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Abstract (English) 
	  

Papillary thyroid carcinoma (PTC) is the most frequent thyroid 

malignant neoplasia. Oncogene activation occurs in more than 70% 

of the cases. BRAF mutations occur in about 40% of PTCs, whereas 

RET rearrangements (RET/PTC oncogenes) are present in about 

20% of cases. Finally, RAS mutations and TRK and PPARG 

rearrangements account for about 5% each of these malignancies.  

However, despite the presence of tumor-initiating driver events, 

cancer results from the progressive accumulation of mutations in 

genes that confer growth advantage over surrounding cells. A better 

understanding of molecular alterations of PTC will provide important 

insights into cancer etiology. It will also lead to advance in their 

diagnosis, possibly opening the way for developing novel molecular 

therapies.  

Thus, the aim of this PhD project is to deeply explore the 

transcriptome of PTC in order to identify new driver events in this 

type of cancer. 

In the first part of this study, we used RNA-Sequencing in a 

discovery cohort of 18 patients with papillary thyroid carcinoma to 

identify fusion transcripts and expressed mutations in cancer driver 

genes. Furthermore, we used targeted sequencing on the DNA of 

these same patients to validate identified mutations. We extended 

the screening to thyroids of 50 PTC patients and of 30 healthy 

individuals. Using this approach we identified new somatic mutations 

in CBL, NOTCH1, PIK3R4 and SMARCA4 genes. We also found 

mutations in DICER, MET and VHL genes, previously found mutated 

in other tumors, but not described yet in PTC. We also identified a 

new chimeric transcript generated by the fusion of lysine deficient 

protein kinase 1 (WNK1) and beta-1,4-N-acetyl-galactosaminyl 

transferase 3 (B4GALNT3) genes and correlated with an 

overexpression of B4GALNT3.  
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Moreover, although protein coding genes play a leading role in 

cancer genetics, in recent years, many studies focused on a novel 

class of non-coding RNAs, long non-coding RNAs (lncRNAs), which 

regulate the expression levels of protein coding genes. Since 

deregulated expression of lncRNAs has been reported in many 

cancers, it suggests that they may act as potential oncogene or 

tumor-suppressor.  

Thus, to assess if lncRNAs can exert a tumorigenic role in thyroid, in 

the second part of my PhD project I systematically quantified 

lncRNAs’ expression in PTC vs healthy thyroids using our RNA-Seq 

data. Combining ab initio reconstruction to a custom computational 

pipeline we found that novel and known lncRNAs are significantly 

altered in PTC, and some of them are possibly associated with 

cancer driver genes. Then we extensively focused on an un-

annotated lncRNA transcribed antisense to MET oncogene, named 

MET-AS. Both genes are significantly up-regulated in a sub-class of 

PTCs - i.e. patients with BRAF mutations and RET gene 

rearrangements, compared to other PTCs and "non-tumor" thyroid 

biopsies. Preliminary data indicate that MET-AS knockdown induces 

down-regulation of MET, and produces changes in cell cycle in a 

PTC cell line, suggesting the novel lncRNA might be a new MET 

regulator. Further studies should be conducted to demonstrate 

detailed mechanism of our findings. 

Finally, our data confirmed the genetic heterogeneity of papillary 

thyroid carcinoma revealing that gene expression correlates more 

with the mutation pattern than with tumor staging. Overall, this study 

provides new information about PTC genetic alterations, suggesting 

potential pharmacological adjuvant therapies in PTC.  
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Abstract (Italiano) 
 

Il carcinoma papillare tiroideo (PTC) costituisce circa l’80% di tutti i tumori 

maligni della tiroide. Ad oggi, sono state identificate mutazioni a carico del 

gene BRAF in circa il 40% di casi, mentre riarrangiamenti che coinvolgono il 

gene RET (RET/PTC) sono presenti in circa il 20% dei casi. Infine, mutazioni 

nei geni RAS e riarrangiamenti dei geni TRK e PPARG occorrono in circa il 

5% dei casi ciascuno.  

Tuttavia, nonostante la presenza di alterazioni genetiche che possano dare 

inizio al processo canceroso, il tumore è il risultato del progressivo accumulo 

di mutazioni in geni che conferiscono un vantaggio di crescita sulle cellule 

circostanti. Pertanto, una conoscenza più approfondita delle alterazioni 

molecolari del carcinoma papillare tiroideo è fondamentale per migliorare gli 

aspetti diagnostici e prognostici, e la risposta individuale ai trattamenti 

farmacologici. 

Alla luce di ciò, il mio progetto di dottorato ha avuto come obiettivo principale 

l’analisi del trascrittoma del PTC al fine di individuare nuovi eventi molecolari 

che possano essere coinvolti in questo tipo di cancro. 

La prima parte di questo progetto è stata focalizzata sul sequenziamento - 

mediante RNA-Seq – di 22 RNA isolati da biopsie di tiroide (18 tiroidi di 

soggetti con carcinoma papillare tiroideo, 4 tiroidi di soggetti in assenza di 

PTC) per identificare nuovi trascritti di fusione e mutazioni somatiche in geni 

espressi. I risultati sono stati validati sul DNA dei medesimi pazienti mediante 

sequenziamento diretto di Sanger. Inoltre, l’analisi mutazionale è stata estesa 

ad ulteriori 50 pazienti con carcinoma papillare tiroideo e 30 individui in 

assenza di PTC. Mediante quest’approccio sono state identificate nuove 

mutazioni puntiformi nei geni CBL, NOTCH1, PIK3R4 e SMARCA4. Inoltre, 

l’analisi ha rivelato la presenza di mutazioni somatiche nei geni DICER1, MET 

e VHL, già note nella patogenesi in altri tipi di cancro, ma ad oggi non note nel 

PTC. Inoltre, è stato individuato un nuovo evento intra-cromosomico generato 

dalla fusione tra il primo esone del gene WNK1  (lysine deficient protein 
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kinase 1) e il secondo esone del gene B4GALNT3 (beta-1,4-N-acetyl-

galactosaminyl transferase 3). 

I geni codificanti rivestono un ruolo di primo piano nella genetica del cancro, 

ma negli ultimi anni, molti studi si sono concentrati su una nuova classe di 

RNA non-codificanti, i long non-coding RNA (lncRNAs), che regolano 

l’espressione dei geni codificanti. I livelli di espressione dei lncRNA sono 

spesso alterati in diversi tipi di tumori, suggerendo che essi possano agire sia 

da oncogeni sia da oncosoppressori. Al fine di valutare il loro potenziale ruolo 

nella tumorigenesi del PTC, la seconda parte di questo progetto è stata 

focalizzata sull’analisi computazionale dei nuovi lncRNA, e già annotati, nei 

dataset da me ottenuti mediante RNA-Seq. Attraverso l’utilizzo di approcci per 

la ricostruzione ab initio del trascrittoma e di una pipeline computazionale 

sono stati indentificati i lncRNA significativamente deregolati nei campioni 

tumorali. Inoltre, per individuare i lncRNA che potessero regolare 

l’espressione genica in cis, alcuni di essi sono stati associati - per vicinanza al 

TSS (transcription start site) - a geni driver in diversi tipi di cancro.  Infine, mi 

sono focalizzata su un lncRNA non annotato nei database pubblici, associato 

all’oncogene MET, e trascritto in direzione antisenso rispetto al gene MET. 

Questo nuovo lncRNA è stato chiamato MET-AS. Entrambi i geni (MET e 

MET-AS) sono significativamente sovra-espressi in una sotto-classe di PTC - 

vale a dire i pazienti con mutazioni del gene BRAF e riarrangiamenti 

dell’oncogene RET – chiamati BRAF-like-, rispetto ai campioni tumorali PTC, 

con profilo trascrizionale simile ai campioni mutati nei geni RAS – chiamati 

RAS-like - e campioni di tiroide "non-tumorali". Esperimenti preliminari 

condotti in vitro in una linea cellulare di carcinoma papillare tiroideo, TPC-1, 

indicano che il silenziamento del lncRNA MET-AS induce una sotto-

regolazione dell’oncogene MET, che induce un blocco del ciclo cellulare in 

fase G1. Ciò potrebbe suggerire che MET-AS sia un nuovo regolatore 

dell’oncogene MET. 

In conclusione, i risultati ottenuti in questo lavoro di tesi confermano 

l'eterogeneità genetica del carcinoma papillare della tiroide rivelando che 

l'espressione genica correla più con il profilo mutazionale dei pazienti che con 
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la stadiazione del tumore. Inoltre, questo studio fornisce nuove informazioni 

sulle alterazioni genetiche del PTC, suggerendo potenziali terapie adiuvanti 

farmacologiche per questo tipo di cancro. 
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1.1 Cancer Genetics  
Cancer arises as a result of deregulated cell growth. Essentially, the gradual 

accumulation of mutations in genes that regulate crucial cell processes, like 

cell cycle or DNA repair, is one of the proposed mechanisms accounting for 

the increased proliferation rate, which is a typical feature of cancer cells. The 

acquired genetic alterations are then transmitted to the next generation of 

cells, which can accumulate also other genetic alterations. Indeed, the vast 

majority of genetic alterations are acquired somatically.  

In 1914, Boveri proposed firstly the hypothesis that cancer can arise from 

somatic alterations in DNA. He noted abnormal mitotic division and cell 

masses, very similar to tumors, in eggs of sea urchin fertilized by two sperms 

(Boveri, 1914). In the last 30 years significant experiments supporting this 

thesis have been performed in different fields, from molecular biology to 

epidemiology. Today, we know that the onset and the expansion of a 

malignant cell population result from multiple (perhaps five, ten or more) 

genetic alterations that occur in the transition of a cell from a normal to 

malignant phenotype. Such alterations, that in proof-of-principle can be both 

somatic or germline, can occur in three major classes of genes, i.e. 

oncogenes, tumor suppressor genes and DNA damage recognition/repair 

genes, which play key roles in tumorigenesis.  

 

1.1.1 Proto-oncogenes and oncogenes 
Proto-oncogenes are genes that drive normal cells to become cancerous 

when they are mutated (Adamson, 1987; Weinstein & Joe, 2006). Oncogenes 

are the mutated version of proto-oncogenes that typically carry dominant 

mutations, i.e. mutations affecting only one allele of the gene can be sufficient 

to activate the gene and trigger the neoplastic program. A broad spectrum of 

genes can be defined as proto-oncogenes even though most of them encode 

proteins involved in stimulation of cell division, inhibition of cell differentiation, 

and are responsible of halting cell death and apoptosis. All of these processes 

are crucial for normal tissues and organs development and maintenance. The 

oncogenes' activation involves a quantitative or qualitative gain of function. It 
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can result from different genetic mechanisms, which can be schematized as 

follows: i) point mutations, deletions, or insertions that lead to a hyperactive 

gene product; ii) point mutations, deletions, or insertions in the promoter 

region of a proto-oncogene that lead to increased transcription; iii) gene 

amplifications that lead to extra chromosomal copies of a proto-oncogene; iv) 

chromosomal translocations that relocate a proto-oncogene to a new 

chromosomal site, possibly leading to a higher expression of the transposed 

gene; v) chromosomal translocations that lead to a fusion between a proto-

oncogene and another gene, with the result of producing a chimeric protein 

with an oncogenic activity. 

Activated oncogenes typically give rise to increased protein translation and/or 

activation, with a significant alteration of cellular processes such as increased 

cell division, decreased cell differentiation, and inhibition of cell death and 

apoptosis. All of these phenotypes are hallmarks of the cancer cells. Thus, 

oncogenes are currently a major molecular target for anti-cancer drug design 

(Chial, 2008). 

Among the most extensively studied proto-oncogenes, RAS and RAF, which 

encod proteins involved in intracellular signalling, are frequently mutated in 

human malignancies, like melanoma or thyroid cancer (Bos 1989; Davies 

2002). Mutations in these genes determine an increased activation of their 

protein products with the resulting over-stimulation of the mitogen-activated 

protein kinase (MAPK) pathway. Other frequent events are the germline 

mutations in RET proto-oncogenes in familiar medullary thyroid carcinoma 

(Eng 1999) and in MET gene, often mutated in papillary renal carcinoma.  

 

1.1.2 Tumor suppressor genes 
In 1988, Harris hypothesized that − in addition to oncogene activation − the 

loss of genetic material is a crucial event in tumorigenesis (Harris 1988). 

Tumor suppressor genes can be defined as genes encoding proteins that 

inhibit cell proliferation, or that act as the “brakes” for cell cycle. Other tumor 

suppressor genes encode proteins that promote the apoptosis or that are 

involved in cell differentiation. A tumor suppressor gene contributes to cancer 
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when both alleles are inactivated by a mutation. Indeed, as long as the cell 

contains one functional copy of a given tumor suppressor gene, it can inhibit 

the formation of tumors. Therefore, mutations in tumor suppressor genes are 

recessive or loss-of-function mutations, and they are often point mutations or 

small deletions that disrupt the function of the protein encoded by the gene. 

The requirement of two mutations to promote tumorigenesis was proposed by 

Dr. Alfred Knudson in 1971 during his studies on retinoblastoma. Knudson 

proposed that sporadic cases of this tumor require the inactivation of both 

copies of a particular gene, the retinoblastoma gene (RB1). He formulated the 

“two-hit theory”: a “first hit” inactivates one of the two copies of RB1. Later a 

“second hit” inactivates the remaining functional copy of RB1 in the same cell 

or one of its progeny (Knudson 1971). However, in the hereditary forms of 

cancer the first mutation is inherited from parents, thus only one somatic “hit” 

is necessary for tumor initiation.  

 

1.1.3 DNA repair 
DNA mutations are caused by copying errors during DNA replication, chemical 

and physical agents and can compromise DNA function. To protect the 

genome, mammalian cells employ at least eight distinct DNA repair pathways 

to cope with a multitude of different genotoxic lesions (Dietlein et al., 2014). In 

this network of genome maintenance pathways, the two major repair system 

consists of mismatch repair (MMR), and nucleotide-excision repair (NER). 

MMR recognizes erroneous insertions, deletions, and erroneous bases 

incorporations of bases. The MutSα (formed by Msh2/Msh6), and MutSβ 

(formed by Msh2/Msh3) complexes detect small mismatches and large 

mismatches and insertion loops, respectively (Kunkel and Erie 2005). The 

MutLα complex (formed by MLH1 and PMS2) binds MutS and recruits the 

exonuclease Exo1; subsequently DNA Polδ fills the lesion gap. NER is 

mainly responsible for repairing single or double strand breaks and helix-

distorting lesions, which are induced by UV irradiation and platinum-based 

chemotherapeutics. Cells with defects in MMR encoding genes have a 



	   13	  

mutation rate 100-1000 fold higher than normal cells. Moreover, these MMR-

defective cells display microsatellite instability. Microsatellites are repetitive 

genetic elements dispersed in the genome, with repeating units of 1-4 bases. 

Because of the repetitive nature of microsatellites they are prone to DNA 

polymerase slippage, which is efficiently repaired by the MMR. Defects in 

MMR result in increasing length and number of microsatellites, which have 

been observed in different types of cancer (Lengauer 1998). The important 

function of NER to protect against skin cancer becomes obvious by the rare 

genetic disease Xeroderma Pigmentosum, in which different NER genes are 

mutated. In animal models, it has been demonstrated that UVB is more 

effective to induce skin cancer than UVA when this repair system is mutated 

(Rass and Reichrath, 2008). 

 

1.1.4 Cell cycle 
Cellular life span is highly variable between different cell types. At a given time 

the absolute majority of cells are not dividing, but exists in a resting and 

metabolic active state called G0. A cell enters in the cell cycle, duplicating its 

DNA and dividing itself, in response to external or internal stimuli. This 

process is supervised by checkpoint controls, which act to ensure that 

identical chromosome copies are transferred to the two daughter cells. 

The cell cycle is divided into two basic parts: mitosis and interphase (Figure 

1.1 B). Mitosis (nuclear division), or M phase, is the most dramatic stage of 

the cell cycle, corresponding to the separation of daughter chromosomes and 

usually ending with cell division (cytokinesis). However, approximately 95% of 

the cell cycle is spent in interphase, the period between mitoses. The M phase 

is followed by the G1 phase (gap 1), which corresponds to the interval 

between mitosis and initiation of DNA replication, which takes place in S 

phase (synthesis). This phase is followed by the G2 phase (gap 2), during 

which cell growth continues and proteins are synthesized in preparation for 

mitosis. 

The progression of cells through the division cycle is regulated by extracellular 

signals from the environment, as well as by internal signals that monitor and 
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coordinate the various processes that take place during different cell cycle 

phases (Figure 1.1 A). In addition, cell cycles have different checkpoints, 

which ensure the correct coordination of all phases. Indeed, it is critically 

important that the cell does not begin mitosis until replication of the genome 

has been completed. Progression through the cell cycle is also arrested at the 

G1 and G2 checkpoint in response to DNA damage. This arrest allows time 

for the damage to be repaired, rather than being passed on to daughter cells. 

In mammalian cells, arrest at the G1 checkpoint is mediated by the action of 

p53 protein. Interestingly, the gene encoding p53 is frequently mutated in 

human cancers. Loss of p53 function as a result of these mutations prevents 

G1 arrest in response to DNA damage, so the damaged DNA is replicated and 

passed on to daughter cells instead of being repaired. 

 

 
Figure 1.1. A) Gene products and pathways involved in induction of S phase from G1 phase. 

B) Schematic illustration of cell cycle. 

 

A 

B 
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1.1.5 Mutation timing and driver genes 
Tumors evolve from benign to malignant lesions by acquiring different 

mutations over time, a process that has been particularly well studied in 

colorectal tumors (Nowell, 1976; Fearon and Vogelstein, 1990). The first, or 

“gatekeeping,” mutation provides a selective growth advantage to a normal 

epithelial cell (Vogelstein et al., 2013). When a second mutation in another 

gene that can promote or “drive” tumorigenesis occurs, it causes a second 

round of clonal growth that allows an expansion of cell number (Figure 1.2). 

The mutations that confer a selective growth advantage to the tumor cell are 

called “driver” mutations. All the mutations that have no effect on the 

neoplastic process are called “passenger” mutations (Vogelstein et al., 2013). 

It has been estimated that a typical tumor contains two to eight of these 

“driver" gene mutations; the remaining mutations are passengers. Moreover, it 

is important to point out that there is a fundamental difference between a 

driver gene and a driver gene mutation. A driver gene is a gene that contains 

driver mutations (also defined as Mut-Driver gene) or is aberrantly expressed 

conferring a selective growth advantage to cells (Epi-Driver gene, Vogelstein 

et al., 2013).  

For instance, BRAF is a well-known driver gene, but only mutations that result 

in increased kinase activity of the protein are considered driver mutations. An 

example is constituted by the V600E mutation that results in a valine (V) to a 

glutamic acid (E) substitution at position 600 in BRAF. Other missense 

mutations throughout the gene, as well as protein-truncating mutations in the 

C-terminal domain, are passenger gene mutations. 

Numerous statistical methods to identify driver genes have been published. 

Some of them are based on the predicted effects of the mutation on the 

encoded protein (Carter et al., 2009; A. Youn et al., 2011; J. S. Kaminker et al, 

2007). Other methods are based on other frequency of mutations in an 

individual gene in a specific tumor, compared with the mutation frequency of 

other genes, occurred by chance, in the same or related tumors after 

correction for sequence context and gene size (Parmigiani et al., 2009; M. 
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Meyerson et al., 2010). All of these algorithms useful for genes' prioritization 

are most likely to confer a growth advantage when mutated.  

 
Figure 1.2. Multistep progression toward cancer. A normal cell (N) acquires one mutation (I), 

which provides the cell a growth advantage. It constitutes a substrate for accumulation of 

additional mutations resulting in cell clones with increased proliferative capacity (II-IV). 

