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Chapter I    Introduction to Metabolomics 

 

 

Metabolomics and metabonomics encompass the comprehensive 

profiling of multiple metabolite concentrations and their cellular and 

systemic fluctuations in response to drugs, diet, lifestyle, environment, 

stimuli and genetic modulations, in order to characterize the beneficial 

and adverse effects of such interactions. Metabolomics detect and 

quantify metabolites (small molecules <2000 Da) in a biological 

sample. The metabolome is the ensemble of all metabolites contained 

in one cell, tissue, organ or organism. [1] [2] It reflects the current 

biological state (e.g. health or disease) of an organism, because it is 

the endpoint of all interactions and reactions among the genome, 

transcriptome, proteome, microbiome; including also the effects of 

environment, lifestyle, diet, physical exercise and pollutants. 

Metabolomics investigates the final products (metabolites) of the 

biological reactions that take part both at the systemic level, biofluids  

and in specific organs or cell types. In the context of biomedical 

applications, metabolomics will have a preferential role with respect to 

the other "Omics" sciences for its ability to detect in real time the 

response of the organisms to pathological stressors. [3]   
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Fig. 1  The "Omics"  cascade studies [4] 

 

 

Metabolic profiling by NMR 

NMR is widely used in metabolic profiling to identify and quantify 

metabolites, because it  is  a non-destructive  measurement   of  a  

variety  of structurally  different  metabolites.  The quantification is 

based on the peak area of the specific  metabolite,  related  to  the  

peak  area  of  a  known  concentration  of  the  internal standard.  

Moreover, NMR  exhibits  high reproducibility of measurement, and 

requires minimum sample preparation as compared with other 

techniques. The  drawback  of  NMR lies  in  the  low  sensitivity  of  

detection. The  sensitivity  is related to the gyromagnetic ratio (γ) of the 

nuclear spins, experiment acquisition time and the metabolite  

concentrations  that  correspond  to  the  number  of  nuclear  spins  

being  observed.  Metabolite concentrations ranging from µM to mM 

can be readily detected by 1D NMR in ~10 min. Increased signal/noise 
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and spectral resolution can be achieved by the application of a higher 

magnetic field instrument and crioprobe to reduce thermal noise. [5] 

 

NMR experiments for different sample types 

Biofluids such as serum, plasma, urine, amniotic fluid, cerebrospinal 

fluid, saliva and other digestive fluids may be analysed generally using 

high resolution NMR spectroscopy with a 1D 1H NMR experiment. Due 

to the large water signal spectrum, the solvent suppression is required 

during the measurement.  The water suppression can be achieved 

using presaturation, with the application of a weak radio frequency 

(RF). Solvent suppression is required during the measurement due to 

the large water signal dominating the spectrum. Water presaturation by 

applying a weak radiofrequency (RF) during the relaxation/mixing time 

and WATERGATE (WATER suppression by Gradient-Tailored 

Excitation) are the two most frequently used approaches for water 

suppression. [6] [7] For samples containing proteins and lipids, 

phosphate buffer in D2O can be added to the sample and measured by 

a single pulse NMR experiment with water suppression.  For biofluids 

containing macromolecules (serum), T2 relaxation editing by Carr-

Purcell-Meiboom-Gill (CPMG) pulse sequence in NMR experiment is 

utilized to attenuate broad resonances from proteins and lipids which 

have short T2 relaxation time;  deproteinization by organic solvents or 

ultrafiltration can be used.  Non-destructive detection of intact tissues 

and cells can be achieved using solid state magic-angle spinning 

(MAS). [8]   NMR with CPMG and water suppression pulse sequence 

to minimize the spectral line broadening. Standard processes for 

sample preparation are freezing the tissues in liquid nitrogen to quench 
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the enzymatic reactions, followed by grinding the tissue in a cooled 

mortar or with an electric homogenizer, then is packed with the addition 

of D2O, at an angle of 54.7°. [9, 10] 

 

Data preprocessing  

The acquired free induction decay (FID) data can be processed using 

ACD/NMR Processor (ACD/Labs, Toronto, Canada) in which 2x zero-

filling and an exponential window function equivalent to 0.3 Hz line 

broadening is usually applied before Fourier transformation. The 

spectra will be phased, baseline corrected, referenced to standard 

compound signal of a specific chemical shift, and exported as an ASCII 

file.  The ASCII file is imported into Excel and the spectral region from -

0.02 ppm to 10 ppm is chosen for subsequent statistical analysis. 

NMRlab, ProMetab, matNMR and MetaboLab can also be applied to 

process the raw FID data to visualize the spectra. [9, 10] 

   

NMR spectral signal assignment  

1D1H-NMR spectra are routinely acquired due to the high NMR 

sensitivity of the hydrogen nucleus. 1D spectra of samples containing 

complex mixture of  metabolites can be congested due to the 

resonance appeared at the same chemical shift, making the resonance 

assignment a challenge.  2D homonuclear / heteronuclear correlation 

and J-resolved (JRES) experiments can be applied to alleviate the 

congestion of 1D spectrum. Spectral resonance assignment is usually 

performed by searching chemical shift lists, for example, in HMDB, 

BMRB, Chenomx software (Chenomx Inc., Edmonton, Canada), and 
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published literatures along with the analysis of specific J coupling 

patters of the metabolite spin systems. This process is more efficient 

now with the help of MetaboID [11], a graphical user interface that 

offers comparison of experimental spectra with authentic metabolite 

spectra to guide assignment. Resonance assignment is achieved by 

combining the assignment of 1D1H spectra along with the knowledge 

obtained from the 2D experiments of selected samples. [9, 10] 

 

Data processing and statistical analysis  

Normalization is routinely used to account for the dilution effect of each 

sample as well as variation from different batch of measurement [12]. 

Scaling is a variable-based processing approach which is performed on 

the intensity of each metabolite across all samples, and influences the 

result of the multivariate analysis. [13] For instance, principal 

component analysis (PCA) which is performed on mean-centered data 

(e.g. metabolite variable mean is subtracted across all samples) is 

equivalent to performing PCA on a covariance matrix.  Applying PCA 

on standardized variable  requires the data to be scaled with unit 

variance scaling. [14] 

 

Univariate analysis  

To compare each variable in the data containing two groups (for 

example benign and cancer), Student's t-test based on the comparison 

of the two samples is commonly used means. It, however, requires that 

each sample population to have a normal distribution, equal variance of 

the two data populations that are independent leagues. Two sample 



 - 10 - 

populations with unequal variances "The Welch"  t test can be applied. 

Analysis of variance one-way (ANOVA) can be applied to test the 

difference between groups, for data that contains more than two 

groups. [14] 

 

Multivariate analysis  

Multivariate analysis can be utilized to account for the impact of all 

metabolites on the outcome of measurement (e.g. cancer and normal).  

Multivariate model can be used to determine the metabolites 

contributing to the result as well as predicting the result.  [14] [15] [16] 

 

Unsupervised analysis  

Unsupervised analysis is the application of statistical models without 

the prior knowledge of the sample classification labels and it is usually 

the first step in data pattern exploration.  PCA is representative of the 

unsupervised method to examine the structure of the data set.  Scores 

plot is generated to assess the clustering of different samples, with the 

corresponding loadings plot demonstrating the variables accounting for 

the most. In addition, the cluster analysis, which is useful for the 

visualization of subgroups of multivariate is also used in metabolomics 

data analysis. [15] [16] 

 

Supervised analysis  

In supervised analysis, information of sample class labels (e.g. disease 

and control) are also utilized in building the statistic models.  
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One commonly used analysis is PLS-DA which maximizes the 

covariance between predictor variables and the response variables 

(classes of each sample) [17].  It uses variable importance to projection 

(VIP) scores to demonstrate the contribution of each variable to the 

model, with metabolites VIP scores> 1 considered important in 

classification.  If class separation is not observed in scores plot of PLS-

DA model, orthogonal partial least squares discriminant analysis 

(OPLS-DA) can be performed [18].  It presents similar prediction ability 

to PLS-DA. Diagnostic parameters such as the number of 

misclassifications, cross-validated explained variation Q2 and the Area 

Under the Curve (AUC) of a Receiver Operating Characteristic (ROC) 

analysis are commonly used to indicate the model performance. [19] 

 

Model validation  

To assess the predictive ability of the multivariate models, cross 

validation (CV), permutation or bootstrap can be conducted.  Cross 

validation involves separating the data into a training set (e.g. PLS-DA), 

and the resulting model is used to predict the classes of the test set.    

