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Introduction

This thesis is composed of four chapters, two of which, Chapter 3 and

Chapter 4, contain original results. In Chapter 1 we recall some basic notions

and establish some of the notation and terminology which will be used in the

sequel. For example, we recall some useful results about the class X of groups

which are isomorphic to their non-abelian subgroups. Every group of this class

is infinite and 2-generated. This class of groups has been studied by H. Smith

and J. Wiegold( [34]). They proved that every insoluble X-group is centre-by-

simple and they gave a complete characterization of soluble X-groups. Then we

recall some results about finitely generated groups which are isomorphic to their

non-trivial normal subgroups. In particular, we will use the result proved by J.C.

Lennox, H. Smith and J. Wiegold in [17], for which if G is a finitely generated

infinite group that is isomorphic to all its non-trivial normal subgroups and

which contains a proper normal subgroup of finite index, then G ' Z.

Given a group G, a subgroup K of G is said to be a derived subgroup or

commutator subgroup in G if K = H ′ where H ′ is the derived subgroup of H,

with H subgroup of G. Recently, many authors have been interested in studying

the set of derived subgroups in the lattice of all subgroups.

Let C(G) denote the set of all derived subgroups in G:

C(G) = {H ′|H ≤ G}.

The influence of C(G) on the structure of the group G has been studied by many

authors. For example, F. de Giovanni and D.J.S. Robinson in[8] and M. Herzog,

P. Longobardi and M. Maj in[14], have investigated groups G for which C(G) is

finite. In particular, they proved that if G is locally graded, then C(G) is finite

if and only if G′ is finite.
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Let n be a positive integer and let Dn denote the class of groups with n

isomorphism types of derived subgroups. Clearly D1 is the class of all abelian

groups and a group G belongs to D2 if and only if G is non abelian and H ′ ' G′

whenever H is a non abelian subgroup of G. P. Longobardi, M. Maj, D.J.S.

Robinson and H. Smith in [18] focused their attention on groups in D2 and

described in a precise way some large classes of D2-groups.

In Chapter 2 we recall some results about D2-groups.

In this thesis we analyse a dual problem. Let B(G) denote the set of the

central factors of all subgroups of a group G:

B(G) = { H

Z(H)
|H ≤ G}

and let Bn denote the class of groups for which the elements of B(G) fall into

at most n isomorphism classes, where n is a positive integer. Clearly B1 is the

class of abelian groups and G is a B2-group if and only if every subgroup of G

is abelian or H
Z(H)

' G
Z(G)

for all non abelian subgroups H of G.

In Chapter 3 of this thesis we study B2-groups. For example, it is possible

to see that if G is a group where G
Z(G)

is elementary abelian of order p2, with

p prime, then G is in B2. Moreover, if G is a group with G
Z(G)

' Z× Z, then

G ∈ B2. Groups in B2 can be very complicated, in fact a non abelian group

whose proper subgroups are all abelian is also a B2-group and so Tarski Monster

Groups, infinite simple groups with all proper subgroups abelian, whose existence

was proved by A.Yu. Ol’shankii in 1979, are B2-groups. First we proved some

elementary results for B2-groups. For example it may be seen that the class

of B2-groups is closed under the formation of subgroups and not closed under

the formation of homomorphic images but if G is a nilpotent group in B2 then
G
S
∈ B2, for any S ≤ Z(G). In addition, G

Z(G)
is 2-generated for every G in

B2 and if G is also nilpotent, then G
Z(G)

is abelian. Then we analyse nilpotent

B2-groups and we prove that if G is non abelian, then G is a nilpotent group

in B2 if and only if either G
Z(G)

is elementary abelian of order p2, where p is a

prime, or G
Z(G)

is the direct product of two infinite cyclic groups. We also study

locally finite groups in B2 and we show that if G is locally finite, then G is in

B2 if and only if G = Z(G)H where H is finite, minimal non abelian. Then

we study soluble groups. We show that if G is a soluble non nilpotent group
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in B2, then G is metabelian and in this hypothesis we prove that Z( G
Z(G)

) = 1,

G = A < x >, for a suitable x in G and a normal abelian subgroup A of G, and

every non abelian subgroup of G
Z(G)

is isomorphic to G
Z(G)

. Finally, we analyse

the case of non soluble B2-groups and we prove that they do not satisfy the Tits

alternative, i.e. soluble by finite groups or groups that contain a free subgroup of

rank 2. Up to this point none of the special types of B2-groups we have analysed

has involved Tarski groups. But in this last case we have proved that if G is a

non soluble B2 group and G′ satisfies the minimal condition on subgroups, then
G

Z(G)
is simple, minimal non abelian, every soluble subgroup of G is abelian and

if N is a normal subgroup of G, then either N ≤ Z(G) or G′ ≤ N . In particular
G

Z(G)
is a Tarski group.

In Chapter 4 we show a result about Fibonacci-like sequences, obtained

in collaboration with Professor Giovanni Vincenzi. This results appear in

a published paper, Fibonacci-like sequences and generalized Pascal’s triangle.

We have studied the properties pertaining to diagonals of generalized Pascal’s

triangles T (k1, k2) created using two complex numbers. We have also introduced

a particular Fibonacci-like sequence {Hn}n∈N whose seeds are the complex

numbers considerated above. As in the case of Pascal’s triangle, we have found a

relationship between the Fibonacci sequence {Fn}n∈N and the sequence {Dn}n∈N
of diagonals we have created.

In particular we have proved that the sequence {Dn}n∈N of the numbers

which arise when we consider the diagonals of a generalized T (k1, k2) is recursive

and that the following relationship holds:

Theorem Let k1 and k2 be complex numbers. Let {Dn}n∈N be the associate

sequence to the generalized Pascal’s triangle T (k1, k2) and {Hn}n∈N be the

Fibonacci-like sequence of seeds k1 and k2. Then the following identity holds:

Hn −Dn = Fn−3(k2 − k1),∀n ∈ N.



Chapter 1

Preliminaries

The purpose of this chapter is to recall some basic notions and to establish

some of the notation and terminology which will be used in the sequel.

1.1 Basic concepts and definitions

Let n be a positive integer and let x1, x2, . . . , xn be elements of a group G.

We remind that the commutator of x1 and x2 is defined by

[x1, x2] = x−11 x−12 x1x2 = x−11 xx21 ,

while for n > 2 a simple commutator of weight n is defined recursively by the

rule

[x1, . . . , xn] = [[x1, . . . , xn−1], xn].

By convention [x1, . . . , xn] = x1 if n = 1.

For every x, y ∈ G we use the symbol

[x,n y]

to denote the simple commutator of weight n+ 1 of x and y, where y appears n

times on the right. We also assume [x,0 y] = x.

In the following lemma we summarize the standard commutator properties

(see [27]).
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Lemma 1.1.1. Let x, y, z be elements of a group. Then:

1) [x, y] = [y, x]−1;

2) [xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z];

3) [x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z];

4) [x, y−1] = ([x, y]y
−1

)−1;

5) [x−1, y] = ([x, y]x
−1

)−1;

6) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1 (the Hall-Witt identity);

7) [x, y, zx][z, x, yz][y, z, xy] = 1 (the Jacobi identity).

Let X1, X2, . . . , Xn be nonempty subsets of a group G, then [X1, X2] denote

the commutator subgroup of X1 and X2, namely the subgroup generated by the

set of all commutators of elements of X1 with elements of X2:

[X1, X2] =< [x1, x2]|x1 ∈ X1, x2 ∈ X2 > .

More generally, let

[X1, . . . , Xn] = [[X1, . . . , Xn−1], Xn]

where n > 2. Moreover, we recall that G′ = [G,G] is the derived subgroup of the

group G, being generated by all commutators in G, and the sequence

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ,

where G(n+1) = (G(n))′ for every n ≥ 0, is called the derived series of G, although

it need not reach 1 or even terminate.

A group G is said to be solvable of derived length at most n if G(n) = 1.

In particular, a solvable group with derived length at most 2 is said to be

metabelian.
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We remind that the lower central series of a group G is the descending

sequence of the commutator subgroups by repeatedly commuting with G:

G = γ1(G) ≥ γ2(G) ≥ · · · ,

in which γn+1(G) = [γn(G), G] for every n ≥ 1. Like the derived series the lower

central series does not in general reach 1. Instead, the upper central series of a

group G is the ascending sequence of subgroups that is dual to the lower central

series in the same sense that the centre is dual to the commutator subgroup:

1 = Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ · · · ,

defined by Zn+1(G)/Zn(G) = Z(G/Zn(G)) for every n ≥ 0. Of course Z1(G) =

Z(G) is the centre of G and each Zn(G) is called the nth centre of G. This series

need not reach G, but if G is finite, the series terminates at a subgroup.

For infinite groups, one can extend the two series to infinite ordinal numbers

via transfinite recursion: if α is a limit ordinal, then the subgroups γα(G) and

Zα(G) (also called the α-centre of G) are defined by the rules

γα(G) =
⋂
λ<α

γλ(G)

and

Zα(G) =
⋃
λ<α

Zλ(G).

Since the cardinality of G cannot be exceeded, there exists a cardinal β at which

the upper central series stabilizes. The terminal group Z(G) = Zβ is called the

hypercentre of G.

A group G is said to be nilpotent if the lower central series reaches the identity

subgroup after a finite number of steps or, equivalently, the upper central series

reaches the group itself after a finite number of steps. The nilpotent class is the

length of the upper central series or, similarly, the length of the lower central

series.
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Locally graded group

A group G is called locally graded if every finitely generated non-trivial

subgroup of G has a proper subgroup of finite index.

The class of locally graded groups is not closed with respect to forming

quotients but if G is locally graded then G
Z(G)

is locally graded. More generally,

the following result holds:

Proposition 1.1.1 (H. Smith [33]). Let G be a locally graded group and H a

subgroup of the centre of G. Then G
H

is locally graded.