 

1.1.6 Signaling pathways in tumors 
All of the known driver genes can be classified into one or more of 12 

pathways (Figure 1.3). These pathways can be categorized into three main 

cellular processes: cell fate, genome maintenance and cell survival. Cell fate: 

is regulated by the inverse relationship between cell division and 

differentiation. Pathways that function through this process include, Hedgehog 

(HH) pathway, APC and NOTCH signaling, all of which are known to control 

cell fate. Genes involved in chromatin modifications can also be included in 

this category. Cell survival pathways are shown as regulators of cell 

metabolism and cell survival, but examples are also provided where aberrant 

activity of the pathway may contribute to the induction of apoptosis. MYC, 

BCL2 RAS and BRAF are driver genes that directly regulate progression 

through the cell cycle and apoptosis. 

Genome maintenance: cells are frequently exposed to a variety of toxic 

substances, such as reactive oxygen species, o radiations. These events 

cause mistakes in DNA replication process or during division. Tumor cells with 

mutations in DNA damage control pathway, such as mutations that abrogate 

checkpoints genes – for instance TP53 and ATM -, have a selective growth 

advantage compared to cells without these mutations.  
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Figure 1.3. Cancer cell signalling pathways and the cellular processes they regulate. All of the 

driver genes can be classified into one or more of 12 pathways (middle ring) that confer a 

selective growth advantage (inner circle). These pathways can themselves be further 

organized into three core cellular processes (outer ring). Figure from Vogelstein et al., 2013 

 

1.2 Thyroid Carcinoma 
 
The thyroid is an endocrine gland located in the anterior region of the neck. It 

consists of two lobes connected with the isthmus. In a healthy adult the thyroid 

gland weights about 15-35 g, but it can considerably increase in size and 

weight in pathological conditions. The thyroid gland, which is the largest 

endocrine organ in humans, regulates systemic metabolism through thyroid 

hormones, with an important physiological role in skeletal development and 

brain, as well as in regulating the body's metabolism and the development of 

skin, subcutaneous tissue and organs. 

It is composed of two distinct hormone-producing cell types, follicular and 

parafollicular C cells. Follicular cells comprise most of the epithelium and are 

responsible for iodine uptake and thyroid hormone synthesis, triiodothyronine 

(T3) and thyroxine (T4). The synthesis requires enzymatic activity provided by 

thyroxine peroxidase (TPO). The hormones are directly secreted in blood 

vessels bound to the thyroglobulin protein (Tg). T3 is the biologically active 

hormone and T4 can be converted to T3.  C cells are scattered intrafollicular 
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or parafollicular cells that are dedicated to the production of calcitonin, the 

calcium-regulating hormone.  

The activity of thyroid gland is mainly regulated by the secretion of thyroid 

stimulating hormone (TSH) from the pituitary gland, which is regulated by the 

thyrotropin-releasing hormone (TRH) from the hypothalamus (Figure 1.4). 

TSH stimulates growth of follicular epithelium and the synthesis of thyroid 

hormones. In turn, thyroid hormones exert negative feedback control on the 

hypothalamus as well as on the anterior pituitary, thus controlling the release 

of both TRH from hypothalamus and TSH from anterior pituitary gland 

(Dietrich JW et al. 2012). This control mechanism is compromised in 

pathological conditions such as the presence of thyroid carcinoma. 

Thyroid cancer is the most common malignancy of the endocrine system and 

accounts for approximately 1% of all newly diagnosed cancer cases 

(Carlomagno e Santoro, 2011).  

In spite of thyroid carcinoma being an uncommon type of tumor, over the past 

decades, increasing attention has been focused on this malignancy. In 1986, 

after the Chernobyl nuclear accident, the incidence of thyroid cancer 

dramatically increased among children who lived in the regions contaminated 

with radioactive isotopes. This attracted the attention of medical experts, 

resulting in increased awareness of the disease. Moreover, the thyroid covers 

a broad spectrum of malignancies, ranging from well-differentiated carcinomas 

to undifferentiated tumors, thus, thyroid tumors provide an ideal model for 

studying tumorigenesis in epithelial tissue. 

According to the National Cancer Institute, the rate of increase in the 

incidence of thyroid cancer among women in the United States is more rapid 

than for all other types of tumors. In the last 30 years it has tripled, and for 

reasons not yet well understood it is about 3-4 times more common in women 

than men (Brown et al., 2011). Indeed, this neoplasia is becoming the seventh 

most common tumor in women (Pillai et al., 2015).  

Approximately 95% of thyroid cancers arise from follicular cells - which is the 

most common endocrine malignancy - and it can be distinguished in papillary 

carcinoma (PTC), follicular carcinoma (FTC), poorly differentiated thyroid 
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carcinoma, and anaplastic thyroid carcinoma (ATC). Papillary carcinoma is the 

most common type of thyroid malignancy, comprising about 80–90% of all 

carcinomas (Ries et al., 2007; Davies et al., 2006). 

FTC represents about 15% of thyroid cancers and is very common in 

geographic regions where the addition of iodine in the diet is inadequate. The 

tumor is characterized by the presence of follicular structures well defined; the 

lesion appears surrounded by a capsule but the cells are often able to invade 

and metastasize through the blood into districts furthest such as bones and 

lungs (D’Avanzo et al., 2004). Mutations in RAS genes are very frequent in this 

cancer, however, in 30% of cases, rearrangements involving the gene PPARγ 

have been found (Kroll et al., 2000). 

ATC constitutes about ~ 2% of cases and is very aggressive. The prognosis is 

often unfavorable and death occurs after 6 months from diagnosis. This tumor 

is typically made up of spindle cells mixed in giant cells cancer cells, which 

have lost partially or fully differentiated phenotype. In more than 50% of the 

cases were detected mutations in the gene encoding the p53 protein, which 

plays a crucial role in regulating the cell cycle, DNA repair and apoptosis 

(Taccaliti and Boscaro, 2009). 

The remaining 5% of the cases is represented by medullary thyroid carcinoma 

(MTC), which is a neoplasm arising from the calcitonin-producing C thyroid 

cells derived from neural crest (Mears L and Diaz-Cano, 2003; Skinner et al., 

2005). In the majority of cases (~ 75%), this cancer occurs as a sporadic 

tumor, whereas the remaining ones are part of familial disorders (Kloos et al. 

2009). The hereditary forms are caused by a mutation in the "rearranged 

during transfection" (RET) gene, of which familial MTC (FMTC), MEN2A and 

MEN2B variants are discerned. Hereditary forms are transmitted with an 

autosomal rate in patients with an autosomal dominant pattern with high 

penetrance (>90%; Weels Jr 2000). 
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Figure 1.4. Hypothalamic-Pituitary-Thyroid Axis. Solid lines correspond to stimulatory effects, 

and dotted lines depict inhibitory effects. Conversion of T4 to T3 in the pituitary and the 

hypothalamus is mediated by 5′-deiodinase type II. This event also is important throughout 

the central nervous system, thyroid, and muscle. 5′-Deiodinase type I (propylthiouracil-

sensitive) plays a major role in liver, kidney, and thyroid function. TRH, Thyrotropin-releasing 

hormone; TSH, Thyroid-stimulating hormone. 

 

1.2.1 Papillary Thyroid Carcinoma 
	  
Papillary thyroid carcinoma is the most common malignant tumour of thyroid 

gland in countries having iodine-sufficient or iodine-excess diets, and 

comprises about 80–85% of thyroid malignancies. PTCs tend to be 

biologically indolent and have an excellent prognosis (survival rates of 95% at 

25 years). Papillary carcinoma can occur at any age and rarely has been 

diagnosed as a congenital. Most tumors are diagnosed in patients in the third 

to fifth decades of life. Women are affected more frequently than men in ratios 

of 2:1 to 4:1 (Mazzaferri et al., 2002). 

The gross appearance of papillary thyroid cancer is quite variable. The lesions 

may appear anywhere within the gland. By definition, typical papillary 

carcinomas often average 2–3 cm, although lesions may be quite large. The 

lesions are solid and usually white in color with an invasive appearance. 

Lesional calcification is a common feature. In addition, cyst formation may be 
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observed. Indeed, some lesions may be rarely almost completely cystic 

making diagnosis difficult (Rosai et al., 1992; Carcangui et al., 1985). 

Microscopically, papillary carcinomas share common features. The neoplastic 

papillae contain a central core of fibro-vascular (occasionally just fibrous) 

tissue lined by one or occasionally several layers of cells with crowded oval 

nuclei (LiVolsi et al., 2011; Hawk W and Hazard J; 1976). 

Papillary thyroid tumors will be composed mostly of papillary areas (Figure 

1.5), but a large number will also contain follicular areas. The tumor cells are 

usually cuboidal or columnar. About the 80% of such lesions contain clear 

nuclei, in the 80–85% are seen intranuclear inclusions, whereas, nuclear 

grooves are seen in almost all the cases (Baloch et al., 2008; Scopa et al., 

1993; Deligeorgi-Politi H, 1987).  

Moreover, psammoma bodies, formed by calcium deposits, are found in about 

40-50% of cases, which within the cores of papillae, in the tumor stroma, or in 

lymphatic vessels, but not within the neoplastic follicles (LiVolsi, 2011). The 

evidence of psammoma bodies in a cervical lymph node is indicative of a 

papillary carcinoma in the thyroid. Psammoma bodies are rare in benign 

thyroid (only 1% of psammoma bodies are in benign glands). 

The primary tumor can invade lymphatic vessels leading to multifocal lesions 

and to regional node metastases. Whether the lymphatic invasion itself 

causes metastases in distinct foci within the thyroid or whether these foci 

represent independent clonal proliferations is still debated. On the other hand, 

venous invasion is rare; indeed, metastases outside the neck are unusual, 

occurring only in 5–7% of cases, predominately in lung and bones (LiVolsi et 

al., 2011). Despite the presence of multiple metastases, in ordinary papillary 

carcinoma, death is uncommon. 



	   22	  

 
Figure 1.5. Microscopic appearance of a papillary carcinoma of the thyroid. The fronds of 

tissue have thin fibrovascular cores. The fronds have an overall papillary pattern. 

 

 

1.2.2 Molecular genetics alteration in Papillary Thyroid Carcinoma 
	  

During the past decade there has been an increasing number of publications 

about genetic alteration in thyroid tumors (Xing 2013). More than 70% of 

PTCs carry mutations in two genes coding for Mitogen-Activated Protein 

Kinase (MAPK) signaling pathway effectors - a serine-threonine kinase, BRAF 

and a GTP-binding protein, RAS – and rearrangements in two tyrosine 

kinases receptors – RET and NTRK1 (also known as TRKA), which play a role 

in the regulation of growth, differentiation and programmed cell death of 

neurons in the peripheral and the central nervous system (Teng and 

Hempstead, 2004). These alterations are mutually exclusive in PTCs patients, 

suggesting that the alteration, leading to the constitutive activation, in one of 

these genes is sufficient for cell transformation and hyper-activation of MAPK 

pathway and is essential for papillary tumor initiation (Santoro and 

Carlomagno, 2013; Kimura et al., 2003; Soares et al., 2003; Frattini et al., 

2004).  

BRAF gene 
BRAF gene, located on the long arm of chromosome 7, encodes a 

serine/threonine protein kinase involved in the epidermal growth factor 

receptor (EGFR)-mediated MAPK pathway, where it is activated by RAS small 

GTPase (Lavoie H and Therrien M, 2015). Moreover, BRAF can affect other 
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key cellular processes, such as cell migration (through RHO small GTPases), 

apoptosis (through the regulation of BCL-2), and survival (through the HIPPO 

pathway; Matallanas D et al., 2011). Thus, it is not a surprise that BRAF is 

constitutively activated by mutation in 15% of all human known cancer types. 

Several mutations, affecting different regions of the protein, have been 

identified. However, despite more than 40 mutations have been so far 

identified in BRAF gene, the vast majority (up to 80%) of mutated BRAF-

related tumors carry the 1799T>A (Davies et al., 2002). This mutation 

frequently occurs in thyroid cancer (Xing 2005) and causes V600E (valine with 

glutamic acid) amino acid change in the BRAF protein, resulting in the 

constitutive BRAF kinase activation, with a high oncogenic ability (Davies et 

al., 2002; Dhomen et al., 2007; Fukushima et al., 2003; Wan et al., 2004). 

BRAF V600E mutation can both initiate tumorigenesis in normal thyroid 

follicular cells and maintain and promote thyroid cancer progression (Nucera 

et al., 2009). 

RAS gene 
RAS genes encode proteins involved in key intracellular signal transducers 

that can activate several downstream pathways, RAF-MEK-ERK and PIK3K 

pathway (Peyssonnaux C and Eychene, 2001). Mutations in RAS genes – 

NRAS, HRAS, and KRAS – usually occur in codons 12, 13 or 61 of any of the 

three genes. These alterations - common in FTA and FTC and less frequent, 

in PTC (Bos, 1989) - produce constitutively active RAS proteins. The 

mutations associated to PTC predominantly involve codons 61 of NRAS and, 

to a less extent, of HRAS (Vasko et al., 2003; Zhu et al., 2003; Di Cristofaro et 

al., 2006) 

RET/PTC rearrangements 
The rearrangements of RET involve its fusion to heterologous genes 

(Nikiforov, 2002) and result in constitutive activation of tyrosine kinase domain 

leading to the formation of tumorigenic chimeric proteins.  

The RET proto-oncogene is localized on chromosome 10q11.2 and is 

composed of 21 exons spanning a region of 55,000 bp. It encodes a single-

pass trans-membrane tyrosine kinase receptor (Takahashi, 1988). It is 
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constituted by three functional domains: an extracellular ligand binding 

domain, a hydrophobic transmembrane domain, composed of 22 amino acids, 

among which S649 and S653 mediate self-association and dimerization of 

RET, and an intracellular tyrosine kinase (TK) domain. RET has several 

autophosphorylation sites (Kawamoto et al. 2004). RET tyrosine 1062 (Y1062) 

is a multidocking site for signalling molecules, which, in turn, contribute to the 

activation of RAS-MAPK and PI3K (phosphatidyl inositol 3 kinase)-

AKTpathways. These signalling cascades is involved in cell survival, 

proliferation, and motility (Alberti et al. 1998; Murakami et al. 1999; Segouffin-

Cariou and Billaud 2000; Melillo et al. 2001). 

The ligands of RET receptor are neurotrophic growth factors belonging to the 

glial cell line-derived neurotrophic factor family (GNDF) (Sugg et al., 1998). 

GNDF binding causes receptor dimerization, autophosphorylation of Y1062, 

and activation of the signalling cascade.  

In the thyroid gland the RET gene is expressed at high levels only in the 

parafollicular cells, but not in the follicular cells in which it can be activated by 

the fusion of the 3’ portion of the RET gene (from exon 12 to the 30-end) to 

the 5’ portion and to the promoter sequence of to various heterologous genes 

(Grieco et al. 1990; Nikiforov and Nikiforova 2011). Such chromosomal 

aberrations result in chimeric oncogenes, known as RET/PTC. To date, at 

least 11 different RET/PTC fusions have been reported. Common RET/PTC 

rearrangements (90% of the cases) are RET/PTC1 and RET/PTC3, involving 

RET and CCDC6 or NCOA4 genes (both localized in chromosome 10), 

respectively (Santoro and Carlomagno, 2013). 

RET/PTC1, RET/PTC3 are generated through a paracentric inversion of the 

long arm of chromosome 10 (Grieco et al. 1990; Santoro et al. 1994). Other 

RET/PTC variants are either rare (RET/PTC2) or identified only in single 

cases of radiation-induced PTC, and are generated by translocations between 

different chromosomes (Figure 1.6). 
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Figure 1.6. Schematic representation of RET/PTC oncoproteins. On the top, wild-type RET protein is 

illustrated. For each RET/PTC rearrangement, the name of the fusion partner is indicated on the left and 

the corresponding chromosomal alteration is indicated on the right. The fusion points are indicated by 

arrowheads. The length in amino acids of the partner protein portion is also indicated. Boxes in red 

indicate dimerization (coiled-coil) domains. SP, Signal peptide; TM, transmembrane domain; TK, 

tyrosine kinase domain. 
 
RET/PTC fusions are tumorigenic in follicular cells; indeed, they transform 

thyroid cells in culture (Santoro et al., 1993) and give rise to thyroid 

carcinomas in transgenic mice (Santoro et al., 1996).  

RET/PTC is found in 20–40% of adult sporadic papillary carcinomas, but the 

percentages are even higher among children affected by papillary carcinomas 

after the Chernobyl nuclear accident (about 80% of tumors). 

PAX8/PPARG and NTRK1 rearrangements 
Oncogenic rearrangements of PPARG and NTRK1 genes are also found in 

PTC. PPARG, localized on chromosome 3, encodes a member of the 

peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear 

receptors. Translocations involving the DNA-binding domains of the 

transcription factor PAX8 (2q13) and the A-to-F domains of the peroxisome 
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proliferator-activated receptor γ (PPARG1) were found by Kroll and co-

workers in FTC (Kroll et al., 2000). This event causes the loss of proper PAX8 

and PPARG transcriptional function in the rearranged PAX8/PPARG fusion, 

that can act as dominant-negative (Kroll et al., 2000).  

PAX8/PPARG fusions were detected in FTC but not in FTA, PTC, or 

multinodular hyperplasias, but recently they have been also described in 

relatively high percentage of cases of the follicular variant of PTC (37.5%, 

Castro et al., 2006). 

The NTRK1 gene, localized in chromosome 1, codes for nerve growth factor 

(NGF) receptor, and its activation has been linked to the activation of the RAF-

MEK-ERK pathway (Miller and Kaplan, 2001). NTRK1 rearrangements are 

rare, usually found in less than 10% of cases of sporadic PTC (Musholt et al., 

2000; Kuo et al., 2000). The most common fusion type was between exon 4 of 

ETV6 gene and exon 14 of NTRK3, significantly more common in tumors 

associated with exposure to (131) I from the Chernobyl accident (Leeman-

Neill RJ et al, 2013). The rearrangement results in a fusion protein constituted 

by of SAM domain of ETV6 and the tyrosine kinase domain of NTRK3, which 

lead to a constitutively active tyrosine kinase (Lannon and Sorensen, 2005). 

1.3 RNA-Sequencing 
	  
Ten years ago, the idea that all of the genes altered in cancer could be 

identified at base-pair resolution would have seemed like science fiction. 

Today, such genome-wide analysis, through exome, whole genome, or 

transcriptome sequencing is ordinary.  

The introduction of Next-Generation Sequencing (NGS) technologies has 

significantly impacted cancer research (Costa et al., 2013; Hoadley et al., 

2014). 

High-throughput sequencing technologies are widely used in biomedical 

research. Indeed, NGS technologies overcame many of the limitations 

dictated by previous technologies, such as cross-hybridization background, 

signal saturation-induced and range limitation in array technology (Costa et 

al., 2013; Hoadley et al., 2014). Moreover, these high-throughput technologies 
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produce complex datasets at single nucleotide resolution and at reduced cost, 

offering the opportunity to investigate on a wide scale both genomics, 

epigenetics and transcriptional aspects of cells and tissues, in a deep and 

comprehensive manner. 

In May 2008, five articles introducing a new technique that has been upsetting 

microarray were published online on Science, Cell, Nature and Nature 

Methods. The method named RNA-Sequencing (RNA-Seq) provides higher 

resolution snapshot of the transcriptome than what was the standard before. 

RNA-Sequencing is perhaps one of the most complex next-generation 

applications. It consists in a set of experimental procedure that starting from 

entire RNA molecules generates cDNA sequences, followed by library 

construction and massively parallel deep sequencing. It allows in a single 

experiment to analyse expression levels, differential splicing, allele-specific 

expression, RNA editing and fusion transcripts for both coding and non coding 

RNAs in disease-related studies (Costa et al., 2010). 

Gene expression is known to be tissue-, cell-type-, time- and stimulus-

dependent, and many transcripts are only expressed under very specific 

conditions. RNA-Seq allows the quantification of abundance level of each 

transcript during defined developmental stages, under specific treatment or in 

physiological and/or pathological conditions (Costa et al., 2013). In contrast to 

microarray, it is not limited to the interrogation of selected probes on an array 

and can be also applied in species, for which the whole reference genome is 

not assembled yet. 