A permutation test can assess whether the classification based on true 

sample class is significantly better than classification based on 

randomly assigned sample class.  In bootstrap method It's generates a 

new data set the same size as the original by sampling with 

replacement from the original data set, used to build the prediction 

model, and the validation is applied on the original data set. [20]    
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Pathway analysis in disease biomarker discovery  

Metabolic pathway analysis is essential for the understanding of 

cellular processes of specific diseases. After the identification of 

potential metabolite biomarkers, the particular pathway can be 

assessed using databases such as KEGG [21] and HMDB [22], or 

searching in literatures pathway that contain metabolite and disease.    

The enzymes controlling the metabolite levels in the cell: impact on the 

biomarker level and promote understanding of mechanisms associated 

with the specific disease. 

 

PhD program 

The research activity of this PhD program included the application of 

the NMR technique for the metabolomics analysis, of bio-fluids deriving 

from populations of patients respectively affected by salivary gland 

tumor, antiphospholipid autoimmune syndrome and altered lipid profile. 

This NMR metabolomic screening was aimed  i) at the definition of a 

metabolomic  profile that may be patognomonic of the disease under 

scrutiny and  ii) at the identification of biomarkers to be used with 

diagnostic and prognostic scope. 
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Biofluids and investigated diseases 

Saliva 

Saliva is an important physiological fluid that contains a highly complex 

mixture of substances, it is easily accessible and contains analytes 

that, like those present in serum or urine, are sensitive to the overall 

health status. The Human Saliva Metabolome Database 

www.salivametabolome.ca)  report 1235 possible metabolites in saliva 

(735 detected and quantified by various techniques). Of these, due to 

the NMR sensitivity, almost 20 can be detected by NMR spectroscopy. 

For these reasons, in the future saliva could play a role in the definition 

of diseases. [23] More interestingly, a recent paper demonstrated that a 

clear individual metabolic phenotype exists in saliva, although it is 

slightly less individual-specific than the urinary phenotype, probably 

because stronger underlying homeostatic processes occur in saliva. 

[24]  During my PhD program I performed a NMR-based metabolomic 

study of  saliva of patients suffering of salivary gland tumors.  

 

Serum 

Among the most common biological specimens analysed in 

metabolomics there is blood serum (or plasma). It is collected with low 

invasiveness, and is rich in biological information. Blood is the main 

carrier of small molecules in the body, and it contains all the molecules 

that are secreted by different tissues in response to different 

physiological needs or stresses [25]. The Human Serum Metabolome 

Database, (www.serummetabolome.ca), contains information on about 

4500 metabolites, of them 1986 detected and quantified by various 

techniques. It is very important that metabolomic samples are collected 
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following rigorous standard operating procedures (SOPs), for the 

experimental reproducibility and data exchange. [26] [27]  During my  

PhD program I performed a NMR-based metabolomic study of blood 

sera of patients suffering of antiphospholipid syndrome; 

hypercholesterolemy;  amyotrophic lateral sclerosis.  
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Chapter II   Metabolomic signature of salivary gland tumors 

 

Abstract 

In the present work, we present a NMR-based metabolomic study of 

saliva of patients suffering of salivary gland tumors. Our data show that 

individuals suffering parotid tumor have a characteristic metabolomic 

profile with abnormalities associated to the metabolism of acetate, 

alanine, lactate, methanol, phenylalanine, propionate, succinate. We 

have identified for the first time the metabolomic fingerprint 

characterizing parotid tumor patients disease having potential 

application to improve timely diagnosis and appropriate therapeutic 

approaches.  

 

Introduction 

Human saliva is secreted from three pairs of major salivary glands, 

namely, parotid gland, submandibular gland, and sublingual gland lying 

at the vicinity of oral cavity, and numerous minor salivary glands lying 

beneath the oral mucosa. [1] Cancers affecting the salivary glands 

have been an increasing incidence.  Etiologic factors are not clear, they 

can occur at any age, but are more common in people over 50, 

including impact of gender differences. [2] Nutrition may be a risk 

factor, as well as irradiation or a long-standing histologically benign 

tumor that occurs at youth. Adenoid cystic, mucoepidermoid low-grade, 

acinic cell carcinomas are malignant  tumors showing widely different 

patterns of growth, with a prognosis correlating mainly with histological 

subtype. [3] Pleomorphic adenoma and Warthin’s tumor, are the most 

recurrent benign parotid tumors, that may be subjected to malignant 
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transformation. [3] Warthin's tumors are commonly asymptomatic, 

affect predominantly men in the 5th and 6th are typical of smokers, in 

contrast to other salivary gland tumors. [4] Physical examination is the 

most important tool for diagnosis, and histology allows for the 

differentiation between malignant tumor and other benign conditions.  

At present, salivary gland cancer is not detected until it reaches an 

advanced stage, which would generally result in a poor prognosis and 

survival rate. Therefore, early detection as well as the screening of high 

risk populations with precancerous lesions remains to be an unmet 

need. [3] [5] Metabolomics is the large-scale study of metabolites, 

within cells, biofluids, tissues or organisms. These directly reflect the 

biochemical activity and state of cells. In NMR based metabolomic 

analysis a variety of compounds (charged, neutral, hydrophobic, 

hydrophilic), are simultaneously qualitatively and quantitatively 

detected in biologic samples, [6] providing a significant contribution to 

the understanding of the biochemical pathways involved in many 

unsolved diseases.[7] Saliva is an attractive diagnostic fluid because it 

has several key advantages for disease diagnosis and prognosis. For 

example, low invasiveness, minimum cost, and easy sample collection 

and processing. Saliva contains a large array of metabolites, many of 

which can be informative for the detection of diseases. [8]  

Metabolomic examination of saliva from patients suffering of salivary 

gland tumor is expected to be high informative of the tumor 

etiopatogenesis given that saliva represents the bio-fluid surrounding 

the tumor. Therefore, in these cases, the conventional oral 

examination, coupled with the integration of the salivary metabolite 

signatures, may become an applicable strategy for early detection of 

oral precancerous lesions and cancer. [9] In the present work, using 1H 

NMR spectroscopy, we analyze the saliva metabolomic profile of 
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subjects affected by parotid tumor.  These data evidence the existence 

of several metabolites distinctive of pathological state. Salivary gland 

tumor, as many other cancers, is a complex disease, resulting from an 

interdependent series of biochemical alterations, rather than a single 

disruptive event. In this case our approach aimed at the identification of 

a panel of metabolite markers rather than a single biomarker, will 

improve the sensitivity and specificity for detection. Integrating the 

protocols of tumor grading and histological classification. This 

procedure will enhance the management of the disease in the respect 

of the precision medicine and a gender oriented medicinal 

approach.[10] 

 