Proof. Let G and H be as stated and suppose, for a contradiction, that G
H

is not

locally graded. Then, there exists a finitely generated subgroup F not contained

in H such that F
F∩H has no nontrivial finite image. We may as well assume that

F = G and consider
G
H

(G
H
)′

which is a finitely generated abelian group and so it

has nontrivial finite image. Since G
H

has no nontrivial finite image, it follows

that G
H

= (G
H

)′, thus G = HG′. Suppose that G =< x1, . . . , xn >, then every

generator can be written in the form xi = hiai where hi ∈ H and ai ∈ G′. Now

we consider the finitely generated subgroup K =< a1, . . . , an >≤ G′. Thus

G = HK and K ≤ G′ = K ′, hence G′ = K. Since G
H

is not locally graded, it

follows that G′ 6= 1. Thus there is a normal subgroup N of G′ such that G′

N
is finite

and nontrivial, since G is locally graded. Then HK
HN
'

HK
H

HN
H

' HNK
HN

' K
N(H∩K)

by Dedekind. This implies that G = HN and thus G′ = N which gives a

contradiction.

Hopfian group

A group G is Hopfian if it is not isomorphic to any of its proper quotients.

Proposition 1.1.2. Let G be a group satisfying the maximal condition for

normal subgroups. Then G is Hopfian.

Proof. We will prove that if G is non Hopfian, then G cannot satisfy the maximal

condition for normal subgroups. Assume that G is non Hopfian and suppose

that G satisfies the maximal condition for normal subgroups. Now consider

N � G, N 6= 1, such that G
N
' G, since G is non Hopfian. Then there exists
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M � G maximal such that G
M
' G and so there exists S

M
� G

M
, S
M
6= 1, such

that
G
M
S
M

' G
M
' G. Therefore there exists S � G, with M ⊂ S and G

S
' G, a

contradiction.

Locally finite groups

A group G is called locally finite if every finitely generated subgroup of G is

finite.

1.2 Groups which are isomorphic to their non-

abelian subgroups

In this section we recall some useful results about groups which are isomorphic

to their non-abelian subgroups.

Let Y denote the class of non-abelian groups in which all proper subgroups

are abelian. In [22], G.A. Miller and H.C. Moreno classified finite Y -groups.

Infinite Y -groups do exist, in fact in [24], A.Yu. Ol’shankii proved the existence

of a class of infinite simple groups, called Tarski Monsters with all proper

subgroups abelian. However, B. Bruno and R.E. Phillips proved that an infinite

locally graded Y -group is abelian (see [5]).

We consider the related class X of groups G, which contain proper nonabelian

subgroups, all of which are isomorphic to G. Clearly, every X-group is infinite

and 2-generated. In [34], H. Smith and J. Wiegold studied X-groups. They

proved that every insoluble X-group is centre-by-simple and they gave a complete

characterisation of soluble X-groups. Their main results are as follows:

Theorem 1.2.1 (H. Smith, J. Wiegold [34]). Let G be an insoluble X-group

and let Z denote the centre of G. Then G is 2-generator and G
Z

is infinite simple.

Moreover, Z is contained in every non-abelian subgroup of G.

Theorem 1.2.2 (H. Smith, J. Wiegold [34]). Let G be a soluble group.

a) If G ∈ X, then G contains an abelian normal subgroup of prime index.

b) If G is nilpotent, then G ∈ X if and only if G is isomorphic to a group

having one of the following presentations (where nil-2 denotes the pair
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of relations [a, b, b] = 1, [a, b, a] = 1, p is an arbitrary prime and k is an

arbitrary positive integer):

i) < a, b |nil-2, [a, b]p = 1 >;

ii) < a, b |nil-2, [a, b]p = bp
k

= 1 >;

iii) < a, b |nil-2, [a, b]2 = 1, b2
k

= [a, b] >;

iv) < a, b |nil-2, [a, b]3 = 1, b3
k

= [a, b] >.

c) If G is not nilpotent, then G ∈ X if and only if either

v) G =< A, x >, where A is a finite elementary abelian p-subgroup of

order pn which is minimal normal in G, x is of infinite order and has

order q mod Z(G), where p, q are distint primes, and for each k in

the interval 1 ≤ k ≤ q − 1, x is conjugate to xk or x−k in GL(n, p),

where x denotes the image of x under the natural map from < x > to

GL(n, p);

or

vi) G has a normal abelian subgroup B = A× < b >, where A =< a1 >

× . . .× < ap−1 > is free abelian of rank p − 1 and normal in G, b

is of infinite order or of order pk, for some non negative integer k,

and is central in G, and G = Ao < x > for some x, where xp = b,

axi = ai+1 for some i = 1, . . . ,p− 2 and axp−1 = (a1. . .ap−1)
−1, where

p is a prime at most 19.

Remark 1.2.1.

As may be seen from Theorem 1.2.1, the class of soluble X-group is precisely

that of locally graded X-groups, the factor group of a finitely generated locally

graded group by its centre cannot be infinite simple (see [33]). Note that, in

the case where k = 0, the group G described in part vi) of Theorem 1.2.2 is

precisely the central factor group of the wreath product Z wr Cp. The proof of

Theorem 1.2.2 requires the following result on wreath products. Its proof, in

turn, depends on a substantial result from Number Theory, whose connection

was pointed out by L.G. Kovács. In addition, M.W. Liebeck observed that do

indeed exist pairs of primes p, q for which the conditions in v) hold, provided
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that either n + 1 is an odd prime or n is odd and 2n + 1 is prime: if q is the

prime n+ 1 (respectively 2n+ 1) then there exists a prime p of order n modulo q,

and the pair (p, q) can be shown to satisfy the extra hypothesis on conjugates.

Theorem 1.2.3 (H. Smith, J. Wiegold [34]). Let p be a prime and let G be the

central factor group of the wreath product of an infinite cyclic group by a group

of order p. Then every normal subgroup of G contained in the image of the base

group is the normal closure of a single element if and only if p is at most 19.

In order to prove Theorem 1.2.1, it is useful to show the following result:

Lemma 1.2.1. Let G be an abelian-by-finite group with G ∈ X. Then G is

metabelian.

Proof. If G is centre-by-finite, then G′ is finite and therefore abelian since G is

infinite. Otherwise, there exists a noncentral normal abelian subgroup A and

then, for some g ∈ G, we have < A, g > nonabelian and thus isomorphic to G.

It follows that G′ ' (< A, g >)′ ⊆ A which is abelian, as claimed.

Proof. of Theorem 1.2.1. Let G and Z be as stated, and let A denote the

Hirsch-Plotkin radical of G. Since G ∈ X, G is 2-generator and it is non soluble

by the hypothesis. Then G is not locally nilpotent, and so A is abelian. For

A = Z, otherwise G '< A, g >, for some g ∈ G, giving the contradiction that

G is soluble since < A, g > is metabelian. By Lemma 1.2.1, then G
Z

is infinite.

Now suppose, for a contradiction, that there exists a normal subgroup N of

G such that Z < N < G. For some g ∈ G\N we have < N, g > non abelian and

hence isomorphic to G, and so G has a non trivial finite image. It follows that G

is locally graded and hence, by Proposition 1.1.1, that G
Z

is locally graded. Now

Z is also the Hirsch-Plotkin radical of N and, since N ' G otherwise N ≤ Z,

we deduce that N
Z
' G

Z
, that is, G

Z
is isomorphic to all of its non trivial normal

subgroups.

Since G
Z

has a non trivial finite image, we may apply the main result of [17]

to obtain the contradiction that G
Z

is cyclic. Thus G
Z

is simple and G′Z = G,

and so G′ = G′′. But G ' G′ and so G is perfect. Thus if H is any non abelian

subgroup of G we have HZ = (HZ)′ = H ′ = H, and the proof is complete.
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In order to prove Theorem 1.2.2 we start with the following lemma:

Lemma 1.2.2. Let G be a non nilpotent, centre-by-finite X-group. Then G has

the structure described in part v) of Theorem 1.2.2.

Proof. As in the proof of Lemma 1.2.1, G′ is finite and therefore abelian. Since

G′ is not central it has a non central Sylow p-subgroup, and we may write

G = Ao < x >, where A is a finite normal abelian p-subgroup of G and x has

infinite order.

Now G′ = [A,< x >] and so [a, x, x] 6= 1 for some element a of A, and we

have < [a, x], x >' G. But [a, x]p = [ap, x] = 1, since < Ap, x > is certainly not

isomorphic to G. It follows that A has exponent p. Suppose that x has order

n mod Z(G). If n = rs, where r, s > 1, then < A, xr > is not abelian and is

therefore isomorphic to G. But this easily gives a contradiction, and so n = q, a

prime.

Certainly q 6= p, since G is not nilpotent. Further, if A contains a proper non

trivial G-invariant subgroup B then, by Maschke’s Theorem, we have A = B×C,

where C is also non trivial and G-invariant. Now either < B, x > or < C, x >

is isomorphic to G, another contradiction. Finally, if q does not divide k then

< A, xk > is isomorphic to G and so xk acts like x±1 on A and the conjugacy

condition follows.

Now suppose that G is a group having the structure indicated, and let H

be a non abelian subgroup of G. Then H contains a non trivial element b of

A and an element of the form g = uxλ, where u ∈ A and λ 6≡ 0 mod q. Since

A is minimal normal we have < b ><g>= A, and so H is normal in G and

H =< A, xµ >, for some µ which is not a multiple of q. Clearly then H ' G,

and the result follows.

All that remains here is to show that a non nilpotent group G which has an

abelian normal subgroup of prime index, but which is not centre-by-finite, is

an X-group if and only if it is of one of the types described in part vi) of the

Theorem 1.2.2. We shall use the result of Theorem 1.2.3.

