
Universit`a degli Studi di Salerno

Dipartimento di Scienze Aziendali – Management and Innovation Systems

Dottorato di Ricerca

Management and Information Technology

Curriculum in Informatica, Sistemi Informatici e Tecnologie del Software

XV Ciclo

Tesi di Dottorato

Code Smells: Relevance of the Problem

and Novel Detection Techniques

Tutor

Prof. Andrea De Lucia

Coordinatore

Prof. Andrea De Lucia

Candidato

Fabio Palomba

Matr. 8887600001

Anno Accademico 2015/2016



Abstract

Software systems are becoming the core of the business of several industrial com-

panies and, for this reason, they are getting bigger and more complex. Further-

more, they are subject of frantic modifications every day with regard to the imple-

mentation of new features or for bug fixing activities. In this context, often devel-

opers have not the possibility to design and implement ideal solutions, leading to

the introduction of technical debt, i.e., “not quite right code which we postpone

making it right”.

One noticeable symptom of technical debt is represented by the bad code smells,

which were defined by Fowler to indicate sub-optimal design choices applied in

the source code by developers. In the recent past, several studies have demon-

strated the negative impact of code smells on the maintainability of the source

code, as well as on the ability of developers to comprehend a software system.

This is the reason why several automatic techniques and tools aimed at discover-

ing portions of code affected by design flaws have been devised. Most of them

rely on the analysis of the structural properties (e.g., method calls) mined from the

source code.

Despite the effort spent by the research community in recent years, there are

still limitations that threat the industrial applicability of tools for detecting code

smells. Specifically, there is a lack of evicence regarding (i) the circustamces lead-

ing to code smell introduction, (ii) the real impact of code smells on maintain-

ability, since previous studies focused the attention on a limited number of soft-

ware projects. Moreover, existing code smell detectors might be inadeguate for

the detection of many code smells defined in literature. For instance, a number

xi



of code smells are intrinsically characterized by how code elements change over

time, rather than by structural properties extractable from the source code.

In the context of this thesis we face these specific challenges, by proposing a

number of large-scale empirical investigations aimed at understanding (i) when

and why smells are actually introduced, (ii) what is their longevity and the way

developers remove them in practice, (iii) what is the impact of code smells on

change- and fault-proneness, and (iv) how developers perceive code smells. At

the same time, we devise two novel approaches for code smell detection that rely

on alternative sources of information, i.e., historical and textual, and we evaluate

and compare their ability in detecting code smells with respect to other existing

baseline approaches solely relying structural analysis.

The findings reported in this thesis somehow contradicts common expecta-

tions. In the first place, we demonstrate that code smells are usually introduced

during the first commit on the repository involving a source file, and therefore

they are not the result of frequent modifications during the history of source code.

More importantly, almost 80% of the smells survive during the evolution, and

the number of refactoring operations performed on them is dramatically low. Of

these, only a small percentage actually removed a code smell. At the same time,

we also found that code smells have a negative impact on maintainability, and in

particular on both change- and fault-proneness of classes. In the second place, we

demonstrate that developers can correctly perceive only a subset of code smells

characterized by long or complex code, while the perception of other smells de-

pend on the intensity with which they manifest themselves.

Furthermore, we also demonstrate the usefulness of historical and textual anal-

ysis as a way to improve existing detectors using orthogonal informations. The

usage of these alternative sources of information help developers in correctly di-

agnose design problems and, therefore, they should be actively exploited in future

research in the field.

Finally, we provide a set of open issues that need to be addressed by the re-

search community in the future, as well as an overview of further future applica-

tions of code smells in other software engineering field.

xii