Methods 

Participants   

One hundred (100) participants were selected from Department of 

Otolaryngology, DEA III Liv. Nocera-Pagani, Salerno from July 2014 to 

July 2016. 50 participants (male/female: 30/20) had been previously 

diagnosed for suspected parotid tumor according to the revised 

diagnostic protocols, [3] whereas the control group, (50 subjects, 

male/female: 30/20) comprised healthy volunteers without major 

illnesses. Inclusion criteria consisted of all salivary gland tumors (SGT) 

patients and healthy individual who had voluntarily agreed to participate 

in this study, while exclusion criteria included subjects presenting any 

medical conditions or with a recent history of drug addiction or alcohol 

abuse.  
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Sample collection and preparation  

Saliva samples were collected from male and female according to the 

standard operating procedure (SOP) for metabolomic-grade saliva 

samples recently defined. [11] Saliva was collected and stored into 

Sartstedt Salivette®  hygienic saliva collection devices at - 80 °C in 

Greiner cryogenic vials. Before being transferred to a 5 mm heavy-

walled NMR-tube, samples were thawed at room temperature and 

thereafter spin at 3000 rpm using Vivaspin® 6 centrifugal concentrator, 

to remove proteic and particulate matter. The saliva supernatant was 

removed. To prepare NMR sample, 425 µL of each saliva sample were 

added to 25 µL of 1M potassium phosphate buffer (pH 7.4) and 10 µL 

D2O. Trimethylsilyl propionic-2,2,3,3-d4 acid, sodium salt (TSP 0.1% in 

D2O) was used as an internal reference for alignment and 

quantification of the NMR signals. [11] 

 

NMR spectroscopy and processing 

NMR experiments were carried out on a Bruker DRX600 spectrometer, 

equipped with a 5 mm triple-resonance z-gradient CryoProbe. 

TOPSPIN, version 2.1 or 3.0, was used for spectrometer control and 

data processing (Bruker Biospin). 1D NOESY experiments were 

acquired using spectral with of 14 ppm, 16k data points, excitation 

sculpting for water suppression, 192 transients, 4s relaxation delay and 

60ms mixing time. The pulse sequence used included an excitation 

sculpting routine for the suppression of the water signal. [12] Due to the 

effect of excitation sculpting on the signal height of resonances in the 

region close to the water resonance, [13, 14] the metabolites that have 

resonances close to this region (ascorbate, glucose, mannose and 
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pyroglutamate) were quantified using resonances from those 

metabolites in other spectral regions. A weighted Fourier transform was 

applied to the time domain data with a 0.5 Hz line-broadening followed 

by manual phase and baseline correction in preparation for targeted 

profiling analysis. 

 

Data Analysis 

NMR spectra were manually phased and baseline corrected. 

Quantification of salivary metabolites was achieved using Chenomx 

NMR-Suite v8.0 (Chenomx Inc.). Briefly, the Chenomx profiler is linked 

to a database containing more than 250 metabolite NMR spectral 

signatures encoded at different spectrometer 1H frequencies, including 

600 MHz (http://www.hmdb.ca). Comparison of the spectral data 

obtained for each saliva sample with the Chenomx metabolite library 

results in a list of compounds together with their respective 

concentrations based on the known concentration of the added internal 

reference compound, TSP.  Each spectrum was analyzed three times.  

 

 

Multivariate Data Analysis 

Multivariate data analysis based on projection methods was applied for 

statistical data analysis. Specifically, exploratory data analysis was 

performed by principal component analysis (PCA) while a projection to 

latent structures (PLS-DA)-based method was applied to discriminate 

the samples. While PCA is a well-known technique used in multivariate 

data analysis, the PLS-based approach is a robust regression 
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technique used to investigate the relationships existing between two 

blocks of data, usually called X- and Y-block and has predictive 

applications. In the present study, discriminant classification was 

carried out using partial least squares-discriminant analysis, a method 

based on the PLS regression algorithm. Projection methods in 

multivariate data analysis were performed by using SIMCA-P+ software 

(Version 12.0, Umetrics, Umea, Sweden). The entire data matrix, after 

log transform and Unit Variance scaling, was first analyzed by PCA to 

define homogeneous cluster of samples (Exploratory data analysis). 

Following PCA, classification of samples was accomplished through 

the use of discriminant chemometric classification technique. The aim 

of classification is to assign a sample to two (or more) categories based 

on the measured variables [15]. With these basis, discriminant 

classification techniques divide the hyper-space demarcated by the 

variables in a number of regions, as the number of classes to be 

considered, so that if an unknown sample falls in a particular region it is 

assigned univocally to the corresponding class. [16] In the present 

study, discriminant classification was carried out using partial least 

squares-discriminant analysis, a method based on the PLS regression 

algorithm. In order to use a regression algorithm for classification, the 

information about the presence of the pathological condition has to be 

coded in a binary vector, which takes the value 1 for one class 

(pathological) and -1 for the other (healthy). A PLS model is then built 

between the experimental matrix X and the coded y (the class), and 

classification is accomplished on the basis of the predicted response y, 

which can assume any real value (supervised method). Models were 

validated by cross-validation techniques and permutation tests 

according to standardized good practice to minimize false discoveries 

and to obtain robust statistical models. A small number of metabolites 
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changing during the experiment was extracted and the behavior of 

each single metabolite was studied by linear mixed-effects model for 

longitudinal studies. All the different pretreatments provided good 

discriminant ability in calibration and cross-validation (above 90%). [15] 

[16] We submitted our data to MetaboLights database with ID code: 

MTBLS421. 

 

 

Results 

 

Metabolomic ‘snapshot’     

For each sample, 17 metabolites were identified and quantified. 

To identify the metabolomic ‘snapshot’ in salivary gland tumors 

patients, 1H-NMR data were processed according to multivariate data 

analysis (MVA) by using both unsupervised and supervised projection 

methods.  

The dataset was log-transformed, unit variance centered and scaled. 

Normalized data were analyzed by defining a matrix composed of 100 

observations and 17 variables. The data collected were then 

investigated using PCA. 

The first component explained the 44% of variance while the second 

the 10%. The choice of principal components was done considering the 

fitting (R2X) and predictive values (Q2X), for the PCA model, in our 

case the second component gave the closest values to 1 for both of 

them. 
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Figure 1 shows the PCA score scatter plot for the 1H-NMR spectra of 

the salivary gland tumors. Four observations fell outside the confidence 

ellipse. Visual inspection evidences separation into two groups almost 

corresponding to patients versus healthy donors. Some data were 

scattered widely on the left side of the graph with slight overlap 

between the two groups. The fitting (R2Y) and predictive (Q2Y) values 

for the PLS-DA model were respectively 59% and 23%. Visualization of 

metabolites using loading scatter plot PLS-DA was carried out to 

identify potential metabolites that are responsible for the discrimination 

showed in PLS-DA score scatter plot. Loading scatter plot showed 

potentially significant metabolites based on contributions and reliability 

to the separation observed in score scatter plot. Metabolites in the 

loading plot that were distant away from the origin and close to the 

vertical axis (separation based on the first principal component) could 

be considered responsible for the exhibited separation in PLS-DA 

score scatter plot (Figure 2A). Inspection of loading scatter plot (Figure 

2B) points to acetate, alanine, lactate, methanol, phenylalanine, 

propionate, succinate as metabolites distinctive of gland tumor 

pathological saliva. 
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Fig. 1  PCA score scatter plot for the 1H NMR data collected in 1H NMR spectra of human SGT 
saliva using 17 measured metabolites from 50 SGT patients and 50 donors. Red and green 
triangles correspond to data SGT patients and healthy donors respectively. 
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Fig. 2  PLS-DA score scatter plot (A) and PLS loading scatter plot (B) for the 1H NMR data 
collected in 1D NOESY spectra of human SGT saliva using 17 measured metabolites 
from 50 SGT patients and 50 donors. In Fig. 2A Red and green triangles correspond 
to data SGT patients and healthy donors respectively. 
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scatter PLS score plot (Fig. 3) reported two groups having limited 

central region overlap; in particular, circled regions correspond to 

pleomorphic adenoma (ap) and warthin tumor (tw) histological 

subtypes. 

