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Abstract - Preclinical studies are essentially based on 
animal models of a particular disease. The primary 
purpose of preclinical efficacy studies is to support 
generalization of treatment–effect relationships to human 
subjects. Researchers aim to demonstrate a causal 
relationship between an investigational agent and a 
disease-related phenotype in such models. Numerous 
factors can muddle reliable inferences about such cause-
effect relationships, including biased outcome assessment 
due to experimenter expectations. For instance, responses 
in a particular inbred mouse might be specific to the 
strain, limiting generalizability. Selecting well-justified 
and widely acknowledged model systems represents the 
best start in designing preclinical studies, especially to 
overcome any potential bias related to the model itself. 
This is particularly true in the research that focuses on 
aging, which carries unique challenges, mainly 
attributable to the fact that our already long lifespan 
makes designing experiments that use people as subjects 
extremely difficult and largely impractical.  
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I. INTRODUCTION 
 In the European Union the number of people 
aged >75 years is projected to double by the year 2060, 
thus comprising 20% of the total population (1,2). These 
changes will lead to an increase of 20 to 40% of the costs 
necessary to maintain the existing quality of healthcare 
services. The European Commission is promoting through 
the Innovative Partnership on Active and Healthy Aging 
the discussion between multiple stakeholders on what are 
going to be the priorities for tackling this new societal 
challenge (http://ec.europa.eu/research/innovation-
union/index_en.cfm?section=active-healthy-ageing). 
Education and research are going to be pivotal for the 
identification of the mechanisms of healthy aging and to 
prevent conditions that mine an active and healthy during 
a life course. In particular, multimorbidity is almost 
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constant in the oldest old and has adverse consequences 
such as higher mortality, poorer quality of life and 
reduced functional status (3). Geriatricians commonly use 
the term ‘‘frailty’’ to describe a biologic syndrome of 
decreased reserve, resilience and resistance to stressors, 
resulting from cumulative declines across multiple 
physiologic systems, causing vulnerability to adverse 
outcomes. Nevertheless, aging is a complex process that 
involves both a decline in the function of an organism and 
a greater risk of disorders associated with growing older 
(4, 5). Researchers have identified animal genes that 
influence lifespan, some of which modify the aging 
process as a whole, others which act by increasing or 
decreasing age-related illnesses (6, 7). Several species of 
animals have figured prominently in aging research (8). 
Such research has mostly focused on the genetic basis of 
aging, and on learning more about pathophysiological 
pathways that regulate the rate of aging and set the stage 
for age-related disorders.  
 
II. PRIMITIVE ORGANISMS 
The yeast, a single-celled fungus (Saccharomyces 
cerevisiae), is one of the most intensively studied 
eukaryotic model organisms in molecular and cell biology 
(9), much like Escherichia coli as the model bacterium 
(10). It serves as a useful model because it shares a lot in 
common with animals, at least at the cellular and genetic 
levels (11). Due to its short lifespan, yeast represents an 
ideal model in aging research (12). Mammals have some 
genes that correspond to some of those associated with 
longer life in yeast, and an understanding of the workings 
of the yeast genes could foster our understanding of the 
mammalian ones.  
Equally important, the nematode Caenorhabditis elegans 
is a roundworm with a ~20-day lifespan (13). Hitherto, 
more than 400 genes that extend lifespan in roundworms 
have been described (14). The roundworm genes that 
seem to confer increased longevity do so by supporting 
resistance to different forms of stress, including oxidative 
damage, bacterial infections and high temperatures (15). 
The correlation between the existence of roundworm 
genes and their mammalian counterparts indicates that C. 
elegans will continue to be a valuable animal model for 
the study of aging (13).  
The fruit fly Drosophila melanogaster is another favorite 
subject for studies on longevity. Mutant versions of a 
particular gene Indy, short for “I'm Not Dead Yet”, have 
been shown to double the fruit flies' average lifespan (16). 
The protein encoded by the Indy gene is closely related to 
a human protein active in energy production (17). Since 
the fruit fly has genes such as Indy that produce proteins 
very similar to human proteins, it makes a tremendous 
model organism for aging research. 
 
