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Abstract 

 

 

Antimicrobial peptides (AMP) are evolutionarily conserved components of the 

innate immune system. They have a broad spectrum of action against bacteria, 

fungi and viruses. Therefore, AMP are studied as probable substitutes of the 

traditional antibiotics, for which most pathogens have developed resistance.  

The main objective of this work was the design of novel linear peptides 

capable to interact with the cellular membrane of the common pathogens.  

In this work, sequences of active AMP were carefully obtained from the scientific 

literature and collected in Yadamp (http://yadamp.unisa.it/), a database of AMP 

created recently in the laboratory where this project was carried out. In Yadamp, 

there are information about peptides name, amino acid sequence, length, presence 

of disulfide bridges, date of discovery, activity and taxonomy. The most relevant 

chemical-physical properties are also listed. This database is mainly focused on 

the peptides activities. Experimental MIC values (the lowest concentration of an 

antimicrobial that inhibits the visible growth of a microorganism) are constantly 

obtained from careful reading the original papers. In this work, a great 

contribution was made in the enrichment of the database. In fact, 1009 sequences 

were added to Yadamp. It currently contains 3142 AMP sequences. For these 

AMP, 573 molecular descriptors were calculated. In addition, this project also 

involved the search for new molecular descriptors. Yadamp is a resource for 

QSAR investigations on AMP. It allows to create subsets of AMP, homogeneous 

in one, two or more parameters. The working hypothesis was that AMP with 

similar chemical physical features can share the same mechanism of action. 

Therefore, during this work, genetic algorithms (GA), artificial neural networks 

(ANN) and classification analyses were performed on homogeneous subsets of 

AMP. AMP with activity against five different microorganisms were studied: 

Staphylococcus aureus and Bacillus subtilis (Gram + bacteria), Escherichia coli 

and Pseudomonas aeruginosa (Gram - bacteria), and Candida albicans 

http://yadamp.unisa.it/
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(saprophytic fungus). Numerous prediction models of activity were obtained, each 

of them validated through effective statistical techniques. These obtained models 

gave a preliminary idea of the probable mechanism of action that the studied AMP 

have. For example, the results suggest that the charge and the hydrophobicity of 

the amino acid residues are important factors for the binding of the AMP to the 

target membranes.  

However, the descriptors 1D and 2D currently available fail to capture all of the 

peptides properties. The peptides are extremely flexible molecules and when they 

interact with the target membranes, they undergo conformational changes. 

Consequently, one of the goal of this project was also to find new molecular 

descriptors of AMP. For example, a new molecular docking software 

(www.yada.unisa.it) was developed in our laboratory. The idea was to use YADA 

to calculate the binding energy of the interaction between the AMP and other 

peptides, protein receptors and target membranes. 

All the models obtained by computational studies were implemented in the 

“Yadamp predict” tool (http://yadamp.unisa.it/predict.aspx). It allows researchers 

to submit sequences of unknown molecules and to see if and to which organisms 

these molecules are potentially active.  

In this work, 10000 amino acidic sequences were generated through a 

combinatorial calculation. The “Yadamp predict” tool allowed the prediction of 

the interaction between these peptides and the lipid membranes of specific 

pathogens. The results of the “Yadamp predict” tool suggested a specificity of 

three sequences toward Gram positive bacterial membranes. These peptides, 

called p458 (WMLKKFRWMF), p459 (KILGKLWKWVK) and p460 

(KILKKIKKLLW), were synthesized for further analysis. Since the 3 peptides 

contained tryptophan, an aromatic amino acid with a maximum absorption and 

emission of 280 nm and ~ 360 nm, the peptides binding was monitored via 

spectrophotometric assays. This interaction was tested in vitro on unilamellar 

vesicles of 400 nm having different lipid composition. According to in silico 

studies, the fluorescence and absorbance results suggest that the three peptides 

predominantly bind Gram + bacteria. They probably bind the target membranes 

through a mechanism of action that does not depend only on  electrostatic 

http://www.yada.unisa.it/
http://yadamp.unisa.it/predict.aspx
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interaction, but also on structural changes that occur in the lipid membrane after 

the binding process. Highlights on the mechanism of interaction were provided by 

all atoms molecular dynamics simulations (data not shown) carried out in the lab 

of Prof. Piotto. 

All together, these findings support the proposed mechanism of action of the 3 

peptides and pave the way for novel and more focused design of antimicrobial 

peptides. 
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Chapter I 

 

1.1 Introduction: Why AMP? 

 

“I did not invent penicillin. Nature did that. I only discovered it by accident.” Alexander Fleming 

 

 

In 1945, Fleming, Florey and Chain received the Nobel for Medicine for the 

discovery and the development of penicillin, a group of antibiotics that act against 

many bacterial infections. This event changed the course of history and started the 

“antibiotic age”. Subsequently, other antibiotics were identified. Unfortunately, 

their massive use generated a phenomenon known as “drug resistance” that is a 

limit to the choice of an efficient antibiotic therapy. The annual death-toll is 

>700.000 people world-wide, rising to ~10 million by 2050 [1]. Consequently, we 

could be moving towards a “post-antibiotic era”: there is a strong need for new 

antibiotics to limit the risk that many bacterial infections become incurable [2]. 

Antimicrobial peptides are currently the most promising strategy against various 

pathogenic microbes. Compared to the traditional antibiotics, AMP are more 

stable and have lower propensity for developing resistance [3]. They can interfere 

with cell membranes without specific receptors (membranolytic activity) and kill 

or inhibit the proliferation of important multidrug resistant microorganisms. Most 

peptides are not cytotoxic against mammalian cells [4].  

 

  

https://en.wikipedia.org/wiki/Bacterial_infection
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1.1.1 What are AMP?  

 

AMP are small molecules (less than 100 amino acids) produced by the immune 

system of bacteria, insects, plants and vertebrates. The presence of amino acids as 

Lys and Arg in their sequence, determines a net positive charge. In addition, there 

is a large proportion of hydrophobic residues. The balance between positively 

charged and hydrophobic amino acids determines the amphipathic conformation 

of AMP (figure 1) [5]. 

 

 

 

Figure 1 Two examples of AMP: on the left 2LX2, Human Defensin 5; on the right 2K6O, Human LL-37. Positive amino 

acid residues are colored in red, negatively charged residues are colored in blue, neutral residues are gray. 

 

This amino acid composition suggests that they perform their lethal action by 

targeting lipid membranes [4]. AMP rapidly kill bacteria, yeasts, fungi and viruses 

with micromolar or submicromolar minimal inhibitory concentrations (MIC) [6]. 

MIC is the lowest concentration of an antimicrobial peptide which prevents 

visible growth of a bacterium. Several AMP have been identified and 

characterized. They have a considerable diversity in sequence, structure and 

biological activity. Based on their secondary structure, AMP are grouped in ɑ-

helical, β-sheet, extended and loop peptides [3]. The first two classes are the most 

common in nature. The first antimicrobial peptides identified and studied were α-

helix peptides [4].  

In 1987, magainins, a family of α-helix antimicrobial peptides, was isolated from 

the ventral skin of the African frog Xenopus laevis (figure 2) [7]. 
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Figure 2 Magainin (PDB: 2LSA) was the first AMP discovered. It was extracted from the ventral skin of the African frog, 

Xenopus leavis. This AMP has been extensively studied for its killing action on various pathogenic bacteria. 

 

Other known α-helix antimicrobial peptides are: 

 cecropins, andropins, melittins and ceratotoxins from insects; 

 bombinins, dermaseptins, esculentins and buforins II from amphibians; 

 cathelicidin LL-37 from human (figure 3); 

 

 

Figure 3 Human LL-37 Structure (PDB: 2K6O) 

 

Other antimicrobial peptides, with 16-18 amino acid residues and one or two 

disulfide bridges, form a single β-hairpin. Protegrin family is a model among β-

sheet AMP. It includes small peptides isolated from porcine leukocytes. They 

have a high content of positively charged arginine (Arg) and cysteine (Cys) 

residues. For example, PG-1 is a one-turn β-hairpin peptide in which two 

https://www.rcsb.org/pdb/explore/explore.do?structureId=2LSA
https://www.rcsb.org/pdb/explore/explore.do?structureId=2K6O


12 

antiparallel strands linked by a β-turn are stabilized by two disulphide bonds [8] 

(figure 4). 

 

Figure 4 Protegrin 1 (PDB: 1PG1) 

 

Linear extended peptides are very flexible in solution and they do not fold in a 

regular secondary structure. They are rich in proline, arginine and aromatic amino 

acids. Two examples are tritrpticin (figure 5) and indolicidin [9].  

 

Figure 5 Tritrpticin (PDB: 1D6X) 

 

There is a small group of AMP that, in the C-terminal of the structure, adopts a 

loop formation with one intramolecular disulfide bridge. For example, thanatin, an 

antimicrobial peptide with 21 amino acids, includes two cysteine residues that 

form a disulfide bridge. Thanatin adopts a well-defined anti-parallel β-sheet 

structure from residue 8 to the C-terminus [10] (figure 6).  
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Figure 6 Thanatin (PDB: 8TFV) 

 

1.1.2 Mechanisms of action: current ideas 

 

The behavior of antimicrobial peptides in vivo is not yet clear and each peptide 

can have various mechanisms of action. A common denominator for the 

mechanism of action of all these molecules, is the interaction with the lipid 

membranes of the target organisms. The positive charge of AMP allows an 

electrostatic interaction with the negatively charged surfaces, such as the bacterial 

membranes. This is an important aspect for the selectivity of AMP (figure 7). In 

fact, the eukaryotic cell membranes are predominantly constituted by zwitterionic 

lipids and the interaction with antimicrobial peptides is very weak [5]. The AMP  

amphipatic conformation guarantees their insertion into the lipid layer and, for 

example, an action mechanism consisting in the formation of pores.  

Recent studies demonstrate that, in addition to antimicrobial activity, AMP can 

have anticancer activity. An increased exposure of phosphatidylserine (PS) and 

the presence of O-glycosylated mucines, are determining factors for the 

interaction of antimicrobial peptides to the surface of cancer cells [11].  

Some AMP can have a cytotoxic activity. For example, the cationic amphiphilic 

antimicrobial peptide gramicidin S (GS) has an applicability restricted to topical 

infections due to its hemolytic activity [12].  
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Figure 7 The positive charge of the antimicrobial peptides allows them to preferentially bind the bacterial membranes 

negatively charged. The tumor cell membranes exhibit negatively charged phospholipids on their surface, such as the 

phosphatidylserine (PS). Thus, cancer cells can also be a target for AMP. 