 

 

 

Fig. 3  PLS-DA score scatter plot for the 1H NMR data collected in 1H NMR spectra of human 
SGT saliva using 17 measured metabolites from 50 SGT patients and 50 donors. Red triangles 
correspond to data of SGT patients and green triangles to data of healthy donors. Circled 
regions correspond to pleomorphic adenoma (ap) and Warthin tumor (tw) histological subtypes. 
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Gender Differences in total metabolomic profile 

To establish metabolomic profile specificities correlated with gender in 

salivary gland tumor diseases, we performed statistical analysis on the 

subset of 1H-NMR data separately collected on female and male 

salivary gland tumors. Two separate data matrices were generated: the 

first included 17 metabolites for 30 males and the second 17 

metabolites for 20 females. The data of each matrix were 

independently aligned, pre-treated and analyzed using PCA and PLS-

DA. In the case of the males the first component explains 36% of 

variance while the second the 0,8%. In the case of the females the first 

component explains 61% of variance while the second the 14%. The 

choice of principal components was done on the basis of for the PCA 

model. To improve the separation observed with the PCA model, 

supervised PLS-DA was applied fitting (R2Y) value resulted 53% in and 

predictive (Q2Y) value resulted 28%, in the case of males, and  fitting 

(R2Y) value resulted 63% in and predictive (Q2Y) value resulted 28%, 

in the case of females. Even in this case PLS-DA was performed using 

discriminant analysis as a classifier (Y block). The information about 

the presence of the pathological condition has to be coded in a binary 

vector, which takes the value 1 for one class (pathological) and -1 for 

the other (healthy).  PLS-DA (Figure 4A, 4B) statistical analysis 

confirmed, even for this data set, the metabolites distinguishing 

pathological and donors saliva. In particular abnormal presence of 

alanine, glycine, lactate, methanol proved to be characteristic of 

salivary gland tumors male pathological state. 
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Fig. 4  PLS-DA score scatter plot (A) and loading scatter plot (B) for the 1H NMR data collected 
in 1D NOESY spectra of human male SGT saliva using 17 measured metabolites from 30 male 
SGT patients and 30 male donors. In Fig. 4A red triangles correspond to data of male SGT 
patients and green triangles to data of male healthy donors. 
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Fig. 5  PLS-DA score scatter plot (A) and loading scatter plot (B) for the 1H NMR data collected 
in 1D NOESY spectra of human female SGT saliva using 17 measured metabolites from 20 
female APS patients and 20 female donors. In Fig. 5A red triangles correspond to data of 
female SGT patients and green triangles to data of female healthy donors. 
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Abnormal presence of amino acid alanine, glucose, lactate, 

phenylalanine (f) , pyruvate,  proved to be characteristic of salivary 

gland tumor in female saliva pathological state (Figure 5A, 5B). 

 

Discussion  

Cancers affecting the salivary glands have been an increasing 

incidence especially in male over fifty-age population. At moment, this 

cancer is diagnosed using physical and histological examination, being 

almost undetectable until it reaches an advanced stage, which may 

result in a poor prognosis and survival rate. Early diagnosis as well as 

the screening of high-risk populations with precancerous lesions is 

considered an unmet health need.  

In the reported work, we performed a NMR based metabolomics 

analysis of saliva from subjects affected by parotid tumor. We analyzed 

saliva of 50 patients and 50 healthy donors respectively classified in 30 

males and 20 females. PCA statistical analysis, of 1H NMR data 

collected in 1D NOESY spectra (Figure 1) evidenced that the 

metabolomic profiles of saliva including male and female samples do 

not permit a significant discrimination between SGT patients and 

healthy donors. In this case, we observe only weak evidences of 

metabolites potentially distinctive of saliva gland tumor; in particular 

acetate, alanine, lactate, methanol, phenylalanine, propionate, 

succinate. Among these, propionic acid, methanol, and acetate occur 

ubiquitously in the gastro-intestinal tract of humans and other 

mammals, as an end-product of the microbial digestion of 

carbohydrates. [17] 
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Gender differences are of interest from a variety of perspectives and 

have been the focus of a number of studies for many years. The impact 

of gender differences in the prevalence, manifestation and 

management of cancer diseases have been widely studied. [2] As 

previously reported, epidemiological data show that SGT tumor have 

prevalence in male, [18] considering such differences, it is in general 

possible to improve the understanding of the epidemiology and the 

clinical outcome of the diseases. On this basis, we repeated our 

statistical analysis, considering subsets of data classified according to 

gender. PCA statistical analysis for 30 human male SGT saliva and 30 

male healthy donors evidences a more significant separation of 

metabolomics profiles (Figure 3).  In particular PLS-DA loading scatter 

plot shows that alanine, glycine, lactate are metabolite distinctive of the 

pathological state in males. On the contrary considering the female 

subset of samples, the separation of pathological and healthy 

metabolomics profiles appears uncertain. In this case we observe weak 

evidence that alanine, glucose, lactate, phenylalanine, pyruvate, are 

distinctive of the pathological state.  

An outlook to the metabolites distinguishing healthy donors from 

patients shows that lactate and alanine appear always distinctive of the 

pathological state in each set or subset of samples.   Therefore, for 

these metabolites we studied the correlation with abnormalities in the 

biochemical pathways using human metabolome database. This 

analysis, shows that in distinct tumor types, metabolic profiles vary with 

respect to metabolites, such as alanine, glycine, lactate. [19] 

Concerning lactate, it is known from scientific literature that the so 

called Warburg effect, consisting in increased glucose uptake and 

accumulation of lactate, is a common feature of cancer cells.  In this 

case, cancer cells produce pyruvate from a high rate of glycolysis, and 
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subsequently transform pyruvate in lactic acid by fermentation in the 

cytosol. The Warburg Effect is thought to be the result of mutations to 

oncogenes and tumour suppressor genes, [20] [21] [22] moreover 

accumulation of lactate contributes to the immune escape in solid 

tumors and is a pivotal and early event in the development of 

malignancies. [23]  [24] [25] [26] 

Alanine is a nonessential amino acid made in the body from the 

conversion of the carbohydrate pyruvate. It is an important regulator in 

glucose metabolism. Altered levels of alanine and phenylalanine were 

found in surrounding biofluids of several cancers such as breast, 

pancreatic and oral cancer .[27]  

 

Conclusions 

Our NMR-based metabolomic study revealed different metabolomic 

profiles in saliva of male patients affected by salivary gland tumors 

compared with the profiles of age, gender, and sampling-date matched 

control individuals. Our approach provide preliminary data for the 

identification of metabolites that can be used as metabolomics 

fingerprint of salivary gland tumor. Determination of metabolomics 

fingerprint, rather than single metabolic biomarker, may fully reflect the 

multifactorial nature of oncogenesis and the heterogeneity of oncogenic 

pathways, providing precious elements to integrate diagnostic 

laboratory and clinical tests. [18] 
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Chapter III  Metabolomic signature of antiphospholipid syndrome 

 

Abstract 

Antiphospholipid syndrome (APS) is a rheumatic inflammatory chronic 

autoimmune disease inducing hypercoagulable state associated with 

vascular thrombosis and pregnancy loss in women. Cardiac, cerebral 

and vascular strokes in these patients are responsible for reduction in 

life expectancy. Timely diagnosis and accurate monitoring of disease is 

decisive to improve the accuracy of therapy. In the present work, we 

present a NMR-based metabolomic study of blood sera of APS 

patients. Our data show that individuals suffering APS have a 

characteristic metabolomic profile with abnormalities associated to the 

metabolism of methyl group donors, ketone bodies and amino acids. 