III. NON-HUMAN PRIMATES 
The discovery that fruit flies and roundworms carry genes 
that affect their longevity is enthusing, particularly 
because many of those genes have human counterparts. 
However, the complexity of human physiology cannot be 

replicated in simple organisms such as fruit flies and 
roundworms. In this sense, non-human primates occupy a 
special niche as models for health and disease because, 
with their close phylogenetic relationship to humans (18), 
they often closely mirror the physiological processes that 
take place in humans. Indeed, our DNA is very similar to 
that of non-human primates, including monkeys, apes, and 
chimpanzees. Several experiments into aging and 
longevity using primate models such as rhesus and 
squirrel monkeys are currently ongoing in studies of 
neurobiology, skeletal deterioration, reproductive aging, 
and other age-related disorders (19). Rhesus monkeys are 
particularly useful because the rate of aging in rhesus 
monkeys is three times as fast as the rate in humans. In a 
recent study, rhesus monkeys were given 30% fewer 
calories compared with control animals over a 23-year 
period (20). Researchers found no increase in longevity 
for the calorie-restricted animals, but they confirmed, 
however, that eating less may improve health by delaying 
the onset of diseases such as diabetes, cancer and 
cardiovascular disease (20). The common marmoset 
(Callithrix jacchus) is poised to become a standard non-
human primate aging model (21). With an average 
lifespan of 5 to 7 years and a maximum lifespan of 16-17 
years, marmosets are the shortest-lived anthropoid 
primates (22). They display age-related changes in 
pathologies that mirror those seen in humans, such as 
cancer, amyloidosis, diabetes, and chronic renal disease 
(19). 
 
IV. SMALL RODENTS 
Mice and rats represent the animal models of choice for 
scientists interested in aging for several reasons. First, 
they are mammals, thus more closely related to us than 
yeast, worms or flies. Second, their relatively small size 
and short lifespan make them easier to study than long-
lived animals (1)(23-26). Much of the excitement in recent 
aging research has come from discoveries that aging can 
be postponed in mice (27) or rats (28) by very low calorie 
diets, and by discoveries of mutant genes that can extend 
lifespan by as much as 50 percent. Studies of these slow-
aging rodents may prove helpful in the development of 
treatments that could prevent late-life disorders by 
mimicking the effects seen in the animals. The growing 
interest in rodents’ aging has been intensely stimulated by 
the sequencing of mouse and human genomes and by the 
realization that most human genetic diseases can be 
modeled by changes in equivalent genes in these small 
animals. Through targeted genetic manipulation, 
researchers have created genetic lines of mice that model 
Alzheimer’s disease, Werner’s syndrome (premature 
aging), diabetes, atherosclerosis, immune dysfunctions, 
oxidative stress, musculoskeletal disorders, and other 
medical conditions associated with aging (29-31). All 
these mouse models are actually providing novel insights 
into aging mechanisms.  
 