Firstly, we use the following observation:
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Remark 1.2.2. Let W =< u >wr< v >, where u has infinite order and v

has prime order p. Viewing the base group D of W in the natural way as the

additive group of the group ring Z < v >, we may regard the centre C of W as

the ideal of D generated by the element f(v) = 1 + v + . . . + vp−1. Since f is

irriducible over Z, and hence over Q, we have that every W -invariant subgroup

of D which properly contains C is of finite index in D.

Now let G = A < x > be as in vi), and let H be an arbitrary non abelian

subgroup of G. Then H =< H ∩A, axr >, where a ∈ A and (p, r) = 1. We have

(H∩A)G = (H∩A)<x> = (H∩A)<ax
r>, so that H∩A is normal in G. Applying

Theorem 1.2.3 to the group G
<b>

, we deduce that H ∩A is the normal closure in

G, and hence in H, of a single element b, say. Now H ∩ A has finite index in

A and therefore has rank p− 1, while bb(ax
r) . . . b(ax

r)p−1

= 1, (axr)p = xrp, and

H ∩ B = (H ∩ A)× < xrp >. It follows that the assignment a1 → b, x → axr

determines an isomorphism from G onto H.

Now assume that G is an abelian-by-finite X-group which is neither nilpotent

nor centre-by-finite. We may write G = B < x > for some x, where B is abelian

and normal of prime index p in G. Then xp ∈ Z = Z(G). Consider first the

case where xp = 1. There is a positive integer k such that Bk is torsion free and

normal in G. We have G '< Bk, x > and so we may write G = A < x >, where

A is torsion free. We claim that Z = 1.

Clearly Z ≤ A and if [A,< x >] ≤ Z then we have the contradiction that

G is nilpotent. Thus < [A,< x >], x > is isomorphic to G, and it follows that

the rank of [A,< x >] is the same as that of A. If Z 6= 1 there must be a non

trivial element z in [A,< x >] ∩ Z. It is easy to see that z must be of the form

[a, x], for some a in A; but then G '< a, x >, which is nilpotent, and we have a

contradiction which establishes the claim.

Now, for arbitrary non trivial a in A, we have that aax . . . ax
p−1

is central

in G and hence trivial, and < a, x > is isomorphic to G. We may assume that

G =< a, x >, for some a in A. It follows that G is a homomorphic image of the

central factor group of Z wr Cp and is therefore isomorphic to this central factor

group (since G is infinite and non abelian). Let N be an arbitrary non trivial

G-invariant subgroup of A, and let H =< N, x >.

Then H ' G and it follows that N =FittH is isomorphic to A =FittG
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and thus that N is the normal closure in H of a single element b of A. But

H contains some element cx, where c ∈ A, so that N =< b >G. Since N was

arbitrary, Theorem 1.2.3 tells us that p is at most 19.

Next, consider the more general case where x has finite order prl, say, where

(p, l) = 1. As before, we may write G = A < x >, where A is torsion free abelian.

Since xp ∈ Z, < A, xl > is non abelian and therefore isomorphic to G. It follows

that l = 1 and x has order pr. Now < xp > is the torsion subgroup of Z and of

the centre of every non abelian subgroup H containing xp. It follows easily that
G

<xp>
∈ X. If G

<xp>
is nilpotent then so is G, a contradiction. Also, if G

<xp>
is

centre-by-finite then G′ is finite and G is centre-by-finite, another contradiction.

As for the first case, G
<xp>

has trivial centre and so G has the structure indicated

in the theorem.

Suppose then that x has infinite order. Again we write G = A < x >, where

this time A is torsion free abelian and x has order prmodA. As above, [A,<

x >] ∩ Z = 1 and G '< [A,< x >], x >, and so we may write G = D < x >,

where D is torsion free abelian and D ∩ Z = 1.

Thus < xp >= Z, and we deduce that G
<xp>

∈ X. If d is any non trivial

element of D then [d, x] 6∈ Z, else < d, x > is nilpotent and not abelian, and

hence isomorphic to G. It follows once more that G
<xp>

has a trivial centre, and

the previous argument now shows that G is of the specified form.

1.3 Groups which are isomorphic to their non-

trivial normal subgroups

In this section we recall a result about finitely generated groups which are

isomorphic to their non-trivial normal subgroups.

Proposition 1.3.1. Let G be a finitely generated group which is isomorphic to

its non-trivial normal subgroups. Then G satisfies the maximal condition for

normal subgroups.

Proof. Let N1 < N2 < . . . < Ni < . . . be an ascending chain of normal subgroups

of G. Now consider L =
⋃
iNi, which is a non-trivial normal subgroup of G thus

L ' G and so L is finitely generated. Let x1, x2, . . . , xn generate L. Therefore
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there exist i1, . . . , in such that x1 ∈ Ni1 , . . . , xn ∈ Nin . Then there exists nj such

that L = Nnj
and so the chain stabilizes.

During a conversation that took place in the early seventies, Philip Hall

asked which infinite groups were isomorphic to all their non-trivial normal

subgroups.(see [21])

The obvious examples to this question are the infinite cyclic group Z, simple

groups and free groups of infinite rank. Notice that the only soluble group of

this type is the infinite cyclic group, since if G is soluble and A = G(n) is the last

non trivial derived subgroup, from G ' A we get G abelian and then G '< x >,

for every x ∈ G \ {1}.
J.C. Lennox, H. Smith and J. Wiegold proved the following theorem:

Theorem 1.3.2 (J.C. Lennox, H. Smith, J. Wiegold [17]). Let G be a finitely

generated infinite group that is isomorphic to all its non-trivial normal subgroups.

If G contains a proper normal subgroup of finite index, then G ' Z.

Any argument like that at the beginning of the proof of this theorem for the

case where G is a finitely generated group with no non-trivial finite images is

bound to fail since all powers of G could have the same number of generators as

G. J.C. Lennox, H. Smith and J. Wiegold used Proposition 1.3.1 to prove the

following theorem:

Theorem 1.3.3 (J.C. Lennox, H. Smith, J. Wiegold [17]). Let G be a finitely

generated infinite group that is isomorphic to all its non-trivial normal subgroups.

Then every pair of non-trivial normal subgroups intersect non-trivially.

Proof. Let M and N be non-trivial subgroups of G. Suppose that M ∩N = 1.

Then G '< M,N >= M ×N ' G×G, so that G
M
' M×N

M
' N

N∩M ' N ' G.

Thus G is non-Hopfian and so it cannot satisfy the maximal condition for normal

subgroups.

In general the statement of Theorem 1.3.2 is not true, for in [23] Obraztsov

constructed a non-cyclic group isomorphic to each of its non-trivial normal

subgroups.

Other examples have been constructed by R. Göbel, A.T. Paras and S. Shelah

in [13].



Chapter 2

Groups with two isomorphism

classes of derived subgroups

In this chapter the structure of groups which have at most two isomorphism

classes of derived subgroups is investigated. A derived subgroup of a group G

is the derived (or commutator) subgroup of a subgroup of G. It is a natural

question how important the set of derived subgroups is within the lattice of

all subgroups. There has been interest in imposing restrictions on the number

of derived subgroups in a group and investigating the resulting effect on the

structure of the group. Let Cn denote the class of groups in which there are

at most n derived subgroups, and let C denote the union of all the classes Cn.

The structure of Cn-groups for small n has been investigated in [14], while it is

shown in [8] and [14] that a locally graded C-group has finite derived subgroup.

Let n be a positive integer and let Dn denote the class of groups whose

derived subgroups fall into at most n isomorphism classes. Clearly D1 = C1 is

the class of all abelian groups. In this section we focus our attention on the

class D2 that is the class of groups which have two isomorphism types of derived

subgroup. These groups have been investigated by P. Longobardi, M. Maj, D.J.S.

Robinson and H. Smith in [18], where some large classes of D2-groups have been

described in a precise way. Notice that a group G belongs to D2 if and only if

H ′ ' G′ whenever H is a non abelian subgroup of G. This class contains groups

of many different types: apart from abelian groups, D2 contains free groups of

countable rank, groups whose derived subgroups are cyclic of prime or infinite
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order, Tarski groups and a whole range of soluble groups.

2.1 Elementary results

We mention some elementary facts about the class D2.

Lemma 2.1.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

i) The class D2 is subgroup closed.

ii) Let G ∈ D2 and assume that G′ satisfies min, the minimal condition on

subgroups. If N �G, then G
N
∈ D2.

iii) If G ∈ D2, then G′ is countable.

The following result shows that the class D2 is not closed with respect to

forming quotients.

Lemma 2.1.2 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

A free group F belongs to D2 if and only if it has countable rank.

Next result plays a fundamental role in the study of infinite D2-groups.

Proposition 2.1.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a perfect group in D2. Then G has no proper subgroups of finite

index.

Corollary 2.1.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a D2-group and assume that G′ has a proper subgroup of finite

index. Then the derived series of G reaches the identity subgroup transfinitely,

i.e., G is a hypoabelian group.

A nilpotent D2-group has class at most 2, so that locally nilpotent D2-groups

are nilpotent, as next result shows.

Theorem 2.1.2 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a non abelian group. Then G is nilpotent and belongs to D2 if and

only if G′ is cyclic of prime or infinite order and G′ ≤ Z(G).
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2.2 Groups with finite derived subgroups

D2-groups with finite derived subgroup have been classified by P. Longobardi,

M. Maj, D.J.S. Robinson and H. Smith. The essential components of such

groups are certain finite metabelian groups constructed from pairs of integers:

Let p be a prime and m > 1 an integer not divisible by p. Let F be a field of

order pn where n is the order of p modulo m, which will be written n = |p|m. The

multiplicative group F ∗ contains a unique cyclic subgroup X =< x > of order

m. Also |F : Zp| = n = |p|m = |Zp(x) : Zp| and hence F = Zp(x). Now regard

A = F+, the additive group of F , as an X-module via the field multiplication.