 

Recent studies with fluorescent probes show that AMP can be associated with cell 

division, cell wall remodeling and secretion. They can interfere with these 

processes and/or cause cell lysis [5]. The mechanism of action of antimicrobial 

peptides depends mainly on their secondary structure and on the lipid composition 

of the target membranes. At the same time, the perturbation that occurs on the 

target membranes, depends on the peptide concentration, pH and temperature. For 

this reason, many studies have been performed to clarify the mechanism of action 

of AMP and to design selective peptides toxic only for pathogenic organisms. It 

emerges from the literature that AMP  have four different mechanisms of action: 

barrel-stave, carpet, toroidal-pore and detergent model [13]. In the barrel-stave 

model (figure 8), AMP insert into the target membrane and form a transmembrane 

pore, where hydrophobic amino acids interact with the lipid core of the bilayer. 

This mode of action causes cell lysis [14]. In 1998, Matsuzaki and others studied 

the mechanism of action of some AMP and they proposed that magainin 

permeabilizes the phosphatidylglycerol bilayers by forming a pore (figure 8) [15]. 
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Figure 8 AMP insert into the target membrane and form a transmembrane pore. 

 

In the carpet model (figure 9), high concentration of AMP cover the outer surface 

of the bacterial membrane like a carpet. The peptides are in contact with the 

hydrophilic heads of the lipids and this causes a new orientation of the hydrophilic 

residues and the creation of a hydrophobic core. The deformation of the 

membrane curvature causes cell breakage and death. 

 

Figure 9 AMP on the lipidic surface like a carpet 

 

The toroidal-pore model is a variant of the barrel-stave model. In this process, the 

membrane is bent inward and the intercalation of AMP with phospholipids forms 

the pore (figure 10).  
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Figure 10 AMP induce local defects in the bilayer and form a toroidal pore. The head-groups of the lipids line the pore 

together with the peptides. 

 

AMP at a high concentration can act as “detergents” to form peptide/lipid 

micelles, resulting in a collapse of the membrane [16] (figure 11). 

 

Figure 11 AMP act as “detergents” and form peptide/lipids micelles. 

 

The models just described are very useful to interpret molecular phenomena. 

Some studies have shown that alpha-helix peptides and beta-peptides act on the 

membranes predominantly forming pores. Among them, for example, there are the 

alpha-peptides Magainin II and Cecropin or the bovine beta-peptides Lactoferricin 

and Protegrin I. Extended peptides, such as Indolicidin or Pyrrhocoricin, that 

contain high proportions of certain amino acids (Arg, Pro or Thr residues), can 

cause cell membrane depolarization, lysis and inhibition of the DNA synthesis [3]. 

Some studies demonstrated that the chemical-physical characteristics of the 
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antimicrobial peptides, such as conformation, charge, hydrophobicity and 

amphipathicity, impact their selective toxicity [17]. Changes in composition, 

sequence and intramolecular bonds affect the structure-activity relationships of 

AMP.  

 

1.1.3 Bacterial resistance strategy 

 

There are few naturally AMP-resistant organisms, such as Burkholderia, Proteus 

and Serratia sp. [18], but the molecular bases for this peptide resistance are not 

clear. For example, some studies suggest that constitutive alterations in 

cytoplasmatic membrane structure or function may be the key to determine 

antimicrobial peptide resistance in S.aureus. At the same time, modifications in 

the outer membrane of some Gram-negative bacteria preserve the membrane 

integrity when it interacts with antimicrobial peptides [17]. Many studies have 

also identified genes in the bacterial DNA that result in AMP resistance. For 

example, the gene mcr-1 in Escherichia coli and Klebsiella pneumonia, codifies 

for a transferase that modifies the lipid A in the membrane, in order to reduce the 

anionic charge [19]. For example, the inactivation of the genes lpxA, lpxD, or 

lpxC in the DNA of Acinetobacter baumannii, that are involved in lipid A 

biosynthesis, determine the loss of LPS production and a reduction of the AMP 

binding [20]. Other mechanisms that bacteria use to overcome the action of AMP 

could involve the production of extracellular proteases and biofilms. For example, 

some bacteria, such as S.epidermidis, form biofilms to prevent AMP insertion and 

pore formation [21]. Overexpression of efflux pumps on the cell membrane, with 

the function of ejecting AMP from the cell, is also one of the resistance 

mechanisms of bacteria [22].  

In conclusion, there are resistance mechanisms that bacteria perform against 

AMP. However, despite the fact that bacteria are exposed to antimicrobial 

peptides for millions of years, the development of these forms of resistance 

occurred to a much less degree. In fact, to develop resistance against AMP 

microorganism should redesign their membrane and this is very hard in terms of 
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energy. Furthermore, there is a large number of antimicrobial peptides in the host 

and it is very difficult for bacteria to develop resistance against all peptides at the 

same time. 

 

1.1.4 Limits of antimicrobial peptides as therapeutic agents 

 

AMP possess several disadvantages that limit their development as therapeutic 

agents. These disadvantages include hemolytic activity, broad spectrum of 

activity, protease susceptibility, a rapid turnover in the human body, salt 

sensitivity and high cost of production [23]: 

 

 Hemolytic activity  

 

The bacterial cell membrane is negatively charged compared with mammalian cell 

membrane. This property increases the affinity between the cationic antimicrobial 

peptides and the bacterial cell membranes. The binding of AMP to the mammalian 

cells membranes depends on lipid charge, lipid composition and/or 

transmembrane potential. However, all AMP present a certain level of 

cytotoxicity towards mammalian cells.  

For example, indolicidin and bactenecin are strongly toxic to rat and human T 

lymphocytes [24]. It was observed that some natural AMP with amidated C-

terminal show higher hemolytic effect [25]. The ratio of antimicrobial activity and 

hemolytic activity is defined “therapeutic index”. A high therapeutic index is 

necessary to avoid hemolysis of host cells [23]. 

 

 Broad activity spectrum 

 

AMP are fascinating alternatives to antibiotics because of their broad-spectrum 

activity against various microorganisms, including Gram-positive and Gram-

negative bacteria, fungi, and viruses [26]. This positive aspect is also a 
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disadvantage. In fact, during therapy, AMP could also act on the bacterial 

microflora of the organism, causing other infections.  

 

 Rapid turnover in the human body: protease susceptibility 

 

Antimicrobial peptides are susceptible to proteases: they are rapidly degraded in 

the human body. Proteolytic stability is essential for therapeutic use and there are 

a lot of strategies to overcome this problem. For example, the most frequent 

modification is the replacing of natural amino acids with D-amino acids in the 

sequence: the proteases cannot act on unnatural residues [27, 28]. Another way to 

increase the stability of antimicrobial peptides is to create peptide mimetics. For 

example, De Grado et al. designed a series of amphiphilic arylamide polymers 

with the same physical properties of AMP. They have a mechanism of action 

comparable to the conventional antibiotics and exhibit high stability against 

proteases [29, 30]. Finally, cyclization seems to be a good approach to improve 

the pharmacodynamics of AMP [23]. 

 

 Salt sensitivity 

 

When antimicrobial peptides interact with the target membranes, they form 

secondary structures. This step is particularly sensitive to the high concentrations 

of salts present in body fluids. For this reason, it is necessary to design peptides 

that are not sensitive to salt. For example, the introduction of helix-capping motifs 

is a way to elude this problem and to stabilize the structure of AMP [31]. 

 

 High cost of production 

 

The cost of production of AMP is very high compared to the production of the 

conventional antibiotics. In general, to isolate peptides from natural sources is a 

very intensive and time-consuming process. At the same time, the process of 
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chemical synthesis of peptides is complex and costly. An efficient strategy is to 

obtain peptides through a recombinant production in various heterologous hosts, 

such as E.coli [32]. 

 

1.1.5 AMP in clinical trial 

 

AMP are considered molecules that may be able to replace traditional antibiotics 

in the difficult treatment of multidrug-resistant bacteria [33]. Actually, there are 

two strategies to exploit the action of antimicrobial peptides. The first one consists 

in a synergistic action of antimicrobial peptides with drugs that act directly on 

bacteria. The second strategy involves the development of substances that increase 

the production of antimicrobial peptides in the patient [33].  

Currently, eleven antimicrobial peptides are in phase I, twenty-four in phase II, 

three AMP are in phase III and only three studies are in phase IV 

(https://clinicaltrials.gov ). For example, actually, the MD Anderson Cancer 

Center is studying the induction of antitumor response in melanoma patients using 

the Antimicrobial Peptide LL37 (phase I). The goal of this clinical research study 

is to find the appropriate dose of LL37 for patients with melanoma. A research 

that is in phase II of the study concerns the evaluation of the safety and the 

bacterial impact of the drug STAMP C16G2 gived in multiple oral gel doses to 

adolescent and adult subjects. Another study, in the phase III, regards the 

comparison of the MSI-78 (magainin peptide) topical therapy and a conventional 

oral antibiotic therapy in the reduction in symptoms of diabetic foot. Particular is 

the case of Pexiganan (Locilex
®
), a chemically synthesized 22-amino-acid 

peptide, isolated from the skin of the African clawed frog. It is a foot ulcer 

candidate drug, which, unfortunately, has failed two phase III. Its action, in 

treating the disease, is considered not better than traditional antibiotics. Dipexium 

Pharmaceuticals, in disagreement with these results, has chosen to continue the 

study of this drug. 

  

https://clinicaltrials.gov/
https://www.mdanderson.org/
https://www.mdanderson.org/
https://medlineplus.gov/diabeticfoot.html
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Chapter II 

 

2.1 Molecular descriptors of antimicrobial peptides 
 

“The molecular descriptor is the final result of a logic and mathematical procedure which transforms chemical information 

encoded within a symbolic representation of a molecule into a useful number or the result of some standardized 

experiment.” [34] 

 

Molecular descriptors are widely used in computational chemistry in order to find 

a relationship between the structure and the activity of a molecule. These 

chemical-physical properties of the molecules are the elements on which a QSAR 

analysis is based. They reflect various levels of chemical structure: the molecular 

formula (so-called 1D), the two-dimensional (2D) and three-dimensional (3D) 

structural formula, the orientation and time-dependent dynamics of molecules (4D 

and higher) [35]. In this work, one-dimensional (1D) and two-dimensional (2D) 

molecular descriptors were used. The two-dimensional representation of 

molecules defines the connectivity of atoms in the molecule in terms of the 

presence and nature of chemical bonds [35]. The amino acid sequence, the length, 

the presence of disulfide bridges, the charge, the hydrophobic moment, the 

helicity, the flexibility, the isoelectric point, the Boman and instability index, the 

penetration capabilities and the ΔG, represent only one part of the molecular 

descriptors of AMP (figure 12). Molecular descriptors, such as helicity, isoelectric 

point, Boman index, flexibility or hydrophobicity, were calculated using online 

tools or MATLAB script. Others molecular descriptors were calculated from the 

AAindex database (http://www.genome.jp/aaindex/), using a MATLAB script. 

AAindex is a database of numerical indices representing various physicochemical 

and biochemical properties of amino acids [36]. In this database, the molecular 

descriptors are indicated with a code of four letters and six numbers (for example 

NAKH900104 or PALJ810106). All data are obtained from the literature. 

http://www.genome.jp/aaindex/
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Figure 12 Some molecular descriptors used in the QSAR analysis performed on antimicrobial peptides. 