We have identified for the first time the metabolomic fingerprint 

characterizing APS disease having potential application to improve 

APS timely diagnosis and appropriate therapeutic approaches.  

 

Introduction 

 

Antiphospholipid (aPL) syndrome (APS) is a rheumatic inflammatory 

chronic autoimmune disease characterized by the presence of auto-

antibodies circulating in the blood directed against phospholipids 

(aPLa). [1] The autoimmune reaction induces inflammatory processes 

on the vessel walls, so that APS patients suffer for a hypercoagulable 

state associated with vascular thrombosis and pregnancy loss in 

women. [2] APS is diagnosed based on clinical symptoms of venous or 

arterial thrombosis, pregnancy morbidity and on laboratory tests 
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consisting in the detection of lupus anticoagulant (LA) and other 

autoantibodies directed against cardiolipin (aCL) and β2-glycoprotein I 

(aβ2GPI). The correlation between the positivity to one or more of 

these markers and the prognosis of the disease is unclear. Specifically 

the association with thrombosis is strong with full positive aPL profile 

(triple positivity), but the risk is uncertain when one or two differently 

combined test are positive. [3, 4]  Cardiac, cerebral and vascular 

strokes in these patients are responsible for a significant reduction in 

life expectancy [5] and indeed, the cardiac disease course in APS 

patients may rapidly progress from asymptomatic to severe life-

threatening manifestations difficult to deal with. Timely diagnosis and 

accurate monitoring of APS course is essential to improve accuracy of 

therapy, avoiding approaches based on medical empiric protocols. 

APS, as many other autoimmune diseases, is characterized by a 

heterogeneous nature that has a dramatic impact on the diagnosis and 

the treatment of the disease. Moreover APS is a gender specific 

pathology with a prevalent incidence in women and gender specificities 

with regard to the clinical and laboratory diagnostic profiles. In recent 

years, metabolomic studies have provided a significant contribution to 

identify the biochemical pathways involved in many unsolved diseases 

as well as great support for the appropriate diagnosis, monitoring and 

therapeutic approach of these diseases. [6] Nuclear magnetic 

resonance (NMR) spectroscopy is a robust and reliable technique for 

metabolomic applications: a variety of compounds (charged, neutral, 

hydrophobic, hydrophilic) can be simultaneously qualitatively and 

quantitative detected using several different types of biologic samples, 

such as isolated cells, tissues or body fluids. [7] In the present work, 

using proton nuclear magnetic resonance (1H-NMR) spectroscopy, we 

analyzed the blood sera metabolomic profile of APS patients. Our data 
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define the first metabolomic dataset useful for an early APS diagnosis 

and a correct monitoring of disease. The first stratification of APS 

patients according to the gender offers preliminary indications for the 

management of the disease according to the gender oriented medicinal 

approach. [8] 

 

Methods 

Participants   

Fifty-four (54) participants were selected from Clinical Pathology 

Laboratory of DEA III Liv. Nocera-Pagani, ASL Salerno from July 2014 

to March 2015. One-half of the present patients (27/54; 50%, 

male/female: 10/17) had been previously diagnosed according to the 

revised diagnostic protocols, [9] whereas the control group comprised 

healthy volunteers without major illnesses (27 subjects, male/female: 

10/17). Inclusion criteria consisted of all APS patients and healthy 

individual who had voluntarily agreed to participate in this study, while 

exclusion criteria included persons who already had, or recently had, 

any medical conditions or with a recent history of drug addiction or 

alcohol abuse.  

 

Sample collection and preparation  

Sera samples were collected from male and female according to the 

standard operating procedure (SOP) for metabolomic-grade serum 

samples recently defined. [7] Blood was collected into standard blood 

collection tubes and allowed to clot at room temperature for 30 to 120 

minutes before centrifugation (1,500 g for 10 minutes at 4 °C). Serum 
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was aliquoted and stored at -80 °C in Greiner cryogenic vials prior to 

NMR spectrometry measurements. Before being transferred to a 5 mm 

heavy-walled NMR-tube, samples were thawed at room temperature 

and thereafter spin at 3000 rpm using Vivaspin® 6 centrifugal 

concentrator to remove proteic and particulate matter. The serum 

supernatant was removed. To prepare NMR sample, 425 µL of each 

sera sample ware added to 25 µL of 1M potassium phosphate buffer 

(pH 7.4) and 50 µL D2O. Trimethylsilyl propionic-2,2,3,3-d4 acid, 

sodium salt (TSP 0.1% in D2O) was used as an internal reference for 

alignment and quantification of the NMR signals; the mixture, 

homogenized by vortexing for 30 seconds, was transferred to five 

millimeters NMR tube (Bruker NMR tubes) before the analysis started. 

[7] 

 

NMR spectroscopy and processing 

NMR experiments were carried out on a Bruker DRX600 spectrometer, 

equipped with a 5 mm triple-resonance z-gradient CryoProbe. 

TOPSPIN, version 2.1 or 3.0, was used for spectrometer control and 

data processing (Bruker Biospin). 1D NOESY experiments were 

acquired using spectral with of 14ppm, 16k data points, excitation 

sculpting for water suppression, 192 transients, 4s relaxation delay and 

60ms mixing time. The pulse sequence used included an excitation 

sculpting routine for the suppression of the water signal. [10] Due to the 

effect of excitation sculpting on the signal height of resonances in the 

region close to the water resonance, [11, 12] the metabolites that have 

resonances close to this region (ascorbate, glucose, mannose and 

pyroglutamate) were quantified using resonances from those 

metabolites in other spectral regions. A weighted Fourier transform was 
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applied to the time domain data with a 0.5 Hz line-broadening followed 

by manual phase and baseline correction in preparation for targeted 

profiling analysis. 

 

Data Analysis 

NMR spectra were manually phased and baseline corrected. 

Quantification of serum metabolites was achieved using Chenomx 

NMR-Suite v8.0 (Chenomx Inc.). Briefly, the Chenomx profiler is linked 

to a database containing more than 250 metabolite NMR spectral 

signatures encoded at different spectrometer 1H frequencies, including 

600 MHz (http://www.hmdb.ca). Comparison of the spectral data 

obtained for each serum sample with the Chenomx metabolite library 

results in a list of compounds together with their respective 

concentrations based on the known concentration of the added internal 

reference compound, TSP.  Each spectrum was analyzed three times. 

 

Multivariate Data Analysis 

Multivariate data analysis based on projection methods was applied for 

statistical data analysis. Specifically, exploratory data analysis was 

performed by principal component analysis (PCA) while a projection to 

latent structures (PLS-DA)-based method was applied to discriminate 

the samples. While PCA is a well-known technique used in multivariate 

data analysis, the PLS-based approach is a robust regression 

technique used to investigate the relationships existing between two 

blocks of data, usually called X- and Y-block and has predictive 

applications. In the present study, discriminant classification was 



 - 42 - 

carried out using partial least squares-discriminant analysis (PLS-DA), 

a method based on the PLS regression algorithm. Projection methods 

in multivariate data analysis were performed by using SIMCA-P+ 

software (Version 12.0, Umetrics, Umeå, Sweden). The entire data 

matrix, after log transform and Unit Variance scaling, was first analyzed 

by PCA to define homogeneous cluster of samples (Exploratory data 

analysis). A specific variable, showing significant variation in grouping 

the classes was selected (urea) as Y in partial least squares 

discriminant analysis (PLS-DA). Models were validated by cross-

validation techniques and permutation tests according to standardized 

good practice to minimize false discoveries and to obtain robust 

statistical models. A small number of metabolites changing during the 

experiment was extracted and the behavior of each single metabolite 

was studied by linear mixed-effects model for longitudinal studies. All 

the different pretreatments provided good discriminant ability in 

calibration and cross-validation (above 90%). [13]-[14] We submitted 

our data to MetaboLights database with ID code: MTBLS356.  