V. SWINE MODELS 
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Owing to their genomic, anatomical and overall 
physiological resemblance to humans (32), swine models 
have been extensively used in biomedical research (33), 
especially in studies about cardiovascular function and 
bone physiology. Indeed, porcine hearts exhibit coronary 
artery anatomy and gross anatomic structure very similar 
to that of humans and have been the subject of several 
translational studies (34). Pigs and humans are also mostly 
similar with respect to bone composition, microstructure 
and remodeling (35). Generally, there are unique 
advantages to the use of swine models in translational 
research, given that they share with humans similar 
anatomic and physiologic characteristics also in the 
urinary, integumentary, and digestive systems (36, 37). 
Pigs have been used as models of myocardial ischemia in 
the setting of graduated treadmill exercise training and 
increasing oxygen demand (38). However, a perceived 
difficulty of using the pig model of myocardial infarction 
is a predisposition for refractory arrhythmogenesis (39). 
Several strategies have been described to obviate this 
issue, including aggressive airway protection and 
ventilatory management, electrolyte supplementation and 
antiarrhythmic administration (40). 
Porcine coronary arteries are also considered an excellent 
model to assess safety and efficacy of devices under 
development for intracoronary applications, including 
novel imaging and stent technologies (41). Indeed, cardiac 
catheterization and coronary intervention in the pig are 
similar in many ways to the human. However, other major 
limitations of normal swine models include a large size 
and a low propensity to atherosclerosis even with 
prolonged feeding of high fat diets (42). To overcome 
these issues, the use of genetically modified miniature 
(mini-pigs) has emerged over recent years, with the 
creation of models of hypercholesterolemia, 
atherosclerosis and metabolic syndrome (37, 43). Thus, it 
is likely that mini-pigs will become an increasingly 
important animal model for research and pharmaceutical 
development applications. 
 
 
VI. ANIMAL MODELS OF COMMON AGE-RELATED 
DISORDERS 
Bone disease 
Age-related bone loss is a multifactorial skeletal disease, 
characterized by disruption of the microarchitectural 
structure of bone tissue and reduction in bone mass, 
resulting in loss of mechanical strength and increased risk 
of fracture (44). Such a disorder might be localized or 
involve the entire skeleton. In the European Union 
osteoporosis is a leading cause of mortality and morbidity 
in older adults, representing a key factor in the high cost 
of medical care (45). 
Many therapeutic advances in the management of 
osteoporosis were studied first in diverse animal models 
and then entered clinical practice (46). Animal models that 
have been used in the past include non-human primates, 
dogs, cats, sheep, rabbits, mini-pigs, guinea pigs and other 
small rodents, all of which have advantages and 

disadvantages (47). Among these, the laboratory rat is one 
of the preferred animals for most researchers. Its skeleton 
has been extensively studied, and although there are 
several limitations to its similarity to the human condition, 
these can be overcome through detailed knowledge of its 
specific traits or with certain techniques. The rat has been 
used in a number of experimental protocols leading to 
bone loss, including hormonal interventions (e.g. 
ovariectomy, parathyroidectomy, hypophysectomy, 
orchidectomy), immobilization, and dietary manipulations 
(48). Rat osteopenia due to age, ovariectomy (in the 
female rat), and immobilization bears a strong 
resemblance to human osteopenia, both in its anatomical 
features as well as in the transitional and steady states of 
the bone dynamics. In particular, Wistar rats display 
progressive loss of bone density both at trabecular and 
cortical sites along with cortical thinning after 12 months 
of age (49). 
 
A potential drawback to the use of rat models for 
osteoporosis is the lack of Haversian remodeling (osteon). 
In humans, increased Haversian remodeling in the 
skeleton is the main cause of cortical porosity. In the rat 
skeleton, cortical bone gain occurs in the periosteum, and 
cortical bone is lost at the endosteum (46). Larger animal 
models such as dogs and primates are generally 
considered more appropriate for the study of Haversian 
remodeling. However, the species-specific traits of 
osteoporosis in dogs (ethical dilemmas, inappropriate 
model for postmenopausal osteoporosis, high cost of 
maintenance,) and primates (high cost of acquisition and 
maintenance, reduced availability in experimental centers, 
ethical dilemmas) definitively limit their use. 
 
Trabecular and cortical bone deficits with aging have been 
also described in female C57/BL6 mice (50). Of interest, 
female mice do not have the equivalent of a menopause: 
they simply undergo reproductive senescence, becoming 
essentially acyclic by 11 to 16 months of age (51). A 
recent study dissociated the effects of aging per se versus 
those of age-related estrogen deficiency in mice, 
demonstrating that by maintaining physiologic levels of 
estrogen in aging female mice can prevent cortical bone 
loss, trabecular bone loss over the lifespan is mostly 
independent of endogenous estrogen levels (50). 
 