 

2.1.1 Yadamp: yet another database of antimicrobial peptides 

 

In recent years, many novels antimicrobial peptides have been discovered and 

characterized. Data concerning these antimicrobial peptides have been included in 

web databases, most of which, dedicated to specific classes of AMP (table 1). 

Examples of these are PhytAMP [37], BACTIBASE [38] and DAMPD [39]. 

APD3 [40] is available since 2003 and contains 2884 active sequences on 

bacteria. In this database, information about the MIC (the lowest concentration of 

an antimicrobial peptide which prevents visible growth of a bacterium), is not 

directly accessible. Another database, CAMP [41], contains 1386 AMP 

sequences, but only a fraction of them are completed with MIC values. 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Cell_growth
https://en.wikipedia.org/wiki/Bacterium
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Current web 

databases 

 

CAMP: 

Collection of 

Antimicrobial 

Peptides 

 1386 AMP 

 Information about sequence, protein definition, accession 

numbers, activity, source organism, target organisms, protein 

family descriptions and links to other antimicrobial peptide 

databases 

APD3: The 

Antimicrobial 

Peptide Database 

 2884 AMP 

 Information about peptide name, amino acid sequence, peptide 

motifs, chemical modifications, length, charge, hydrophobic 

content, PDB ID, 3D structure, methods for structural 

determination, peptide source organism, peptide family name, 

life domain/kingdom biological activity, synergistic effects, 

target microbes, molecular targets, mechanism of action, 

contributing authors, and year of publication. 

DAMPD: 

Dragon 

Antimicrobial 

Peptide Database 

 232 AMP 

 Information about taxonomy, species, AMP family, citation, 

keywords and a combination of search terms and fields 

 

PhytAMP: A 

Database 

Dedicated to 

Antimicrobial 

Plant Peptides 

 Plant antimicrobial peptides 

 Information about taxonomic, microbiological and 

physicochemical data. 

 

BACTIBASE: 

Database 

Dedicated to 

Bacteriocin 

 

 230 bacteriocins 

 Microbiological and physicochemical data 

                                            

Table 1 Some of the most widely used AMP databases 

 

Due to their considerable diversity in chemical-physical properties and in their 

mechanism of action, a classification of AMP is very difficult [42]. In 2012, in the 

http://www.bicnirrh.res.in/antimicrobial/
http://www.bicnirrh.res.in/antimicrobial/
http://www.bicnirrh.res.in/antimicrobial/
http://www.bicnirrh.res.in/antimicrobial/
http://aps.unmc.edu/AP/main.php
http://aps.unmc.edu/AP/main.php
http://aps.unmc.edu/AP/main.php
http://apps.sanbi.ac.za/dampd/
http://apps.sanbi.ac.za/dampd/
http://apps.sanbi.ac.za/dampd/
http://apps.sanbi.ac.za/dampd/
http://phytamp.pfba-lab-tun.org/main.php
http://phytamp.pfba-lab-tun.org/main.php
http://phytamp.pfba-lab-tun.org/main.php
http://phytamp.pfba-lab-tun.org/main.php
http://phytamp.pfba-lab-tun.org/main.php
http://bactibase.pfba-lab-tun.org/main.php
http://bactibase.pfba-lab-tun.org/main.php
http://bactibase.pfba-lab-tun.org/main.php
http://bactibase.pfba-lab-tun.org/main.php
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laboratory where this project was performed, a database of antimicrobial peptides 

was developed: YADAMP (http://yadamp.unisa.it/) [43]. It contains more 

quantitative data than any other database. In YADAMP, there are relevant 

molecular descriptors for AMP: charge, hydrophobic moment, helicity, flexibility, 

isoelectric point, Boman index, instability index, and many others. YADAMP, 

unlike other databases, is especially focused on peptides MIC. The idea was to 

create a resource for researchers to retrieve all information on antimicrobial 

peptides in a short time, to select and to cluster the peptides according to certain 

parameters. “YADAMP predict” is a tool, implemented in the YADAMP 

database, that allows researchers to submit sequences of unknown molecules and 

to see if and to which organisms these molecules are potentially active (figure 13). 

Users can also know the degree of reliability of their result through appropriate 

statistical validation systems.  

 

 

Figure 13 YADAMP database interface 

 

  

http://yadamp.unisa.it/
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2.1.2 Data collection 

 

Yadamp collects data about AMP from scientific papers or web databases, 

providing structural data and information on antimicrobial activities.  

In Yadamp, a user can obtain information about peptide name, amino acid 

sequence, length, presence of disulfide bridges, date of discovery, activity and 

taxonomy. In addition, the most relevant chemical-physical properties were 

calculated such as charge, hydrophobic moment, helicity, flexibility, isoelectric 

point, Boman index, instability index and penetration capabilities. 

 

Sequences 

 

Sequences of active AMP were mainly extracted from the scientific literature and 

were compared with data in public databases (UniProtKB/Swiss-Prot [44], APD2 

[45], CAMP [41]). Each of the collected sequences was validated with 

literature available data.  

 

MIC values 

 

Yadamp is mainly focused on peptides activities. In microbiology, the MIC is 

the lowest concentration of an antimicrobial that inhibits visible growth of a 

microorganism. Yadamp allows the selection of AMP with the lowest MIC 

value. Experimental MIC values (expressed in μM) were manually extracted 

from careful reading the original papers. MIC values expressed in μg/mL were 

converted to μM to allow a quick comparison, using the formula: 

 

 

eq.1                      
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The most intensively studied organisms are Escherichia coli (Gram -), 

Pseudomonas aeruginosa (Gram -),  Salmonella enterica serotype Typhimurium 

(Gram -),  Staphylococcus aureus (Gram +), Micrococcus luteus (Gram +), 

Bacillus subtilis (Gram +) and the fungus Candida albicans. These organisms 

are also the primary source of infections in humans. Data against all other 

bacteria were inserted in fields: Other Gram −, Other Gram + and Other for 

fungi and yeast. In addition, for each peptide, in YADAMP the link to the 

references from which information were extracted were added in order to check 

the data and the antibacterial assay conditions. 

 

Biological classification 

 

Biological classification is a method used to group and categorize organisms into 

groups having attributes or traits in common. Taxonomy materials are important 

to understand and identify sequence patterns conserved across species. It is a 

hierarchical classification, in which each level is named ‘rank’. The data about 

taxonomic information were extracted from NCBI Taxonomy database [46]. 

YADAMP permits a selection for five main ranks: phylum, class, order, family, 

and genus. 

 

Calculated parameters 

 

Yadamp was created to be a resource for QSAR investigations on AMP. For an 

accurate QSAR analysis, it is essential to group peptides sharing some features, 

such as similar secondary structure, flexibility or charge. For this reason, 

Yadamp enriches the experimental data with some theoretical information. 

In the Appendix A it is possible to read the MATLAB scripts associated with 

each parameter computed: Charge, Boman index, Hydrophobicity, Helicity, 

Instability index, CPP.  
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 Charge 

 

AMP can act in very different pH conditions, depending on the tissue in which the 

bacteria are grown. The charge of each peptide was calculated at three different 

pH values (pH 5, 7 and 9) by the formula: 

 

                  

      

           
    

    

           

 

 

 

 

 

 

where Ni is the number of the N-terminus and of the side chains of arginine, 

lysine and histidine. The j-index refers to the C-terminus and the aspartic acid, 

glutamic acid, cysteine and tyrosine amino acids. pKai and pKaj values, taken 

from Lehninger Principles of Biochemistry [47], refer to amino acids labeled with 

the index i and j. 

This algorithm has some limitations, such as: 

 the residues are assumed to be independent of each other; 

 N- and C-termini have fixed pKa values; 

 only the 20 natural amino acids are considered; 

 the resulting net charge depends on what pKa values were used; 

A quick inspection at the database reveals that, mainly because of the wide 

variation in lysine abundance, the charge of certain peptides can largely vary at 

different pH. Peptides acting as antimicrobial compounds do not always 

experiment the neutral pH, so this parameter can be decisive for peptide 

simulations in specific tissue. 
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 Isoelectric point 

 

The isoelectric point (pI) is the pH at which a protein has no net electrical 

charge. Below the pI proteins carry a net positive charge and above it they 

have a net negative charge. Theoretical pI values were calculated using a free 

online tool [ 4 8 ] . According to Bjellqvist et al. [ 4 9 ]  it was assumed that the 

same pK value could be used for an amino acid residue in all polypeptides and in 

all positions in the peptide except for N- or C-terminally placed amino acids. For 

the pK values of the N-terminal amino groups the effect of the different 

substituents on the α-carbon were taken into account. 

 

 Boman index 

 

Most authors have agreed that a potential AMP should possess a positive net 

charge to facilitate binding to bacterial phospholipids as well as a certain degree 

of amphipathicity to allow molecule adaptation to a bacterial membrane. These 

criteria are not enough to predict the ability of a peptide to interact with cell 

membrane. Boman [50] introduced a parameter which shows a certain degree of 

discrimination between membrane-interacting and protein-interacting peptide. 

This value established the tendencies of amino acids to leave water and move in a 

nonpolar condensed phase calculating the distribution coefficients for each side 

chain of the natural amino acids at pH 7. The Boman index for all sequences was 

calculated as the sum of the free energies (kcal/mol) of the respective amino acid 

side chains for transfer from cyclohexane to water divided by the total number of 

residues (eq.3). 

                     
               

    
    

        

 

 

 

The free energies values were taken from Radzeka and Wolfenden [51]. 
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 Hydrophobicity 

 

Hydrophobicity is another critical characteristic of amino acid residues that 

determines protein folding, protein subunit interaction, binding to receptors, 

and interactions of proteins and peptides with biological membranes. The 

calculation of hydrophobicity assigns a numerical hydrophobicity value to each 

type of amino acid, and then relates these values in a particular protein or 

fragment to some aspect of the structure or the function. The hydrophobicity of 

an amino acid residue is not a property that can be easily defined or simply 

measured. Nevertheless, several groups have attempted to derive numerical 

hydrophobicity scales using a variety of experimental and computational 

methods. The distribution of t he  hydrophobic residues in amphipathic peptides 

is revealed by the hydrophobic moment, which depends on the spatial 

conformation of the peptide. To calculate the hydrophobicity of the AMP 

sequences it was used the method of Eisenberg, David, et al. (1982) [52]. It was 

assumed that the polypeptide backbone follows some periodic arrangements 

such as an α-helix or a strand from a β-sheet. The hydrophobicity of each 

residue i by a vector of length Hi, having a direction perpendicular to the axis of 

the helix or strand of beta structure. The value of the estimated hydrophobic dipole 

moment (µH) is: 

 

               

 

              

 

          
 

   

 

where δ is the angle separating side chains along the backbone (e.g. δ = 100° 

for an α-helix). Finally, the mean hydrophobicity was calculated as the total 

hydrophobicity (sum of all residue hydrophobicity indices) divided by the number 

of residues (eq.5). 
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 Helicity 

 

The secondary structure of a peptide is crucial for the investigation. If it is not 

experimentally available, peptide structure prediction is essential.  