 

Results 

The mean concentrations of serum metabolites of APS patient blood 

sera together with a representative 1H-NMR spectrum are reported in 

supplementary material. For each sample, 50 metabolites were 

identified and quantified. Figure 1 reports a graphical representation of 

the mean metabolite concentrations of healthy subjects as reported in 

literature and in our control vs. APS patient blood sera. [15] 
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Fig. 1   Overview of mean concentrations of serum metabolites as determined by 1H-NMR 

analysis of human blood serum in APS patients, vs. healthy controls in our samples and in 
literature. 

 

Metabolomic ‘snapshot’     

To identify the metabolomic ‘snapshot’ in APS patients 1H-NMR data 

were processed according to multivariate data analysis (MVA) by using 

both unsupervised and supervised projection methods. The dataset 

was log-transformed, unit variance centered and scaled. Normalized 

data were analyzed by defining a matrix composed of 54 observations 

and 50 variables. The data collected were then investigated using PCA. 

The first component explained the 41% of variance while the second 

the 0,4%. The choice of principal components was done considering 

the fitting (R2X) and predictive values (Q2X), for the PCA model, in our 

case the second component gave the closest values to 1 for both of 

them. Figure 2A shows the PCA score scatter plot for the  
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1H-NMR spectra of the APS blood sera. Three observations fell outside 

the confidence ellipse. Visual inspection evidences separation into two 

groups almost corresponding to patients versus healthy donors. Some 

data were scattered widely on the right side of the graph with several 

overlap between the two groups. The visualization of variables plot, 

using loading scatter plot relative to PCA, provides preliminary 

indications on the metabolites responsible for this separation. Urea 

appears as the most influent metabolite (Figure 2B). Based on this 

observation urea was used as variable classifier (Y block) in the 

construction of PLS-DA model (Figure 3A). The fitting (R2Y) and 

predictive (Q2Y) values for the PLS-DA model were respectively 0.744 

and 0.505. Visualization of metabolites using loading scatter plot PLS-

DA was carried out to identify potential metabolites that are responsible 

for the discrimination showed in PLS-DA score scatter plot. Loading 

scatter plot showed potentially significant metabolites based on 

contributions and reliability to the separation observed in score scatter 

plot. Metabolites in the loading plot that were distant away from the 

origin and close to the vertical axis (separation based on the first 

principal component) could be considered responsible for the exhibited 

separation in PLS-DA score scatter plot (Figure 3A). Inspection of 

loading scatter plot (Figure 3B) points to 2-hydroxybutyrate, 

acetoacetate, arginine, betaine, choline, glutamate, glutamine, urea as 

metabolites distinctive of APS pathological sera. 
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Fig. 2   PCA score scatter plot (A) and loading scatter plot (B) for the H-NMR data collected in 
1D NOESY spectra of human APS sera using 50 measured metabolites from 27 APS patients 
and 27 donors. In graph 2A Red triangles correspond to data of APS patients and green 
triangles to data of healthy donors. 
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Fig. 3  PLS-DA Score scatter plot (A) and PLS loading scatter plot  (B) for the H-NMR data 
collected in 1D NOESY spectra of human APS sera using 50 measured metabolites from 27 
APS patients and 27 donors. In Figure 3A red triangles correspond to data of APS patients and 
green triangles to data of healthy donors. 
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Gender Differences in total metabolomic profile 

To establish metabolomic profile specificities correlated with gender in 

APS disease, we performed statistical analysis on the subset of 1H-

NMR data separately collected on female and male APS patient sera. 

Two separate data matrices were generated: the first included 50 

metabolites for 17 females and the second 50 metabolites for 17 

males. The data of each matrix were independently aligned, pre-treated 

and analyzed using PCA and PLS-DA. The first component explains 

46% of variance while the second the 0,78%. The choice of principal 

components was done on the basis of for the PCA model. Even in this 

case PLS-DA was performed using urea variable as a classifier (Y 

block). To improve the separation observed with the PCA model, 

supervised PLS-DA was applied (fitting (R2Y) value resulted 0,520 in 

and predictive (Q2Y) value resulted 0,576. Visualization of metabolites 

using PLS-DA was carried out to confirm metabolites that are 

responsible for the discrimination showed in PLS-DA score scatter plot. 

PCA (Figure 4) and PLS-DA (Figure 5) statistical analysis confirmed, 

even for this data set, the metabolites distinguishing pathological and 

donors sera. In particular abnormal presence of amino acid valine, 

lysine and glycine proved to be characteristic of APS female 

pathological state.  



 - 48 - 

 

 

Fig. 4  PCA Score scatter plot (A) and PCA loading scatter plot (B) for the 1H-NMR data 
collected in 1D NOESY spectra of human female APS sera using 50 measured metabolites from 
17 female APS patients and 17 female donors. In Figure 4A red triangles correspond to data of 
female APS patients and green triangles to data of female healthy donors. 
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Fig. 5   PLS-DA Score scatter plot (A) and loading scatter plot (B) for the 1H-NMR data 
collected in 1D NOESY spectra of human female APS sera using 50 measured metabolites 
from 17 female APS patients and 17 female donors. In Figure 5A red triangles correspond to 
data of female APS patients and green triangles to data of female healthy donors. 
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Discussion  

APS is a systemic inflammatory autoimmune disease characterized by 

the production of autoantibodies against the blood vessel layers. The 

process targeting the vessel walls increases the risk for vascular 

atherosclerosis ending in cardiac or cerebral stroke. While the correct 

APS diagnosis is not straightforward, as based on the non-trivial 

combination of three laboratory tests and difficult clinical evaluation, 

timely diagnosis is necessary for an appropriate therapeutic decision-

making. Our data provide the first blood sera metabolomic profile of 

APS patient suitable to integrate diagnostic laboratory and clinical 

tests. A metabolic differentiation was evident in individuals affected by 

APS; in particular, we found higher levels of choline, betaine, 2-

hydroxybutyrate, acetoacetate, arginine, glutamate, while lower levels 

of glutamine and valine (Figure 1). It is well known that choline and 

betaine are found in the metabolic pathway of methyl group donors; 2-

hydroxybutyrate and acetoacetate are part of ketone bodies pathways 

of the lipid metabolism, arginine, glutamate, glutamine amino acid 

metabolism. Choline is an essential nutrient that serves as a 

component of phosphatidylcholine (PC), a precursor of the 

neurotransmitter acetylcholine. It can be oxidized to betaine in humans. 

Choline and betaine function as methyl donors in pathways involving 

the re-methylation of homocysteine to methionine to diminish blood 

homocysteine [16] and in DNA and histone methylation, which may 

play potential roles in cardio-metabolic diseases. [17,19] Lack of 

sufficient amounts of choline in the diet can lead to a fatty liver 

condition and general liver damage. This arises from the lack of very 

low density lipoproteins (VLDL), which is necessary to transport fats 

away from the liver. It is worth noting that a metabolomic study of 

metabolic disturbances that underlies systemic lupus erythematosus 
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evidenced alteration in all methyl group donors, including cysteine, 

methionine, and choline, as well as phosphocholines. [20] Betaine 

insufficiency is associated with metabolic syndrome, lipid disorders and 

diabetes, and may have a role in vascular and other diseases. [21, 22] 

Acetoacetate (AcAc) is produced in the liver and serves as alternative 

energy sources for the brain, heart, and skeletal muscle in mammals 

during nutrient deprivation and adherence to low carbohydrate diets. 