The classic mouse model of senescence acceleration and 
age-associated disorders is the “senescence accelerated 
mouse” (SAM) mouse. It has been under development 
since 1970 through the selective inbreeding of AKR/J by a 
research team at Kyoto University. It consists of 14 
senescent-prone inbred strains (SAMP) and 4 senescence-
resistant inbred strains (SAMR). In particular, the SAMP6 
strain was established as a model for senile osteoporosis 
characterized by low peak bone mass at their maturation 
(52). The low bone mass in these mice is polygenetically 
determined, a situation akin to osteoporosis in humans. 
Intriguingly, in vitro analysis confirmed that bone 
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marrow–derived stem cells isolated from SAMP6 mice 
had a markedly reduced osteogenic capacity (48). 
 
Cardiovascular disease 
The use of animal models has been crucial in the 
progression of developing new clinical therapeutics for 
cardiovascular disorders. One of the greatest successes in 
translated therapies of heart failure has been given by the 
β–adrenergic receptor antagonists (2, 53-56). The 
development of such a therapy occurred only after 
extensive animal modelling work at several institutions. 
Additionally, basic science and clinical research findings 
were integrated both from bench-to-bedside and bedside-
to-bench to help develop effective clinical therapies. Thus, 
the success of this therapy highlights the importance of 
carefully designed animal research. 
Rodents have been largely used as model of 
cardiovascular disorders. For example, the spontaneously 
hypertensive rat (SHR) is a well-studied animal model of 
human essential hypertension (57, 58), a very common 
disease among older adults (59). This inbred strain was 
simply developed by selective breeding of the Wistar-
Kyoto (WKY) stock for higher blood pressure. Rodents 
are also used as models of myocardial infarction, re-
stenosis post angioplasty, and heart failure (60-62). 
Myocardial infarction is usually achieved both in rats and 
mice by surgical ligation of a coronary artery (63). Heart 
failure can be obtained through means of myocardial 
infarction, cryo-injury, inducing a pressure overload after 
pharmacological challenge with adrenergic agonists or by 
ascending aortic banding (64, 65). 
 
Although numerous discoveries regarding myocardial 
dysfunction have been made with the use of murine or 
canine models, several confounding factors including 
collateral coronary circulation contributed to a transition 
to alternative animal species, such as sheep and pigs in the 
study of myocardial ischemia (66). Consistent coronary 
arterial anatomy, lack of preformed collateral vessels, and 
the ability to create infarctions of predictable size and 
location make both pigs and sheep reasonable choices for 
studying myocardial ischemia and post-infarction 
ventricular remodeling.  
 
The pig epicardial coronary artery distribution closely 
resembles that of humans, although with fewer collateral 
vessels. The left main coronary artery generally bifurcates 
early into a left anterior descending and circumflex 
coronary arteries. These vessels are of similar diameter to 
those in the human (2.0 – 4.0 mm). The right coronary 
artery is also usually of similar diameter to the human, 
although it is less often dominant (supplying the posterior 
cardiac surface) than in the human (67). The basic cardiac 
hemodynamic parameters and platelet characteristics are 
also comparable, though there are important differences 
between the porcine and human coagulation and 
fibrinolytic systems. Porcine models of myocardial 
infarction have been used to study infarct expansion and 
ventricular remodeling in the post-infarction setting. For 

instance, the induction of myocardial infarction in adult 
pigs facilitated placement of radiopaque markers, in order 
to reliably quantify the progressive infarct expansion, thus 
creating a model suitable for studying pharmacological 
therapies aimed at attenuation of infarct expansion (68). 
Recent studies have examined the impact of porcine stem 
cell transplantation on myocardial function in swine 
models of cardiac infarction, finding that stem cells were 
able to improve contractile function in infarcted and 
border-zone myocardium (69). Angiogenic growth factors 
have also been delivered to infarcted myocardium in a pig 
model, revealing re-establishment of stable collateral 
networks and improved myocardial perfusion (70). 
 