Then it is easy to show that A is a simple X-module and that CA(y) = 0 if

1 6= y ∈ X.

Next form the semidirect product

G(p,m) = X n A.

Then (G(p,m))′ = A and |G(p,m)| = mpn.

Lemma 2.2.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

The group G(p,m) belongs to D2 if and only if |p|m = |p|d for every divisor

d > 1 of m.

A pair (p,m) which satisfies the condition in 2.2.1 is said to be allowable.

The main result on D2-groups with finite derived subgroup is now recalled:

Theorem 2.2.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a non nilpotent group with G′ finite. Then G ∈ D2 if and only if

the following conditions hold:

i) G = XnA where A = G′ is an elementary abelian p-group, Z(G) = CX(A)

and X
Z(G)

is cyclic of order m.

ii) (p,m) is an allowable pair and G
Z(G)

' G(p,m).
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Corollary 2.2.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

If G is a non nilpotent, locally finite group in D2, then G′ is finite and the

structure of G is given by Theorem 2.2.1.

Digression on allowable pairs of integers

Allowable pairs play a central role in the theory of D2-groups with finite

derived subgroup, so we start a brief discussion of their properties.

Lemma 2.2.2 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]). Let

p be a prime and m > 1 an integer not divisible by p. Then (p,m) is allowable

if and only if |p|m = |p|q for every prime q dividing m.

Corollary 2.2.2 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

If m = qe11 . . . qekk is the primary decomposition of m, then (p,m) is allowable if

and only if each (p, qeii ) is allowable and |p|q1 = . . . = |p|qk .

Thus the problem of finding allowable pairs (p,m) is reduced to the case

where m = qe, with q 6= p a prime. In this case allowability is expressed by a

simple congruence.

Lemma 2.2.3 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let p, q be distinct primes and let e be a positive integer. Then (p, qe) is allowable

if and only if pq−1 ≡ 1 (mod qe).

For distinct primes p and q put n = |p|q and define

e(p, q)

to be the largest integer such that pn ≡ 1 (mod qe(p, q)). Note that 1 ≤ e(p, q) <

pn, so e(p, q) is finite. Clearly a pair (p, qe) is allowable if and only if e ≤ e(p, q).

At this point a question has been formulated: given any prime p, does there

exist a prime q such that e(p, q) ≥ 2, or equivalently such that pq−1 ≡ 1 (mod

q2)?

Such a prime q is called a base-p Wieferich prime, after the German number
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theorist Arthur Wieferich. Group theorically they asked if there is a prime q

such that G(p, q2) ∈ D2.

This is a difficult number theoretic problem. A computer search revealed that

the answer is positive for all primes p < 100 with the possible exception of 47.

The case p = 2 is of special interest: e(2, q) ≥ 2 if and only if 2q−1 ≡ 1 (mod

q2). Only two such primes q are known, 1093 and 3511. There is a curious

connection between the Wieferich primes and the so-called first case of Fermat’s

Last Theorem.

2.3 Soluble groups with two isomorphism classes

of derived subgroups

In this section the structure of infinite soluble D2-groups is analysed.

Theorem 2.3.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a non nilpotent, soluble D2-group and set A = G′. Then:

i) A is abelian, so that G is metabelian;

ii) A is an elementary p-group for some p, a free abelian group or a torsion

free minimax group;

iii) if A is torsion-free minimax and x ∈ G \ CG(A), the CA(x) = 1;

iv) if 1 < [B,< x >] ≤ B ≤ A and x ∈ G, then B ' A;

v) nilpotent subgroups of G are abelian.

There is an easy converse to Theorem 2.3.1.

Proposition 2.3.2 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a metabelian group and set A = G′. Assume that the following

conditions hold:

i) if 1 < [B,< x >] ≤ B ≤ A for some x ∈ G, then B ' A;
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ii) nilpotent subgroups of G are abelian.

Then G ∈ D2.

Corollary 2.3.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a free soluble group. Then G ∈ D2 if and only if G is free abelian

or free metabelian of countable rank.

Groups of finite rank

Soluble D2-group with finite rank have an additional structure over and

above that described in Theorem 2.3.1. We can restrict ourselves to the case

where the derived subgroup is torsion-free minimax in view of Theorem 2.2.1

and Theorem 2.3.1.

Theorem 2.3.3 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a non-nilpotent, soluble D2-group such that A = G′ is a torsion-free

minimax group. Then the following hold.

i) If 1 < B ≤ A and B = Bx where x ∈ G \ CG(A), then |A : B| is finite:

hence A is < x >-rationally irreducible.

ii) If C = CG(A), then G
C

is finitely generated and A is a noetherian G
C

-module.

iii) There is an abelian subgroup U such that U ∩A = 1 and |G : UA| is finite.

iv) G
Z(G)

is a finitely generated, metabelian minimax group in D2.

Constructing soluble D2-groups of finite rank

As is evident from the proof of Theorem 2.3.3, the essential part of an infinite,

non nilpotent soluble D2-group G with finite rank is a factor

G = U n A0 :

where A0 = aG for a fixed a 6= 1 in A = G′, U = U
CU (A0)

is abelian, A is a

torsion-free minimax and U -rationally irreducible, and G is finitely generated.
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There is a well-established connection between groups with this structure and

algebric number fields. Note that F = A0 ⊗Q is a simple QU -module and the

assignment r+ I → (a⊗ 1)r, where r ∈ QU , yields a ring isomorphism QU
I
→ F

where I = AnnQU(a), a maximal ideal of QU . Thus F is an algebraic number

field and we may identify A0 and U with subgroups of F+ and F ∗ respectively.

Moreover, A0 = Rg < U > and F = Q(U). Conversely, suppose we start with

an algebraic number field F and a non trivial finitely generated subgroup X of

F ∗ such that F = Q(X). Let C be the subring of F generated by X and regard

C as an X-module in the natural way. Now form the group

G = G(F,X) = X n C.

Since G =< X, 1F >, this is a finitely generated metabelian group. Also

F = Q(X), so we have r0(C) = (F : Q) and G has finite rank; hance it is a

minimax group. Notice that if X is a subgroup of the group of units of F , then

G will be polycyclic. It is easy to see that any nilpotent subgroup of G is abelian

and that A := G′ = [C,X]. By Proposition 2.3.2 the group G belongs to D2 if

and only if B ' A whenever 0 6= B = Bx ≤ A and 1 6= x ∈ X. Let us call the

pair (F,X) allowable if this condition is valid, the analogy with allowable pairs

of integers being evident. In conclusion G(F,X) ∈ D2 if and only if (F,X) is an

allowable pair. Note that if X is a group of units of F , then (F,X) is allowable

if and only if C = Rg < X > is < x >-rationally irreducible for all x 6= 1 in X.

Groups with non perfect derived subgroup

Then D2-groups with G′ not perfect have been considered. Under the

additional hypothesis that G′

G′′
has finite abelian ranks, i.e., the p-rank is finite

for p = 0 or a prime, it emerges that these groups are soluble, so they fall within

the scope of the classification of the previous sections.

Theorem 2.3.4 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a D2-group such that G′

G′′
is non trivial and has finite abelian ranks.

Then G is soluble and G′ is either finite elementary abelian or torsion-free abelian

minimax group.

Notice that the hypothesis of finite rank cannot be omitted from the theorem
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since free groups of countable rank belongs to D2. During the proof of Theo-

rem 2.3.4 two auxiliary results about nilpotent groups which may be known are

used. If n is a positive integer, let e(n) denote the sum of the exponents in the

primary decomposition of n.

Lemma 2.3.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a nilpotent group, n a positive integer and S = γn(G). If S′

S′′
is finite

and e(
∣∣ S′
S′′

∣∣) ≤ n, then S is metabelian.

Lemma 2.3.2 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a nilpotent group, n a positive integer and S = γn(G). If r0(
S′

S′′
) ≤ n,

then S ′′ is periodic.

Corollary 2.3.2 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a periodic D2-group. If G′ is not perfect, then G is soluble.

Corollary 2.3.3 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a periodic D2-group. If G is locally graded, then G is soluble.

Elements of finite order in D2-groups

Elements of finite order in a D2-group are subject to surprisingly strong

restrictions, at least if the group is insoluble and its derived subgroup is not

perfect.

Theorem 2.3.5 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be an insoluble D2-group such that G′ is not perfect. Then the elements

of G with finite order form a subgroup F of Z(G) and G
F

is in D2.

On the other hand, the elements of finite order in a soluble D2-group need

not form a subgroup, as the infinite dihedral group shows.
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2.4 Insoluble groups with two isomorphism classes

of derived subgroups

Some classes of insoluble D2-groups are now considered.

Let T denote the class of groups that satisfy the Tits alternative, i.e., G ∈ T
if and only if either G is soluble-by-finite or it contains a free subgroup of rank

2.

Theorem 2.4.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a T -group. Then G ∈ D2 if and only if either G is a soluble D2-group

or else G′ is free with countably infinite rank and L′ is not finitely generated

whenever L is a non abelian subgroup of G.

Corollary 2.4.1 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be a locally free group. Then G ∈ D2 if and only if G′ is a free group of

countable rank.

Groups whose derived subgroup satisfies the minimal condition

Up to this point none of the special types of D2-group they have studied has

involved a Tarski group, even if Tarski groups certainly belong to D2. This final

result shows that every insoluble D2-group whose derived subgroup satisfies the

minimal condition has a factor which is of Tarski type.

Theorem 2.4.2 (P. Longobardi, M. Maj, D.J.S. Robinson and H. Smith [18]).