In Yadamp, the prediction is based upon the DSC (Discrimination of protein 

Secondary structure Class) algorithm from King and Sternberg [53]. The method 

extracts the maximum information from the primary sequence and allows the 

prediction of the secondary structure from multiply aligned homologous 

sequences and linear statistics. The DSC Method is accessible as ‘Secondary 

Structure Prediction’ (SSP) option in Discovery Studio from Accelrys.   

 

 Flexibility 

 

The molecular flexibility of proteins is a crucial factor in determining their 

biological activity, including binding affinity, and for the theoretical 

understanding of peptide dynamics. The identification of regions in proteins with 

the highest conformational flexibility and rigidity is essential for predicting the 

mechanism of protein folding. Consequently, there is a considerable interest in 

predicting the flexibility or, conversely, the rigidity of peptides from their amino 

acid sequence. Obviously, prediction of the secondary structure of an AMP is 

a hard task due to the different conformations that a peptide shows in 

different chemical environments. Moving from the water bulk into the 

membrane, the structure of peptides varies considerably. The flexibility of α-

AMP was calculated according to a conformational flexibility scale for amino 

acids in peptides [54] , which provides an absolute measure for the time scale of 

conformational changes in short unstructured peptides as a function of the 
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amino acid type. This experimental scale derived from kinetic measurements 

of the collision frequency between the two ends of short random-coil 

polypeptides. These peptides were labeled with a fluorescent probe at the C-

terminus and Trp as a fluorescence quencher at the N-terminus. The 

fluorescence lifetimes of fluorescent probe/Trp peptides provide the quenching 

rate constants (kq), which measure the end-to-end collision frequency. The 

authors have shown different collision frequencies when the probe and the 

quencher were separated by different amino acids. This arrangement allowed 

them to correlate the collision frequency with the type of amino acid and build 

up a flexibility scale. 

 

In YADAMP the flexibility was calculated by the formula: 

 

                    
  

               

 

 

 

 

For amino acids not found in the Huang work, the missing values were 

est imated by comparison with reported kq constants.

 

 Instability index 

 

To estimate the instability values, the Guruprasad work was considered [55]. 

They made a statistical analysis of 12 unstable and 32 stable proteins to reveal 

patterns in the occurrence of certain dipeptides. Some dipeptides appeared 

particularly frequent in stable proteins, whereas other dipeptides were 

common in unstable proteins. The contribution of each of the dipeptides towards 

instability was obtained by summing the instability weight values 

corresponding to the conditions satisfied by the dipeptide and termed as the 

dipeptide instability weight value (DIWV). The instability index (II) was 
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calculated using the DIWV values for all 400 combinations reported in the 

Guruprasad paper (eq.7). 

 

           
  

 
              

   

   

 

 

where xiyi+1 is a dipeptide, L is the length of the sequence and 10 is a scaling 

factor. 

 

 CPP 

 

This parameter is the acronym of Cell Penetrating Peptides and is an estimate of 

the tendency for a peptide to penetrate a cell membrane. The parameter can take 

values between 0 and 1, where 1 corresponds with the highest probability of a 

peptide to penetrate a membrane, and 0 indicates the impossibility to enter a 

membrane. To predict this ability, it was used a free online tool [ 56]  in which 

the peptide sequences were inserted. 
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2.1.3 Extending Yadamp 

 

Yadamp, at the time of its creation (2012), contained detailed information for 

2133 peptides active against bacteria. During this work, 1009 new sequences of 

AMP were added to the database. All these data are the result of an extensive and 

careful bibliographic research from existing AMP databases and the most recent 

literature. For these sequences, 573 chemical-physical parameters were calculated.  

 

2.1.4 Using Yadamp  

 

The web interface of Yadamp offers a simple use of the database. It is possible to 

query the database by name, sequence, length and by other molecular descriptors.  

 

 

Figure 14 Yadamp interface 

 

In Yadamp, it is possible to look for antimicrobial peptide sequences based on the 

antimicrobial activity that they have against five organisms (E.coli, P.aeruginosa, 

S.aureus, B.subtilis and C.albicans), common target of AMP. Soon, It will also be 
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possible to query Yadamp on the hemolytic activity of antimicrobial peptides. 

Information about the activity of the peptides is manually extracted by the 

corresponding papers and from the DBAASP database, which contains 

information on the antimicrobial and hemolytic activities of more than 10000 

antimicrobial peptides [57]. These data are essential to optimize the analyses of 

structure-activity relationships, to investigate the selectivity of antimicrobial 

peptides and, therefore, to obtain new activity models. In the Yadamp site, the 

“Theory section” provides a synopsis of the theoretical terms. Finally, due to the 

extraordinary interest in AMP, Yadamp provides a page dedicated to literature 

monitoring [43].  
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Chapter III 

 

3.1 Computational studies to clarify the AMP mechanism of action  

 

More than 19.000 antimicrobial peptides, obtained from nature sources or 

synthesized, have been discovered and characterized, but their mechanism of 

action is still poorly understood [58]. It is extremely beneficial to have approaches 

that can guide the design of new drugs in a rational way. Therefore, some 

researchers developed algorithms to predict the antibacterial activity of AMP with 

a high accuracy. For example, Lata et al. (2007) [59], using Artificial Neural 

Network (ANN) and Support Vector Machine (SVM), suggested that N- and C-

terminals of the AMP sequence, play two different important roles in the activity: 

C-terminal and N-terminal are involved in the interaction with the membrane and 

in the pore formation, while the N-terminal intervenes in specific bacterial 

interaction processes [59]. Other researchers developed an approach to identify 

conserved motifs in the AMP. They used a computational method based on hidden 

Markov models (HMMs) [60], a tool that represents the distributions, in terms of 

probability, of the sequences of observations [61]. Unfortunately, the amino acid 

sequences analyzed have shown little homology, precluding the possibility to 

create easily a model of activity. Antimicrobial peptides are very heterogeneous 

molecules, with a large variability in sequences and 3D structures. Probably, this 

is the reason for the failure of traditional computational analyses. To overcome 

this limitation, an element of novelty in this work is the creation of homogeneous 

sets of antimicrobial peptides [43], on which QSAR Analysis (Quantitative 

structure–activity relationship) by genetic algorithms (GA) and artificial neural 

networks (ANN) were performed.  
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3.1.1 GA and ANN: what are and how they work? 

 

“As many more individuals of each species are born than can possibly survive; and as , consequently, there is a frequently 

recurring struggle for existence, it follows that any being, if it vary however slightly in any manner profitable to itself, 

under the complex and sometimes varying conditions of life, will have a better chance of surviving, and thus be naturally 

selected. From the strong principle of inheritance, any selected variety will tend to propagate its new and modified form.”  

Charles Darwin, The Origin of Species 

  

Genetic algorithms are heuristic search methods based on the Darwinian theory of 

natural selection [62]. According to Darwin, the evolution of the species is 

governed primarily by the "struggle for life", for which individuals with the best 

genetic material have a greater chance of survival. Through sexual reproduction, 

the best genetic material is transmitted from parent to child. So, the individuals 

that best fit the environment are those who survive and transmit their 

characteristics to their successors [63]. To perform an analysis with genetic 

algorithms, molecular descriptors must be chosen.  

In this work, the molecular descriptors are the chemical-physical characteristics of 

AMP potentially correlated with the response. In this case, the response is 

represented by the activity that the peptides have towards target species (MIC). 

The aim is to find the properties that best correlate with this response. The 

molecular descriptors represent the population of data on which the genetic 

algorithm works and they are called "individuals". Each individual is converted to 

a binary string, known as “chromosome”, and evaluated based on a fitness 

function. The fitness function represents a function that makes a solution to the 

input problem in the form of a mathematical equation (output). The values of each 

binary string are called "genes". The analysis is divided into three phases: 

selection, crossover and mutation. In the selection phase, the selective 

reproduction operator plays a similar role to the law of survival in nature: at each 

iteration the algorithm measures the fitness value of each individual and 

determines the best set of solutions to solve the given problem. The best strings are 

subjected to genetic recombination. In the crossover phase, each pair of strings is 

crossed with a certain probability and the crossing point is random. Finally, in the 

mutation phase, each element of a string (gene) changes its value based on a 
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probability. The operation is repeated until the genetic algorithm chooses a suitable 

set of descriptors. These values are utilized to build a nonlinear QSAR regression 

equation (the output of the analysis).  

 

 

Figure 15  Representative scheme of a genetic algorithm. 

 

The artificial neural network (ANN) analysis was developed and designed to 

mimic the information processing and learning in the brain of living organisms 

(figure 16) [64]. 
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Figure 16 Artificial neural networks mimics the connection of neurons in the nervous system. 

 

In the nervous system, a neuron receives and communicates signals to other 

neurons, muscles or glands. These neuronal functions are reflected in the anatomy 

of the neuron. The neuron receives connections from other neurons through the 

dendrites, small fibers that are branched from the neuron. The soma is the cell 

body and contains the organelles necessary for cellular function. Information from 

one part of the neuron to its terminal regions is transmitted through the axon. The 

terminal region of the axon is called synapse and here one neuron forms a 

connection with another through the process of synaptic transmission. The 

synapses can learn from the activities in which they participate and are 

responsible of human memory [65]. This principle is the key point of the artificial 

neural network architecture that acquires knowledge through learning. 

A lot of researchers use artificial neural networks to solve a variety of problems 

(pattern recognition, prediction, clustering, etc). The first approach to the ANN 

research is in 1940 [66]. Papert’s results [67] in the 70s created a lot of 

enthusiasm for researchers and ANN received considerable interest. In 

computational biology, an artificial neural network (ANN) consists of an input 
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layer of neurons, a certain number of hidden layers and a final output layer (figure 

17) [68].  

Typically, an artificial neuron has many inputs and one output. Inputs are the data 

that the operator provides to the system. The inputs are converted into vectors and 

indicated by the mathematical notation x (n), where n is the number of inputs. 

Each input is associated with a weight that indicates the conductivity of the input 

channel: neuron activation is a function of the weighed sum of inputs. The sum is 

a numerical value ranging from 0 to infinity. If the sum is 0, bias is added. Bias is 

always equal to ‘1’. To check the sum value produced by a neuron and to decide if 

this neuron is active or not, an activation function (or transfer function) is set. The 

activation function can be mainly of two types: linear or nonlinear. 

 

Figure 17 Representative scheme of an Artificial Neural Network. 