Moreover, RNA-Seq can also be exploratory. Recently, it was appreciated that 

85% of the human genome is transcribed and in contrast, only 2-3% of the 

genome encodes protein-coding genes (Hangauer et al., 2013), and a lot of 

other non-coding RNAs classes have been discovered. For instance, RNA-

Seq allowed the discovery of a novel class of long non coding RNAs, named 

“enhancer RNA”, a class of transcript directly transcribed from the enhancer 

region, involved in epigenetic gene regulation. In addition, RNA-Seq allows 

the analysis of transcriptional start sites (TSSs) revealing alternative promoter 

usage, and premature transcription termination at the 3’ of untranslated 
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regions (UTRs), which is critical from mRNA stability (Griffith M et al. 2010; 

Picardi et al., 2010; Wang 2008). 

More recently, RNA-Seq has been used to identify allele-specific expression, 

disease-associated single nucleotide polymorphisms (SNPs) and mutation, as 

well as gene fusions and alterations involved in cancer pathogenesis (Maher 

et al., 2009; Supper et al., 2013). 

This technology relies heavily on deep sequencing which means that every 

RNA molecule in the samples is sequenced hundreds or thousands of times 

(Meyerson, et al., 2010). In general, RNA population (total or fractionated, 

such as poly(A)+) is converted to a library of cDNA fragments with adaptors 

attached to one (single-end sequencing) or both ends (paired-end 

sequencing). Each molecule is then sequenced in a high-throughput manner 

to obtain short sequences typically ranging from 30 to 400 bp, depending on 

the DNA-Sequencing technology used. Various sequencing platforms are 

supported including Illumina, Life Sciences, Roche 454, Applied Biosystems 

and Helicos Biosciences. After sequencing, the resulting reads can be both 

aligned to a reference genome or reference transcriptome or assembled de 

novo if the genomic sequence in unknown (Wang et al., 2009). 

1.3.1 Illumina sequencing technology 
In the project described in this PhD thesis we have used Illumina technology 

for the sequencing of RNA samples. The single molecule amplification step for 

the Illumina starts with an Illumina-specific adapter library, takes place on the 

oligo-derivatized surface of a flow cell, and is performed by an automated 

device called a Cluster Station (Figure 1.7). Illumina sequencing is based on 

standard dideoxy method. cDNA fragments are immobilized on a surface of a 

flow cell to produce multiple DNA copies, or clusters, that each represent the 

single molecule that initiated the cluster amplification (Metzker et al., 2009). 

This system utilizes a sequencing-by-synthesis approach in which the flow cell 

channels receives a DNA polymerase cocktail with different fluorescently 

labelled nucleotides A, T, G and C. Different fluorescent molecules are 

attached to the four nucleobases that thus emit four different wavelengths. 

Specifically, the nucleotides carry a base-unique fluorescent label and the 3′
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-OH group is chemically blocked such that each incorporation is a unique 

event. The cycles of sequencing are regulated by this block so fluorescent 

signal can be read correctly. After each imaging step, the 3′blocking group is 

chemically removed to prepare each strand for the next incorporation. This 

series of steps continues for a specific number of cycles, as determined by 

user-defined instrument settings, which permits discrete read lengths of 25–35 

bases. A base-calling algorithm assigns sequences and associated quality 

values to each read and a quality-checking pipeline evaluates the Illumina 

data from each run (Metzker et al., 2008; Figure 1.7). 

 
Figure 1.7. Four-colour and one-colour cyclic reversible termination methods. A) The four-

colour cyclic reversible termination (CRT) method uses Illumina/Solexa’s 3′-O-azidomethyl 

reversible terminator chemistry using solid-phase-amplified template clusters. Following 

imaging, a cleavage step removes the fluorescent dyes and regenerates the 3′-OH group 

using the reducing agent tris(2-carboxyethyl)phosphine (TCEP). B) The four-colour images 

highlight the sequencing data from two clonally amplified templates. From Metzker, 2010. 
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1.3.2 RNA-Sequencing data analysis 
	  

The unprecedented level of data produced by NGS platforms requires a 

considerable effort in the development of new bioinformatics tools to deal with 

these massive data files since data analysis is very expensive in term of 

memory and computational time. The RNA-Seq data generation is an ever-

evolving process, which requires a parallel development in sequencing 

technologies, experiment designs, and computational algorithms. In light of 

this, bioinformatics tools with improved performances are emerging 

constantly.  

After image and signal processing the output of a RNA-Seq experiment 

consists of ten to thousand of millions of short reads (or raw reads). The raw 

reads are the starting material of the computational analysis that include 

quality assessment, reads mapping, gene quantification and differential gene 

expression – in a standard RNA-Seq analysis – and/or alternative splicing 

identification/quantification, variants' calling and gene fusion detection, 

depending on the experimental purpose.  

Quality assessment 
Since raw reads derive from a multiple-step process involving sample 

preparation, fragmentation, amplification, and sequencing, the quality 

assessment represents the first step of the bioinformatics workflow of RNA-

Seq. Often, it is necessary to filter data, trimming low-quality bases, adaptors, 

or overrepresented sequences to remove undesirable biases in the analysis.  

Reads mapping 
Once high-quality data are obtained from pre-processing, the next step 

consists of mapping the sequence reads to a reference genome (and/or to 

known annotated transcribed sequences) if available, or de novo assembling 

to produce a genome-scale transcriptional map. This procedure refers to the 

classic bioinformatics problem of obtaining the more accurate mapping 

possible in a speed- and memory-efficient manner. The introduction of 

algorithms that are based on transcriptome mapping before a genome 
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mapping step avoid erroneous mapping of the reads to pseudogenes, 

generally improving the overall alignment accuracy. 

Reads counting  
The number of RNA-Seq reads that map to a gene is a direct measure of the 

gene’s expression level. Such approach can both help in quantifying known 

elements (i.e., genes or already annotated exons) and/or in detecting new 

transcribed regions, defined as transcribed segments of DNA that are not yet 

annotated as exons in public databases (Costa et al., 2010). This step 

provides the expression of a given gene as the total number of reads mapping 

to the coordinates of each annotated element. After getting the read counts, 

data normalization is one of the most crucial steps in data processing, as it is 

essential to ensure accurate inference of gene expression. Reads counts can 

be normalized for the length of the transcribed element and the number of 

mapped reads for each sample. Marioni and colleagues proposed a 

quantitative normalized measure of gene expression, i.e. the Reads Per 

Kilobase per Million of mapped reads (RPKM), to compare both different 

genes within the same sample and the same gene across distinct biological 

conditions (Marioni et al., 2008). 

Differential expression analysis 
An important application of RNA-Seq is transcriptomes' comparison between 

pathological and physiological conditions, across different developmental 

stages, or between specific experimental stimuli. This type of analysis requires 

identification of genes and/or transcripts with different expression through the 

comparison of two or multiple samples (Costa et al., 2010). It is essential for 

interpreting the functional elements of the genome and uncovering the 

transcriptome complexity, providing important insights in the biological 

mechanisms of development and diseases. 

Detection of fusion genes  
Gene fusions have gained attention because of their relationship with cancer. 

Different tools have been developed to analyze fusion events in RNA-Seq 

data. 
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After the reads' mapping step, there will be a pool of unmapped short reads 

(i.e reads not mapping within an exon or to exon-exon junctions). These 

unmapped reads can be processed by specific algorithms to determine 

whether they match an exon-exon junction where the exons come from 

different genes. This would be evidence of a possible fusion event. 

Detection of nucleotide variants  
RNA-Seq data are generally used to study gene expression, or to perform 

novel gene/isoforms' identification and quantification. However, very recently 

RNA-Seq data have been also used for the identification of expressed 

mutations, especially in tumor samples. In this approach there are many 

limitations, such as the unbalanced coverage between different genes. Among 

many variants calling and annotation methods the best practical workflow to 

identify mutations from RNA-seq data has been provided by GATK although it 

is still far from perfect and under heavy development 

(http://gatkforums.broadinstitute.org/discussion/3891/calling-variants-in-

rnaseq). 

 

1.3.3 RNA-Seq in Papillary thyroid carcinoma 
In recent years, the introduction and the rapid development of new 

technologies for the sequencing of nucleic acids, has revolutionized the study 

of cancer genetics (Costa et al., 2010; Costa et al., 2013). In particular, RNA-

Seq has provided a tool to simultaneously investigate all genomic as well as 

transcriptome alterations occurring in the same cancer cells. 

These technologies have recently been used to study mutations in different 

types of cancers, in order to improve diagnostic and prognostic abilities, as 

well as the individual response to treatment. 

Recent NGS-based studies have explored the mutational landscape and gene 

expression profiles of PTCs. Smallridge and colleagues performed RNA-Seq 

to explore the transcriptome of BRAF- and not BRAF-mutated PTCs.  

Such analysis revealed different gene expression between the two groups of 

patients; they found that about 50 of differentially expressed genes were 

related to immune functions. Moreover, through NGS they also identified 4 
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fusion genes in PTC samples (i.e. CKLF3-CMTM4, ETV6-NTRK3, MKRN1-

BRAF and PPIP5K1-CATSPER2). Notably, CKLF3-CMTM4, ETV6-NTRK3, 

MKRN1-BRAF gene fusions have been found in three different not BRAF-

mutated PTC samples, indicating that these may potentially represent new 

driver events, although with a very rare occurrence (Smallridge et al., 2014). 

Similarly, Leeman-Neill and colleagues performed RNA-Seq to identify new 

chromosomal rearrangements in patients exposed to ionizing radiations. They 

found that ETV6-NTRK3, RET/PTC and PAX8-PPARγ rearrangements are 

significantly more common than point mutations in PTCs associated with 

exposure to 131I. 

Recently, the seminal work of The Cancer Genome Atlas (TCGA) Research 

Network has explored more than 400 PTCs (Cancer Genome Atlas Research 

Network 2014). In this study, the authors have described a comprehensive 

multiplatform analysis of the genetic landscape of PTC, performed by SNP 

arrays, exomes, RNA-Seq, miRNA-Seq, DNA methylation and targeted 

sequencing. One of the most significant advances was the identification of 

somatic mutations (single nucleotide variants, INDELSs and gene fusions) as 

potential new tumor-initiating events - i.e. the ‘‘dark matter’’ - in patients 

without any known driver lesion. In particular, the authors identified EIF1AX, 

PPM1D and CHEK2 as new driver genes in PTC, and also discovered TERT 

promoter mutations in a subset of aggressive and less-differentiated PTCs, 

strongly correlated to a high risk of recurrence. Gene and miRNA expression 

analysis also allowed defining clinically relevant subclasses potentially 

correlated to loss of differentiation and tumor progression (e.g. over-

expressed miR-21 in association with aggressive tall cell variant of PTC). 

 

1.4. Long Non coding RNAs 
Over the past decade, evidence from numerous high-throughput genomic 

platforms suggests that complexity of the organism is mainly due to the 

expansion of the non coding portions of the genome (Mattick, 2004). Indeed, 

the portion of the genome responsible for protein coding constitutes 

approximately 2%, while many noncoding regulatory elements are transcribed 



	   34	  

into non coding RNA (ncRNA). Non-coding RNAs are divided into two major 

classes based on their size: 1) small ncRNAs (sncRNAs, 20-30 nt) which are 

critical post-transcriptional regulators of target RNAs via RNA interference 

(RNAi), and/or able to modify other RNAs, including the widely-studied class 

of microRNAs (miRNAs), piwi-interacting RNAs (piRNAs) and small nucleolar 

RNAs (snoRNAs), and 2) the heterogeneous group of long ncRNAs 

(lncRNAs). 

With the term lncRNA we define a class of transcripts longer than 200 bp 

without the protein coding capacity (Derrien and Jhonson et al., 2012).  

These transcripts are characterized by relatively low levels of evolutionary 

conservation, fewer exons than protein coding genes in average, and high 

tissue-specificity (Guttman and Rinn, 2012; Kapranov et al., 2007; Clark and 

Mattik, 2011). On the other hand, they exhibit some similarities with protein 

coding transcripts; for instance, they are transcribed by RNA polymerase II 

and can be capped, polyadenylated and spliced. They can localize both in 

nucleus, acting mainly as epigenetic modulators, and in cytoplasm, where 

they can act as post-transcription regulators (Fatica and Bozzoni, 2014; Vance 

and Ponting, 2014).  

According to the GENCODE Consortium (Derrien and Jhonson et al., 2011), 

lncRNAs can be classified with respect to protein-coding genes in "antisense" 

(if they intersect protein-coding loci on the opposite strand), "lincRNA" (long 

intergenic non-coding RNA), "sense overlapping" (that overlap intron and exon 

of a coding gene on the same strand), "sense intronic" (within the intron of a 

coding gene on the same strand), "processed transcript" (without ORF and not 

classified in the other categories because of their complexity; Figure 1.8) 
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Figure 1.8. LncRNAs classification according to GENCODE catalogue (Derrien et al., 2011) 

 

While the nomenclature is still evolving, lncRNAs typically refers to 

polyadenylated lncRNAs that are transcribed by RNA polymerase II and 

associated with epigenetic signatures common to protein-coding genes, such 

as trimethylation of histone 3 lysine 4 (H3K4me3) at the transcriptional start 

sites (TSSs) and trimethylation of histone 3 lysine 36 (H3K36me3) throughout 

the gene body (Guttman et al., 2009).  

 

1.4.1 Functions and mechanisms of lncRNAs 
Like protein-coding genes, long ncRNAs cover a broad spectrum of functions. 

Compared with coding transcripts, lncRNAs are expressed at 10-fold lower 

levels on average, and their expression in different tissues and cell types has 

generally been found to be more cell type specific (Clark and Blackshaw, 

2014).  

Long ncRNAs are involved in transcriptional regulation of mRNA processing, 

which is reminiscent of miRNAs and may indicate a similar sequence-based 

mechanism to miRNA binding to seed sequences on target mRNAs. However, 

unlike miRNAs, long ncRNAs show a wide spectrum of biological contexts that 

demonstrate greater complexity to their functions.  

They can act as positive and negative modulators of gene expression 

(Numata and Kiyosawa, 2012; Su et al., 2012; Johnsson et al., 2013), 
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involved in different functions, such as X inactivation (Brown et al., 1992; Lee 

2009), imprinting, epigenetic regulation (Gupta et al., 2010; Tollervey et al., 

2012) and can affect any step within the biogenesis or the mobilization of 

target mRNA, including transcription, splicing, nuclear and cytoplasmic 

trafficking and translation (Chen and Carmichael, 2010). 

LncRNAs can impact genes localized on the same chromosome (cis-acting 

lncRNAs) or on other chromosomes (trans-acting lncRNAs); but their function 

is strictly related to their localization, in nucleus, where they can modulate 

gene expression at pre-transcriptional, co-transcriptional and post-

transcriptional level, or in cytosol, where they act at post-transcriptional level 

(Figure 1.9).  

 
Figure 1.9. LncRNAs have been found to act at every level of gene regulation: A) 

Pretranscriptional, as protein guides or acting as decoys holding proteins away from 

chromatin; B) Transcriptional, as modulators of transcription; C,D) Posttranscriptional, altering 

sense mRNA structure or cellular compartmental distribution either in the nucleus or the 

cytoplasm. LncRNAs are depicted in purple, with the interacting protein factors in green and 

light red. The mRNAs are shown as green lines and the base pair interactions highlighted by 

short purple lines. Also shown is the transcribing RNA polymerase II (RNA Pol II) on genomic 
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DNA (blue helix) and the translating ribosome (yellow) on the mRNA. Figure from Villegas and 

Zaphiropoulos, 2015. 

 

Epigenetic transcriptional regulation 
Studies about nuclear lncRNAs have mainly focused on their potential 

epigenetic regulation of target genes. Such a regulation typically results in 

gene transcriptional repression or activation. The first class of lncRNAs to be 

characterized has been the one containing lncRNA with repressive functions, 

including ANRIL, HOTAIR, H19, KCNQ1OT1, and XIST (Gibb et al., 2011; 

Yap et al., 2010; Rinn et al., 2007). These lncRNAs achieve their repressive 

function by coupling with histone modifying or chromatin remodelling protein 

complexes. 

The most common protein partners of lncRNAs are the polycomb repressive 

complexes 1 and 2 (PRC1 and PRC2). These complexes can transfer the 

repressive post-translational modifications to specific amino acid positions on 

histone proteins, thereby inducing chromatin folding and heterochromatin 

formation in order to repress gene transcription. PRC1 may be comprised of 

numerous proteins, including BMI1, RING1, RING2 and Chromobox (CBX) 

proteins, which act as a multi-protein complex to ubiquitinate histone H2A at 

lysine 119 (Margueron and Reinberg, 2011). PRC2 is classically composed of 

EED, SUZ12, and EZH2, the latter of which is a histone methyltransferase 

enzymatic subunit that trimethylates histone 3 lysine 27 (Margueron and 

Reinberg, 2011). Both EZH2 and BMI1 genes are up-regulated in numerous 

common solid tumors, leading to tumor progression and aggressiveness 

(Margueron and Reinberg, 2011). 

Even if, PRC1 and PRC2 are perhaps the most known partners of lncRNAs, 

numerous other epigenetic complexes are implicated in lncRNA-mediated 

gene regulation. For example, the 3’ domain of HOTAIR contains a binding 

site for the LSD1/CoREST, a histone deacetylase complex that facilitates 

gene repression by chromatin remodelling (Tsai et al., 2010). Similarly, AIR 

interacts with G9a, an H3K9 histone methyltransferase (Nagano et al., 2008). 

LncRNAs have been also observed in activating epigenetic complexes. For 

instance, HOTTIP interacts with WDR5 to mediate the recruitment of the MLL 
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histone methyltransferase to the distal HoxA locus. MLL transfers methyl 

groups to H3K4me3, generating open chromatin structures that promote gene 

transcription (Wang et al., 2011). 

Moreover, lncRNAs can act as scaffold, serving as central platforms upon 

which relevant molecular components are assembled. By this mechanism, a 

lncRNA would bind its multiple effector partners, forming ribonucleoprotein 

complexes, which may have transcriptional activating or repressive activities, 

at the same time in the same space (Figure 1.10). 

 

 

 
Figure 1.10. Long noncoding RNA (lncRNA)-mediated regulation of gene expression through 

the recruitment of chromatin regulatory proteins. (A) Different cell types express distinct 

lncRNAs that can differentially recruit these same chromatin regulatory proteins, including the 

repressive Polycomb Repressive Complex 2 (PRC2) and the activating WDR5 chromatin-

modifying protein, to specific genes. Inset: lncRNAs can recruit these complexes by binding to 

target sites through three mechanisms: tethering to its nascent transcription locus (top panel); 

directly hybridizing to genomic targets (middle panel); or interacting with a DNA-binding 

protein (bottom panel). From Quinodoz and Guttman, Trends in Cell Biology, 2014 

  

 

lncRNAs in post-transcriptional regulation: mRNA processing, stability, 
and translation 
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LncRNAs also play a rule in post-transcriptional processing of mRNAs, which 

is also critical to gene expression. LncRNAs have been implicated in 

alternative splicing; for instance, Bernard and colleagues have shown that 

MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) localizes 

serine/arginine (SR) splicing factors to a compartment called nuclear 

speckles, which are postulated to serve as storage sites for mRNA prior to its 

export to the cytoplasm for translation (Bernard et al. 2010). MALAT1 is 

associated with proper relocation of these splicing factors to sites where 

splicing occurs, and thus may have a role in controlling alternative splicing of 

target mRNA precursors (Tripathi et al., 2010).  

Another lncRNA, Gomafu/MIAT, which localizes to a novel nuclear domain 

and has a neuron-restricted expression, may hinder spliceosome formation 

and affect the splicing of a subset of mRNAs by sequestering splicing factor 1 

(SF1) (Sone et al. 2007; Tsuiji et al., 2011). 

Moreover, lncRNAs may even affect translational regulation. PU.1, an 

important TF involved in hematogenesis, has an overlapping natural antisense 

that was found to negatively influence PU.1 protein level but not mRNA level. 