Let G be an insoluble D2-group such that G′ satisfies the minimal condition.

Then G has the following properties.

i) G′ is the unique smallest non abelian subgroup of G.

ii) Soluble subgroups of G are abelian.

iii) G′ is finitely generated and perfect.

iv) The subgroup M := G′ ∩ Z(G) is the unique maximum normal subgroup

of G′, and G′

M
is an infinite simple group.
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v) G
M

is a D2-group.

vi) If N �G, then N ≤ Z(G) or G′ ≤ N .

Observation 1. Note that this result can be inverted:

a) The group G′

M
' G′Z(G)

Z(G)
is finitely generated infinite simple group with all

its proper subgroups abelian, so it is a Tarski group.

b) In the opposite direction notice that properties i) and ii) imply that

G ∈ D2 because, if H is a non abelian subgroup, G′ ⊆ H for i) and hence

H ′ ≥ G′′ = G′. Thus H ′ = G′.



Chapter 3

B2-groups

In this chapter we study groups G for which the set of isomorphism types

of elements in { H
Z(H)
|H ≤ G} is very small. If n is a positive integer, let Bn

denote the class of groups G such that the factor groups in { H
Z(H)
|H ≤ G} fall

into at most n isomorphism classes. Of course, B1 is the class of all abelian

groups, while a group G belongs to B2 if and only if H
Z(H)

' G
Z(G)

whenever H is

a non-abelian subgroup of G.

3.1 Elementary results

If G is a minimal non-abelian group, then obviously G is in B2.

The following proposition gives more examples of groups in B2.

Proposition 3.1.1. Let G be a group such that G = TZ(G), where T ≤ G is

minimal non abelian. Then G ∈ B2.

Proof. Assume that G = TZ(G). Then Z(T ) = T ∩ Z(G). Let H ≤ G, H non

abelian. Therefore HZ(G) = HZ(G) ∩G = Z(G)(T ∩HZ(G)). Suppose that

T ∩HZ(G) < T . Since T is minimal non abelian, then T ∩HZ(G) is abelian,

so Z(G)(T ∩ HZ(G)) is also abelian. Hence HZ(G) is abelian, which gives

the contradiction H abelian. Thus T ∩HZ(G) = T , so that T ⊆ HZ(G) and

TZ(G) ⊆ HZ(G) ⊆ G. Then HZ(G) = G and so Z(H) ⊆ H ∩Z(G). Therefore
G

Z(G)
= HZ(G)

Z(G)
' H

H∩Z(G)
= H

Z(H)
, as required.
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Proposition 3.1.2. Let G be a group and suppose that either G
Z(G)

is elementary

abelian of order p2 (p a prime) or G
Z(G)

' Z× Z. Then G ∈ B2.

Proof. First suppose G
Z(G)

elementary abelian, with
∣∣∣ G
Z(G)

∣∣∣ = p2, p a prime. Let

H be a non-abelian subgroup of G. Then HZ(G)
Z(G)

≤ G
Z(G)

, and HZ(G)
Z(G)

' H
H∩Z(G)

. If
HZ(G)
Z(G)

< G
Z(G)

then from H
H∩Z(G)

cyclic it follows that H is abelian, a contradiction.

Then we have HZ(G)
Z(G)

= G
Z(G)

and G = HZ(G); in particular Z(H) ≤ H ∩ Z(G),

and H
Z(H)

= H
H∩Z(G)

' HZ(G)
Z(G)

= G
Z(G)

, as required.

Now suppose that G
Z(G)

' Z× Z. Then G is nilpotent of class 2 and G = Z(G) <

x, y > for suitable x, y ∈ G. Obviously G′ =< x, y >′=< [x, y] >. If o([x, y]) =

n, then [x, y]n = [xn, y] = 1 and xn ∈ Z(G), a contradiction. Therefore G′ is

infinite cyclic. If H is a non-abelian subgroup of G, then H
Z(H)

'
H

Z(G)∩H
Z(H)

Z(G)∩H
is a non

cyclic, 2-generated group being a quotient of H
Z(G)∩H '

Z(G)H
Z(G)

≤ G
Z(G)

. Moreover

it is torsion free, in fact if hn ∈ Z(H) then [hn, k] = [h, k]n = 1 for every k ∈ H,

then h ∈ Z(H) since G′ is torsion free. Hence H
Z(H)

' Z× Z ' G
Z(G)

.

We continue by assembling some elementary facts about the class B2.

Lemma 3.1.1. i) The class B2 is subgroup closed.

ii) If G ∈ B2, then G
Z(G)

is 2-generated.

iii) If G is a nilpotent group and G ∈ B2, then G
Z(G)

is abelian.

iv) If G is non-nilpotent and G ∈ B2, then every locally nilpotent subgroup of

G is abelian.

v) If G is soluble, non-nilpotent and G ∈ B2, then G is metabelian.

vi) If G is not soluble and G ∈ B2, then every soluble subgroup of G is abelian.

vii) If G is not soluble and G ∈ B2, then every normal soluble subgroup of G

is contained in Z(G).

Proof. The first statement is obvious. In order to prove ii) consider a, b ∈ G,

with [a, b] 6= 1, then G
Z(G)

' <a,b>
Z(<a,b>)

as required. Now assume G nilpotent non
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abelian and consider x ∈ Z2(G) \ Z(G), then [x, g] 6= 1 for some g ∈ G and we

have < x, g > nilpotent of class 2 since [x, g] ∈ Z(G); then G
Z(G)

' <x,g>
Z(<x,g>)

is

abelian and iii) holds. In order to prove iv), let F be a locally nilpotent subgroup

of G and assume there exist a, b ∈ F , with [a, b] 6= 1. Then G
Z(G)

' <a,b>
Z(<a,b>)

, thus
G

Z(G)
is nilpotent and G is nilpotent, a contradiction. Therefore F is abelian. In

order to prove v), suppose that G is a soluble non-nilpotent group in B2. Write

F = FittG the Fitting subgroup of G. Then F is abelian by iv). Moreover

CG(F ) ⊆ F , by 5.4.4(ii) in [27]. Let x ∈ G \ F and write H = F < x >.

Then H is not abelian and H ′ ≤ F is abelian by iv). Therefore G
Z(G)

' H
Z(H)

is

metabelian. In addition ( H
Z(H)

)′ ' ( G
Z(G)

)′ = G′Z(G)
Z(G)

' G′

G′∩Z(G)
is abelian, hence

G′ is nilpotent and G′ ≤ F . But F is abelian by iv), thus G′ is abelian and G is

metabelian. Therefore v) holds. If G is non soluble and S is a subgroup of G,

then S is abelian, otherwise G
Z(G)

' S
Z(S)

is soluble and G soluble. Therefore vi)

holds. Finally if G is non soluble and N �G is soluble, then N is abelian by vi)

and N < g > is soluble, hence abelian, for every g ∈ G. Then N ≤ Z(G) and

vii) holds.

We will see that the class B2 is not closed under the formation of homomor-

phic images. But we have the following useful result.

Proposition 3.1.3. Let G be a non-nilpotent group in B2. If S ≤ Z(G), then
G
S
∈ B2.

Proof. Let H
S
≤ G

S
. First we show that Z(H

S
) = Z(H)

S
. In fact obviously

Z(H)
S
≤ Z(H

S
). Write V

S
= Z(H

S
). Then V ≤ Z2(H). If V 6≤ Z(H), then there

exists h ∈ H such that V 6⊆ CG(h). Then the subgroup V < h > is nilpotent

and non-abelian, a contradiction by Lemma 3.1.1. Therefore Z(H
S

) = Z(H)
S

for

every non abelian subgroup H
S

of G
S

. In particular we have Z(G
S

) = Z(G)
S

. Hence,

for every non abelian subgroup H
S

of G
S

, we have
G
S

Z(G
S
)

=
G
S

Z(G)
S

' G
Z(G)

' H
Z(H)

'
H
S

Z(H)
S

=
H
S

Z(H
S
)
. Therefore G

S
∈ B2.

Of course our aim is to study non-abelian B2-groups, and it is natural to

look first at nilpotent B2-groups: these admit a very simple description.
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Theorem 3.1.4. Let G be a non abelian group. Then G is nilpotent and belongs

to B2, if and only if either G
Z(G)

is elementary abelian of order p2 (p a prime) or
G

Z(G)
' Z× Z.

Proof. Assume that either G
Z(G)

is elementary abelian of order p2 (p a prime) or
G

Z(G)
' Z× Z. Then G is obviously nilpotent and G ∈ B2 by Proposition 3.1.2.

Now assume that G ∈ B2 is nilpotent and put Zi = Zi(G). Then G
Z1

is 2-

generated and abelian by Lemma 3.1.1. There exists a ∈ Z2 \Z1 and b ∈ G such

that [a, b] 6= 1.

Put H =< a, b >, then H ′ =< [a, b] > and H
Z(H)

' G
Z(G)

.

Now suppose that [a, b] is aperiodic; therefore H
Z(H)

is torsion-free. If, on the

other hand, [a, b] is periodic, then H ′ is finite. Since H is finitely generated, we

have H
Z(H)

finite. There exists cZ(H) ∈ H
Z(H)

of order p where p is a suitable

prime. There exists x ∈ H such that [cp, x] = [c, x]p = 1 but [c, x] 6= 1. Now it

is easy to see that G
Z(G)

has order p2, as claimed.

Using Theorem 3.1.1., it is now possible to show that the class B2 is not

closed under quotient.

For, let G be a free 2-generated group, nilpotent of class 2. Then G ∈ B2. Let A

be a nilpotent p-group of class 2, 2-generated, and let B be a nilpotent q-group

of class 2 and 2-generated, where p, q are distinct primes. Finally, assume that

H = A×B. There exists N �G such that G
N
' H but H /∈ B2.