 

The most commonly used method for training a neural network is to present a set 

of examples (training sets) to the network. The response that the neural network 

provides is compared to the desired response to evaluate how much they are 

different (error value). At each cycle, the neural network adjusts the weights 

associated with inputs. The neural network repeats this process until the error 

obtained falls below a predetermined threshold. Finally, the learning process must 

be validated on the data that has not already been used in the training set. The 

purpose of the “validation set” is to assess if the neural network has acquired the 

information to make predictions about new data. 
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3.1.2 Elements of statistical analysis 

 

 

Figure 18 The QSAR analysis allows to correlate the physical-chemical properties of the molecules (molecular descriptors) 

with their activity. The results are validated by a careful statistical analysis. 

 

In order to evaluate the reliability of the mathematical models obtained from the 

QSAR analysis, the use of a statistical validation system is indispensable. The 

validation phase allows to indicate the quality of the build model, including how 

well it fits the data and the model predictive power. Various statistical measures 

can be adapted to measure the fitness of mathematical models obtained from the 

GA analysis during the evolution process (figure 18).  

To conduct analyses with genetic algorithms, the Material Studio 7.0 software was 

used. Firstly, a study table with the AMP homogeneous in their chemical-physical 

properties (molecular descriptors) was prepared. The fitness function was the MIC 

of AMP. On the created study tables was applied a function called "Genetic 

Function Approximation". At the end of each analysis, the system provides a 

certain number of equations (number chosen by the operator) and a validation 

table. This table lists a number of parameters, such as Friedman LOF, R-squared, 

adjusted R-squared, cross validated R-squared, and others. Among these, 

the Friedman lack-of-fit (LOF) measure and the correlation coefficient (R
2
) were 

considered to estimate the fitness of each model. R
2
 is a number between 0 and 1 
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that gives some information about the goodness of fit of the model. The formula 

for the calculation of the correlation coefficient is: 

 

            
     

     
   

        
 

         
 

Where: 

 SSres: the residual sum of squares, a measure of the discrepancy between the data (yi) 

and the estimation model (fi); 

 SStot: the sum of the squared differences of each observation (yi) from the mean    ); 

The R
2
 value increases as the terms of the equation increase and, therefore, it is 

not enough to understand if the overfitting phenomenon occurs. For this reason, it 

is also necessary to consider the value assumed by the LOF parameter. It provides 

an error measure, estimates the most appropriate number of features and resists to 

overfitting [69]. In Materials Studio [70], the LOF value is calculated with this 

formula: 

          
   

    
         

   
 

 

 

Where 

 SSE: the sum of squares of errors 

 c: the number of terms in the model 

 d: a scaled smoothing parameter 

 p: the total number of descriptors  

 M: the number of samples in the training set 

 λ: a safety factor, with the value of 0.99, to ensure that the denominator of the expression 

can never become zero 

Unlike the commonly used least squares measure, the LOF measure cannot 

always be reduced by adding more terms to the regression model. While the new 

term may reduce the SSE, it also increases the values of c and p, which tends to 

https://en.wikipedia.org/wiki/Goodness_of_fit
https://en.wikipedia.org/wiki/Mean
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increase the LOF score. In conclusion, a lower LOF value corresponds to a more 

reliable model. 

ANN analysis was performed with the software Matlab 2013 [71] and the 

performance function for the network is the mean square error (mse). It measures 

the network’s performance according to the mean of squared error that indicates 

the average quadratic discrepancy between observed data values and estimated 

data values: 

            
 

 
         

 

 

   

 

Where: 

  yi = observations 

     = mean 

In this work, experimental MIC data were used to perform QSAR analyses. In the 

statistical validation phase of the results, the experimental MIC values were 

compared with the predicted MIC values to evaluate if the obtained results were 

TP (true positive), FP (false positive), TN (true negative) or FN (false negative). 

We talk about true positive when values are predicted correctly, reflecting the 

experimental data. The false positives are value incorrectly predicted as positive. 

With the same criterion, we can define true negative and false negative. Then, the 

precision (PPV), the accuracy (ACC), the sensitivity (TPR) and the specificity 

(SPC) were calculated, as defined in Eqs 11-14. Precision is defined as the ratio 

between the TP and the sum of TP and FP (eq.11). The accuracy is given by the 

ratio of the sum of TP and TN and the total population (eq.12). Sensitivity is the 

ratio between the TP and the sum of TP and FN (eq.13). Finally, the specificity is 

defined as the ratio between the TN and the sum between FP and TN (eq.14). 
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The experimental data were extracted from the literature and entered into the 

Yadamp database. For this reason, an intrinsic experimental error of 

microbiological tests, due to serial dilutions, had to be considered. The correlation 

coefficient is significantly affected by the difference between a predicted value 

and an experimental value. Then, it is more correct to talk about activity classes 

and the goodness of a QSAR model must be judged in terms of its ability to 

discriminate among very active, active and non-active peptides. However, the 

calculation of precision, accuracy, specificity and sensitivity is based on a binary 

predictive response (active peptide/inactive peptide). For this reason, to have a 

further measure of the reliability of the models obtained, it was calculated an 

index, called score, which evaluates prediction based on the 5 classes of activity 

of AMP (eq.15). 
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Table 2 Matrix for the computation of the overall model quality. 

 

The scoring matrix in table 2 attributes a reward each time the model correctly 

predicts the MIC. If the class is not predicted correctly, there is a penalty 

(negative values). 

Appendix B shows the Python script that was created to validate the calculation of 

statistical parameters, such as sensitivity, specificity, accuracy and precision, and 

for the calculation of the index score (eq.15). 

 

3.1.3 GA and ANN analyses applied on homogeneous subsets of AMP: 

experimental procedures 

 

The working hypothesis was that antimicrobial peptides with similar features can 

share the same mechanism of action [64]. The Yadamp database [43] allowed to 

create subsets of AMP, homogeneous in one, two or more parameters. Parameters, 

such as peptide length, charge, helicity, flexibility, Boman index and ΔG, were 

considered. On these homogeneous subsets of AMP, GA and ANN analyses were 
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performed. AMP with activity against five different microorganisms were studied: 

Staphylococcus aureus and Bacillus subtilis (Gram positive bacteria), Escherichia 

coli and Pseudomonas aeruginosa (Gram negative bacteria), and Candida 

albicans (saprophytic fungus).  

The GA method has been implemented in the Material Studio 7.0 [72] package. In 

all the analyses, the fitness function was the MIC, the antimicrobial activity of the 

peptides against the microorganism considered, while the molecular descriptors 

used to generate the models, were one-dimensional (1D) and two-dimensional 

(2D) chemical-physical parameters related to the AMP. Nonlinear correlations in 

the data are explicitly dealt by use the descriptors in spline, quadratic, offset 

quadratic, and quadratic spline functions. The smoothness parameter was kept at 

the default value of 1.0 and the length of an equation was let vary between 2 and 5 

descriptors. A total of 500 individuals were let evolve over 5000 new generations.  

ANN analyses were performed with the software Matlab 2013 [67]. The 

multilayers network used had two layers: the output and the hidden layer. The 

hidden layer consisted of ten artificial neurons, the output layer was a single 

neuron. The training function of the network was the algorithm based on the 

Levenberg-Marquardt minimization method (trainlm). This function is very fast 

and performs better on function fitting (nonlinear regression) problems. The 

adaption learning function was learngdm. It corresponds to the momentum variant 

of back propagation. The two different transfer functions used for the neurons are: 

tan–sigmoid transfer function (tansig) for the hidden layer, that returns values 

between −1 and 1, and linear transfer function (pureline) for the output layer [64]. 
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Chapter IV 

 

4.1 Two mathematical models obtained on AMP active on S.aureus  

 

In this section, two of the mathematical models obtained on AMP active on 

S.aureus are shown and discussed. When these analyses were performed, the 

AMP collected in the Yadamp database with an experimental MIC against 

S.aureus, were 1163. As mentioned previously, the basic hypothesis is that similar 

peptides have the same mechanism of action. Therefore, homogeneous subsets of 

peptides were created. Actually, the antimicrobial peptides present in Yadamp 

with information about the activity against S.aureus are 1346.  

 

4.1.1 S.aureus: an overview 

 

Staphylococcus aureus is a Gram-positive bacterium and it is a member of the 

normal flora of the body (nose, respiratory tract, skin) [73]. S.aureus causes a lot 

of clinical infections: minor skin infections (cellulitis, folliculitis, abscesses, etc) 

or more serious diseases such as bacteremia, infective endocarditis and 

pleuropulmonary infections [74]. The treatment for S.aureus infection is the 

antibiotic penicillin. When penicillin was introduced for the first time in 1943, it 

effectively acted in the treatment of S.aureus infections. In 1950, the 40% of 

S.aureus cultures were resistant to penicillin; in 1960, this value rose to the 80% 

[75]. So, it is very important to find drugs that can reduce or even eliminate the 

Staphylococcal resistance (figure 19). 

https://en.wikipedia.org/wiki/Gram-positive
https://en.wikipedia.org/wiki/Bacterium
https://en.wikipedia.org/wiki/Nose
https://en.wikipedia.org/wiki/Respiratory_tract
https://en.wikipedia.org/wiki/Human_skin
https://en.wikipedia.org/wiki/Cellulitis
https://en.wikipedia.org/wiki/Folliculitis
https://en.wikipedia.org/wiki/Abscess
https://en.wikipedia.org/wiki/Penicillin
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Figure 19 Representation of the way in which a bacterium can become resistant 

 

4.1.2 QSAR Analysis – Dataset A 

 

Genetic Algorithms: results 

 

This model was obtained from a dataset of 55 antimicrobial peptides having a 

length between 7 and 11 amino acids (dataset A). The molecular descriptors used 

in this analysis are 45 molecular descriptors 1D and 2D. Among these there are 

the length, the charge at pH 5, 7 and 9, the helicity, the Boman index, etc. The 

equation obtained from this analysis shows that, for this homogeneous dataset, the 

most important parameters for AMP killing action on S.aureus are the peptide 

charge at pH 5 and pH 7 and the number of polar amino acids in the sequence 

(eq.16).  

 

                                           

                     

Where  

 Ch5: peptide charge at pH5 

 Ch7: peptide charge at pH7 

 POLAR_AA: number of polar residues 
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This result is in line with several studies that have shown that the electrostatic 

interaction between AMP and lipid membranes is fundamental for their 

mechanism of action [76]. For example, a recent study has developed a model for 

linear antimicrobial peptides activity (magainin 2 amide and melittin), based on 

the effects of both lipid-peptide charge and topographical interactions. These 

researchers have shown that antimicrobial activity is governed by topological and 

electrostatic interactions between the membrane-bound peptide and the 

surrounding lipids [77]. As described in the previous section, the reliability of the 

results obtained by the QSAR analyses is evaluated by considering the values of 

R
2
 and LOF. In this case, the analysis generated R

2
 and LOF values of 0.92 and 

738, respectively.  