The antisense RNA seems to compete with the sense transcript for binding to 

the translation initiation factor eIF4A, decreasing the translation (Ebralidze et 

al. 2008).  

In a more intricate example, the protein Staufen1, STAU1, a RNA degradation 

protein, is involved in the regulated decay of ∼1% of coding transcripts, a 

process named “STAU1-mediated decay”. The mechanism of action of 

STAU1 involves lncRNAs containing ancestral Alu repeats. It was discovered 

that a subset of target mRNA contains Alu element in its 3’ UTRs that can 

base pair with a group of cytoplasmic and polyadenylated lncRNAs, named 

half-STAU1-binding site RNAs (1/2-sbsRNAs), to form the double stranded 

RNA structure that then recruit STAU1 to implement RNA degradation (Gong 

and Maquat 2011). 

Finally, Pandolfi and colleagues recently suggested another model for mRNA 

regulation. According to their theory, transcribed pseudogenes, including 

PTENP1 and KRASP1, serve as decoy for miRNAs that target the protein-
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coding mRNA transcripts of their cognate genes (Poliseno et al., 2010). Thus, 

pseudogenes can regulate the gene expression level of the protein coding 

mRNA indirectly, having miRNA-binding sites in their 3’ UTRs and may 

therefore serve as “sponges” to sequester miRNAs away from their mRNA 

targets.  

This model, named “competing endogenous RNAs” (ceRNAs) model, more 

broadly suggests that all long ncRNAs, as well as other protein-coding 

mRNAs, may function as molecular “sponges” that bind and sequester 

miRNAs in order to control gene expression indirectly (Figure 1.11). 

 
Figure 1.11: Base pairing is also the mode of action of competing endogenous RNAs. In this 

case, the complementarity is between microRNAs (miRNAs) and different targets (including 

circular RNAs (circRNAs), lncRNAs, pseudogene transcripts and mRNAs). The effect of these 

interactions is that protein-coding RNAs and non-coding RNAs can crosstalk to each other by 

competing for miRNA binding through their miRNA recognition motifs. ORF: Open reading 

Frame. Modified from Fatica and Bozzoni, 2014. 

 

 

1.4.2 Methods to discover lncRNAs  
ncRNAs have historically been more difficult to detect than protein-coding 

genes. This is largely because ncRNAs are more tissue-specific in their 

expression (Cabili et al., 2011), exhibit lower levels of expression (Trapnell et 

al., 2010; Guttman et al., 2010), and cannot be predicted by computational 

algorithms scanning for open reading frames (ORFs) in the human genome. 

 
!
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However, the advance of high-throughput RNA profiling methods has enabled 

more precise and accurate cataloguing of ncRNAs. While the Human Genome 

Project emphasized only protein-coding genes in their computational analysis 

of DNA, groups investigating RNA had long observed a great number of 

unannotated transcripts (Matsubara et al., 1993; Liang et al., 2000). Many of 

these transcripts were discovered cloning and sequencing – by Sanger 

method – Expressed Sequence Tags (ESTs), that identify fragments of 

genomic regions that were being actively transcribed. In addition to 

sequencing advances, new technologies (in particular DNA microarray) were 

emerging to identify new genes and to understand the regulation of gene 

expression. In parallel, the first complete human chromosome 22 sequence 

was released in 1999 (Dunham et al., 1999). The combination of microarrays 

and draft genome sequences provided the first insight into pervasive 

transcription of noncoding RNAs. Two independent studies estimated that 

there might be as many lncRNA genes as protein-coding genes (Kapranov et 

al, 2002; Rinn et al., 2003).  

A major advance came when Guttman et al. combined the microarray 

technologies with the logic of epigenetics (Guttman et al., 2009). Here, the 

authors reasoned that ncRNAs could have the same structure and epigenetic 

characteristics of protein-coding genes. Thus, lncRNAs could be 

polyadenylated and spliced and they could have a gene promoter marked by 

H3K4me3 and a gene body marked by H3K36me3. By using ChIP-Seq data 

of these epigenetic marks as well as RNA polymerase II data, the authors 

observed by DNA tiling arrays several thousand regions of unannotated 

transcription overlapping these epigenetic marks (Guttman et al., 2009). 

These new transcriptional entities were defined lncRNAs, based on their 

length and the lack of a coding potential. 

The advent of RNA-Seq led to the ability to sequence all RNA species in a cell 

at an unprecedented scale and throughput (Costa et al., 2010). In addition to 

full-length reconstruction algorithms, several applications have emerged from 

RNA-Seq. For instance, a method termed 3-Seq targets and sequences the 

polyadenylated tail of cDNA to quantitatively measure the abundance of 
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transcripts (Beck et al., 2010). Moreover, a variant of this method can be 

employed to precisely map 3’ ends of transcripts (Jan et al., 2011). These and 

other emerging technologies are providing deeper insights into the dynamic 

transcriptome. 

RNA-Seq is now the gold standard method to discover lncRNAs. Recent 

studies employed RNA-Seq to identify distinct classes of large RNA genes. 

For instance, Cabili and colleagues identified 8,000 lincRNAs in the human 

genome by integrating different annotation sources in combination with RNA-

Seq data (Cabili et al., 2011). Furthermore, in 2011 Derrien and colleagues 

released the most complete human lncRNA annotation, produced by the 

GENCODE consortium within the ENCODE project and comprising 9277 

manually annotated genes producing 14,880 transcripts (Derrien and Jhosnon 

et al., 2011). 

 

1.4.3 lncRNA and cancer 
Recent researches point out the need to expand the tumor-suppressor and 

oncogenes classes to non coding RNAs (ncRNAs), defined as ‘tumor-

suppressor ncRNAs’ and ‘oncogenic ncRNAs’. 

Indeed, numerous profiling and characterization studies of a well investigated 

ncRNA class, i.e. the microRNAs (miRNAs), have identified key roles for 

ncRNAs in cancer (Ruan et al., 2009; Calin et al., 2007). 

Alterations in miRNAs expression levels have been linked to the initiation and 

progression of different human cancers. Furthermore, miRNA-expression 

profiling in human tumors has identified signatures associated with diagnosis, 

prognosis, staging, progression, and specific treatment (Cho et al., 2007) 

miRNAs can act as tumor-suppressor or oncogenes depending on their target 

genes (Zhang et al., 2007). 

In addition to the well-characterized miRNAs, the growing knowledge of the 

mammalian non-coding transcriptome is revealing the presence of thousand 

of lncRNAs, which could have a major role in the development and 

progression of cancer, although their mechanisms of function remain less well 
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understood (Ponting et al., 2009; Mercer et al., 2009; Guttman et al., 2009; 

Wang et al., 2010). 

The lncRNA have a key regulatory role in gene expression and, therefore, it 

has been speculated that they may be involved in the etiology of various 

diseases. To date, the most studied pathogenic mechanisms in which are 

involved lncRNA are related cancer (Tsai et al., 2011). Indeed, an altered 

expression of many long non-coding RNA has been reported in different types 

of tumors (Rinn and Chang, 2012).  

Besides genetic alterations of protein coding tumor suppressor or oncogenes, 

recent evidences indicate that epigenetic alterations can also contribute to 

tumor transformation and cancer (Jones P.A., Baylin, 2007 ).  

Chromatin-regulatory complexes are linked with the aberrant proliferation of 

cancer cells. For instance, SUZ12, a subunit of polycomb repressive complex 

2 is overexpressed in colon and breast cancers and EZH2 is up-regulated in 

many tumors, including Hodgkin lymphoma, prostate and breast cancer 

(Simon J.A., Lange, 2007). Collectively, these findings point to an important 

interplay between ncRNAs, chromatin regulation and cancer, representing a 

new dimension in our understanding of cellular transformation. 

 

1.4.4 Oncogenic long non coding RNAs 
Similar to protein-coding oncogenes, long ncRNAs can also promote cellular 

pathways that lead to tumorigenesis. An example of oncogenic long intergenic 

RNA (lincRNA) is HOTAIR. It is expressed from the HOXC locus and 

negatively regulates HOXD genes. This repressive regulation is conferred by 

the interaction between HOTAIR and PRC2 complex (Rinn et al., 2007; Figure 

1.12 panel A). HOTAIR was found significantly overexpressed in breast 

tumors (Gupta et al., 2010). Furthermore, its expression level in primary 

breast tumors is considered a predictor of patient's outcomes such as 

metastasis formation and death (Gupta et al., 2010). Thus, HOTAIR 

underscores the importance of understanding the relationship between 

epigenetic regulation by ncRNAs and cancer, and demonstrates how 
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oncogenic lncRNAs can drive the epigenetic machinery to reshape the 

epigenetic landscape leading to cancer.  

In addition, global transcriptome analyses have shown that up to 70% of 

protein-coding transcripts have antisense genes. Interestingly, the 

perturbation of the antisense RNAs can alter the expression of their sense 

genes (Katayama et al., 2005). Some of these genes encode tumor-

suppressor or oncogenic proteins that can become epigenetically silenced or 

hyper-activated by the antisense ncRNA. Thus, misregulation of these 

antisense transcripts can lead to cellular transformation. 

An example is provided by the antisense ncRNA ANRIL, which controls 

expression of the INK4A/ARF locus comprising the tumor-suppressor genes 

INK4n/ARF/INK4a, p16/CDKN2A and p15/CDKN2B. ANRIL mediates gene 

silencing of the locus by interaction and recruitment of CBX7, a component of 

polycomb repressive complex 1 (PRC1), histone 3 lysine 27-

methyltransferase complex (Yu et al., 2008; Yap et al., 2010; Figure 1.12 

panel B). 

For instance, in prostate cancer ANRIL overexpression results in the down-

modulation of INK4n/ARF/INK4a and p15/CDKN2B.  
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Figure 1.12. Mechanisms of gene regulation by oncogenic long ncRNAs. A) lincRNA HOTAIR 

recruits PRC2 to specific gene promoters for methylation of lysine 27 of histone 3 (H3K27me), 

inducing gene repression that leads to breast tumor metastasis. B) Large ncRNA ANRIL is 

transcribed antisense of the p14/ARF and p15/CDKN2B genes. ANRIL mediates gene 

silencing of the locus by interaction with, and recruitment of, CBX7, a component of PRC1 

histone 3 lysine 27-methyltransferase complex. C) The ncRNA expressed antisense of the 

Zeb2 gene (Zeb2 NAT) overlaps with the 5' splice site of one Zeb2 intron. Zeb2 NAT inhibits 

the splicing of the intron, which contains an IRES sequence. In this way, Zeb2 protein 

translation is upregulated. Modified from Huarte and Rinn, 2010. 

 

Moreover, some antisense transcripts can also fine tune gene expression at 

the post-transcriptional level. E-cadherin encoding gene (CDH1) is correlated 

with cancers of different organs, such as stomach, breast, colon, thyroid and 

ovary. Its down-modulation has been linked to cancer progression by 

increasing proliferation, invasion and/or metastasis (Berx and van Roy, 2009). 

A strong association has been demonstrated between the expression level of 

a particular natural antisense transcript (NAT) and human tumors with low E-

cadherin expression (Beltran et al., 2008). NAT overlaps with an intronic 5' 

splice site of the Zeb2 gene and prevents its splicing. The retained intron 

contains an internal ribosome entry site (IRES) necessary for the increased 
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translation of Zeb2 protein, which can subsequently function as a 

transcriptional repressor of E-cadherin (Beltran et al., 2008) (Fig. 1.12 panel 

C). Collectively, these studies provide strong impetus for further investigation 

of antisense ncRNAs in cancer as they are likely to modulate the expression 

and/or the function of other genes involved in cancer etiology or progression. 

MALAT1 is another lncRNA whose deregulation has been associated with 

cancerous process. This lncRNA has a predominantly nuclear localization and 

regulates alternative splicing of several genes, interacting and modulating the 

activity of factors involved in this mechanism, such as the nuclear family SR 

phosphoprotein (rich in serine and arginine). It has been observed that in 

metastatic lung cancer (NSCLC, non-small-cell lung cancer) biopsies, the 

expression of MALAT-1 is about three-fold higher than in tumors that do not 

metastasize (Ji et al., 2003). So, although it is not yet clear how MALAT-1 can 

modulate and alter SR proteins' phosphorylation, or what a mechanism 

governs its contribution to cancer development, it has been speculated that 

altered MALAT-1 expression is a prognostic marker for the development of 

metastases and for patients' survival (Tseng et al., 2009). 

 

1.4.5 Tumor-suppressor ncRNAs 
“Tumor-suppressor lncRNAs” are lncRNAs that control protein-coding genes 

involved in tumor-suppressor pathways, and when their function is 

compromised, cells are prone to develop cancer. An example is provided by 

lincRNAs that are induced by the p53 tumor-suppressor pathway (Guttman et 

al., 2009; Huarte et al., 2010). Indeed, under stress conditions, p53 

coordinates a tumor-suppressor program, by activating or silencing the 

expression of different genes. Among them there are many lncRNAs, in 

particular lincRNA-p21, that interact with the protein hnRNP-K to orchestrate 

transcriptional programs that maintain cellular homeostasis. 

Another tumor-suppressor ncRNA is the lncRNA CCND1-associated. It is 

involved in the regulation of cyclin D1 (CCND1) gene expression. Cyclin D1 is 

a cell cycle regulator and it has been found frequently mutated or 

overexpressed in different tumors (Diehl 2002). In response to DNA damages, 
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this ncRNAs is transcribed from the 5’ regulatory regions of CCND1 gene, 

mediating its transcriptional repression. This mechanism involves the 

interaction between the lncRNA with TLS protein - which is a sensor of DNA 

damage -, inducing its allosteric modification. In turn, this conformational 

change allows the association of TLS to the CCND1 gene promoter, which 

inhibits transcriptional induction by histone acetyltransferases such as CBP 

and p300 (Wang et al., 2008). 

Also the lncRNA GAS5 (Growth Arrest-Specific 5) is a tumor-suppressor gene 

that plays a role in normal cell growth arrest (Kino et al., 2010). Reduced 

expression of GAS5 in cancer breast cancer cells compared to healthy 

epithelial cells has been documented (Mourtada-Maarabouni et al., 2009). 

This down-regulation has been linked to the alteration of normal apoptotic 

process. Indeed, GAS5 shows some regions that are able to bind to the DNA 

binding domain (DBD) of the glucocorticoid receptors (GR), preventing their 

interaction with the recognition sequences at the DNA level. Specifically, the 

GAS5 RNA conformation mimics gluticorticoid responsive element (GRE) 

DNA, acting as a sponge for GR, blocking their ability to bind gene promoters 

to induce their transcription, thus to induce the expression of cIAP2 (cellular 

inhibitor of apoptosis 2) and caspase 3, 7 and 9, involved in inhibition of the 

apoptotic process (Kino et al., 2010; Figure 1.13). Therefore, the increase of 

GAS5 expression may induce an increase of apoptosis, while the down-

regulation this lncRNA, found in breast cancer, can induce an inhibition of the 

apoptotic process. 

 

 
Figure 1.13. GAS5 mimics the conformation of DNA GREs, binding to GR. In this manner, 

GR loses the ability to activate transcription of target genes. 
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1.4.6 lncRNAs and papillary thyroid cancer 
As already described, it has been shown that lncRNAs play a crucial role in 

several types of tumors, also in papillary thyroid cancer. Several studies have 

focused on the role of lncRNAs in papillary thyroid carcinoma pathogenesis 

(Jendrzejewski et al., 2012; Wang et al., 2014; Yoon et al., 2007). 

For instance, Jendrzejewski and colleagues identified a lncRNA, named 

Papillary Thyroid Cancer Susceptibility Candidate 3 (PTCSC3), highly specific 

of thyroid tissue and down-modulated in cancerous tissues. 

Interestingly, this lncRNA is located 3.2 kb downstream the single nucleotide 

polymorphism (SNP) rs944289 on chromosome 14q.13.3 (Jendrzejewski et 

al., 2012). In a previous study, the SNP rs944289 has been significantly 

associated - by genome-wide association studies (GWAS) - to papillary 

thyroid cancer (Li and Wang, 2012) 

Moreover, Fan and colleagues have shown that the over expression of this 

non-coding RNA in thyroid cell lines inhibits cell proliferation and induces 

growth arrest and apoptosis (Fan et al., 2013). 

It is not clear how PTCSC3 fulfills its functions, but it has been hypothesized 

that it may act, according to the ceRNA model, as RNAs competing with 

oncogenic protein-coding genes for the binding to endogenous miRNAs. This 

hypothesis is partially supported by the inverse correlation between the 

expression levels of PTCSC3 and the one of a miRNA with a proven 

oncogenic role in other cancers, i.e. miR-574-5p. Therefore, PTCSC3 would 

affect the distribution of this miRNA and it may in turn regulate the growth of 

cancer cells (Fan et al., 2013). 

Moreover, a gene expression study by Yoon and colleagues identified genes 

down-modulated in tumors (PTC) vs paired non-tumor tissue, including a 

novel lncRNA, named NAMA (noncoding RNA associated with the MAPK 

pathway and growth arrest) in patients carrying the mutation BRAF V600E. 

NAMA expression is highly associated with induction of cell cycle arrest (Yoon 

et al., 2007). 

Similarly, the long non-coding BANCR (BRAF-activated lncRNA) is strongly 

associated with BRAF V600E mutation (Wang et al., 2014). In their study 
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Wang and colleagues demonstrated that BANCR expression levels are 

elevated in PTC tissues compared to healthy counterparts. Moreover, in vitro 

analysis confirmed the role of BANCR in inhibiting the apoptosis and 

increasing proliferation in cell cultures (Wang et al., 2014). 

Therefore, the study of lncRNA in thyroid cancer is a fascinating field to outline 

new markers for PTC diagnosis and prognosis, and to discover potentially 

new therapeutic targets. 
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2 Principal aim of the project 
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Well-differentiated papillary thyroid carcinoma (PTC) constitutes about 85% 

of all thyroid malignancies. To date, different genetic alterations have been 

reported in PTC, among which high frequent point mutations in two genes of 

the Mitogen-activated Protein Kinase (MAPK) pathway, BRAF and RAS 

(HRAS, KRAS and NRAS). Moreover, different kind of gene fusion have been 

identified, i.e. genomic rearrangements involving RET gene (RET/PTC) in 

about 70% of PTC cases, TRK oncogenes rearrangements and PPARG gene 

fusions in ~5% of cases. However, despite the presence of tumor-initiating 

driver events, cancer results from the progressive accumulation of mutations 

in genes that confer growth advantage over surrounding cells. Thus, a deeper 

genetic characterization of PTC will improve clinicians' ability to establish 

diagnosis and to predict prognosis and individual response to treatments. 

Moreover, although the vast majority of studies have focused on the role of 

protein coding genes in cancer, Next Generation Sequencing technology has 

revealed that about the 80% of transcription in mammalian is associated to to 

non-coding RNAs (ncRNAs), implicated in a wide spectrum of biological 

functions. In particular, in recent years, deregulated long non coding RNAs 

(lncRNAs) expression has been reported in many cancers, highlighting that 

they may act as potential oncogene or tumor-suppressor. A better 

understanding of the mechanisms that control synthesis and activity of these 

ncRNAs opens new frontiers in molecular oncology. 

In this scenario, the principal aim of my PhD project is the identification of new 

genetic alterations and potential biomarkers in papillary thyroid carcinoma. 

Since RNA-Sequencing (RNA-Seq) technology has revolutionized cancer 

research, improving our ability to investigate tumor mutations' landscape, we 

used this technology to explore PTC transcriptome. The project has been 

organized in two main parts, which have included both bioinformatics analysis 

and in vitro studies. 

The first part focuses on a comprehensive analysis of papillary thyroid 

carcinoma transcriptome data deriving from the sequencing of PTC and 

healthy thyroid biopsies. This section is structured into two objectives: 
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1) The identification of fusion transcripts in PTC through the analysis of 

RNA-Seq data; 

2) The identification of missense mutations that could be implicated in 

cancer. 

The second part aims to investigate the involvement of long non coding RNAs 

in papillary thyroid cancer, through the following objective: 

1) Definition of lncRNAs expressed in PTC and healthy thyroid biopsies. 