3.2 Locally finite B2-groups

In this section we will classify locally finite B2-groups.

Theorem 3.2.1. Let G be a finite group. Then G ∈ B2 if and only if G =

Z(G)H, where H is minimal non abelian.

Proof. Assume that G = Z(G)H where H is minimal non abelian. Then G ∈ B2

by Proposition 3.1.1.

Now let G ∈ B2. Consider H ≤ G, with H non abelian of minimal order.

Therefore G
Z(G)

' H
Z(H)

'
H

H∩Z(G)
Z(H)

H∩Z(G)

, thus
∣∣∣ G
Z(G)

∣∣∣ ≤ ∣∣∣ H
H∩Z(G)

∣∣∣ =
∣∣∣HZ(G)
Z(G)

∣∣∣ ≤ ∣∣∣ G
Z(G)

∣∣∣.
Then HZ(G) = G as claimed.
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Corollary 3.2.1. Let G be a locally finite group. Then G ∈ B2 if and only if

G = Z(G)H, where H is finite and minimal non abelian.

Proof. Suppose that G is a locally finite B2-group. Then there exist a, b ∈ G
such that G

Z(G)
=< aZ(G), bZ(G) > and so G =< a, b > Z(G). Since G is locally

finite, < a, b > is finite. By Theorem 3.2.1 we have < a, b >= Z(< a, b >)H,

where H is minimal non abelian and so G = Z(G) < a, b >= Z(G)H, since

Z(< a, b >) ≤ Z(G).

Now suppose that G = Z(G)H, where H is finite and minimal non abelian,

then G ∈ B2 by Theorem 3.2.1.

Corollary 3.2.2. Let G be a B2-group. Then G is locally finite if and only if

G is a soluble torsion group.

Proof. Suppose that G is a soluble torsion group. Then G is locally finite by

Proposition 5.4.11 in [27].

Now suppose that G is a locally finite B2-group. By Corollary 3.2.1, there

exists H ≤ G finite and minimal non abelian such that G = Z(G)H. Then H is

soluble by a classical theorem of Miller and Moreno ( [22]) and so G is soluble

and torsion, as required.

3.3 Soluble B2-groups

In this section we will analyse the structure of infinite soluble B2 group.

Every soluble non-nilpotent B2 group is metabelian, by Lemma 3.1.1 v).

Moreover G
Z(G)

∈ B2 by Proposition 3.1.3. More information will be collected in

the following theorem.

Theorem 3.3.1. Let G be a soluble non-nilpotent B2-group. Then

i) Z( G
Z(G)

) = 1.

ii) G = A < x >, where A is a normal abelian sugroup of G.

iii) Every non-abelian subgroup of G
Z(G)

is isomorphic to G
Z(G)

.
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Proof. i) Write Z2(G)
Z(G)

= Z( G
Z(G)

). For every g ∈ G, the group Z2(G) < g > is

nilpotent and so it is abelian by Lemma 3.1.1 iv). Then Z2(G) ⊆ CG(g) for

every g ∈ G and Z2(G) ≤ Z(G). Thus Z2(G) = Z(G).

ii) By Lemma 3.1.1 v), G is metabelian. Let B be a maximal normal abelian

subgroup of G such that G′ ⊆ B. If B ≤ Z(G) then G′ ⊆ B ⊆ Z(G) and so

G is nilpotent of class 2, a contradiction. Therefore there exists g ∈ G such

that g 6∈ CG(B), thus B 6⊆ CG(g). Now consider H = B < g >. Since it is non

abelian, it follows that H
Z(H)

' G
Z(G)

and so G
Z(G)

is abelian-by-cyclic. Then there

exists A
Z(G)

� G
Z(G)

such that A
Z(G)

is abelian and G
A

is cyclic. Thus A is nilpotent.

By Lemma 3.1.1 iv), A is abelian and G is abelian-by-cyclic.

iii) Let H
Z(G)

be a non abelian subgroup of G
Z(G)

. From Proposition 3.1.3,

G
Z(G)

∈ B2 and Z( H
Z(G)

) = Z(H)
Z(G)

. It follows that
H

Z(G)
Z(H)
Z(G)

' G
Z(G)

so it suffices to prove

that Z(H) ⊆ Z(G). Now G = A < x >, where A is a normal abelian sugroup

of G by ii). Obviously we can suppose that A is maximal.

Firstly suppose that G
A

is finite cyclic. Consider yA ∈ G
A

of order a prime p.

Then A < y > is non abelian and A<y>
Z(A<y>)

' G
Z(G)

is abelian-by-(prime order).

Therefore there exists B
Z(G)

≤ G
Z(G)

such that B
Z(G)

is abelian and |G
B
| = p and so B

is nilpotent and by Lemma 3.1.1 iv) it is abelian. So we can suppose that |G
A
| = p.

Therefore xp ∈ A. Suppose that there exists an element h = axr ∈ Z(H) with

a ∈ A and r, p coprime. Then G = A < axr > and so H =< axr > (A ∩ H)

which is abelian, a contradiction. Thus h ∈ A. Since H is non abelian, there

exists an element cxs ∈ H where s and p are coprime, c ∈ A. It follows that

G = A < cxs > and then h ∈ Z(G).

Now suppose that G = A < x >, with G
A

infinite cyclic. Write G = G
Z(G)

and

A = A
Z(G)

. Suppose that D = CA(xr) 6= 1, for all r 6= 0. Then D < x > is non

abelian, since Z(G) = 1 by i) , and xr ∈ Z(D < x >). Therefore D<x>
Z(D<x>)

' G

is abelian-by-finite, which is a contradiction because G
A

is infinite cyclic.

Let H be a non abelian subgroup of G. Then H 6⊆ A and H 6⊆< x >.

Consider an element h = axs ∈ H, where s 6= 0 and suppose that Z(H) 6= 1.

Thus there exists an element bxr which permutes with every element of H∩A 6= 1,

since H is not cyclic. Therefore CA(xr) 6= 1, a contradiction. It follows that

r = 0 and so bxr = b commutes with axs. Then xs commutes with b and so

s = 0, the final contradiction.
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3.4 Insoluble B2-groups

We start with the following

Theorem 3.4.1. Let G be a group such that G
Z(G)

has a proper subgroup of finite

index. If G ∈ B2, then G is soluble.

Proof. SupposeG non soluble. Then G
Z(G)

is infinite and 2-generated by Lemma 3.1.1.

We show that N
Z(G)

' G
Z(G)

for every non-trivial normal subgroup of G
Z(G)

.

First notice that M ∩ Z(G) = Z(M) for every M � G. For obviously

M ∩ Z(G) ≤ Z(M). Let g ∈ G, then Z(M) < g > is soluble, therefore

Z(M) < g > is abelian by Lemma 3.1.1 vi), thus Z(M) ⊆ CG(g); that holds for

every g ∈ G, hence Z(M) ≤ Z(G).

Now suppose N
Z(G)

� G
Z(G)

, N
Z(G)

6= 1. Then N �G and Z(G) ≤ N , therefore

Z(G) = Z(G) ∩ N = Z(N), by the previous remark. If N is abelian, then

N ≤ Z(G) and N
Z(G)

= 1, which is not the case. Then N is not abelian, therefore
N

Z(G)
= N

Z(N)
' G

Z(G)
, as required.

Therefore G
Z(G)

is a finitely generated infinite group that is isomorphic to all

its non-trivial normal subgroups and that contains a proper normal subgroup

of finite index. Then, by Theorem 1.3.2, G
Z(G)

is cyclic and G is soluble, a

contradiction.

Corollary 3.4.1. Let G be a locally graded group in B2. Then G is soluble.

Proof. The group G
Z(G)

is 2-generated by Lemma 3.1.1 ii). It is also locally

graded by [33]. Then it has a normal subgroup of finite index. By Theorem 3.4.1,

G is soluble.

Let T denote the class of groups that satisfy the Tits alternative, i.e., G ∈ T
if and only if either G is soluble-by-finite or it contains a free subgroup of rank

2.

Theorem 3.4.2. Let G be an insoluble B2-group. Then G is not a T -group.
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Proof. First assume that G has a free subgroup F of rank 2. Then Z(F ) = 1.

Moreover H is free for every non-abelian subgroup H of F . Then F ' F
Z(F )

'
H

Z(H)
' H. This is impossible since a free group of rank 2 contains a free

subgroup of infinite rank (see [27]).

Now assume G soluble-by-finite. Then there exists N �G with N soluble

and G
N

finite. Lemma 3.1.1 vii) yields N ≤ Z(G). Therefore G
Z(G)

is finite,

so G′ is finite by Schur’s Lemma. Thus, by Corollary 3.4.1, G is soluble, a

contradiction.

Up to this point none of the special types of B2-group we have studied has

involved a Tarski group, even if Tarski groups certainly belong to B2. Next

result shows that every insoluble B2 group whose derived subgroup satisfies the

minimal condition has G
Z(G)

which is of Tarski type.

Theorem 3.4.3. Let G be an insoluble B2-group such that G′ satisfies the

minimal condition. Then G satisfies the following properties:

i) G
Z(G)

is a simple, minimal non abelian group.

ii) Soluble subgroups of G are abelian.

iii) If N �G, then either N ≤ Z(G) or G′ ≤ N .

In particular, G
Z(G)

is a Tarski group.

Proof. i) If G′ is soluble, then G is soluble, which is not the case. Then there

exists a minimal non soluble subgroup S ≤ G′. Then G
Z(G)

' S
Z(S)

since G ∈ B2,

thus G
Z(G)

is minimal non soluble. Let H
Z(G)

< G
Z(G)

, then H
Z(G)

is soluble. Therefore

H is soluble. By Lemma 3.1.1 vi), H is abelian and hence H
Z(G)

is abelian.