Genetic Algorithms: statistical validation 

 

 

Figure 20 Result of the statistical validation of the GA analysis performed on the dataset of 55 antimicrobial peptides 

active on S.aureus with a length ranging from 7 to 11 amino acids. 

 

The calculation of precision (PPV), accuracy (ACC), sensitivity (TPR) and 

specificity (SPC) indexes requires an arbitrary definition of what is considered 

active and inactive (see section 3.1.2). In the figure 20, the precision, accuracy, 

sensitivity and specificity parameters calculated for the model obtained by GA 
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analysis (eq.16), are shown. For this model, the behavior is acceptable only for 

three indexes: specificity (black lines in the figure) is the exception, with values 

that drop to 35 % for peptide with a length between 11 and 20 amino acids. Low 

specificity indicates that models displays many false positives. However, a good 

correlation coefficient and high values of precision, accuracy and sensitivity, 

cannot capture the quality of an activity model because the intrinsic experimental 

error in microbiological tests, due to serial dilutions, is not considered. It is more 

correct to talk about activity classes. A common view in the pharma industry was 

adopted to consider inactive those peptides with a MIC higher than 30 μM (table 

2). The overall quality of the model (score) is calculated comparing MIC 

predictions with the experimental data according to eq.15.  

 

 

Figure 21 Application of the score function on the results obtained through GA analysis on the dataset of 55 antimicrobial 

peptides active on S.aureus with a length ranging from 7 to 11 amino acids. The red areas represent the areas where the 

model is reliable. The blue zones are the areas where the model is unreliable. 

 

This diagram (figure 21) permits to easily evaluate the domain of applicability of 

the model. Each point in the figure corresponds to a set of peptides of length 

between Length_start and Length_stop. The overall quality, calculated with eq.15, is 

rescaled between 0 (blue, unreliable) and 100 (red, reliable), and color mapped. 
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For example, the point 20, 50 of the figure 21 indicates that the sum of the scores 

on all peptides with length between 20 and 50 is lower the 10 % (blue region). At 

the same time, the figure shows that peptides with a length less then 30 amino 

acids have a high score sum. This indicates that the reliable region (red) is larger 

than the subset where the model was calculated (AMP with a length between 7 

and 11 amino acids). For longer peptides, the prediction capability of the model 

quickly degrade. 

 

Artificial Neural Networks: results 

 

On the same data set (dataset A), ANN were applied. The neural network used 

consisted of 2 layers with 10 neurons in the hidden layer. 

 

Figure 22 Results of the application of ANN for peptides with a length between 7 and 11 amino acids.  

 

The result of the neural network is shown in the figure 22. The final correlation 

coefficient is 0.94. The ANN, as well as the GA analysis, have been able to learn 

the existing correlations between the molecular descriptors and the antimicrobial 

activity (training phase). In this case, however, we do not get a mathematical 
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equation from the analyses and, therefore, it is not possible to determine what are 

the important parameters for AMP mechanism of action. Therefore, the analyses 

with GA and ANN are strongly complementary. 

 

Artificial Neural Networks: statistical validation 

 

  

Figure 23 Result of the statistical validation of the ANN analysis performed on the dataset of 55 antimicrobial peptides 

active on S.aureus with a length ranging from 7 to 11 amino acids. 

 

The evaluation of the applicability of the neural network models were performed 

in the same way of GA models. In the figure 23, the trend of sensitivity, 

specificity, accuracy and precision for active and inactive peptides, were reported. 

Even in this case, the behavior is acceptable only for the sensitivity, accuracy and 

precision indexes. Specificity is low for peptides with a length greater than 15 

amino acids. 
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Figure 24 Application of the score function on the results obtained from the ANN analysis on the dataset of 55 

antimicrobial peptides active on S.aureus with a length ranging from 7 to 11 amino acids. The red areas represent the areas 

where the model is reliable. The blue zones are the areas where the model is unreliable. 

 

A more accurate evaluation is shown in the figure 24. The graph was constructed 

using the score calculated through the eq.15. In this chart we can clearly see that 

the range of peptides on which the model of activity obtained with neural 

networks is applicable is different than the range that was obtained with genetic 

algorithms. In fact, the ANN model is applicable in a range of peptides longer 

than 40 amino acids.  

This means that the two activity models (one with GA analyses and the other with 

ANN analyses) performed on the same dataset, are applicable on different sets of 

peptides.  
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4.1.3 QSAR Analysis – Dataset B 

 

Genetic Algorithms: results 

 

This model was obtained from a dataset of AMP shorter than 30 amino acids, with 

a Boman index
1
 between 1 and 2 kcal/mol (dataset B). Also in this case, 45 1D 

and 2D molecular descriptors were used. 

 

             
         

      
                              

                     

Where 

 D: number of residues of Aspartic acid 

 Ch5: peptide charge at pH5 

 Ch7: peptide charge at pH7 

 MW: molecular weight 

 

The R
2
 obtained from this analysis is 0.81 while the LOF value is 876.01. This 

equation (eq.17), such as the first model obtained (eq.16), considers the charge 

parameter as an important molecular descriptor for the mechanism of action of 

AMP. In addition, the presence of amino acid aspartate in the sequence and the 

molecular weight, appear other factors that affect AMP activity. 

 

Genetic Algorithms: statistical validation 

 

In order to proceed with the validation, the equation obtained were applied to all 

the peptides with an experimental MIC value against S.aureus, collected in 

Yadamp. The values of precision, accuracy, sensitivity and specificity were 

calculated in agreement with the formulas in the paragraph 3.1.2. 

                                                             
1
 The Boman index is the sum of the free energies of the respective side chains for transfer from cyclohexane to water.  
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Figure 25 Result of the statistical validation of the GA analysis performed on the dataset of 92 antimicrobial peptides 

active on S.aureus with a length shorter than 30 amino acids and a Boman index between 1 and 2 kcal/mol. 

 

Also in this case, the parameter specificity is an exception (black line in figure). 

The value of the sensitivity is very high (about 99-100%), as well as precision and 

accuracy (98-95%). However, in the range in which the model was built (length ≤ 

30 amino acids), the specificity decreases to 30-40%. This chart, however, only 

reports length information and not the Boman index (the other parameter on 

which the model was built). For this reason, probably the MIC of peptides with a 

length less then 30 amino acids but with a Boman index not in the range in which 

the pattern was generated, is not correctly predicted. This aspect is reflected in a 

reduction of the specificity value. 
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Figure 26 Application of the score function on the results obtained from the GA analysis on the dataset of 92 antimicrobial 

peptides active on S.aureus with a length shorter than 30 amino acids and a Boman index between 1 and 2 kcal/mol. The 

red areas represent the areas where the model is reliable. The blue zones are the areas where the model is unreliable. 

 

The procedure is the same of the first model obtained. A chart based on the score 

calculation was prepared (figure 26), using the eq.15. The score is very high for 

peptides with a length longer than 20 amino acids and less than 35 amino acids 

(red zone). Therefore, this model is applicable to the peptides on which it was 

built. 

 

Artificial Neural Networks: results 

 

The ANN analyses performed on this dataset of AMP with a length less than 30 

amino acids and a Boman index between 1 and 2 kcal/mol (dataset B), did not 

give satisfactory results. In fact, the total correlation coefficient is 0.43 (figure 

27).  
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Figure 27 Results of the application of ANN on the dataset of 92 antimicrobial peptides active on S.aureus with a length 

shorter than 30 amino acids and a Boman index between 1 and 2 kcal/mol. 

Therefore, in this case, genetic algorithms were more efficient than the ANN.  

 

Artificial Neural Networks: statistical validation 

 

 

Figure 28 Result of the statistical validation of the ANN analysis performed on the dataset of 92 antimicrobial peptides 

active on S.aureus with a length shorter than 30 amino acids and a Boman index between 1 and 2 kcal/mol. 
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Also in this case, it was performed a statistical validation of the results obtained 

through ANN analyses. The accuracy, the precision and the sensitivity values are 

very high, while the specificity is rather low. The graph in figure 28 shows that the 

model can only be applied on AMP with features similar to those on which it was 

built. 

 

Figure 29 Application of the score function on the results obtained from the ANN analysis on the dataset of 92 

antimicrobial peptides active on S.aureus with a length shorter than 30 amino acids and a Boman index between 1 and 2 

kcal/mol. The red areas represent the areas where the model is reliable. The blue zones are the areas where the model is 

unreliable. 

 

The score evaluation (figure 29), based on the 5 classes of activity in which 

antimicrobial peptides were divided, shows that the ANN models are applicable in 

a range of peptides narrower than ranges obtained for GA models.  
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4.2 Limits of GA and ANN analysis: GMDH 

 

To reveal a structure-activity relationship of a compound it is need an effort from 

computational chemists, biologists and bioinformatics [78]. The father of the 

concept of quantitative structure-activity relationship (QSAR) was Corwin 

Hansch, who implemented this technique more than 50 years ago. Actually, 

QSAR is one of the most commonly used approaches in academy, industry, and 

government institutions, to modeling thousands of different molecular structures 

using a wide variety of statistical and machine learning techniques. This is also 

evidenced by the numerous articles published in the past decade [79-83]. QSAR 

analyses have a strong impact on human health and ecological systems [35]. The 

publications in this field, as shown in the literature, is directly proportional with 

the continuous discovery of chemical data and the development of new databases. 

However, it is not easy to get the optimal results through the QSAR analysis, due 

to the preparation of the data and to poor application of statistical methods. First, 

an optimal QSAR analysis needs an adequately sized data set. At the same time, 

the choice of molecular descriptors is a key point. In fact, if two descriptors are 

highly similar and they give the same information, it is not possible a correct 

statistical association and, probably, we have a false improvement of the 

predictive power of the QSAR analysis. The same thing can happen if descriptors 

are not clearly defined or contain errors. In addition, the assessment of model 

applicability domain is very important. It is defined as “the response and chemical 

structure space in which the model makes predictions with a given reliability” 

[84]. Many data for QSAR analysis originate from the literature and this aspect 

can lead to the increase in outliers. Outliers are values that do not fit the model 

[80]. The use of a large number of molecular descriptors also can make the 

creation of the model more difficult. Furthermore, descriptor values have different 

numerical ranges. To determine the contribution of each descriptor to the QSAR 

analysis it is need an auto scaling. In fact, large numerical values can dominate the 

model, compromising its statistical validity. Other problems, such as 

heterogeneity, inappropriate units, incorrect chemical names or structures, can 
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affect the performance of a QSAR analysis. The right choice of all these 

parameters and the algorithm to use for prediction analysis depends primarily on 

the problem to be resolved. QSAR requires a priori assumptions about the laws 

governing the data and their properties. Group method of data handling (GMDH) 

is an inductive approach, based on the principle of the self-organization [85]. It is 

an heuristic self-organization method. GMDH is an appropriate modelling 

procedure when it is not easy to define an input-output relationship in a complex 

system [86].  