The analysis aims to study not only annotated lncRNAs, but also new 

putative ones, and to address if and how their expression is 

significantly altered in patients with PTC, and therefore if they are 

potential candidate in the papillary thyroid carcinoma etiology. 

2) Identification of new still unexplored connections between lncRNA and 

protein-coding genes, with a particular focus on their impact on already 

known oncogenes and/or oncosuppressors.  

  



	   53	  

 

 

 

 

 

3. Identification of new somatic mutations and WNK1-
B4GALNT3 gene fusion in papillary thyroid carcinoma 
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3.1 Methods 
	  

3.1.1 Patients and RNA samples preparation 
Thyroid biopsies of PTC and healthy control thyroid were obtained from the 

Service d’Anatomo-Pathologie, Centre Hospitalier Lyon Sud, France and 

kindly provided by Prof. Alfredo Fusco of IEOS, CNR. Informed written 

consent was obtained from patients of both cohorts. The entire Project, funded 

by AIRC to Prof. Alfredo Ciccodicola, was approved by the ethic committee of 

University of Naples "Federico II" and Lyon Sud Hospital Center. Total RNA 

was extracted from biopsies using Trizol standard procedure and RNA 

integrity was assessed using digital gel electrophoresis (Experion®) and 

spectrophotometry (NanoDrop®).  

 

3.1.2 Library preparation and RNA-Sequencing data analysis 
PolyA+ paired-end libraries were prepared using TruSeq RNA Sample 

Preparation Kit (Illumina) according to manufacturer’s instruction and 

sequenced on Illumina HiSeq2000. 

Details about the bioinformatics analysis are provided below. 

Read’s quality assessment 

Reads' quality was evaluated using FastQC software, freely available for the 

download at (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Briefly, FastQC is a stand-alone interactive application for the immediate 

analysis of a small number of FastQ files. It provides a quality check report, 

with different outputs, indicating the reads’ quality. In particular, the “per base 

sequence quality” output shows an overview of the range of quality values 

across all bases at each position in the FastQ file. The “per sequence quality 

score” output report allows to check if a subset (or the entire set) of 

sequenced reads has globally low quality values. In the samples processed in 

this PhD Thesis, both the "per base" and the "per sequence" quality graphs 

revealed an overall high quality of the sequenced reads, trimming procedure 

was not necessary in our case.  

Mapping reads with TopHat2 
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Reads were aligned using TopHat2 v2.0.10 (Kim et al., 2013), a gapped 

aligner capable of discovering splice junctions ab initio, based on using 

Bowtie2 (Langmead et al., 2012). It provides major accuracy improvements 

over previous versions and over other RNA-seq mapping tools. Briefly, in a 

first step, TopHat2 was used to map RNA-Seq reads against a known 

transcriptome annotation (Gencode v19). The transcriptome-mapping step 

improves the overall sensitivity and accuracy of reads mapping, avoiding the 

unwanted alignment of reads to the pseudogenes, very abundant in the 

human genome. Indeed, the presence of processed pseudogenes, from which 

some or all introns have been removed, may cause many exon-spanning 

reads to map incorrectly. This is particularly acute for the human genome, 

which contains over 14,000 pseudogenes (Pei et al., 2012). Then, TopHat2 

aligns unmapped or potentially misaligned reads against the human genome 

(hg19), potentially representing unannotated transcripts or genes deriving 

from fusion events. TopHat2 outputs the reads that successfully map to either 

the genome or the splice junction reference in SAM format for further analysis. 

In this Thesis, the SAM files generated by TopHat have been converted to 

BAM format (binary version of SAM) using SAMtools (Li et al., 2009). 

The parameters used for the mapping with TopHat2 were: -p 12 -N 2 -g 10 -r 

200 -a 15 -m 1 -i 100 --library-type fr-unstranded --fusion-search --segment-

mismatches 3 --read-edit-dist 2 --transcriptome-index. 

Gencode v19 track downloaded from UCSC Table Browser 

(http://genome.ucsc.edu) was used as reference for transcripts mapping and 

quantification. Only uniquely mapped reads (about 95% of sequenced reads, 

Table 3.1) and with a maximum of 2 mismatches, were used for further 

analyses. Coverage files (bedgraph format) were produced using BEDTools 

v2.17.0. Visual inspection of reads and coverage files on UCSC Genome 

Browser was used to assess the overall quality of the RNA-Seq experiment, 

and to inspect gene-specific features of interest. 
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Table 3.1 Summary of data generated from paired-end RNA-Sequencing and results of 
mapping procedure. 

Sample 

id 

N° of reads N° of 

fragments 

Uniquely 

mapped reads 

% of uniquely 

mapped 

reads 

S110 107.168.970 53.584.485 97.499.398 91.0 

S111 129.387.234 64.693.617 116.552.563 90.1 

S112 123.056.226 61.528.113 112.010.077 91.0 

S113 111.741.882 55.870.941 101.768.707 91.0 

S114 112.356.482 56.178.241 100.998.996 89.9 
S115 132.342.772 66.171.386 120.456.084 91.0 

S116 109.612.414 54.806.207 99.716.914 91.0 

S117 118.011.794 59.005.897 104.854.674 88.8 

S118 151.418.292 75.709.146 137.861.418 82.0 

S119 168.167.376 84.083.688 149.849.046 89.1 

S120 134.011.794 68709146 121.027.091 90.3 

S121 51.495.606 25.747.803 46.953.037 91,2 

S122 64.766.780 32.383.390 59.983.274 92,6 
S123 44.472.128 22.236.064 41.329.664 92,9 

S124 64.547.635 32.273.818 59.009.673 91,4 

S125 53.749.964 26.874.982 49.701.258 92,5 

S126 58.995.744 29.497.872 54.237.927 91,9 

S127 64.557.056 32.278.528 59.909.442 92,8 

S128 70.098.721 35.049.361 65.036.396 92,8 

S129 54.383.090 27.191.545 49.965.488 91,9 

S130 97.514.456 48.757.228 89.589.008 91,9 
S131 135.610.671 67.805.335 125.073.775 92,2 

 

3.1.3 Analysis of single nucleotide variants 
Variant calling for the discovery of single nucleotide variations has been 

performed using GATK best practices recommendations for calling variants on 

RNA-Seq data (http://gatkforums.broadinstitute.org/discussion/3892/the-gatk-

best-practices-for-variant-calling-on-rnaseq-in-full-detail). These 

recommendations are based on classic DNA-focused Best Practices, with key 

differences in the early data processing steps (focus on handling splice 

junctions correctly), as well as in the calling step (Van der Auwera et al., 

2013).  
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Add read groups, sort, mark duplicates, and create index. 
After the mapping step, it is necessary to add read group information, sort 

reads, mark duplicates and create index. All these steps have been performed 

by using Picard tools v1.93 (http://broadinstitute.github.io/picard/). 

Split'N'Trim and reassign mapping qualities. 
Next, we used a new GATK tool called “SplitNCigarReads” developed 

specially for RNA-Seq reads, which splits reads into exon segments and hard-

clip any sequences overhanging into the intronic regions. 

Base Recalibration. 
We performed base quality recalibration (BQSR), by using GATK tool. This 

tool recalibrates base quality scores of sequencing-by-synthesis reads in 

aligned BAM files. After recalibration, the quality scores in the quality field in 

each read in the output BAM are more accurate. 

Variant calling. 
For variant calling step we used HaplotypeCaller tool (GATK), which take into 

account the information about intron-exon split regions that is embedded in 

the alignment BAM file by SplitNCigarReads tool.  

Variant filtering. 
In order to filter the resulting callset, variants with clusters of at least 3 SNPs 

that were within a window of 35 bases and variants with a Quality By Depth 

values (QD < 2.0) were filtered out. Moreover, the variants with a recalibrated 

score < 30 and the predictions supported exclusively by variants located in the 

beginning or the end of the reads were filtered out.  

Variant annotation. 
The final filtered list of high quality variants was processed using ANNOVAR, 

an efficient command line Perl program to functionally annotate genetic 

variants from high-throughput sequencing data (Wang et al., 2010). In order to 

remove germline variants we initially filtered out common population variants 

from in dbSNP v138 (http://www.ncbi.nlm.nih.gov/SNP/), 1000 Genome 

Project data (The 1000 Genomes Project Consortium, 2012) and SNVs 

identified through the above-described procedure in normal healthy thyroids. 

Moreover, we removed nucleotide variants located in super-duplicated 
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regions. However, we retained those variants annotated as somatic mutations 

in COSMIC database (Forbes et al., 2014). Then, we selected protein-altering 

point mutations (missense and nonsense mutations) and frameshift alterations 

that originate from INDELs. Avsift and MA-score algorithms, implemented in 

ANNOVAR, were used to assess the damaging potential of the variants 

identified. A list of selected candidate nucleotide variants was analyzed using 

IntOGen, an integrative platform that summarize somatic mutations, genes 

and pathway involved in tumorigenesis (Gonzalez-Perez et al., 2013). 

 

3.1.4 Analysis of fusion transcripts 
Fusion transcripts discovery was performed using two different algorithms: 

TopHat Fusion (Kim and Salzberg, 2011) and Chimerascan (Iyer et al., 2011). 

TopHat Fusion is an enhanced version of TopHat with the ability to align reads 

across fusion points, which results from the breakage and re-joining of two 

different chromosomes, or from rearrangements within a chromosome. 

TopHat-Fusion engine is incorporated into TopHat2 with the name of --fusion-

search option. TopHat-Fusion outputs consists in a list of potential fusions and 

a modified SAM alignment that contains a parameter that allows "fusion" 

alignment. This file was processed by tophat-fusion-post, a tool implemented 

in TopHat fusion in Perl language, with the following parameters: --num-

fusion-reads 5 --num-fusion-pairs 4. Chimerascan was launched with default 

parameters. Then, we selected only fusions identified by both algorithms; 

moreover, fusions with less than 7 spanning reads (reads that map across the 

fusion breakpoint) were filtered out. Additionally, we removed fusion events 

observed in adjacent and/or overlapping genes as well as fusions involving 

HLA, IGH genes and other involving genes from repeated families. 

 

3.1.5 Reverse Transcription 
For mRNA analysis, reverse transcription was performed on total isolated 

RNA with SUPERSCRIPT II Reverse Transcriptase (Invitrogen). Reaction mix 

of 1 µg RNA, 1 µL Oligo(dT)12-18 (500 µg/mL) and 1 µL dNTP mix (10 mM 
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each) in a final volume of 12 µL was heated at 65°C for 5 min and then chilled 

on ice. Subsequently, 4 µL 5X First-Strand Buffer, 2 µL DTT (0.1 M) and 1 µL 

RNase OUT (40 units/µL) were added to the reaction mix and incubated at 

42°C for 2 min. After the addition of 1 µL of SuperScript II RT enzyme, the 

reaction mix was incubated at 42°C for 50 min and then the enzyme was 

inactivated heating the mixture at 70°C for 15 min. 

 

3.1.6 RT-PCR assay, cloning and Sanger sequencing 

Reverse-Transcription Polymerase-Chain-Reaction (RT-PCR) and 

Sanger sequencing were used to analyze the novel candidate fusion 

transcripts and the novel mutations in PTC and healthy samples. cDNA 

synthesis and PCR amplification were performed using standard 

protocols that come with Superscript II Reverse Transcriptase 

(Invitrogen) in a 20 µl reaction according to provided protocol. PCR 

primers were designed to amplify 200-400 bp fragments containing the 

putative nucleotide variant or the gene fusion boundary, as indicated by 

RNA-Seq. Where multiple PCR products were detected, we cloned 

these amplicons into Topo Vector II plasmid (Invitrogen) according to 

manufacturer's instructions. PCR products - and plasmids containing 

PCR amplicons - were analyzed by direct Sanger Sequencing. Analysis 

of Sanger chromatograms was performed using ApE software 

(http://biologylabs.utah.edu/jorgensen/wayned/ape/). Refinement of 

chimeric transcripts' structure was performed using UCSC Blat tool. The 

primers used for PCR validations are reported in Table 3.2. 
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Table 3.2. Oligolucleotides used for validations of fusion transcripts and mutations in known 
and new driver genes. Published in Costa et al., 2015. 

Gene Forward primer Reverse primer 
BRAF CATAATGCTTGCTCTGATAGG TCTAGTAACTCAGCAGCATCT 
CBL GTGGGTTTTTACTGATTTGCTT AGGGCAATGAAAATGGAAGTG 

DICER1 CTGAGGAGGATGAAGAGAAAG CTAAAGGGAGCCAACAATACC 
HRAS CCGGAAGCAGGTGGTCATTG GCCAGCCTCACGGGGTTCA 
MET TCCCCACAATCATACTGCTG CCATCTTTCGTTTCCTTTAGC 

NOTCH1 GCAGCCTGGGTTGGAGTAGG TCAACACCTGCGGGGGATGG 
SMARCA4 CGGTGTTGGGTGTTCCTTCA TGGGATTACAGGCACGAACC 

VHL CTGGATCGCGGAGGGAATG AGGCGGCAGCGTTGGGTAG 
B4GALNT3 - CTCTGGGGGATGGTAGAACTGG 

WNK1 CGGTCTACAAAGGTCTGGAC GCGGTGAATGATAGGTGGAG 
WNK1-

B4GALNT3 CGGTCTACAAAGGTCTGGAC GGCGGTCCACTCCTTTCCA 

PIK3R4 CTATCTGTATGGGGAAAAATTG AGATTGCATGGAAGTATTTGAG 
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3.2 Results 
	  

3.2.1.Analysis of known driver PTC alterations 
In this pilot study, we employed RNA-Sequencing to profile the transcriptome 

of PTC samples and to compare it with the expression profile of healthy 

thyroids, at different levels. The study has been carried out on a cohort of 22 

patients, (18 PTC biopsies, and 4 deriving from non-tumor thyroid) randomly 

chosen from well-characterized cohort of 80 PTC patients. Using Illumina 

HiSeq 2000 platform we generated a total of 1,6 billion of paired end reads 

(75+75 bp and 100+100 bp) We performed short read gapped alignment by 

using TopHat2 (Kim et al., 2013) and recovered about 1,5 billion of mapped 

reads.  

The first aim of my analysis was the identification of genetic alterations in 

driver genes using the workflow of the software GATK optimized for the 

variant calling (http://gatkforums.broadinstitute.org/discussion/3891/calling-

variants-in-rnaseq) and the algorithm TopHat Fusion (Kim and Salzberg, 

2011) and ChimeraScan (Iyer et al., 2011) for fusion genes identification.  

In line with literature data, we found that ~65-70% of papillary thyroid tumors 

had at least one known driver mutation or gene rearrangement (Santoro and 

Carlomagno, 2013). This analysis allowed the identification of known somatic 

driver alterations in PTC, which have been validated by targeted Sanger 

sequencing (Figure 3.1). Most of them (~38%) were RET gene fusions. In 

detail, 6 patients had CCDC6-RET (RET/PTC1, ~33%) and 1 NCOA4-RET 

(RET/PTC3, ~5%) fusions with a PTC1/PTC3 ratio quite similar to that 

described in literature for patients not exposed to ionizing radiations. RNA-Seq 

data confirmed RET overexpression in patients carrying RET/PTC fusion 

(FDR <0.01; Figure 3.2).  

Moreover, we found other two already known driver alterations: PAX8-PPARG 

and ETVN6-NTRK3 gene fusions (~5% frequency each). Similarly, RNA-Seq 

data confirmed the overexpression of PPARG and NTRK3 (FDR <0.05; Figure 

3.2). Notably, PAX8-PPARG chimeric gene is usually associated to follicular 

carcinomas, but has been reported with low frequency in follicular variant of 
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papillary thyroid carcinoma (Cancer Genome Atlas Research Network, 2014). 

RT-PCR on cDNAs and targeted sequencing validated all described gene 

fusions detected by RNA-Sequencing, confirming the reliability of the 

computational analysis. We also focused on the identification of point 

mutations in our biopsies. We could identify BRAFV600E and HRASQ61R in 3 

patients each (~16% frequency for each mutation; Figure 3.1 panel A). 

Notably, as described in literature, we found that mutations in BRAF and 

HRAS genes, as well as RET/PTC and other rearrangements, were mutually 

exclusive events in the etiopathogenesis of PTC (Soares et al., 2003). Sanger 

sequencing confirmed the presence of mutations even on patients’ DNA 

(where available). Such analysis was extended also to negative patients, 

confirming again the bona fide of the SNP calling procedure on RNA-Seq 

data. 



	   63	  

 
Figure 3.1 Schematic representation of protein-altering mutations and gene fusions identified 

in PTC samples. Each vertical column represents a PTC patient. In the upper panel, known 

missense mutations and fusion transcripts associated with papillary thyroid carcinoma are 

shown. In the lower panel are depicted newly identified somatic mutations and other somatic 

alterations in cancer driver genes reported in other tumors but described for the first time in 

PTC (indicated by asterisks). Red boxes indicate HRAS-mutated patients or those with a 

RAS-like transcriptional profile. Green boxes indicate BRAF-mutated or RET/PTC patients 

with a BRAF-like transcriptional profile Published in Costa et al., 2015. 

 

Finally, we identified other known somatic mutations in our samples in crucial 

genes, such as E-cadherin (CDH1A592T), in thyroid stimulating hormone 
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receptor (TSHRI568F), in isocitrate dehydrogenase 1 (IDH1V178I) and in fms-

related tyrosine kinase 3 (FLT3D324N) genes (Figure 1A). Interestingly, these 

mutation are not exclusive events in PTC patients; indeed, CDH1A592T co-

occurs with BRAFV600E mutation, and IDH1V178I co-occur with and HRASQ61R 

mutations, respectively (Figure 3.1). Mutation frequencies are in line with 

those reported in the COSMIC database (~2-5%). 

 
Figure 3.2. Scatter chart with RPKM values (y axis) of RET, PPARG, NTRK3, and 

B4GALNT3 genes in PTC samples (y axis). All these genes, partners of the gene fusion, are 

significantly activated in PTC samples carrying the fusion. 

3.2.2 Single nucleotide variants in cancer driver genes 
After the SNP calling performed by GATK, we applied a stringent filtering 

procedure: SNPs annotated in dbSNPv138 

(http://www.ncbi.nlm.nih.gov/SNP/), in 1000Genome project, in healthy 

thyroids and falling in super-duplicated regions were filtered out. After, we 

retrieved ~7430 missense, stop gain/loss point mutations and 

insertions/deletions (INDELs). Then, we combined these data with IntoGen 

(Gonzalez-Perez et al., 2013) and COSMIC databases (Forbes et al., 2011). 

In particular, we focused on 125 "Mut-driver" genes, defined by Vogelstein 
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and colleagues (Vogelstein et al., 2013) as those containing driver mutations. 

We found 44 variants in 32 genes. 
 

 
Figure 3.3 Co-occurrence of protein-altering nonsense and missense mutations identified in 

PTC patients (n=1 8) by RNA-Sequencing. Most relevant shared mutations in biological 

pathways associated to tumorigenesis are shown. Each vertical column represents a PTC 

patient. HRASQ61R, BRAFV600E and RET/PTC patients are indicated by †, * and #, respectively. 

The severity of the amino acid change is proportional to the intensity of red and green boxes 

(according to MA, "Mutation Assessor", and Sift scores). Published in Costa et al., 2015. 
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Moreover, we investigated mutations in known cancer driver genes and their 

interacting partners in the 12 pathways reported in Figure 3.3, commonly 

associated to tumorigenesis. Thus, we searched for damaging mutations 

affecting JAK-STAT signaling, MAPK, apoptosis, cell cycle, Hedgehog, onco-

suppressors and oncogenes, DNA-repair and spliceosome pathways. We 

found 61 mutated genes in these pathways (Figure 3.3). Interestingly, we 

identified damaging mutations in ATR, BRCA1/2, MAP4K1, CUL3 and MAX, 

already reported as somatic mutations in other cancer types in COSMIC 

database (Forbes et al., 2008), but not described yet as mutated in thyroid 

cancer. 

