 cos δ34 − 6 cos(δ23 + δ34)− 3 cos(2δ23 + δ34)
}
,

λ
(1,2:3,4)
4 =

1

18

{
0 , 0 , 8− cos(δ14 + δ23)− 3 cos(δ14 − δ34)− 3 cos(δ23 + δ34) ,

10 + cos(δ14 + δ23) + 3 cos(δ14 − δ34) + 3 cos(δ23 + δ34)
}
,

λ
(1,3:2,4)
4 =

1

72

{
0 , 0 , 34 + 6 cos δ14 + 6 cos δ23 − 2 cos(δ14 + δ23)− 6 cos(δ14 − δ34)

−6 cos(δ14 − δ23 − δ34)− 9 cos δ34 − 6 cos(δ23 + δ34) + 3 cos(2δ23 + δ34) ,

38− 6 cos δ14 − 6 cos δ23 + 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34)

+6 cos(δ14 − δ23 − δ34) + 9 cos δ34 + 6 cos(δ23 + δ34)− 3 cos(2δ23 + δ34)
}
,

λ
(1,4:2,3)
4 =

1

72

{
0 , 0 , 38 + 6 cos δ14 + 6 cos δ23 + 2 cos(δ14 + δ23) + 6 cos(δ14 − δ34)

−6 cos(δ14 − δ23 − δ34)− 9 cos δ34 + 6 cos(δ23 + δ34) + 3 cos(2δ23 + δ34) ,

34− 6 cos δ14 − 6 cos δ23 − 2 cos(δ14 + δ23)− 6 cos(δ14 − δ34)

+6 cos(δ14 − δ23 − δ34) + 9 cos δ34 − 6 cos(δ23 + δ34)− 3 cos(2δ23 + δ34)
}
.

The von Neumann entropies are given by:

E
(·)
vN q = −

∑

n

λ(·)q (n) log2 λ
(·)
q (n) . (A.1)

95



96



Appendix B

Mixing in external field in Quantum

Mechanics

In this appendix we develop a similar analysis to the one given in chapter 5 to the case of
mixing in Quantum Mechanics that is, of a single mode. This is useful for the interpretation
of the results, which in this case have a much simpler form.

In a QM context, the flavor (fermionic) annihilation operators are defined by the relations:

αe(t) = cos θ α1(t) + sin θ α2(t) (B.1)

αµ(t) = − sin θ α1(t) + cos θ α2(t), (B.2)

where αi(t) = eiωitαi, i = 1, 2. The flavor states are given by:

|νσ(t)〉 = α†
σ(t)|0〉m, σ = e, µ, (B.3)

where |0〉m = |0〉1 ⊗ |0〉2 is the vacuum for the mass eigenstates. We use the notation |νσ〉 =
|νσ(t = 0)〉. The Hamiltonian of the system is:

H = ωeα
†
e(t)αe(t) + ωµα

†
µ(t)αµ(t) + ωeµ

[
α†
e(t)αµ(t) + α†

µ(t)αe(t)
]

= ω1α
†
1α1 + ω2α

†
2α2, (B.4)

where ωe = ω1 cos
2 θ + ω2 sin

2 θ, ωµ = ω1 sin
2 θ + ω2 cos

2 θ, ωeµ = (ω2 − ω1) sin θ cos θ.
In analogy with the QFT case we define the covariant derivative:

Dt =
d

dt
+ igA =

d

dt
+ iωeµσ1, (B.5)

where we have ωeµ = 1
2
tan 2θδω, δω = ωµ − ωe, and we have defined A := δω σ1

2
. Using this

covariant derivative the equations of motion read:

Dt αf = −iωd αf , (B.6)

where αf = (αe, αµ)
T and ωd = diag(ωe, ωµ). The Hamiltonian can then be written in the form:

H = α†
fωdαf + gα†

fAαf . (B.7)
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Figure B.1: Plot of expectation values on |νe(0)〉 of Fe(t) (long-dashed line), Fµ(t) (short-dashed

line) and 2TSe(t) (solid line). We used rescaled dimensionless time T = (ω2−ω1)t and θ = π/6.

The scale on the vertical axis is normalized to ωµ.

The diagonal part of the above expression can be readily split into separate contributions for
each flavor

H̃(t) = α†
fωdαf = ωeα

†
e(t)αe(t) + ωµα

†
µ(t)αµ(t) = H̃e(t) + H̃µ(t). (B.8)

Note that expectation values of the flavor number operators on the single particle flavor neutrino
states at time zero give the oscillation probabilities:

〈νe(0)|Ne(t)|νe(0)〉 = Pνe→νe(t) = 1− sin2 2θ sin2

(
ω2 − ω1

2
t

)
; (B.9)

〈νe(0)|Nµ(t)|νe(0)〉 = Pνe→νµ(t) = sin2 2θ sin2

(
ω2 − ω1

2
t

)
. (B.10)

Thus we have:

〈νe(0)|H̃e(t)|νe(0)〉 = ωePνe→νe(t); (B.11)

〈νe(0)|H̃µ(t)|νe(0)〉 = ωµPνe→νµ(t). (B.12)

In analogy with the field theoretical case, we regard these “free” Hamiltonians as free
energies, and we write:

H =
∑

σ=e,µ

(Fσ(t) + TSσ(t)), (B.13)

where we make the identifications g ≡ T and:

Sσ(t) =
1

4
δω
[
α†
e(t)αµ(t) + α†

µ(t)αe(t)
]
. (B.14)
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We have:

〈νe(0)|Se(t)|νe(0)〉 = 〈νe(0)|Sµ(t)|νe(0)〉 = −1

4
δω sin 4θ sin2

[
1

2
(ω2 − ω1)t

]
. (B.15)

All the expectation values obtained are summarized in the following table, from which we
immediately see how the energetic balance is recovered. The situation for an electron neutrino
state is represented in Fig. B.1 for sample values of the parameters.

H Fe Fµ TSe = TSµ

|νe(0)〉 ωe ωe(1− P (t)) ωµP (t)
1
2
δωP (t)

|νµ(0)〉 ωµ ωµP (t) ωe(1− P (t)) −1
2
δωP (t)

Table B.1: Energetic balance for flavor neutrino states. P (t) denotes the transition probability

Pνe→νµ(t).

Note finally that the integral of the entropy expectation value over an oscillation cycle, is
only dependent on the mixing angle:

∫ τ

0

〈νe(0)|Se(t)|νe(0)〉 dt = π cos2 2θ sin 2θ. (B.16)

where the period τ = 2π
ω2−ω1

. It would be interesting to compare this result with the geometric
invariants discussed in Ref.[33].
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