Now we prove that G
Z(G)

is simple. Let N
Z(G)

� G
Z(G)

, then N is abelian. Thus

N ≤ Z(G), otherwise there exists a x ∈ G such that N<x>
Z(N<x>)

' G
Z(G)

so that G

is soluble, a contradiction. ii) By Lemma 3.1.1vi) every soluble subgroup of G is

abelian. iii) If N �G, from i) it follows that either NZ(G)
Z(G)

= 1 or NZ(G)
Z(G)

= G
Z(G)

.

Then N ≤ Z(G) or G′ ≤ N .

Conversely, we have:
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Proposition 3.4.4. Let G be an insoluble group such that every nilpotent

subgroup is abelian and G
Z(G)

is simple, minimal non abelian. Then G is a

B2-group.

Proof. Let H be a non-abelian subgroup of G. Now consider HZ(G)
Z(G)

≤ G
Z(G)

.

If HZ(G)
Z(G)

< G
Z(G)

, then HZ(G)
Z(G)

is abelian and hence H is nilpotent. Then H is

abelian, which is a contradiction. Thus HZ(G)
Z(G)

= G
Z(G)

and G
Z(G)

' H
H∩Z(G)

. Since
G

Z(G)
is simple, H ∩ Z(G) = Z(H). Therefore G

Z(G)
' H

Z(H)
, and we have the

result.



Chapter 4

Fibonacci-like sequences and

generalized Pascal’s triangle

In this chapter we will show some results about Fibonacci-like sequences

and generalized Pascal’s triangle. We have studied some properties pertaining

diagonals of generalized Pascal’s triangles and we have determined combinatorial

relationships between Fibonacci-like sequences and the Fibonacci sequence itself,

using a new sequence whose elements are the numbers that appear in the

diagonals of the generalized Pascal’s triangle. We start recalling some basic

definitions.

A recursive sequence {fn}n∈N is a sequence of number fn indexed by a positive

integer n and generated by solving a recurrence equation in which later terms

are deduced from earlier ones.

The most famous case is the Fibonacci sequence, which we will denote by

{Fn}, defined by

F1 = F2 = 1 Fn = Fn−1 + Fn−2, n > 2.

This sequence has been of wide interest among mathematicians and in

applications as well since its first appearance in the book Liber Abaci published

in 1202. The Fibonacci sequence is often used as a model of recursive phenomena

in botany, see e.g. [26, 12], chemistry, see [2], physics and engineering, see e.g. [1]

and references therein, medicine, see [6]. In such studies are of a certain

relevance both the asymptotic behaviour of processes, which can be described
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through linear recurrences (see also [11]) and combinatorial aspects, which can

be understood by studying the properties of the related recursive sequences.

A property due to Lucas (see [7]) shows that

Fn+1 =

(
n

0

)
+

(
n− 1

1

)
+ . . .+

(
n− i
i

)
+ . . .

for any

i : n− i ≥ i ≥ 0.

It is well known that the above identity shows that the Fibonacci numbers

can be read from Pascal’s triangle (see the figure below). Note that the term on

the n-th arrow and i-th place is exactly the choice number
(
n−1−i

i

)
. For istance,

looking to the figure below, any arrow has 1 on its 0-th place, and the term of

the 4-th arrow lying on the 1-st place is 2.

The array in the figure is known as Pascal’s triangle because it was intensively

studied by Blaise Pascal (1623-1662), who showed his result in this area in his

work, published after his death ( [25]). In addition, many properties of the

Pascal’s triangle can be found in General trattato di numeri et misure (1556),
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by Niccoló Tartaglia . In the same period, the German mathematician Eduard

Stiefel, to whom the basic combinatorial identity(
n

m

)
+

(
n

m− 1

)
=

(
n+ 1

m

)
,

for every m,n ∈ N : m ≤ n

is due, also studied the Pascal’s triangle. Much earlier, in 1303, the triangle

had already been considered by the Chinese mathematician Zhu Shijie, that

called it Yanghui’s triangle ( [15]) and by Omar Khayyàm. For these reasons,

the Pascal’s triangle is also called Tartaglia’, Stiefel’, Yanghui’ or Khayyàm’s

triangle.

Inside the Pascal’s triangle many properties concerning number theory are

hidden, so that many mathematicians werw induced to consider its possible

generalizations. It is interesting to see how some of these generalizations preserve

corresponding results about recursive relations, described by combinatiorial

arguments. For instance, the study of Pascal’s Triangle of s-th order is strictly

connected to binomial coefficients of order s.( [3, 4]).

A surprising connection between a special kind of generalized Pascal’s triangle

and recursive sequences is due to Shannon ([10]). He considered the Pascal

Pyramid, constructed in three dimension, and he pointed out that the sequence

of the numbers determined by its diagonals is exactly the Tribonacci sequence

1, 1, 1, 3, 5, 9, 17,..., where the n-th term, for n ≥ 3, is obtained by adding the

previous three.

Another generalization of Pascal’s Triangle had been studied by Hosoya ( [16]),

who considered the Fibonacci triangle whose edges are the Fibonacci sequence,

and the other elements are obtained as the sum of the two elements above

(like in Pascal’s Triangle). Similarly Sána( [29]) and Shapiro( [30]), respectively,

considered and studied the properties of Lucas’triangle and Catalan’s triangle.

For a rich compendium of other generalizations see the book of Bondarenko

([3, 4]). Also, more recently Falcon and Plaza ( [10]) defined the Pascal two-

triangle and studied it by means of the k-Fibonacci sequences.

Let k1 and k2 be two complex numbers, or more generally consider two

elements of a commutative ring. Then the Fibonacci-like sequence {Hn}n∈N is
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the sequence whose seeds are H1 = k1 and H2 = k2 and Hn = Hn−1 +Hn−2, for

any n > 2.

The generalized Pascal’s triangle T (k1, k2) is the triangle which has the value

k2 on the top and the values k1 and k2 along the left and right sides respectively

(see figure).

It turns out that a sequence {Dn}n∈N associated to the triangle T (k1, k2)

arises. In a natural way, we define each Dn as the sum of the terms which lie

along the n-th arrow of the triangle T (k1, k2). In particular T (1, 1) is the usual

Pascal’s Triangle and its associated sequence is that of Fibonacci.
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The following questions arise:

1) Is the sequence {Dn}n∈N, of the numbers which arise when we consider

the diagonals of a generalized T (k1, k2) recursive?

2) Is there any formula that connects the sequences {Fn}n∈N, {Hn}n∈N and

{Dn}n∈N?

In this chapter we give positive answers to both these questions.

4.1 The generalized Pascal’s triangle

We can observe that each element of T (k1, k2) is the i-th term, from left to

the right, of exactly one diagonal Dn as defined before. Therefore we can denote

it by Dn,i: for example D5,1 = 2k1 + k2. Clearly the n-th diagonal has [n+1
2

]

elements, where [n+1
2

] denotes the integer part of n+1
2

, thus 0 ≤ i < [n+1
2

]. By

definition we have:

Dn =
[n+1

2
−1]∑

i=0

Dn,i and Dn,i = Dn−1,i +Dn−2,i−1, ∀n ≥ 3 and ∀i ≥ 1.

Notice that the first term of every diagonal, Dn,0, that does not include the

vertex of the triangle is k1 while the last term of ”odd” diagonals, D2m−1,m−1, is

k2.
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The next result will show that each other element of the generalized Pascal’s

triangle T (k1, k2) can be expressed as a linear combination of k1 and k2 by means

of suitable binomial coefficients.

Proposition 4.1.1 (S. Siani, G. Vincenzi [32]). For every positive integer

m ≥ 3 the following identities hold:

D2m−1,i =

(
2m− 1− 3− (i− 1)

i

)
k1+

(
2m− 1− 3− (i− 1)

i− 1

)
k2, ∀i : 0 < i < m−1

D2m,i =

(
2m− 3− (i− 1)

i

)
k1 +

(
2m− 3− (i− 1)

i− 1

)
k2, ∀i : 0 < i < m

Proof. If m = 3 both the identities are trivially satisfied. Suppose m > 3 and

proceed by induction on m. Looking to the triangle T (k1, k2) it is easy to check,

applying Stiefel’s identity, that for every n ≥ 5, Dn,1 =
(
n−3
1

)
k1 + k2, therefore if

i = 1 the identities are satisfied.

If i = m−1, the second identity of the statement also holds: applyng Stiefel’s

identity again, it is not hard to check that the last term lying on the even

diagonal D2m is D2m,m−1 = k1 +
(
m−1
1

)
k2, that is equal to:(

2m− 3− (m− 1− 1)

m− 1

)
k1 +

(
2m− 3− (m− 1− 1)

m− 2

)
k2 =

(
m− 1

m− 1

)
k1 +

(
m− 1

m− 2

)
k2.

Thus we may suppose 1 < i < m− 1. Now we can show the first identity of the

proposition. By construction we have:

D2m−1,i = D2m−1−1,i +D2m−1−2,i−1 = D2(m−1),i +D2(m−1)−1,i−1.

Clearly 0 < i < m− 1 and 0 < i− 1 < m− 2, so that by induction and applying
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Stiefel’s identity we have:

D2m−1,i =

[(
2(m− 1)− 3− (i− 1)

i

)
+

(
2(m− 1)− 1− 3− (i− 2)

i− 1

)]
k1+

[(
2(m− 1)− 3− (i− 1)

i− 1

)
+

(
2(m− 1)− 1− 3− (i− 2)

i− 2

)]
k2 =

(
2(m− 1)− 3− (i− 1) + 1

i

)
k1 +

(
2(m− 1)− 3− (i− 1) + 1

i− 1

)
k2 =

(
2m− 1− 3− (i− 1)

i

)
k1 +

(
2m− 1− 3− (i− 1)

i− 1

)
k2.