[23, 24] It has been correlated with metabolic syndrome and early 

stage type 2 diabetes, abnormal homocysteine levels. [25] Abnormal 

concentrations of acetoacetate (AcAc) is also associated with altered 

immune cell function, highlighting the potentiality of metabolomics 

approach to unveil the biochemical basis of pathological process. 

Arginine, a semiessential amino acid, is taken up by cells using the y+ 

transport system. Its synthesis occurs from citrulline mainly in the liver 

and in the kidney. Arginine is metabolized either in ornithine and urea 

mainly in the liver and the intestine or in citrulline and nitric oxide (NO•) 

in a large number of cell types. Ornithine derived from arginine can be 

metabolized in citrulline (in the context of the urea cycle), in glutamate 

or in polyamines. Arginine dysmetabolism is related to catabolic 

disease such as sepsis, injury and cancer. [26, 27] Immune cells 

exhibit the ability to synthesize both polyamines and NO, which are 

potent immunomodulators. Therefore, evidence from animal and 

human models point to the immunomodulatory role of L-arginine 

metabolism in physiological, as well as pathological conditions. [28] 

Glutamine–glutamate metabolism is an important energetic and 

biosynthetic nutrient for T and B lymphocytes and its irruption has been 

observed in different inflammatory, metabolic, and autoimmune 

pathologies. [29] 
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Gender differences are of interest from a variety of perspectives and 

have been the focus of a number of studies for many years. The impact 

of gender differences in the prevalence, manifestation and 

management of cardiovascular diseases have been widely studied. [8] 

Considering such differences, it is possible to improve the 

understanding of the epidemiology and the clinical outcome of the 

diseases. 1H-NMR data on a subset of sera selected according to the 

gender showed abnormal presence of amino acid valine in female APS 

patients. Valine is one of the three branched-chain amino acids, which 

undergoes oxidation within mitochondria. This data indicate in female 

gender an impact of APS disease on the branched-chain amino acids 

biochemical pathway. [30] Interestingly, 1H-NMR-based serum 

metabolomic studies [31] suggest valine and isoleucine as 

differentiating metabolites for autoimmune rheumatoid arthritis and 

Crohn's disease (CD) diagnosis. These metabolites can be used for 

screening of risky samples at the early stages of autoimmune (CD) 

diagnoses. In particular valine may be a possible candidate marker for 

the diagnosis and the monitoring of APS syndrome in females. 

 

Conclusions 

Our NMR-based metabolomic study revealed significant differences 

among serum metabolic profiles of patients affected by APS compared 

with the profiles of age, gender, and sampling-date matched control 

individuals. These metabolic fingerprints may be used as potential 

serum biomarkers for the selection of timely diagnosis and appropriate 

therapeutic approaches.   
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Chapter IV  Metabolomic profile in hypercholesterolemic sera  

 

Introduction 

 

Human serum includes a large number of components which derive 

from endogenous metabolism and nutritional intake. Serum 

components vary in response to diet. [1] Serum lipid composition is 

probably the most important benchmark in assessing cardiovascular 

risk and disease progression. [2] Serum components, also derived from 

nutritional intake, can affect general metabolism and, more specifically, 

affect molecular mechanisms and pathways linking nutritional intake 

and chronic disease risk.  

To identify the effect exerted by altered lipid composition on the 

genome expression pattern, response of gene expression to serum 

samples from hypercholesterolemic and normocholesterolemic male 

subjects was previously studied. [3] Patients were differentiated on the 

basis of their serum cholesterol levels, assuming nutrition status as 

major cause of observed different effects between the two groups of 

sera. Addition of hypercholesterolemic (average cholesterol 273 mg/dl) 

and normocholesterolemic (average cholesterol 155 mg/dl) sera to 

culture medium of HepG2 human hepatoma cells specifically affected 

gene expression. In this study cells treated with  hypercholesterolemic 

sera showed reduced expression levels of  sterol  regulatory  element  

binding protein 1c (SREBP-1c) mRNA, while UDP-

glucuronosyltransferase 1A1 (UGT1A1) expression was increased, 

when compared to that of cells treated with normocholesterolemic sera.  

[3]  Subsequently, the study was extended, to observe the effect of lipid 
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profile on the whole genome expression pattern by   identifying the 

most relevant mRNAs regulated by nutritional intake, without the 

predetermined selection of specific genes to be observed. As result 

four genes resulted both affected by serum composition: 3-hydroxy-3-

methylglutaryl-CoenzymeA synthase 2 (HMGCS2), glutathione S-

transferase alpha 1 (GSTA1), liver expressed antimicrobial peptide 2 

(LEAP2) and apolipoprotein M (ApoM).  

In the present part of my PhD thesis, using a NMR metabolomics 

approach I studied the metabolomics profile of the aforementioned 

hypercholesterolemic and normocholesterolemic sera to correlate the 

previously identified trascriptomic signature of human hepatoma cells 

to the relative metabolomics profile. 

Only few metabonomic investigations of subjects with a high 

cardiovascular risk profile has been yet reported; however, the 

usefulness of metabonomics in cardiovascular research is strongly 

advocated by some authors.[4] [5]  Nicholson et al. have examined the 

relationship between hypertension, diet, and the metabolome 

alterations. [6] 

 

Methods 

Participants   

Sixteen (16) male participants were selected from the Clinical 

Pathology Laboratory, Santa Maria Goretti Hospital, ASL Latina, Italy.  

All subjects were healthy males aged between 40 and 50 years.  
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Inclusion criteria considered patients presenting abnormal serum 

cholesterol levels and no other disease symptom and healthy individual 

who had voluntarily agreed to participate in this study.  

Exclusion criteria included all subjects presenting any medical 

conditions or additional abnormal serum values, beside those of 

cholesterol. NMR samples preparation and NMR spectra acquisition 

were performed as previously reported. [7]  

 

Sample collection and preparation  

Sera samples were collected from male according to the standard 

operating procedure (SOP) for metabolomic-grade serum samples 

recently defined. [8] Blood was collected into standard blood collection 

tubes and allowed to clot at room temperature for 30 to 120 minutes 

before centrifugation (1,500 g for 10 minutes at 4 °C). Serum was 

aliquoted and stored at -80 °C in Greiner cryogenic vials prior to NMR 

spectrometry measurements. Before being transferred to a 5 mm 

heavy-walled NMR-tube, samples were thawed at room temperature 

and thereafter spin at 3000 rpm using Vivaspin® 6 centrifugal 

concentrator to remove proteic and particulate matter. The serum 

supernatant was removed. To prepare NMR sample, 425 µL of each 

sera sample ware added to 25 µL of 1M potassium phosphate buffer 

(pH 7.4) and 50 µL D2O. Trimethylsilyl propionic-2,2,3,3-d4 acid, 

sodium salt (TSP 0.1% in D2O) was used as an internal reference for 

alignment and quantification of the NMR signals; the mixture, 

homogenized by vortexing for 30 seconds, was transferred to five 

millimeters NMR tube (Bruker NMR tubes) before the analysis started. 

[8] 
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NMR spectroscopy and processing 

NMR experiments were carried out on a Bruker DRX600 spectrometer, 

equipped with a 5 mm triple-resonance z-gradient CryoProbe. 

TOPSPIN, version 2.1 or 3.0, was used for spectrometer control and 

data processing (Bruker Biospin). 1D NOESY experiments were 

acquired using spectral with of 14ppm, 16k data points, excitation 

sculpting for water suppression, 192 transients, 4s relaxation delay and 

60ms mixing time. The pulse sequence used included an excitation 

sculpting routine for the suppression of the water signal. [9] Due to the 

effect of excitation sculpting on the signal height of resonances in the 

region close to the water resonance, [10, 11] the metabolites that have 

resonances close to this region (ascorbate, glucose, mannose and 

pyroglutamate) were quantified using resonances from those 

metabolites in other spectral regions. A weighted Fourier transform was 

applied to the time domain data with a 0.5 Hz line-broadening followed 

by manual phase and baseline correction in preparation for targeted 

profiling analysis. 