Although most of them are not classified as cancer drivers, some mutations 

discovered here in PTC for the first time - MST1R703C and BOCQ915H – are 

annotated as “somatic” mutations in COSMIC in other cancer types. 

 

3.2.3 Identification of new mutations in PTC 
From the analysis above described, we identified - for the first time in PTC - 

mutations in 4 cancer driver genes: CBL, NOTCH1, SMARCA4, PIK3R4. In 

detail, we found the following missense mutations (and amino acid changes): 

c.C1639T (p.P547S) in CBL (proto-oncogene E3 ubiquitin protein ligase), 

c.G3271A (p.G1091S) in NOTCH1, c.A1646G (p.E549G) in PIK3R4 

(phosphoinositide-3-kinase regulatory subunit 4 gene) and c.C4537T 

(p.R1513C) in SMARCA4 (SWI/SNF related, matrix associated, actin 

dependent regulator of chromatin, subfamily a, member 4).  

As shown in Figure 3.1, low frequency mutations in CBL and in SMARCA4 co-

occur with HRASQ61R, in PIK3R4 with BRAFV600E, whereas in NOTCH1 with 

TSHRI568F and FLT3D324N in one patient. Targeted sequencing on DNAs of 

positive and negative biopsies validated the bona fide of these findings. 

Notably, new mutations in CBL, NOTCH1, PIK3R4 and SMARCA4 genes are 

not annotated as single nucleotide polymorphisms (SNPs) in dbSNP v138 and 

in the 1000GenomeProject (1000 Genomes Project Consortium, 2012), nor in 

COSMIC database. To strengthen these findings, we screened, by targeted 
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sequencing, 80 alleles from healthy donors and we did not detect any of these 

mutations. Mutation frequencies are shown in Table 3.3. 

Moreover, according to the same criteria, we selected and validated on 

patients’ DNA also a stop gain mutation in BRCA1 and a missense mutation in 

ATM genes. The loss of function mutation potentially identified in BRCA1 was 

discarded from further analyses because it was a false positive, whereas, 

ATM mutation was discarded because it was found also in the healthy tissue 

counterpart, indicating a potential germline mutation. However, we cannot 

exclude that such a nucleotide variation may represent a common SNP, since 

for this gene we did not extend the sequencing analysis to the control cohort. 

Finally, we selected and validated on genomic DNAs from patients' thyroids 

the missense mutations METE168D, DICER1E1813G and VHLP25L. Interestingly, 

these specific mutations are annotated as “driver” in other cancer types in 

COSMIC database, but have not yet been reported in papillary thyroid cancer. 

Noteworthy, also these mutations identified in RNA-Seq data have been 

validated on DNA. Therefore they are not generated by RNA editing.  

Interestingly, our analysis revealed that, most of the genes that we found 

mutated for the first time in PTC (i.e. CBL, NOTCH1, SMARCA4, MET and 

VHL) are "Mut-driver" genes. There is a still on-going mutational screening on 

a larger cohort of patients that will definitely help us to establish the frequency 

of these new mutations in PTC. 
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Gene Genomic 

position 

Nucleotide 

change 

AA 

change 

Frequency Status Other cancer  

CBL* 11:119155974 C1639T P547S 0.02/50 heterozygous - 

NOTCH1* 9:139402738 G3271A G1091S 0.021/47 homozygous - 
PIK3R4* 3:130447468 A1646G E549D 0.055/18 heterozygous - 

SMARCA

4* 

19:11169467 C4447T R1483C 0.055/18 heterozygous - 

MET# 7:116339642 G561T E187D 0.02/49 heterozygous Hematopoietic, 

lymphoid, 

endometrium, 

lung 

DICER1# 14:95557629 A5438G E1813G 0.021/47 heterozygous Brain, uterus 
VHL# 3:10183605 C74T P25L 0.055/18 heterozygous Kidney 

 

Table 3.3. Confirmed mutations in PTC samples. * indicate completely new mutations; # 

indicate known mutations never described in PTC. 

 

3.2.4 In silico analysis of newly identified mutations  
Despite the computational challenge and the higher false positive rate for SNP 

calling in RNA-Seq data compared to exome sequencing, one of the most 

interesting features is that it allows uncovering whether or not a mutation is 

expressed. Indeed, not all DNA mutations occur in actively transcribed genes, 

and without any direct proof one cannot be sure that the mutated allele is 

expressed in that cell/tissue. Moreover, even in presence of active 

transcription from that gene locus, we cannot exclude that allelic imbalance 

occurs, leading to very low (or conversely abundant) fraction of mRNA 

carrying that specific mutation. Clearly, it directly influences the protein 

product and, therefore, the altered (or not) function of the given protein. 

As RNA-Seq is a sequencing-based approach and we have computationally 

identified mutations in these nucleotide sequences, we expected that all 

mutated genes were expressed in our datasets. Thus, the next step was to 

predict the effects of these new mutations on translated protein, using in silico 

methods. 
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In detail, our analysis revealed that the nucleotide change C1639T in E3 

ubiquitin protein ligase CBL leads to P547S amino acidic change, which 

occurs in a proline stretch (PPPPPPDR) of the Proline-rich domain of Cbl 

protein (Figure 3.4 panel A). Since the mutated residue is smaller and less 

hydrophobic than the wild type it is predicted to affect local folding. Moreover, 

the proline stretch in this domain is highly conserved in homologous 

sequences along the evolutionary scale, and neither the mutant nor other 

residues have been observed at this position. Thus, conservation analysis and 

structural scores indicate the mutation as damaging. 

The glycine-to-serine (G1091S) mutation in Notch1 involves a conserved 

glycine in a highly-conserved functional region, the EGF-like domain 28 

(Figure 3.4 panel B). Sift and Polyphen scores indicate this mutation as very 

damaging for protein functionality. Indeed, wild-type and mutant residues differ 

in size, charge and hydrophobic properties.  

The glutamic-acid-to-glycine (E549G) mutation in the phosphoinositide-3-

kinase regulatory subunit 4 (PI3KR4) falls in a highly conserved "Armadillo-

like helical" domain (Figure 3.4 panel C). This multi-helical fold, with extensive 

solvent-accessible surface, is suited to bind large substrates such as proteins 

and nucleic acids. The wild-type and mutant amino acids have different 

electric charge and hydrophobic properties; moreover the presence of glycine 

- instead of glutamic acid - is predicted to significantly reduce chain rigidity. In 

silico data indicate that the mutation is potentially damaging to PIK3R4 

activity. 

The arginine-to-cystein mutation in SMARCA4 occurs in a critical functional 

region (Figure 3.4 panel D), the bromodomain (BRD). Structural 3D analysis 

revealed that the wild-type residue (arginine) forms salt bridges with Asp1506, 

Glu1512 and Asp1528 and that the mutated residue loses these interactions 

(Figure 3.4 panel D). 
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Figure 3.4. New mutations in PTC. In figure are schematized the genomic localization and 

the exon/intron structure of each mutated gene. In each panel, the ectropherogram shows the 

nucleotide variation identified by RNA-Seq, and the protein graphic representation shows the 

functional domains affected. In panel D, a detail of the three-dimensional structure of 

SMARCA4 bromodomain highlights the salt interactions among wild-type residue (colored in 

green) and the surrounding amino acids (colored in orange). These interactions are lost in the 

mutated protein (the mutated residue colored in red).  

 

3.2.5 WNK1-B4GALNT3: identification of a novel gene fusion 
Another aim of this study was the identification of new oncogenic driver gene 

fusions in papillary thyroid carcinoma. After applying two different algorithms 

to detect fusion genes from RNA-Seq data, I obtained 6 different fusion 

candidates identified by both software, specifically expressed only in tumor 

thyroids and with a positive prediction score (Table 3.4). 
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5’ Gene 3’ Gene 5’Chr 3’ Chr Number of samples 

CCDC6 RET 10 10 5 

NCOA4 RET 10 10 1 

PAX8 PPARG 2 3 1 

ETV6 NTRK3 12 15 1 

WNK1 B4GALNT3 12 12 1 

KANSL1 ARL17A 17 17 4 

 
Table 3.4. Filtered gene fusions identified in our RNA-Seq datasets. 

 

As stated before, computational analysis of chimeric transcripts revealed the 

presence of known gene fusions (CCDC6-RET, NCOA4-RET, PAX8-PPARG 

and ETVN6-NTRK3).  

Moreover, we identified other two fusions: WNK1-B4GALNT3 chimeric 

transcript in one patient negative for known PTC-causing genetic alterations 

and KANSL1-ARL17A in 4 patients. After visual inspection and literature 

search, the KANSL1-ARL17A fusion was discarded because it is part of a 

known polimorphic region that often undergoes benign genomic 

rearrangements. 

Thus, we focused on WNK1-B4GALNT3 chimeric transcript. RNA-Seq data 

indicated that the new chimeric transcript originates by fusion of the exon 1 of 

WNK1 and the exon 2 of B4GALNT3 (Figure 3.5). RT-PCR, cloning and 

Sanger sequencing confirmed the fusion breakpoint in the transcript. 

Interestingly, in the PTC biopsy of the positive patient we observed 2 different 

splicing isoforms of this fusion gene: the longest one formed by the fusion of 

exon 1 of WNK1 gene and exon 2 of B4GALNT3 gene, and a shorter isoform, 

skipping the exons 2 and 3 of B4GALNT3, and thus constituted by a fusion 

between the exon 1 of WNK1 and the exon 4 of B4GALNT3 (Figure 3.5). 

Notably, sequence and ORF analysis revealed that the longest fusion 

transcript is out-of-frame, whereas the alternative isoform keeps the ORF 

intact (Figure 3.6 panel B). We demonstrated that this patient does not carry 

reciprocal gene fusions. In addition, since RNA-Seq indicated that the 

canonical mRNAs of WNK1 and B4GALNT3 genes are actively transcribed in 
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this patient, we confirmed it by RT-PCR (Figure 3.6 panel A). Using the same 

approach, we validated the absence of gene fusions in negative patients 

(Figure 3.6 panel A). 

Analysis of expression levels - measured as fragments per kilobase of exon 

per million fragments mapped (FPKM) - of each individual gene (WNK1 and 

B4GALNT3) was performed on patient samples from RNA-Seq reads. 

Expression levels of WNK1 were distributed in a range starting from 110.3 

FPKM up to 199.6 FPKM. In the patient carrying the fusion, its expression was 

191.1 FPKM. On the other hand, expression levels of B4GALNT3 gene were 

between 9.2 and 56.4 FPKM, in the positive sample harboring the gene fusion 

it was 122.7 FPKM. Thus, in line with the over-expression of RET, PPARG 

and NTRK3 in patients with gene rearrangements, RNA-Seq data showed 

B4GALNT3 over-expression in this patient (p <0.05; Figure 3.2). The 

expression of WNK1 was not affected. 

Fusion partners map on chromosome 12 (chr12p13.33), are transcribed from 

the same strand (5'-3' orientation) and are separated by ∼220 Kb (Figure 3.5). 

It indicates that the fusion derives from an intrachromosomal paracentric 

rearrangement. We could not identify in this patient, or in other patients of the 

discovery cohort, additional fusions involving genes mapping in the same 

genomic region. 
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Figure 3.5. Schematic representation of the localization of the fusion partners, WNK1 and 

B4GALNT3, on chromosome 12. The exons of WNK1 and B4GALNT3 genes that are 

involved in the fusion are indicated in red and grey, respectively. The RNA-Sequencing reads 

that map across the fusion breakpoint are shown in the black box. The red arrow indicates the 

exact fusion breakpoint. 

 

 
Figure 3.6. A) RT-PCR validation of the WNK1-B4GALNT3 fusion performed on the RNA of 

18 PTC samples of the discovery cohort. B) Schematic mRNA structure of the two isoforms of 

WNK1-B4GALNT3 fusion gene. The electropherograms show the nucleotide sequences of 

the breakpoint (indicated by red arrows). 
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3.2.6 WNK1-B4GALNT3 in colon cancer sample 
Recently, Huang’s group published two papers about the up-regulation of 

B4GALNT3 gene in colon cancer. Briefly, they observed the up-regulation of 

this gene in ~ 70% of tissues deriving from colon cancer biopsies. Moreover 

they demonstrated that the over-expression of this gene enhances the 

malignant phenotype of colon cancer cells and modulate cancer stemness 

through EGFR signaling pathway (Huang et al., 20XX; Che et al., 2015). 

These results encouraged us to search for the same gene fusion in colon 

cancer patients, in order to explain B4GALNT3 over-expression. I performed 

RT-PCR on cDNAs deriving from 22 paired tissues (colon cancer tumor and 

healthy tissues counterparts). The analysis revealed the presence of WNK1-

B4GALNT3 fusion in one tumor sample, but not in its healthy counterpart, 

indicating the somatic nature of this event.  
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3.3 Discussion  
 
The first part of my PhD thesis describes the analysis of genetic alterations 

(mutations and rearrangements) in 18 PTC samples. During this analysis we 
identified a novel gene fusion, new somatic mutations in well-established 

cancer driver genes and known mutations (reported in other cancer types) not 

yet described in PTC (Costa et al., 2015, published on Oncotarget). 
We confirmed that driving somatic mutations (BRAFV600E and RASQ61R) and 

rearrangements (RET/PTC) are mutually exclusive in PTC. 

Interestingly, the new WNK1-B4GALNT3 fusion has been identified in a 

patient negative for known driver events in PTC. Noteworthy, a significant 

over-expression of B4GALNT3 gene was found in this patient, whereas the 

expression of the fusion partner was not affected (Figure 3.2). B4GALNT3 has 

been described both as tumor suppressor in neuroblastoma (Hsu et al., 2011) 

and as oncogene in the colon cancer. Huang and colleagues in their work 

observed that B4GALNT3 over-expression increases the malignant phenotype 

of colon cancer cells through enhanced integrin and MAPK signaling (Huang 

et al., 2007). Similarly, Che and colleagues (2014) described that its 

expression positively correlates with metastasis and poor survival in patients 

with colorectal cancer. The identification of this new fusion gene involving 

B4GALNT3 suggests a new role of B4GALNT3 as oncogene also in PTC. 

Clearly, we need to expand our patients' cohort - particularly focusing on the 

about 30% of PTC cases without any known genetic etiology - in order to 

assess the frequency of this new rearrangement in the PTC. Moreover, further 

in vitro studies in thyroid cancer cell are necessary to definitely clarify the role 

of B4GALNT3 over-expression in the etiology of PTC. Indeed, B4GALNT3 

over-expression may play a crucial role in promoting malignant behaviors of 

thyroid cancer, like cell adhesion, migration, and invasion, similarly to colon 

cancer.  

Notably, the PTC patient positive for WNK1-B4GALNT3 fusion also carries a 

somatic mutation in DICER1, a well-established cancer driver gene. The 

mutation DICER1E1813G - never described till now in PTC - affects the metal 

binding site of RNase IIIb domain and has been recently identified as somatic 
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variation in non-epithelial ovarian cancers (Heravi-Moussavi et al., 2012). This 

is a very relevant finding as Heravi-Moussavi and colleagues observed an 

impaired RNase IIIb activity and retention of RNase IIIa activity in tumors with 

the mutation DICER1E1813G. The altered DICER1 activity in the RNase IIIb 

domain could arise an oncogenic miRNA profile in patients carrying this 

mutation. Since specific miRNAs are crucial in cell differentiation and cell-fate 

determination, aberrant miRNA processing resulting from DICER1 mutations 

could be considered a key oncogenic event.  

We also found another mutation in the oncogene MET (E168D). The mutation 

falls in the SEMA domain, crucial for the interaction with plexins, and it has 

been previously described in small cell lung cancer (Ma et al., 2003). 

Interestingly, this mutation impairs the affinity for HGF and alters MET 

functionality (Ma et al., 2003). However, this is the first time that such mutation 

is described in PTC. The c-MET Sema domain is conserved among all 

semaphorins and is also found present in the semaphorins receptors that are 

plexins. Semaphorins are a large family of secreted and transmembrane 

signaling proteins regulating neuronal axonal guidance and mediating 

scattering signaling in epithelial cells.  Interestingly, semaphorin signaling may 

have a role in tumor progression, it would be useful to further determine the 

functional implication of the E168D mutation in PTC. 

We also identified a nucleotide variation in ATM gene. Although we could not 

verify if it is a somatic or germline variation due to the lack of the healthy 

tissue counterpart, we could exclude it to be a SNP. This finding is relevant 

since PTC is the most frequent radiation-sensitive tumor, and ATM is a 

fundamental kinase that triggers the DNA damage checkpoint, determining 

cell cycle arrest, DNA repair or apoptosis. 

Interestingly, starting from RNA-Seq data we could also discover a completely 

new somatic NOTCH1G1091S mutation in a patient negative for BRAF/RAS 

mutations and RTKs rearrangements. Many NOTCH1 driver mutations have 

been reported in hematopoietic tumors, head and neck squamous cell 

carcinoma and other malignancies (Sharma et al., 2013). The presence of 

inactivating mutations indicates this gene as tumor suppressor, rather than 
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oncogene, in solid tumors (Sharma et al., 2013; Yamashita et al., 2031). 

Interestingly, most of the mutations in solid tumors are clustered within EGF-

like repeats. Accordingly, the newly discovered NOTCH1G1091S mutation falls 

in the EGF-like domain 28 and affects a highly conserved residue. Although 

3D model revealed this domain does not directly bind Notch ligands, Sharma 

and colleagues reported it to interact with EGF-like 11-15 domains, crucial for 

receptor activity (Sharma et al., 2013). Thus, this mutation may affect Notch1 

protein functionality and Notch signaling that is directly linked to PTC cell 

proliferation (Yamashita et al., 2013). These data suggest that this pathway 

should be taken into account as adjuvant therapy for treating PTC, when 

NOTCH1 is mutated. The same mutation co-occurs with two low-frequency 

mutations (TSHRI568F and FLT3D324N) previously reported in PTC. 

Additional mutations have been discovered in BRAF- and RAS-mutated 

patients. Among these, CBLP547S was found in an HRAS-mutated patient. This 

mutation affects the proline-rich region, responsible of the binding with SH3 

domain of Grb2 protein that indirectly recruits it to RTKs via GRB2 adaptor 

protein (Tan et al., 2010). In lung cancer, mutations in CBL and in other driver 

genes usually co-occur (Tan et al., 2010). Interestingly, the same patient 

carried a new missense mutation in SMARCA4 gene, a tumor suppressor 

gene frequently mutated in lung cancer and small cell ovarian carcinoma 

(Jelinic et al., 2014; Medina et al., 2008). The mutation SMARCA4R1513C 

disrupts salt interactions with charged residues in the BRD domain, a 

functional domain that allows the recognition of acetyl lysine marks on H3 and 

H4 tails (Muller et al., 2011). SMARCA4 protein, associating with Rb proteins, 

induces cell cycle arrest through HDAC-dependent transcriptional repression. 

Mutations, rearrangements or over-expression of BRD-containing proteins 

have been reported in tumors, and BRD inhibitors have been developed to 

induce cycle arrest and apoptosis of carcinoma cells (Muller et al., 2011). 

Therefore, a similar pharmacological approach could be adopted in the 

treatment of PTC cases with SMARCA4 mutations.  
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4 Genome-wide analysis of lncRNAs involved in 
papillary thyroid carcinoma 
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4.1 Methods 
	  

4.1.1. Ab initio assembly  
Reads aligned with TopHat were assembled into sample-specific 

transcriptomes with Cufflinks, version 2.0.2 (Trapnell et al., 2012). Cufflinks 

assembles exonic and splice-junction reads into transcripts using their 

alignment coordinates. The option –g (–GTF-guide) was used with Gencode 

v19 human reference genes in GTF format. This option, when provided, tells 

Cufflinks to use the supplied reference annotation to guide the assembly. 

Reference transcripts are tiled with faux-reads to provide additional 

information in assembly. Output include all reference transcripts as well as 

any novel genes and isoforms that are assembled. Moreover, to limit false 

positive assemblies we used a maximum intronic length of 300kb, 

corresponding to the 99.93° percentile of known introns. The other parameters 

were default.  