Similarly, it is possible to see that D2m,i = D2m−1,i +D2(m−1),i−1 = D2m−1−1,i +

D2m−1−2,i−1 +D2(m−1),i−1 = D2(m−1),i +D2(m−1)−1,i−1 +D2(m−1),i−1.

Clearly, 0 < i < m−1 and 0 < i−1 < m−1, so that by induction we have D2m,i =[(
2(m− 1)− 3− (i− 1)

i

)
+

(
2(m− 1)− 1− 3− (i− 2)

i− 1

)
+

(
2(m− 1)− 3− (i− 2)

i− 1

)]
k1 +

[(
2(m− 1)− 3− (i− 1)

i− 1

)
+

(
2(m− 1)− 1− 3− (i− 2)

i− 2

)
+

(
2(m− 1)− 3− (i− 2)

i− 2

)]
k2 =

(
2(m− 1)− 3− (i− 1) + 2

i

)
k1 +

(
2(m− 1)− 3− (i− 1) + 2

i− 1

)
k2 =
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(
2m− 3− (i− 1)

i

)
k1 +

(
2m− 3− (i− 1)

i− 1

)
k2,

as the statement required.

An immediate consequence of this result is the following combinatorial

relation:

Corollary 4.1.1 (S. Siani, G. Vincenzi [32]). Let k1 and k2 be complex numbers,

and let {Dn}n∈N be the associate sequence to the generalized Pascal’s triangle

T (k1, k2). Then for every integer n ≥ 5, we have:

Dn = k1 +
m−1∑
i=1

[(
2m− 3− (i− 1)

i

)
k1 +

(
2m− 3− (i− 1)

i− 1

)
k2

]
,

if n = 2m

Dn = k1 +
m−2∑
i=1

[(
2m− 1− 3− (i− 1)

i

)
k1 +

(
2m− 1− 3− (i− 1)

i− 1

)
k2

]
+ k2,

if n = 2m− 1.

Remark 4.1.1. It is well known that Lucas’ property, recalled in the intro-

duction, can be split in the even and odd case (see Lemma 4.1.1). This can

be also detected by Corollary 4.1.1, so we might think the identities stated in

Corollary 4.1.1 as a generalized Lucas’ property.

Lemma 4.1.1. Let {Fn}n∈N be the Fibonacci sequence. Then for every positive

integer m, we have:

F2m =
m−1∑
i=0

(
2m− 1− i

i

)
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F2m−1 =
m∑
i=1

(
2m− 1− i

i− 1

)
.

An easy argument by induction also shows the following result.

Lemma 4.1.2. Let k1 and k2 be complex numbers. Let {Hn}n∈N be the Fibonacci-

like sequence of seed k1 and k2. Then for every integer n ≥ 3 the following

identity holds:

Hn = k1Fn−2 + k2Fn−1.

4.2 The generalized Pascal’s triangle and the

Fibonacci-like sequence {Hn}n∈N
Now we can show the main result.

Theorem 4.2.1 (S. Siani, G. Vincenzi [32]). Let k1 and k2 be complex num-

bers. Let {Dn}n∈N be the associate sequence to the generalized Pascal’s triangle

T (k1, k2) and {Hn}n∈N be the Fibonacci-like sequence of seeds k1 and k2. Then

the following identity holds:

Hn −Dn = Fn−3(k2 − k1),∀n ∈ N.

Remark 4.2.1. In particular if we consider {Ln}n∈N, the Lucas sequence, i.e. a

Fibonacci-like sequence where L0 = 2 and L1 = 1, we have:

Ln −Dn = 2Fn−3,∀n ∈ N.

Many other relationships of this type can be found in [9]

Proof. It is useful to recall that given a recursive sequence {Gn}n∈N, it is

possible to define the terms G0 = G2 − G1, G−1 = G1 − G0, . . . , and so on.

For example, if we consider the Fibonacci sequence {Fn}n∈N, we may consider

F0 = 0, F−1 = 1, F−2 = −1 and so the statement is true if n ≤ 3. If n = 4, the

statement is true since H4 −D4 = (2k2 + k1)− (2k1 + k2) = k2 − k1.
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Suppose now that n > 4 and assume that n = 2m − 1 where m is a positive

integer. By Lemma 4.1.2 and Corollary 4.1.1 we have:

Hn −Dn =

[
Fn−2 −

(
1 +

m−2∑
i=1

(
2m− 1− 3− (i− 1)

i

))]
k1+

[
Fn−1 −

m−2∑
i=1

(
2m− 1− 3− (i− 1)

i− 1

)
− 1

]
k2.

In addition, Lucas’identities in Lemma 4.1.2 yield:

1 +
m−2∑
i=1

(
2(m− 1)− i− 1

i

)
=

m−2∑
i=0

(
2(m− 1)− 1− i

i

)
= Fn−1,

and

m−2∑
i=1

(
2m− 1− 3− (i− 1)

i− 1

)
+ 1 =

m−2∑
i=1

(
2(m− 1)− 1− i

i− 1

)
+ 1 =

m−1∑
i=1

(
2(m− 1)− 1− i

i− 1

)
= Fn−2.

Then it follows that:

Hn −Dn = (Fn−2 − Fn−1)k1 + (Fn−1 − Fn−2)k2 = Fn−3(k2 − k1).

Assume now that n = 2m where m is a positive integer. By Lemma 4.1.2 and

Corollary 4.1.1 we have:

Hn −Dn =

[
Fn−2 −

(
1 +

m−1∑
i=1

(
2m− 3− (i− 1)

i

))]
k1+
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[
Fn−1 −

m−1∑
i=1

(
2m− 3− (i− 1)

i− 1

)]
k2.

A new application of Lucas’identities yields:

1 +
m−1∑
i=1

(
2m− 3− (i− 1)

i

)
= 1 +

m∑
j=2

(
2m− 1− j

j − 1

)
= Fn−1,

and

m−1∑
i=1

(
2m− 3− (i− 1)

i− 1

)
+ 1 =

m−2∑
j=0

(
2(m− 1)− 1− j

j

)
+ 1 = Fn−2.

Therefore, as in the previous case we have:

Hn −Dn = (Fn−2 − Fn−1)k1 + (Fn−1 − Fn−2)k2 = Fn−3(k2 − k1).

Corollary 4.2.1 (S. Siani, G. Vincenzi [32]). Let k1 and k2 be complex num-

bers. Let {Dn}n∈N be the associate sequence to the generalized Pascal’s triangle

T (k1, k2). Then

Dn = Fn−2k2 + Fn−1k1,∀n ∈ N.

In particular {Dn}n∈N is the Fibonacci-like sequence of seeds k2 and k1 and thus

it is a recursive sequence.

Proof. The statement is trivial when n < 3. Let n > 3 and consider {Hn}n∈N, the

Fibonacci-like sequence of seeds k1 and k2. By Theorem 4.2.1 and Lemma 4.1.2

we have: Dn = Hn − Fn−3(k2 − k1) = Fn−2k1 + Fn−1k2 − (Fn−1 − Fn−2)k2 +

(Fn−1 − Fn−2)k1 = Fn−2k2 + Fn−1k1.

Remark 4.2.2. Another way to prove Theorem4.2.1 and Corollary is the

following:
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Let P (0, 0) = k2 the vertex of T (k1, k2), and for any i ≥ 0 and 0 ≤ j ≤ i

let P (i, j) be the (i, j) entry of T (k1, k2). Using the Stiefel’s identity, an easy

argument by induction shows that for any i ≥ 0 the following relation holds,

for any 0 ≤ j ≤ i(recall that for j = i and j = 0 we have both
(
i−1
i

)
= 0 and(

i−1
−1

)
= 0):

P (i, j) = k1

(
i− 1

j

)
+ k2

(
i− 1

j − 1

)
.

Now, using the Lucas’ property shown in the first paragraph, we can compute

the diagonals of T (k1, k2):

Dn+1 = P (n, 0) + P (n− 1, 1) + . . .+ P (n− i, i) + . . . =

k1[

(
n− 1

0

)
+

(
n− 2

1

)
+ . . .+

(
n− i− 1

i

)
+ . . .]+

k2[

(
n− 2

0

)
+

(
n− 3

1

)
+ . . .+

(
n− i− 2

i

)
+ . . .]

and by Lucas’identity we have

Dn+1 = k1Fn + k2Fn− 1.

Thus,

Dn = k1Fn−1 + k2Fn− 2,∀n ∈ N.

On the other hand for the generalized Fibonacci-like sequence {Hn}n∈N the

well-known closed form gives

Hn = Fn−1H2 + Fn−2H1 = k2Fn−1 + k1Fn−2,∀n ∈ N.

Therefore,

Hn −Dn = k2Fn−1 + k1Fn−2 − k1Fn−1 − k2Fn−2 = (k1 − k2)(Fn−2 − Fn−1) =

(k1 − k2)(−Fn−3) = Fn−3(k2 − k1),

and the proof is complete.

Remark 4.2.3. As a consequence of the above results, we may concern any
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Fibonacci-like sequence {Gn}n∈N of initial seeds G1 and G2, as a sequence

appearing as diagonals of the generalized Pascal’s triangle T (G2, G1).

Example 4.2.1. Let Z5 be the finite field of order 5, and let k1 and k2 be two

elements of Z5. If we have to compute the following

s = k1 +
10∑
i=1

[(
22− 3− (i− 1)

i

)
k1 +

(
22− 3− (i− 1)

i− 1

)
k2

]
,

by Corollary 4.2.1 and Corollary 4.1.1, we have s = D22 = F20k2 + F21k1 =

6765k2 + 10946k1 = 0 + k1 = k1.
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