This method consists of several points [87]: 

 

1. Selection of a series of descriptors that are important to the 

problem;  

 

2. Division of the observations into two groups: the first is used by 

the system to learn (training set) and the second to estimate the 

values (validation set); 

 

3. Through an iterative procedure creates a number of elementary 

functions with increasing complexity, producing different models; 

 

4. Choice of the optimum model; 

 

One of the advantages of GMDH is the possibility to automatically have a 

statistical validation. For example, a classification analysis performed with 

GMDH, provides a confusion matrix and a ROC curve. So, the GMDH approach 

was used to create new and more effective activity models which have been 

implemented in the “Yadamp predict” tool. 
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4.2.1 GMDH: learning algorithms 

 

GMDH algorithms differ for the type of elementary function applied, the 

complexity of the model and the external criteria applied to the data set. The 

choice of the algorithm depends on the type of the analysis and on the data 

available [85]. There are two closely related learning algorithms available in 

GMDH: 

 

 Combinatorial GMDH (COMBI) 

 

 GMDH-type neural networks 

 

For both algorithms, model coefficients are fitted using the least squares method
2
. 

These algorithms generate models from simple to complex until the accuracy of 

the test increases. Validation strategies consist of data partition in training and 

testing sets. The training dataset is used to fit the model coefficients, while the 

testing dataset is used to calculate a validation measure. At the end of each 

analysis, GMDH displays the performance results to evaluate the success of the 

modeling simulation. 

 

 Combinatorial GMDH (COMBI)  

 

This model is the basic GMDH algorithm. It produces a linear polynomial 

function, generated from a given set of variables. The combinatorial GMDH 

algorithm use a matrix of input data sample, containing N points of observations 

over a set of M variables. In GMDH we can choose different validation criteria. 

Normally, a data sample is divided into two parts: two-thirds of observations form 

                                                             
2
 The method of least squares is an optimization technique (or regression) that allows to find a function, represented by an 

optimal curve (or regression curve), which is as close as possible to a data set (typically points of the plan). In particular, 

the function found must be that which minimizes the sum of the squares of the distances between the observed data and 

those of the curve that represents the function. 
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the training set and the remaining part of observations forms the test set. The 

training set is used to estimate coefficients of the polynomial function using Least 

squares method and to choose the optimal model. An alternative is, for example, 

the use of the cross-validation criterion that take into account all information in 

data sample. Each point successively is taken as test set and then averaged value 

of criteria is used. Combinatorial GMDH chooses the best model (set of models) 

indicated by minimal value of the criterion.  

 

 GMDH-type neural networks  

 

GMDH-type neural networks employs combinatorial algorithm to optimize the 

neuron connection. The algorithm iteratively creates layers of neurons with two or 

more inputs. Every new layer is created using two or more neurons taken from 

any of previous layers. Every neuron in the network applies a transfer function 

(quadratic or linear) to choose a final transfer function that predicts testing data 

most accurately (see section 3.1.1).  

 

GMDH can produce predictions that allow to solve classification and regression 

problems. Classification is the prediction of a category of unknown instance. The 

data must be in text format. Linear regression analysis is used to estimate the 

parameters. 

 

https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Least_squares


63 
 

4.3 GMDH Analyses  

 

Classification and regression analyses were performed using the GMDH software. 

Some activity models were obtained for peptides active on S.aureus (see 

paragraph 4.1.1), E.coli and erythrocytes. The obtained results were listed in the 

following paragraphs. 

 

E.coli: an overview 

 

Escherichia coli is a Gram-negative bacterium commonly found in the lower 

intestine of warm-blooded organisms (endothermic) [88]. Most E.coli strains are 

harmless and are part of the normal flora of the intestine, but some serotypes can 

cause severe food poisoning in their hosts and occasionally are responsible for 

product recalls due to contamination of foods [89]. 
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4.3.1 E.coli: Dataset C 

 

Classification Analysis: results 

 

A dataset of 63 antimicrobial peptides active on E.coli (dataset C) was submitted 

to perform the classification analyses. The classification analysis requires that the 

MIC values, which represent the fitness function of these analyses, are expressed 

in text format. The peptides with MIC values lower than 30 µM were called 

"active" and the peptides with the MIC values greater than 30 µM were called 

"inactive". GMDH allows to set up an experimenter’s layout, in which we can set 

the parameters to use (figure 30).  

In this analysis, the following parameters were set: 

 

 

Figure 30 Screenshot of the experimenter's layout used for the classification analysis performed on 63 AMP active on 

E.coli. 

 

The function “reorder observations” is used to give uniform statistical 

characteristics of training and testing tests and to make them equally informative. 

In this case, odd and even raws were used in the creation of training and 

validation sets. The “validation strategy” allows the choice of the model 

validation. Here, the "k-fold validation" option was chosen. It splits dataset into k 

parts (2 in this case). It trains a model k times using k-1 parts, each time 

measuring the model performance using a new remaining part. Finally, the 

residuals obtained from all testing parts were used for model comparison. The 

“validation criterion” defines the model selection criterion for the core 

https://gmdhsoftware.com/docs/solver#core_algorithm
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algorithm and the variables ranking. In this case, the variables were ranked 

according to the correlation values. The “core algorithm” chosen in this analysis 

provides a forward selection approach. This approach tests the addition of each 

variable using a chosen model fit criterion and repeats this process until none 

improves the model to a statistically significant extent. The core algorithm and the 

variables ranking are validated by the root-mean-square error (RMSE) criterion 

(eq.18).  

              
          

 
   

 
 

 

 

Where:  

     = predicted values for observations i 

    = regression's dependent variable  

n   = different predictions 

 

The voice "additional variables" expands the dataset with new artificial features to 

improve the classification model. In this case, the function         
 , that adds all 

the possible multiple couples and squares, was chosen. Any model may consist of 

not more than n terms. In this analysis, the model complexity was limited to 200 

terms. To calculate the performance of the predictions, the 20% of the dataset was 

validated. 

  

https://gmdhsoftware.com/docs/solver#variables_ranking
https://gmdhsoftware.com/docs/solver#core_algorithm
https://gmdhsoftware.com/docs/solver#variables_ranking
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Dependent_variable
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Figure 31 Results of the classification analysis on 63 AMP active on E.coli. At the top, there are the confusion matrix and 

the ROC curve calculated for observations used to train the model. It is equal to 0.97. In the chart below, there is the ROC 

calculated for the withheld observations. It is equal to 0.81. To the left of the graphs are shown the confusion matrix. 

 

Classification analysis generates a ROC curve (receiver operating characteristic 

curve). It is a graphical plot that illustrates the ability of a binary 

classifier system. The ROC curve is the plot of the sensitivity against the values of 

1 − specificity. The analysis of the ROC curve represents a method for comparing 

two continuous distributions and it is based on the estimation of an index, the area 

under the curve (A). It expresses the probability of a model to identify true 

positive and true negatives in a system. 

In this case, the ROC calculated for observations used to create the model is equal 

to 0.97, while the ROC
 
calculated for the withheld observations is equal to 0.81 

(figure 31). 

  

https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Sensitivity_(tests)
https://en.wikipedia.org/wiki/Specificity_(tests)
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The equation of the model obtained is the following: 

 

                                                         

                                           

                                 

                                      

 

Where 

a= normalized composition from fungi and plant [90] 

b= influence of Water on Protein Structure [91] 

c= hydrophobicity coefficient [92] 

d= average flexibility indices [93] 

e= charge transfer capability [94] 

f= steric parameter [95] 

g= secondary structure stability [96] 

h-l= prediction factors of the secondary structure of globular proteins [97] 

i= normalized positional residue frequency at helix termini [98] 

Ch5= peptide charge at pH5 

 

ΔCharge= difference between the charge of the peptide at pH9 and pH5 

 

 

Regression Analysis: results 

 

On the same dataset of AMP active on E.coli (dataset C) was performed a 

regression analysis. Also in this case, experimental criteria were set (figure 32).  

 



68 

 

 

Figure 32 Screenshot of  the experimenter's layout used for the regression analysis performed on 63 AMP active on E.coli 

 

In this case, it was chosen the option that permits a pseudo-random creation of the 

training and the validation sets. A combinatorial algorithm (section 4.2.1) and the 

function       that adds all possible multiplied pairs, were chosen. The model 

complexity was limited to 200 terms. The 10% of the dataset was used to evaluate 

the performance of the prediction. The result of the prediction is shown in the 

graph in figure 33. The coefficient of determination (R
2
) calculated for the 

observations used to create the model is equal to 0.63, while the R
2 

calculated for 

the withheld observations is equal to 0.75. 
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Figure 33 Performance of the model obtained. On the y axis there are the MIC values. On the x axis there are the AMP 

sequences. The gray line represents the MIC values for each of the 63 peptides in the dataset. The blue line represents how 

the model obtained (the equation) learned from the peptides of the training set. The red line represents how much the 

equation can be applied to the validation set (not used in the learning phase). The coefficient of determination (R
2
) 

calculated for the observations used to create the model (training set) is equal to 0.63, while the R
2 

calculated for the 

withheld observations (validation set)  is equal to 0.75. 

 

The equation of the model obtained is the following: 

 

                                                 

                                            

                                          

                                    

Where 

a= charge transfer capability [94] 

b= effect of protein size on the hydrophobic behavior of amino acids [99] 

c= parameter that considers the different amino acids composition between the cytoplasmic and extracellular sides in 

membrane proteins [100] 

d= optimized side chain interaction parameter [101] 

e= normalized frequency of alpha-helix in peptides [102] 

f= normalized frequency of turn in all-alpha class [102] 

g= normalized frequency of turn in alpha/beta class [102] 
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h- i- l- m= prediction factors of the secondary structure of globular proteins [97] 

 

4.3.2 E.coli: Dataset D 

 

Classification Analysis: results 

 

A classification analysis was performed on a dataset of 62 AMP active on E.coli 

(dataset D), where the peptides with a MIC lower than 30 µM were called "active" 

and the peptides with a MIC greater than 30 µM were called "inactive". The 

experimenter’s layout is shown in the figure 34. 

 

 

Figure 34 Screenshot of  the experimenter's layout used for the classification analysis performed on 62 AMP active on 

E.coli 

 

In this analysis, unlike the previous classification analysis, the pseudo-random 

raws were chosen for the creation of the training and the validation sets. Also in 

this case, the dataset was divided into 2 parts for the validation of the model (k 

fold validation). Variables were ranked according to the correlation values. The 

core algorithm chosen in this analysis is a combinatorial algorithm (section 4.2.1). 