The resulting GTFs were merged using Cuffmerge, version 2.0.2 (Trapnell et 

al., 2012), using option –g Gencode v19 human reference genes in GTF 

format as reference. Cuffmerge produces a GTF file, named merged.gtf, 

which merges together the input assemblies. Finally in order to compare, for 

each sample, assembled transcripts to the reference annotation, we used 

Cuffcomapare tool version 2.0.2 to distinguish known and novel transcripts. 

Cuffcompare produces different output files. In particular the .traking file 

matches transcripts up between samples. Each row contains a transcript 

structure that is present in one or more input GTF files. Cuffcompare 

examines the structure of the transcripts, matching transcripts that agree on 

the coordinates and order of all of their introns, as well as strand. Matching 

transcripts are allowed to differ on the length of the first and last exons, since 

these lengths will naturally vary from sample to sample due to the random 

nature of sequencing. This file contains also, for each assembled transcript, a 

“class code”, which indicates the type of match between the transcripts 
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considered and the reference transcript. Because of the lack of strand 

specificity in the sequencing protocol, we focused exclusively on intergenic or 

antisense lncRNAs without exon shearing with protein coding genes, by 

filtering out all transcripts showing any overlap with protein coding genes. 

Thus, we selected novel transcripts with “class clode” = “u” or “class clode” = 

“x”, which indicate unknown intergenic or antisense transcripts.  

 

4.1.2 Identification of novel lncRNAs 
Using the output of Cuffcompare, only putative novel transcripts with at least 

two exons were retained; this step is necessary for a stringent analysis and to 

filter a lot of false positive novel transcripts. The GTF annotation file, 

containing the annotation of novel lncRNAs, was converted in FASTA format 

by using the online platform Galaxy (https://usegalaxy.org). The resulting file, 

was used as input for the software CPAT version 1.2.2 (Wang et al., 2013), in 

order to check the protein-coding potential of the novel transcripts. For each 

analyzed transcript, CPAT returns the length in bp and a score, defined 

"potential coding". Since lncRNAs are described as transcripts longer then 

200 bp, novel reconstructed transcripts were filtered for minimal length of 200 

bp. Moreover, we selected transcripts with a potential coding less then 0.364 

(threshold recommended by CPAT software developers to discriminate 

between coding and non-coding transcripts). The annotation file, containing 

the novel lncRNAs was uploaded on UCSC genome browser, for immediate 

data visualization. 

 

4.1.3 Expression analysis 
Read counts were then calculated per gene from the alignment bam files 

using HTSeq (v0.5.4p2) with options -m union --stranded no. As transcript 

annotation reference was used the GTF file containing Gencodev19 

annotation supplemented with the GTF file of novel lncRNAs expressed in 

thyroid tissue.  Genes were then filtered for minimal expression (mean counts 

>= 5 across all conditions). 
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Using the output of Cuffcompare, the transcripts were classified into 3 

categories: known mRNAs, known lncRNAs (Gencode version19 annotation 

as reference) and novel lncRNAs. 

Differential expression analysis. Data counts were fitted to a statistical model 

based on the negative binomial distribution using the R package EdgeR 

(Robinson et al., 2010), which is useful for detecting significant RNA-Seq 

variation with biological replicates (Anders and Huber, 2010b). To perform the 

normalization and differential expression analysis, raw read counts per gene 

were normalized to the relative size of each library. The difference between 

the means of tumor vs non-tumor samples and the means of BRAF-like vs 

RAS-like samples was then calculated using a negative binomial test.  

For each gene, ‘adjusted p-value’ (also known as q-value) has been 

calculated to calculate the expected false discovery rate (FDR) (i.e. the 

proportion of positives returned which are false positives) to control differential 

expression. Thus, p-values were adjusted for multiple comparisons using the 

Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Genes with an 

adjusted p-value of <=0.05 were considered to be differentially expressed. 

Finally, pathway and gene ontology analysis was performed using DAVID 

Functional Annotation Tool (https://david.ncifcrf.gov/).  

 

4.1.4 Selection of novel lncRNAs 
Since it is known that lncRNAs can act in cis regulating the expression of 

neighbor protein coding genes, in order to select cis-acting lncRNAs, we 

associated each lncRNA to the nearest protein-coding gene. 

CPAT output file was converted in BED format to extract the coordinates of 

transcription start sites (TSSs) of novel lncRNAs. The BED file - with TSS 

genomic coordinates of all the genes (both coding and non-coding) annotated 

in GENCODEv19 - was downloaded from the tool "Table Browser" of UCSC 

genome browser (www.genome.ucsc.edu).  

Thus, we associated TSS of both known and novel lncRNAs to the TSS of the 

closest protein-coding gene by using the function "closestBed" of BedTools. 

This analysis allowed us to identify gene-lncRNAs pairs. 
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Furthermore, in order to assess whether new putative lncRNAs could play a 

role in the pathogenesis or progression of PTC, only pairs with differentially 

expressed genes and differentially expressed lncRNAs have been selected. 

This list was intersected with a list of genes with a proven role in different type 

of cancer and defined as “cancer driver genes”. For this purpose, we used a 

list of 114 driver genes published by Vogelstein and colleagues (Vogelstein et 

al., 2013).  

 

4.1.5 Subcellular fractionation 
To further detect the cellular location of lncRNA MET-AS, cytosolic and 

nuclear fractions of thyroid cancer cell lines TPC-1 were isolated and collected 

Cytoplasmic and Nuclear RNA Purification Kit (Norgen, Biotek, Corp) as the 

manufacturer’s instructions. After that, total RNA was extracted from the 

collections of both cytoplasm and nucleus and cDNA was synthesized for the 

evaluation of MET-AS. PPIA and U2 non-coding RNA gene were used as 

control of cytosolic and nuclear fractions, respectively. 

 
Table 4.1. Primer used for cytosolic, nuclear and chromatinic fractions. 

 Forward Reverse 

PPIA TACGGGTCCTGGCATCTTGT GGTGATCTTCTTGCTGGTCT 

U2 CATCGCTTCTCGGCCTTTTG TGGAGGTACTGCAATACCAGG 

 

4.1.6 Chromatin states 
To analyze the presence of chromatin marker peaks at promoters, we used 

available public data published as part of the ENCODE project (The ENCODE 

Project Consortium, 2012), and downloadable from table browser of UCSC 

Genome Browser (www.genome.ucsc.edu). A marker was considered present 

if a non-empty intersection could be detected between the TSS of lncRNA 

region and a marker peak, in any of the replicates. The intersections were 

detected using the window command of the BEDTools program (Quinlan and 

Hall, 2010), version 2.17.0, with option -w 1000. 
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4.1.7 RT-PCR and quantitative Real-Time assays 
Previously isolated RNA samples (1	   µg) were reverse transcribed using 

SuperScript II Reverse Transcriptase with oligo dT primers (Invitrogen, 

Carlsbad, CA, USA) according to manufacturer’s instructions. To check the 

amplifiable template RNA/cDNA, RT-PCR amplification of a housekeeping 

gene (Peptidylprolyl Isomerase A, PPIA) was performed in all samples. Each 

amplification reaction was set-up using AmpliTaq Gold (Life Technologies, 

Carlsbad, CA, USA). PCR products were analyzed by electrophoresis on 

agarose gel at 1.5%. Then cDNAs obtained were used as tamplate for 

Quantitative Real Time PCRs (qRT-PCR). 

All quantitative qRT-PCRs were performed on the CFX Connect Real-Time 

PCR Detection System (Bio-Rad). For mRNA quantification, 10 µL final 

volume reaction mix was prepared using 1 µL cDNA from 1/5th of RT reaction 

with 5 µL iTaq Universal SYBR Green Supermix (Bio-Rad) and 0.4 µL of each 

primer (10 µM). After an initial polymerase activation step at 95°C for 2 min, 

40 2-steps cycles of amplification were run at 95°C for 5 sec and 60°C for 30 

sec. Melt-curve analysis was performed from 65°C to 95°C with a 0.5°C 

increment and 5 sec/step to verify PCR product specificity. The housekeeping 

PPIA gene was used as reference gene for data normalization and relative 

gene expression was measured with the 2-ΔΔCt method, comparing the Ct 

values of the samples of interest with the control.  

Gene specific primers used for quantitative Real-Time amplification of mRNAs 

and lncRNA are listed in Table 2. 
 

Table 4.2. Primers used for qRT-PCR 

 Forward Reverse 

MET TCTGCCCCACCCTTTGTTCA ATCCAAAGTCCCAGCCACATA 

MET-AS TAACATAAATCCGCAAATCACA GTGGGACCTCAAAGCCTAT 

PPIA TACGGGTCCTGGCATCTTGT GGTGATCTTCTTGCTGGTCT 
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 4.1.8 Cell culture 
TPC-1 human papillary thyroid carcinoma cell line was kindly provided by 

Prof. Alfredo Fusco. Cells were grown in Dulbecco's modified Eagle's medium 

(DMEM) supplemented with 10 % fetal bovine serum (FBS). 2mM glutamine, 

100 units/mL penicillin and 100 units/mL streptomycin. Cultures were 

maintained at 37°C and 5% CO2. 

 

4.1.9 RNA interference 
RNA interference transfection in TPC-1 cell line was carried out using 

Oligofectamine transfection reagent (Life Technologies) according to the 

manufacturer's protocol. Approximately 6x104 cells were plated in six-well 

plates overnight. The next day, the cells were transiently co-transfected with 2 

different custom designed short interference RNAs (50 nM) targeting 3’ MET-

AS and with a control siRNA purchased from Origene (Figure 4.1). The 

transfected cells were harvested at 24, 48, and 72 h for further analyses. The 

efficiency of the siRNA transfection showed a significant reduction in MET-AS 

RNA expression level (P<0.001). Each assay was carried out in triplicate in at 

least three independent experiments.  

 
 
Figure 4.1. Duplex siRNAs sequence 

4.1.10 Cell Cycle analysis 
Seventy-two hours after transfection, cells were harvested and fixed in 70% 

pre-cooled ethanol. Then they were treated with RNAase A 50 µg/ml for 30 

siRNA_1 

siRNA_2 
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minutes and then stained with 50 µg/ml of propidium iodide (PI). Their DNA 

contents were analyzed by flow cytometry on a FACS system (Becton 

Dickinson FACSCanto A). The percentage of cells in each cell cycle phase 

was used as indications of cell cycle progression. 

 

4.1.10 Cell viability assay 
2x10^3 TPC-1cells were plated in 96-well white opaque plates. Viable cell 

growth was measured using the Cell Titer-Glo luminescent cell viability assay 

kit (Promega) according to manufactures’ instruction after 24, 48 and 72 

hours.  

4.1.11 Statistical analysis 
All experiments were repeated at least in triplicate. All data were presented as 

the mean±standard error of the mean. A statistical significance was 

determined by a Student’s t test, and the differences with p-values of < 0.05 

were accepted as statistically significant. 
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4.2 Results 

4.2.1. Global gene expression of papillary thyroid carcinoma 
We first characterized global gene expression in papillary thyroid samples 

through the analysis of both the coding and non-coding transcriptome. 

Moreover, we set up a computational workflow, depicted in Figure 4.2, to 

identify novel lncRNAs that are potentially able to modulate (and/or interfere 

with) the expression of cancer driver genes. 

Low abundance and condition- (i.e. tumor-) specific transcripts may be lost or 

underestimated in standardized analyses, and particularly lncRNAs that 

exhibit high tissue-specificity and transcriptional levels that are generally lower 

than protein-coding genes. Thus, we first applied a de novo transcript 

assembly procedure by using Cufflinks (version 2.0.2) on mapped reads of the 

22 RNA-Seq datasets from thyroid biopsies to define a thyroid model 

transcriptome. Using Cuffmerge tool (version 2.0.2) the transcriptome of each 

sample was merged and then compared to Gencodev19 annotation by using 

Cuffcompare (version 2.0.2). 

As we aim to systematically and extensively study the lncRNA fraction, both 

annotated and novel, we computationally selected new transcripts resulting 

from Cuffcompare output that were multi-exonic, with a coding potential 

<0.364 (according to CPAT parameters) and longer than 200 nt. Moreover, we 

selected only new transcripts that do not overlap already annotated loci. The 

resulting GTF annotation file, containing 454 novel putative lncRNAs was 

added to Gencode v19 annotation GTF, in order to obtain a complete 

annotation file of the thyroid transcriptome. This novel transcriptome model 

was used to quantify gene expression in all 22 PTC samples (Figure 4.2) 
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Figure 4.2. Pipeline of gene expression data analysis. The first step of the analysis, consisted 

in de novo assembly of TopHat output alignment file. To identify novel un-annotated lncRNAs, 

only multi-exonic transcripts longer than 200 bp and without potential coding were selected. 

Reads count was performed with HTSeq; analysis of differentially expressed genes was 

performed with EdgeR. 

 

This analysis reconstructed 18137 multi-exonic transcripts, of which 15404 

correspond to Gencode v19-annotated protein-coding genes (Figure 4.3). 

Moreover, our lncRNA annotation pipeline identified 2733 multi-exonic 

lncRNAs (>200 bp). There were 2279 Gencodev19-annotated lncRNAs and 

454 novel unannotated lncRNAs, encompassing all known lncRNA locus-

types (Figure 4.3).  
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Figure 4.3. Pie chart showing composition of PolyA+ transcriptome, Gencode mRNAs (blue) 

Gencode long non-coding RNAs (orange) and novel long non-coding RNAs (red). Transcript 

numbers in each group are indicated. 

 

To verify the non-coding nature of our novel lncRNA candidates, we used the 

CPAT-coding potential score and found that these novel transcripts have 

minimal protein-coding potential, comparable with Gencode-annotated 

lncRNAs (Figure 4.4). Furthermore, novel lncRNAs and Gencode lncRNAs 

were expressed at significantly lower levels than coding genes (Figure 4.4). 

 

 
Figure 4.4. On the left, the kernel density plots of transcripts' abundance indicate that novel 

lncRNAs behave a distribution similar to already annotated ones, confirming the bona fide of 

de novo assembly and of the criteria chosen for the selection of such transcripts. On the right, 

CPAT-coding potential score of the three categories were plotted.  

 

4.2.2 Differential expression analysis 
Further analysis of differential expression at a false discovery rate (FDR) of 

<0.05 revealed that 3686 genes are significantly deregulated in PTC 

compared to healthy thyroids, 2901 (1332 up-regulated and 1569 down-

regulated) of which are Gencodev19-annotated protein coding genes, 402 

(142 up-regulated and 260 down-regulated) are Gencodev19-annotated 

lncRNAs and 109 (49 up-regulated and 60 down-regulated) are newly 
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identified lncRNAs (Figure 4.5). Unsupervised hierarchical clustering of the 

normalized expression values for protein-coding, annotated and novel 

lncRNAs segregates PTCs from healthy thyroids, indicating that also lncRNAs 

can be considered potential PTC biomarkers (Figure 4.5).  

 
Figure 4.5. Heatmaps showing hierarchical clustering of differentially expressed transcripts 

within the three RNA classes comparing PTC and normal thyroids. 

 

Taking into account gene expression of all detected protein-coding genes, 

pathway analysis revealed that the most affected pathways were cell cycle, 

axon guidance, p53 signaling and cytokine-cytokine receptor interaction, in 

line with the cancer phenotypes (Figure 4.6).  
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Figure 4.6. Cell cycle (upper panel) and p53 signaling (lower panel) affected pathways in 

papillary thyroid samples. Red stars indicate differentially expressed genes. 

 

Recently, the seminal work of The Cancer Genome Atlas (TCGA) Research 

Network, published only few months before our Oncotarget publication (Costa 

et al., 2015), has defined a peculiar gene expression signature in samples 

mutated in BRAF and RAS genes. Mutually exclusive driver mutations in 

BRAF and RAS genes determine the differential signaling consequences on 

the activation of MAPK and PI3K signaling. Patients with BRAF mutations 

have a major activation of MAPK pathway, compared to RAS-mutated 

patients, which present the hyper-activation of PI3K pathway (Cancer 

Genome Atlas Research Network, 2014). In light of these results, taking 

advantage of our RNA-Seq data, we correlated global gene expression 

profiles to known mutations and rearrangements. We confirmed that BRAF-

mutated and RET/PTC samples have very similar gene expression patterns 
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and that they differ from RAS-mutated patients (~2230 differentially expressed 

genes; FDR <0.05). 

Extending the analysis to PTC patients without any known mutation we found 

RAS- and BRAF-like gene signatures (Figure 4.7). These findings are in 

agreement with the notion the BRAFV600E and RET over-expression activate 

MAPK pathway more than HRASQ61R and with the recent results of TCGA 

Consortium (Cancer Genome Atlas Research Network, 2014). Indeed, we 

found a significant over-expression - in BRAF- vs RAS-like PTCs - of DUSP 

genes (DUSP2, DUSP5 and DUSP6) that are induced through the stimulation 

of ERK signaling via MAPK. Conversely, RAS-mutated patients over-

expressed anti-apoptotic genes, including BCL2. 

 
* * * * * * * 

	  	  

RAS-like BRAF-
like
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Figure 4.7. Heatmap of the hierarchical clustering of differentially expressed genes between 

BRAF-like and RAS-like PTC samples. Black bars indicate samples with point mutations in 

HRAS and BRAF genes. * indicates samples with RET gene fusions. 

 

Similarly, we divided differentially expressed genes between BRAF-like and 

RAS-like samples in protein-coding genes, annotated and novel lncRNAs 

(Figure 4.8). 

We found a signature of 202 lncRNAs (77 over- and 125 under-expressed) 

whose expression significantly differs when comparing BRAF- and RAS-like 

carcinomas. In detail, 59 over-expressed lncRNAs are annotated by Gencode 

and 18 are completely novel (Figure 4.8). On the opposite, 83 and 42 

(annotated by Gencode and novel, respectively) are down-modulated in 

BRAF-like vs RAS-like PTCs. 

This analysis confirms that, even using de novo assembled transcriptome, 

gene expression correlates to a specific mutation pattern rather than tumor 

staging, indicating that this class of ncRNAs could be implicated in the 

differential activation of MAPK or PI3K pathways according to the mutation 

pattern.  

 

 
Figure 4.8. Heatmaps showing hierarchical clustering of differentially expressed transcripts 

within the three RNA classes comparing BRAF-like and RAS-like tumors. 
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4.2.3 Identification of new long non-coding RNAs altered in PTC 
Finally, to identify lncRNAs with aberrant expression in PTC that may act in 

cis, modulating the expression (i.e. activate and/or interfere with) of neighbor 

protein-coding genes, we defined pairs of genes and lncRNAs that are 

localized in close proximity using the "nearest transcription start site" (TSS) 

method, as schematized in Figure 4.9. 

 
FIGURE 4.9. TSSs of lncRNAs were “associated” to TSSs of nearest protein coding genes. 

 

Subsequently, comparing the transcriptome of tumor and healthy thyroid 

samples we selected only differentially expressed genes associated to newly 

identified differentially expressed lncRNAs. Using this approach we could 

identify 365 lncRNAs-protein coding gene pairs. Moreover, in order to identify 

lncRNAs potentially involved in cancer, we selected only the genes defined as 

“cancer driver genes” in a recent review of Vogelstein and colleagues 

(Vogelstein et al., 2013). Using this approach we found 5 pairs in which both 

the cancer driver gene and the lncRNA are differentially expressed in PTC 

samples: CHD4, EZH2, TSC1, CDKN2A and MET genes (Figure 4.10).  
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Figure 4.10. Venn diagram intersecting the differentially expressed genes associated to 

differentially expressed lncRNAs (in blue), and cancer driver genes (in yellow)  

 

Taking advantage of available RNA-Seq datasets (Aversa et al., 2015; Costa 

et. al 2010) and public RNA-Seq data of cell lines from the ENCODE Project 

we found that two of these gene-lncRNA pairs are likely to represent false 

positives, mainly corresponding to misannotated 3'UTRs and families of 

repeated sequences. Subsequently, we focused our attention on MET 

oncogene since it encodes for a tyrosine kinase receptor (c-Met) that interacts 

with the cytokine HGF/SF, acting on MAPK pathway, which is significantly 

affected in PTC. Other than mediating cell proliferation, c-Met has been 

demonstrated to increase tumor cell motility and invasion. In the thyroid, c-Met 

overexpression is postulated to play a role in tumorigenesis by conferring a 

more aggressive and invasive behavior to PTCs (Nardone et al., 2003). 