 

Results 

Data Analysis 

NMR spectra were manually phased and baseline corrected. 

Quantification of serum metabolites was achieved using Chenomx 

NMR-Suite v8.0 (Chenomx Inc.). Briefly, the Chenomx profiler is linked 

to a database containing more than 250 metabolite NMR spectral 

signatures encoded at different spectrometer 1H frequencies, including 
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600 MHz (http://www.hmdb.ca). Comparison of the spectral data 

obtained for each serum sample with the Chenomx metabolite library 

results in a list of compounds together with their respective 

concentrations based on the known concentration of the added internal 

reference compound, TSP.  

 

Multivariate Data Analysis 

Multivariate data analysis based on projection methods was applied for 

statistical data analysis. Specifically, exploratory data analysis was 

performed by principal component analysis (PCA) while a projection to 

latent structures (PLS-DA)-based method was applied to discriminate 

the samples. While PCA is a well-known technique used in multivariate 

data analysis, the PLS-based approach is a robust regression 

technique used to investigate the relationships existing between two 

blocks of data, usually called X- and Y-block and has predictive 

applications. In the present study, discriminant classification was 

carried out using partial least squares-discriminant analysis (PLS-DA), 

a method based on the PLS regression algorithm. Projection methods 

in multivariate data analysis were performed by using SIMCA-P+ 

software (Version 12.0, Umetrics, Umeå, Sweden). The entire data 

matrix, after log transform and Unit Variance scaling, was first analyzed 

by PCA to define homogeneous cluster of samples (Exploratory data 

analysis). Models were validated by cross-validation techniques and 

permutation tests according to standardized good practice, to minimize 

false discoveries and to obtain robust statistical models. In order to use 

a regression algorithm for classification, the information about the 

presence of the pathological condition has to be coded in a binary 

vector, which takes the value 1 for one class (pathological) and -1 for 
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the other (healthy).  A small number of metabolites changing during the 

experiment was extracted and the behavior of each single metabolite 

was studied by linear mixed-effects model for longitudinal studies. All 

the different pretreatments provided good discriminant ability in 

calibration and cross-validation (above 90%). [12]-[13] 

For each sample, 50 metabolites were identified and quantified. Figure 

1 reports a graphical representation of mean concentrations of serum 

metabolites as determined by 1H-NMR analysis of human blood serum 

in HC patients, vs. healthy controls. The figure is related to the 

abnormal metabolites in HC patients. 

  

 

 

 

Fig. 1  Overview of mean concentrations of serum metabolites as determined by 1H-NMR 

analysis of human blood serum in HC patients, vs. healthy controls in our samples and in 
literature 
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Metabolomic ‘snapshot’     

Figure 2 shows PCA score and loading scatter plot for the 1H NMR 

data collected in 1D NOESY spectra of human sera of 

hypercholesterolemic subjects using 50 measured metabolites from 16  

sera of hypercholesterolemic subjects and 16 healthy donors. The data 

set relative to hypercholesterolemic subjects appear well separated 

from those of healthy subjects.  Inspection of PLS-DA score scatter plot 

(Fig. 3A) and loading scatter plot (Fig. 3B) points to 2-hydroxybutyrate, 

acetate, acetone, betaine, cysteine, formate, glutamate, glycine, 

hypoxanthine, isoleucine, lactate, ornithine, as metabolites distinctive of  

hypercholesterolemic sera. The first component explains 21% of 

variance while the second the 14%. The choice of principal 

components was done on the basis of for the PCA model. To improve 

the separation observed with the PCA model, supervised PLS-DA was 

applied fitting (R2Y) value resulted  85.8% in and predictive (Q2Y) 

value resulted 61.2%.  
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Fig. 2  PCA score scatter plot (A) for the 1H NMR data collected in 1D NOESY spectra of 
human sera of hypercholesterolemic subjects using 50 measured metabolites from 16 sera of  
hypercholesterolemic subjects and 16 donors. In graph 2 Red triangles correspond to data of 
sera of hypercholesterolemic subjects and green triangles to data of healthy donors. 
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Fig. 3  PLS-DA Score scatter plot (A) and PLS-DA loading scatter plot (B) for the 1H NMR data 
collected in 1D NOESY spectra of human sera of hypercholesterolemic subjects using 50 
measured metabolites from 16 sera of hypercholesterolemic subjects and 16 donors. In Fig. 3A 
red triangles correspond to data of sera of hypercholesterolemic subjects and green triangles to 
data of healthy donors. 
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Discussion  

Quality and quantity of nutritional intake can affect disease risk and 

serum composition.  It is then possible that diet derived serum 

components directly affect pathogenetic mechanisms.  Previously the 

genes were identified that are selectively regulated in human hepatoma 

cells by treatment with dyslipidemic sera. Accordingly 3-hydroxy-

3methylglutaryl-CoenzymeA synthase expression appeared 

significantly modulated via transcription factors peroxysome 

proliferators activated receptor.[3]  Using an NMR based metabolomics 

approach, our study was aimed to investigate a possible correlation 

between  the trascriptomic signature of hepatoma cell lines, and the 

metabolomics signature of sera. Accordingly, the statistical analysis of 

1H NMR data recorded on 16 hypercholesterolemic vs. 16 healthy 

sera, showed abnormal concentration of hydroxybutyrate, acetate, 

acetone, betaine, cysteine, formate, glutamate, glycine, hypoxanthine, 

isoleucine, lactate, ornithine, as distinctive of  hypercholesterolemic 

sera.  To investigate the implications of these results in term of 

etiopathologic perspective, we compared our results to the data 

deposited in the  HMDB data base. This analysis indicated that among 

the metabolites found in abnormal concentration acetone and 2-

hydroxybutyrate are involved in the biochemical pathway of the keton 

bodies. (Figure 4) These abnormalities evidence a direct relationship 

between the overexpression of HMGCS2 mRNAs [3] involved in the 

expression of enzymes of keton bodies pathway (Figure 4), and the 

products of the same metabolic pathway. Indeed an increased 

expression of HMGCS2 induces increased levels of acetone and 2-

hydroxybutyrate as found in the metabolomic profile of 

hypercholesterolemic sera studied by us. 
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Additionally it is worth of noting that the metabolic abnormalities 

observed in our sample are consistent with the data of previous mNMR 

based metabolomics studies. In particular 2-hydroxybutyrate, ketogenic 

amino acids and glycine [14] were found significantly augmented in 

subjects suffering of atrial fibrillation (AF) when compared to control 

subjects, confirming a pathological role for ketone bodies. [15]  

Finally among the metabolites found in abnormal concentration, 

glutamate, 2-hydroxybutyrate have been previously found associated to 

atherosclerosis and as end product of  damage  of intima artery walls. 

[16] Lactate, 3-hydroxybutyrate, isoleucine and glutamate were found 

at lower concentrations as distinctive of preischemia state in the 

coronary sinus (CS). [17]  

Conclusions 

In the reported study we analyzed the sera of 16 patients affected by 

hypercholesterolemic altered lipid profile, in comparison with an equal 

number of healthy subjects.  Hypercholesterolemic sera previously 

proved to increase in human hepatoma cells, the mRNA expression of 

HMGCS2, an enzyme involved in the pathway of keton bodies. Our 

NMR based metabolomics analysis evidences abnormal concentrations 

of metabolites involved in the keton bodies pathway. This indicates a 

correlation between the trascriptomic profile of hepatoma cells treated 

with hypercholesterolemic sera, and the metabolomics profile of the 

same sera. 
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Fig. 4  Biochemical pathway of the keton bodies 
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