Aging lung 
The aging lung is characterized by notable changes in both 
structure and function. Morphologic changes in the 
respiratory system consist of significant reduction in the 
elastic recoil of the lung, greater chest wall rigidity, and 
loss of power in the respiratory muscles (2, 71). Early 
investigations of the regulation of airway function and its 
potential relationship to asthma and chronic obstructive 
pulmonary disease (COPD) employed large animals 
including dogs, cats and non-human primates. The 
detailed study of respiratory system mechanics was easily 
performed in such models whereas equipment to study 
smaller animals was not generally available (72). In the 
past 30 years the techniques available for small rodents 
have improved substantially and have undergone 
extensive testing. Non-invasive techniques for the mouse 
have been developed to facilitate the assessment of 
pulmonary function but are associated with a substantial 
degree of uncertainty. Indeed, studies in murine models of 
aging, including the SAM mouse (73), the klotho mouse 
(74) and the Senescence Marker Protein-30 (SMP30) 
knock-out mouse (75) provided controversial results (76). 
Though, the measurement of pulmonary function in the 
mouse is somewhat more difficult to make than in the rat. 
The Brown Norway rat represents the most suitable strain 
for the study of allergen-induced airway reactions ( which 
have many features in common with human asthma), 
especially given its high IgE levels (77). On the other 
hand, the Fisher 344 rat represents an excellent model to 
study COPD, mainly due to its innate airway 
responsiveness (78). 
 
Neurodegenerative disease 
Neurodegenerative disorders are characterized by a 
progressive degeneration of neurons in specific locations 
of the central nervous system. Ideally, animal models of 
neurodegenerative disease should reproduce all of the 
changes specific to a given disease. Several animal models 
have been developed to test neuroprotective strategies in 
neurodegenerative disorders. However, most of them are 
poorly predictive of an effect in patients (79), mainly 
because the etiology and the clinical manifestations may 
differ from one patient to another.  
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Most of the models of Parkinson’s disease are based on 
the use of a neurotoxin that mimics the effect of 
environmental toxins or reproduces the biochemical 
changes seen in such a disease (80). Animal models of 
Alzheimer’s disease have relied on the utilization of 
genetic mutations associated with familial forms of 
Alzheimer’s disease. Transgenic mice overproducing 
mutant amyloid precursor protein develop a pathology that 
is structurally similar to that found in the human brain 
(81). These transgenic models exhibit memory 
impairments. Interestingly, the cognitive deficits occur 
earlier than the appearance of extracellular plaques. This 
observation led to a search for earlier pathological 
hallmarks that could be mediating cognitive decline.  
Unfortunately, most of the existing models do not 
reproduce the full spectrum of the lesions and symptoms 
seen in humans. Animal models of neurodegenerative 
disease have existed since the late 1950s when reserpine 
was used to obtain a Parkinson’s-like phenotype in 
animals (82). For the next three decades animal models 
mainly consisted of using different drugs and toxins to 
create lesions in specific brain regions to mimic various 
diseases. These models played an essential role in the 
elucidation of basic functional neuroanatomy and 
circuitry. However, they did not help us understand the 
underlying disease mechanisms. 
The significance of animal models has changed drastically 
in the last years, mainly because the identification of 
disease genes has allowed the creation of new models 
(83). Transgenic animals expressing the human mutant 
genes have been created. The insights generated by 
studying these animals have revolutionized our 
understanding of these complex human disorders. 
Molecular twists have been used to create transgenic 
models in which a particular gene can be turned on and off 
and even selectively expressed in only certain neurons. 
Knock-in and knock-out models of genetic defects have 
also been made. These animal models have proved to be 
powerful tools for studying the biology underlying the 
disease process (83, 84). Normal and abnormal protein 
function can be studied in vivo to identify protein 
interactors and elucidate the involved molecular pathways. 
Genetic screens in invertebrate models of 
neurodegenerative disease (including yeast) enable the 
identification of suppressors or enhancers that can modify 
the disease phenotype.  
 