 

4.2.4 Characterization of a new lncRNA antisense to MET oncogene 
De novo transcriptome reconstruction from RNA-Seq data revealed that the 

novel lncRNA associated to MET oncogene maps on chromosome 7q31.2 

and, as shown in detail in Figure 2A, this transcript partially overlaps the 

DEGs  
novel lncRNA-associated  Cancer Driver Genes 
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GENCODE entries AC006159.3 and AC06159.4 (corresponding to the 

RefSeq LINC01510).  

As depicted in Figure 2A, de novo assembly revealed the presence of 4 

transcripts, 1 of which corresponds exactly to LINC01510. Another short 

transcript, here named LINC001510_var (Figure 4.11), derives from the 

skipping of LINC01510 exon 2. The remaining two lncRNA transcripts are 

constituted by 4 and 5 exons, respectively. The first exon of the longer 

isoforms is transcribed by the first intron of MET, but from the opposite strand, 

indicating that it is an antisense long non-coding RNA of MET oncogene. 

Thus, it was named MET-AS. We submitted and annotated these two 

transcripts in GenBank as MET-AS1 (GenBank LN812953) and MET-AS2 

(GenBank LN812954). 

Using a combination of RT-PCR, cloning and direct Sanger sequencing we 

could experimentally confirm their presence and their exon/intron structure. 

However, we also identified a longer transcript, with two additional exons 

(Figure 4.11), that we named MET-AS_L.  

We examined if the novel lncRNA can be specified by the presence of distinct 

chromatin marks and/or DNA methylation in the genomic region 

encompassing its TSS. In addition, as a relatively novel class of lncRNAs 

associated with active enhancer states able to modulate gene expression both 

in cis and trans has been discovered (i.e. enhancer-associated lncRNAs; 

Marques AC et al., 2013), we also scanned the TSS of this novel lncRNA for 

H3K27Ac, H3K4me1 and p300 epimarks. Taking advantage of freely available 

ENCODE ChIP-Seq and chromatin state segmentation data we found that 

MET-AS is characterized by marks of open chromatin, active enhancer states 

and transcription. The presence of such marks, together with the sequence-

based evidence of its transcription (RNA-Seq data and qRT-PCR), its length 

(>> 200 nt) and the lack of ORF suggest it is likely to be a novel enhancer-

associated lncRNA, whose expression is significantly deregulated in PTC.  
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Figure 4.11. MET and MET-AS locus. In black are shown 5 different isoforms of the novel 

lncRNA associated to MET oncogene. In blue are shown MET gene (the first two exons) on 

the right, and the annotated lncRNAs LINC015210 according to RefSeq annotation on the left. 

Boxes indicate in exons, dashed lines indicate introns. The three long isoforms of MET-AS 

have the first exon transcribed from the first intron of MET oncogene, but from the opposite 

strand. Thus, it is a novel antisense lncRNA of MET. In red boxes on the right are shown 

H3K27Ac, H3K4me1 and p300 epimarks overlapping the TSS of MET-AS. 

 

Using BLAT algorithm we found that all lncRNA transcripts of MET-AS locus 

are conserved in primates, but not in other vertebrates. Subsequently, to 

define the coding probability (CP) of these novel lncRNAs we analyzed the CP 

score and compared it to already known lncRNAs and protein-coding genes. 

The longest transcript of MET-AS is constituted by 1943 bp, has a maximum 

ORF length of 162 bp and reached a coding probability of 0.024, a score quite 

similar to XIST (CP score = 0.027) and ANRIL (CP score = 0.039), and very 

different from those of the protein-coding genes MET (CP score= 1) and 

BRAF (CP score =	  0.999).  

LncRNAs are preferentially localized in the nucleus (Derrien et al., 2012), 

where they can exert their functions (both in cis and in trans), even though 

they can also localize in the cytosolic fraction. Thus, to assess the intracellular 

localization of MET-AS we used the RNA fractionation coupled to RT-PCR in 

TPC-1 thyroid cell line. The analysis revealed that MET-AS has a preferential 

enrichment in the cytosolic RNA fraction (Figure 4.12).  

Moreover, in order to test the tissue-specificity of MET-AS we attempted to 

amplify this gene in different cancer cells and cell lines. We used different 

cDNAs available in our laboratory retro-transcribed from both non-tumorigenic 

epithelial cell lines (i.e. HEK293, MCF10) and tumorigenic cell lines (i.e. MCF7 
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and MDA-MB-231 from breast cancer, Caco-2 from colorectal 

adenocarcinoma and J82 from bladder cancer). Interestingly, we were not 

able to detect the longer isoforms of MET-AS in these cell lines.  

 
Figure 4.12 Agarose gel showing the cytosolic localization of MET-AS 

4.2.5 Both MET and MET-AS expression highly correlates with somatic 
alterations in PTC 
As previously stated, both MET and MET-AS are differentially expressed in 

PTCs compared to healthy tissues.  

Taking advantage from RNA-Seq data, we analyzed the expression of MET-

AS and its sense gene in thyroid samples. The expression of MET and MET-

AS shows the same trend in all the analyzed samples although – in line with 

other independent studies on antisense lncRNAs - the expression of MET-AS 

is clearly lower than MET (Figure 4.13). Furthermore, this analysis indicated 

that the samples defined as BRAF-like show a significantly higher expression 

of both genes compared to RAS-like and control samples (Figure 4.13). 
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Figure 4.13. Scatter chart with CPM values (y axis) from RNA-Seq data in 22 samples 

showing MET and MET-AS expression in PTC samples. These genes are over-expressed in 

BRAF-like (in red) compared to RAS-like (in black) PTCs and control thyroids (in gray). 

 

Subsequently, these results have been validated by qRT-PCR on an 

independent cohort of 46 PTC tissues and 11 normal tissues types. More in 

detail, as we found a significant association between the mutational status and 

the expression of this gene-lncRNA pair, we first characterized the mutational 

status of each tumor samples screening them for the mutations BRAFV600E, 

and in codons 12, 13 and 61 of HRAS and KRAS genes, and for the presence 

of RET rearrangements. From this analysis we could classify the patients in 

BRAF-like (n=28) or RAS-like (n=18). Then, MET and MET-AS expression 

was evaluated in the three groups of samples: BRAF-like, RAS-like and 

Control thyroids (Figure 4.14). 

	   	  MET MET-AS 
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Figure 4.14. qRT PCR for  MET gene and the novel lncRNA MET-AS. BRAF-like group is 

indicated by yellow boxes, RAS-like and control groups are indicated in light blue and green, 

respectively. All experiments are normalized to PPIA gene.  

 

Real-Time PCR confirmed RNA-Seq data. Both MET gene and the novel 

lncRNA MET-AS are up-regulated (pval<=0.01) in the BRAF-like, compared to 

RAS-like and control groups.  

 

4.2.6 Regulating role of MET-AS on MET expression level 
Antisense lncRNAs are functionally very diverse. They can be regulators of 

gene expression acting as positive and negative modulators of protein-

coding genes. Since antisense lncRNAs usually regulate the expression of 

their sense genes we decided to use RNA interference to knockdown the 

expression of MET-AS and to measure MET expression. We used TPC-1 

(papillary thyroid carcinoma cell line carrying RET/PTC1). We co-transfected 

two different siRNAs targeting the 3’ region of MET-AS transcript and used a 

scrambled siRNA provided by the manufacturer (Origene) as negative 

control. The levels of MET-AS and MET have been then measured in these 

two cell lines 24, 48 and 72 hours after transfection. 

qRT-PCR assay in MET-ASsiRNA cells confirmed the knock-down of the 

lncRNA (Figure 4.15). Interestingly, MET-ASsiRNA cells also displayed a 

significant down-regulation of MET oncogene, at least at the mRNA level 
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(Figure 4.15). These results suggest that MET-AS may exert a positive effect 

on MET expression. 

 
Figure 4.15. We measured both MET-AS and MET by qRealTime-PCR. Expression values 

have been normalized using PPIA as housekeeping gene. The results indicate a down-

modulation of MET gene (pval<0.05) using siRNA for MET-AS compared to a siRNA control 

set to 1 in the graph, suggesting a putative role of the lncRNA on MET expression. N=5. 

 

4.2.7 MET-AS regulates cell cycle progression and cell proliferation 
The significant down-regulation of MET-AS in BRAF-like biopsies and cells 

prompted us to explore the potential biological functions of MET-AS in 

carcinogenesis. Therefore, we analyzed cell cycle by FACS analysis 72 hours 

after MET-AS knockdown, where MET mRNA levels were significantly down-

modulated (75-80% of MET reduction; pval<0.05). Interestingly, we found a 

significant decrease in the percentage of MET-ASsiRNA cells in S phase 

compared to control TPC-1 cells, transfected with scrambled siRNA cocktail 

(Figure 4.16). These results indicate that the down-regulation of the lncRNA 

MET-AS is able to induce a cell cycle arrest at the G1 phase through the 

negative modulation of MET oncogene. 
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Figure 4.16. Distribution of cells in each cycle phase. The percentage of cells in S phase was 

decreased in in cells co-transfected with 2 siRNAs targeting MET-AS. Control cells have been 

transfected with a scrambled siRNAs. *, p  <  0.05. N=3. 

 

Moreover, we investigated the effect of MET-AS knockdown on cells viability. 

As shown in Figure 4.17, in accordance to cell cycle results, co-transfection of 

siRNAs directed against MET-AS resulted in a time-dependent decrease in 

cellular proliferation compared to cells transfected with siRNA scrambled 

(indicated as “control” in Figure 4.17). 
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Figure 4.17. Reduction of MET-AS expression in TPC-1 cells using two independent siRNAs 

results in a significant decrease in cellular proliferation. The number of viable cells after the 

treatment was measured using the luminescent Cell Titer-Glo assay and expressed as 

percentage viable cells. Data represents the mean±standard error of the mean of three 

independent experiments (n=3), each of which was replicated four times.** indicats p-value < 

0.01; * indicates pvalue < 0.05. N=3.  
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4.3 Discussion 
 
Recently, the TCGA Consortium Network has demonstrated that distinct driver 

mutations in RAS and BRAF genes lead to striking differences in the 

activation of signaling pathways in papillary thyroid carcinomas. In particular, 

in patients with BRAFV600E mutation a preferential activation of the mitogen-

activated protein kinases pathway has been documented, whereas RAS 

mutations activate also the phosphoinositide 3-kinase pathways (Cancer 

Genome Atlas Research Network, 2014). 

Since the relative simplicity of the PTC genome, with few dominant mutually 

exclusive driving events, taking advantage of RNA-Sequencing we could 

confirm that BRAF- and RAS-mutated tumors have distinct gene expression 

profiles and that the expression patterns of PTC tumors carrying RET/PTC 

mutation behave very similar to those with BRAFV600E mutation.  

The analysis described in this section of the PhD thesis revealed that PTCs 

can be roughly classified in two main subgroups: BRAF-like and RAS-like. 

Such a classification is purely based on gene expression similarity of a given 

patient to samples with BRAF or RET/PTC alterations and RAS mutations, 

respectively. Interestingly, we found that gene expression is mostly correlated 

to specific genetic alterations rather than tumor stage, suggesting the 

importance of the genetic characterization of PTC patients. 
Moreover, since the discovery of the transcription of thousands of long RNAs 

in eukaryotic genomes with no clear coding potential, one of the main 

challenges has been the understanding of the biological functions associated 

to these novel transcripts. Long non-coding RNAs are emerging as key 

regulatory components of gene regulatory networks. However, little is known 

about the roles of these molecules in disease-relevant organs. Leveraging the 

power of genome-wide sequencing techniques, joint to the effort of large 

consortia, like the ENCODE project, is quickly generating a comprehensive 

catalogue of lncRNAs involved in human diseases, and particularly in cancer. 

To date, several examples of lncRNAs able to influence the cellular 

transcriptional program have been described. They can act either at the pre-

transcriptional level by influencing the chromatin remodeling (Tsai et al., 2010, 
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Gupta RA, et al.; 2010) or at the post-transcriptional level by controlling mRNA 

stability (Liu et al., 2012), cellular localization (Yang et al. 2011), or translation 

(Carrieri et al. 2012). Growing evidences are showing lncRNAs as important 

players in cancer, since they are able to regulate both tumor-suppressor and 

oncogenetic pathways (Huarte and Rinn 2010). 

In light of these considerations, to address the rule of lncRNAs in papillary 

thyroid cancer we have systematically identified and characterized the thyroid 

long non-coding transcriptome in both pathologic (i.e. papillary thyroid tumors) 

and physiological conditions (i.ie. healthy thyroids). My PhD project provides a 

genome-wide screening of lncRNA expression profile in PTC, revealing the 

presence of hundreds of novel still unannotated lncRNAs in thyroid. 

Furthermore, as largely described in the Results section, our bioinformatics 

analysis has revealed that thousands lncRNAs have a different expression 

patterns in PTC compared to noncancerous thyroids and that BRAF-like and 

RAS-like PTCs display significant differences in their expression. These 

results reinforce the idea that lncRNA are linked to the onset and/or 

progression of papillary thyroid cancer. In addition, this study also revealed 

the presence of new lncRNAs that are aberrantly expressed in papillary 

thyroid cancer and, therefore, may represent potential novel candidates to 

explore the cancerous process.  

Since lncRNA may act in cis and exert transcriptional activation or repression 

of genes transcribed from the same locus, the analysis focused on new 

differentially expressed lncRNAs that are transcribed in close proximity of 

differentially expressed protein-coding genes considered “drivers genes” in 

different types of cancers (Vogelstein et al., 2013), During this study, we 

identified 5 gene/lncRNA pairs potentially involved in the pathogenesis of 

papillary thyroid carcinoma. 

Of note, among them MET oncogene revealed to be the best candidate. It 

encodes a tyrosine kinase receptor for Hepatocyte Growth Hactor (HGF) also 

known as Scatter Factor (SF; Giordano et al., 1989; Naldini et al., 1991). HGF 

regulates proliferation and differentiation of epithelial and endothelial tissues 

of many organs, through the activation of different signaling pathways, 
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including that of MAPK and PI3K. Hepatocyte growth factor and MET control a 

complex biological program defined as “invasive growth” (Trusolino and 

Comoglio, 2002). This program coordinates cell proliferation with cell invasion, 

and provides protection from apoptosis usually occurring in cells removed 

from their physiological context. MET-driven invasive growth is a physiological 

program, taking place during embryonic development and post-natal tissue 

growth and regeneration (Birchmeier and Gherardi, 1998; Boccaccio and 

Comoglio, 2006; Trusolino et al., 2010). Alterations of the expression level of 

MET oncogene have been reported in a wide variety of human tumors, where 

it is involved in pathological invasive growth, leading to cancer aggressiveness 

and metastatic dissemination (Comoglio et al., 2008). Indeed, it was observed 

that tumor cells with aberrant MET expression show an increased ability to 

cross the endothelial barrier, are characterized by a strong uncontrolled 

proliferation, and have increased metastatic capacity (Trusolino et al., 2002). 

Furthermore, in thyroid, c-Met protein overexpression is postulated to play a 

role in tumorigenesis by conferring a more aggressive, invasive behavior to 

PTCs. Using a combination of computational and molecular biology, we could 

identify a new lncRNA antisense to MET oncogene and called herein MET-

AS. It produces at least five different alternative transcripts. The expression 

analysis showed that MET-AS and MET expressions are closely associated 

with a specific mutation profile. Indeed, PTC biopsies with BRAFV600E mutation 

or with rearrangements in the RET gene (BRAF-like) displayed a significant 

over-expression of both genes (MET and MET-AS) compared to samples with 

mutations in RAS, or to those with gene expression profiles similar to RAS-

mutated samples (Ras-like) as well as to non-tumor samples. 

These results suggest to further investigate if the altered expression of this 

new lncRNA could be related to the deregulation of MET, and thus if it might 

compromise its activity in the thyroid, potentially worsening tumor phenotype. 

  



	   106	  
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In conclusion, the results of this PhD project confirmed that RNA-Sequencing 

is a powerful approach to analyze gene expression profiles, gene fusions and 

even mutations in cancer. Clearly, one of the main limitations - beyond the 

technical aspect regarding the computational analysis - of using this 

application to profile the mutational landscape is that only variations in 

expressed genes can be reliably detected. Conversely, it is intuitive that DNA 

mutations occurring in "gene deserts" or within genes that are not expressed 

are often difficult to causally link to the phenotype under examination. 

However, it must be taken into account that most of the mutations responsible 

of tumor phenotype fall in actively transcribed genes and lead to the 

translation of mutated proteins. Data herein described also confirm the genetic 

heterogeneity of PTC and the possibility to stratify patients according to the 

driver mutations rather than tumor staging. Notably, using a combination of 

RNA-Seq and more standard targeted resequecing approach using Sanger 

methods, this work reliably identified a new gene fusion event involving 

G4GALNT3 gene, known to act as oncogene in colon cancer, as well as new 

mutations in candidate driver genes. In addition, where healthy thyroid 

counterparts were available, we could also validate these variations as 

somatic (DICER1 gene). 

Such findings pave the way to the development of new potential 

pharmacological adjuvant therapies in PTC, based on the presence of new 

affected pathways, such as Notch signaling and chromatin remodeling. 

Furthermore, this thesis has investigated new aspects of papillary thyroid 

cancer biology and has discovered genes not previously known. As such, the 

implications of this work are broad and suggest that numerous aspects of 

cancer biology remain still unrevealed. While it is now well known the 

functional importance of a variety of proteins in cancer biology, now the wide-

ranging reports of lncRNAs in multiple cell types raise new questions and 

challenges for the field of lncRNA research and cancer biology.  

In this regard, it is now established that lncRNAs expression signature can 

differentiate between tumors and the corresponding normal tissues (Yan et al., 
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2015). In line with this notion, unsupervised hierarchical cluster analysis of our 

samples distinctly differentiated PTCs from normal tissues, also indicating the 

presence of a "mutation- specific" lncRNA signature within tuomrs. Although 

we could not confirm the thyroid-specific expression of these lncRNA, a recent 

milestone study from Yan and colleagues (2015) has demonstrated that the 

fraction of lncRNAs displaying tissue-specific expression is about two-fold the 

one of protein-coding genes. This finding, together with other several reports 

from independent groups and Consortia, reveals that lncRNAs can be reliably 

considered new cancer biomarkers, with a predictive value higher than 

protein-coding genes. 

Overall, the second part of this PhD thesis describes the identification - 

through a combination of computational and experimental approaches - of a 

novel lncRNA, that we named MET-AS as it is transcribed antisense to MET 

oncogene. We found that this new lncRNA is up-regulated in a subgroup of 

papillary thyroid carcinoma patients, the BRAF-like patients, i.e. patients 

carrying BRAFV600E mutations or RET/PTC rearrangements as well as those 

with similar gene expression profiles. In this subgroup of patients we observed 

that the up-regulation of MET-AS co-occurred with high expression levels of 

MET, in line with the notion that constitutive activation of BRAF and RET 

genes significantly enhances and sustains MAPK pathway activation. 

MET oncogene up-regulation in PTC increases the malignant phenotype of 

thyroid cancer cells. Thus, our finding that MET-AS knockdown is able to 

reduce MET expression and to significantly reduce cell proliferation in a cell 

model of thyroid cancer is a promising result. 

Further studies should be carried to systematically investigate the detailed 

molecular mechanisms that causally link MET-AS to MET oncogene. 

However, the results described in this PhD thesis are likely to be promising, 

not only as we found new players of PTC etiology, but also because we have 

shown a combined computational and experimental approach that can be 

reliably extended to other cancer types as well as to study other human 

diseases. 
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