As new technologies have been developed over the 
decades, their application to animal models has led to 
important discoveries. For instance, laser capture 
microdissection of transgenic animal models and even 
postmortem human brain samples give us the capacity to 
analyze individual neurons quickly and efficiently (85). 
Most recently, in order to study more sophisticated 
transgenic models of neurodegenerative disorders, sheep, 
pig and primate models have been made. Generally, non-
human primates are preferred to rodents when, for 
example, a new therapeutic compound has to be tested 
before clinical trials. However, non-human primates as 

models for the study of neurodegenerative disorders also 
present some limitations, including the great inter-
individual variability on the response to a particular 
treatment and the difference in the symptoms of a 
particular disease when compared to humans (86). 
 
 
VII. MULTI-MORBIDITY AND FRAILTY 
As discussed above, preclinical models of aging are 
certainly needed to dissect the molecular mechanisms 
underlying the decline in overall physical performance 
observed in humans (87). In this sense it is important to 
highlight the concept of multi-morbidity in older adults: 
more than 70% of people over 65 years have two or more 
chronic conditions (88) including arthritis, diabetes 
mellitus, cancer, heart disease, and stroke. Thus, as stated 
in a recent Nature Commentary (89), the issues of old age 
come as a package.  
 
Frailty in older adults has been defined as a clinical 
syndrome characterized by skeletal muscle weakness, 
increased inflammation, and multi-systemic decline; it is 
also associated with a high risk of adverse health 
outcomes such as disability and mortality (90). Albeit only 
recently characterized, frailty is an important geriatric 
syndrome consisting of a reduced physiologic reserve that 
increases vulnerability to dependency and/or death and is 
globally estimated to afflict up to 27% of the elderly (91). 
Despite recent advances in frailty research in human 
cohorts, the mechanisms that mediate musculoskeletal 
decline and adverse outcomes in frailty remain unclear. 
The development of animal models that approximate 
human frailty is therefore necessary to facilitate etiologic 
and treatment-focused frailty research. Parks and 
colleagues reported a first attempt of an animal frailty 
scale based on the deficit accumulation model, which 
includes 31 variables involving activity levels, 
hemodynamic measures, body composition, and several 
metabolic parameters (92). 
 
The latest animal models of frailty (93) represent a critical 
step in the right direction. For instance, the interleukin-10 
knockout mouse has been proposed as a model for human 
frailty, since it develops an age-related decline in skeletal 
muscle strength compared to control mice (94). This 
genetically modified frail-mouse model also mimics the 
inflammation and weakness that often afflicts older 
people.  
 
Frailty can also be modelled in naturally aging mice as a 
frailty-phenotype score, graded by such performance 
measures as grip strength and walking speed. Importantly, 
the work on frailty has mainly used male C57BL/6J mice. 
While this strain is generally used, complications may 
arise in the context of frailty as the strain is known to be 
particularly predisposed to cancer of the lymphatic and 
hematopoietic systems; researchers should take into 
account that the mechanisms that drive these cancers may 
also drive mouse frailty, potentially by different pathways 
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than those that underlie human frailty. Ergo, more-
sophisticated animal models of frailty should include a 
broad range of performance measures in order to properly 
represent the conditions observed in humans. 
 
 
VIII. CONCLUSION 
Animal models have been and will continue to be essential 
in developing new clinical therapies. However, the road to 
successful translation is intricate and requires several 
careful considerations, including an appropriate choice of 
animal models, systematic experimental design, and 
integration of information from both the bench and the 
bedside.  
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