The core algorithm and the variables ranking were validated by the root-mean-

square error (RMSE) criterion (eq.18). At the voice "additional variables", the 

function       was chosen. This function, in the creation of the model, adds all 

possible multiplied pairs. The model complexity was limited to 200 terms and the 

30% of the dataset was chosen to validate the model. “Drop variables after rank” 

https://gmdhsoftware.com/docs/solver#core_algorithm
https://gmdhsoftware.com/docs/solver#variables_ranking


71 
 

is another function of the experimenter’s layout that permits to reduce the number 

of the variables to n most important variables according to the selected ranking 

algorithm. Preliminary reduction of variables may reduce the quality of models, 

but it is definitely useful for quicker processing of high-dimensional datasets. In 

this case, the maximum number of variables was reduced to 600. In this analysis, 

the ROC curve calculated for observations used to create the model is equal to 

0.75 while the ROC
 
calculated for the withheld observations is equal to 0.83 

(figure 35). The equation of the model obtained is the following: 

 

                                                 

                                             

 

Where 

a= Direction of hydrophobic moment [103] 

b= Hydrophobicity index [104] 

c= Amino acid side-chain partition energies [105] 

d= Molecular weight [106] 

e= Alpha-helix indices for beta-proteins [107] 

f= Composition [108] 

g= Hydrophilicity value [109] 

h= Relative mutability [110] 
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Figure 35 Results of the classification analysis on 62 AMP active on E.coli. At the top, there is the ROC curve calculated 

for observations used to  the model. It is equal to 0.75. In the chart below, there is the ROC calculated for the withheld 

observations. It is equal to 0.83. To the left of the graphs are shown the confusion matrix. 

 

Regression Analysis: results 

 

A regression analysis was performed on the same dataset of 62 AMP active on 

E.coli (Dataset D). Also in this case, some experimental criteria were set (figure 

36).  
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Figure 36 Screenshot of  the experimenter's layout used for the regression analysis performed on 62 AMP active on E.coli 

 

This time, odd and even rows were chosen for the creation of the training and the 

validation sets. The dataset was divided into 2 parts for the training and the 

validation phases and it was chosen a combinatorial algorithm (section 4.2.1) to 

create the model. The core algorithm and the variables ranking (by correlation) are 

validated by the root-mean-square error (RMSE) criterion (eq.18). At the voice 

"additional variables", the function       was chosen. This function adds all the 

possible multiplied pairs in the creation of the model. The 10% of the dataset was 

chosen to evaluate the performance of the prediction.The coefficient of 

determination (R
2
) calculated for the observations used to create the model is 

equal to 0.69, while the R
2 

calculated for the withheld observations is equal to 

0.81 (figure 37). 

https://gmdhsoftware.com/docs/solver#core_algorithm
https://gmdhsoftware.com/docs/solver#variables_ranking


74 

 

Figure 37 Performance of the model obtained. On the y axis there are the MIC values. On the x axis there are the AMP 

sequences. The gray line represents the MIC values for each of the 62 peptides in the dataset. The blue line represents how 

the model obtained (the equation) learned from the peptides of the training set. The red line represents how much the 

equation can be applied to the validation set (not used in the learning phase). The coefficient of determination (R
2
) 

calculated for the observations used to create the model (training set) is equal to 0.69, while the R
2 

calculated for the 

withheld observations (validation set)  is equal to 0.81. 

 

The equation of the model obtained is the following: 

                                               

                                                 

                                                      

                                               

                

 

Where 

a= charge transfer capability [94] 

b= retention coefficient [111] 

c= effect of protein size on the hydrophobic behavior of amino acids [99] 

d= hydrophobicity of amino acid composition of mitochondrial proteins [90] 

 = surface-interior diagram of globular proteins [112] 
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f= transfer energy in organic solvent/water [113] 

g= optimized transfer energy parameter [101] 

h= optimized side chain interaction parameter [101] 

i= normalized frequency of alpha-helix in peptides [102] 

l = normalized frequency of turn in peptides [102] 

m= normalized frequency of alpha-helix in all-alpha class [102] 

n= normalized frequency of alpha-helix in alpha+beta class [102] 

o= normalized frequency of alpha-helix in alpha/beta class [102] 

p= normalized frequency of N-terminal helix [102] 
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4.3.3 E.coli: Dataset E 

 

Classification Analysis: results 

 

In this classification analysis of 56 AMP active on E.coli (Dataset E), it was used 

the same experimental protocol of the classification analysis performed on the 62 

AMP active on E.coli (section 4.3.2). The only difference is that, in this case, no 

additional variables were used (figure 38). Also in this case, the 30% of the 

dataset was used for the validation phase. 

 

 

 

Figure 38 Screenshot of  the experimenter's layout used for the classification analysis performed on 56 AMP active on 

E.coli 

 

In this analysis, the ROC curve calculated for observations used to create the 

model is equal to 0.94 while the ROC
 
calculated for the withheld observations is 

equal to 0.77. 

The equation of the model obtained is the following: 

 

                                                           

                       

Where 

a= transfer free energy to lipophilic phase [114] 

b= amphiphilicity index [115] 



77 
 

 

 

 

Figure 39 Results of the classification analysis on 56 AMP active on E.coli. At the top, there is the ROC curve calculated 

for observations used to train the model. It is equal to 0.94. In the chart below , there is the ROC calculated for the withheld 

observations. It is equal to 0.77. To the left of the graphs are shown the confusion matrix. 

 

 

Regression Analysis: results 

 

A regression analysis was performed on the same dataset of the 56 peptides active 

on E.coli (dataset E).  
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Figure 40 Screenshot of  the experimenter's layout used for the regression analysis performed on 56 AMP active on E.coli 

 

For this analysis, it was chosen an experimental protocol that involves in the 

creation of a training and a validation set with a random choice of rows (figure 

40). The validation strategy is based on the division of the dataset into two groups 

and the validation criterion depends on the RMSE (eq.18). In this case, a 

combinatorial algorithm for model generation was chosen. New artificial features 

were chosen to improve the classification model. The function       that adds all 

the possible multiplied pairs was chosen. The 20% of the AMP dataset was 

chosen to validate the final model. 
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Figure 41 Performance of the model obtained. On the y axis there are the MIC values. On the x axis there are the AMP 

sequences. The gray line represents the MIC values for each of the 56 peptides in the dataset. The blue line represents how 

the model obtained (the equation) learned from the peptides of the training set. The red line represents how much the 

equation can be applied to the validation set (not used in the learning phase). The coefficient of determination (R
2
) 

calculated for the observations used to create the model (training set) is equal to 0.66, while the R
2 

calculated for the 

withheld observations (validation set)  is equal to 0.81. 

 

The equation of the model obtained is the following: 

                                                 

                                               

                       

Where 

a= solvation energy in protein folding and binding [103] 

b= the effect of burial of amino acid residues on protein stability [116] 

c= volume changes on protein folding [117] 

d= hydrophobicity index [104]  

e- f= partition energies and distribution of residues in soluble proteins [105] 

g= optimized relative partition energies [118] 

h= molecular weight [106] 
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i= negative charge [119] 

 

The coefficient of determination (R
2
) calculated for observations used to create 

the model is equal to 0.66 while the R
2 

calculated for the withheld observations is 

equal to 0.81 (figure 41). 

 

4.3.4 E.coli: Dataset F 

 

Classification Analysis: results 

 

This model was generated from a classification analysis performed on a dataset of 

36 AMP active on E.coli (Dataset F).  

 

 

Figure 42 Screenshot of  the experimenter's layout used for the classification analysis performed on 36 AMP active on 

E.coli 

 

The experimental protocol used in this classification analysis is like that the 

experimenter’s layout used in the analysis performed on the dataset of 56 

antimicrobial peptides active on E.coli (section 4.3.3) (figure 42). The peptides 

with a MIC lower than 30 µM were called “active” and the peptides with a MIC 

greater than 30 µM  were called "inactive". Also in this case, the 30% of the 

dataset of AMP was chosen to validate the classification model. In this analysis, 

the ROC curve calculated for observations used to create the model is equal to 
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0.99 while the ROC
 
calculated for the withheld observations is equal to 0.83 

(figure 43). The equation of the model obtained is the following: 

 

                                                      

          

Where 

a= partial specific volume [120] 

b= normalized frequency of beta-sheet [121] 

c= weights for coil [97] 

d= relative population of conformational state A [122] 

e= interactivity scale obtained by maximizing the mean of correlation coefficient over single-domain globular proteins 

[123] 

 

 

 

Figure 43 Results of the classification analysis on 36 AMP active on E.coli. At the top, there is the ROC curve calculated 

for observations used to train the model. It is equal to 0.99. In the chart below , there is the ROC calculated for the withheld 

observations. It is equal to 0.83. To the left of the graphs are shown the confusion matrix. 
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Regression Analysis: results 

 

On the same dataset (dataset F), a regression analysis was performed using 

another experimental protocol (figure 44). Odd and even rows were chosen for the 

creation of the training and the validation sets. As described in the section 4.3.1, 

the "k-fold validation" option permits to split the dataset into k parts (2 in this 

case) and to train a model k times using k-1 parts, each time measuring model 

performance using a new remaining part. The GMDH neural network algorithm 

(section 4.2.1) was chosen to create the model. The core algorithm and the 

variables ranking (by correlation) are validated by the root-mean-square error 

(RMSE) criterion (eq.18). For this analysis, a linear neural function was used 

(eq.22): 

 

                           

 

This algorithm computes the weighted sum of the inputs. The upper limit for the 

number of network layers created by the algorithm is set to 33 (default) and the 

initial layer width that defines how many neurons are added to the set of inputs at 

each new layer, is set to 1 (default). Finally, to calculate the performance of the 

predictions, the 20% of the dataset was chosen for the validation. 

.  

Figure 44 Screenshot of  the experimenter's layout used for the regression analysis performed on 36 AMP active on E.coli 

https://gmdhsoftware.com/docs/solver#core_algorithm
https://gmdhsoftware.com/docs/solver#variables_ranking
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The coefficient of determination (R
2
) calculated for observations used to create 

the model is equal to 0.82 while the R
2 

calculated for the withheld observations is 

equal to 0.85 (figure 45). 

 

Figure 45 Performance of the model obtained. On the y axis there are the MIC values. On the x axis there are the AMP 

sequences. The gray line represents the MIC values for each of the 56 peptides in the dataset. The blue line represents how 

the model obtained (the equation) learned from the peptides of the training set. The red line represents how much the 

equation can be applied to the validation set (not used in the learning phase). The coefficient of determination (R
2
) 

calculated for the observations used to create the model (training set) is equal to 0.82, while the R
2 

calculated for the 

withheld observations (validation set)  is equal to 0.85 

 

The equation of the model obtained is the following: 

                                    

 

                                       

                                      

                                       

                                         

                          –             
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                       –            

 

Where 

 

a= normalized frequency of middle helix [121] 

b= NMR chemical shift of alpha-carbon [124] 

c= the surface and inside volumes in globular proteins [125] 

d= prediction factor of the secondary structure of globular proteins [97] 

f=  normalized hydrophobicity for α-proteins [126] 

e= frequency of Helix-capping at helix termini C4 [98] 

g= eigenvector of contact matrices and hydrophobicity profiles in proteins [123] 

h= protein surface accessibility [127] 

i= amphiphilicity index [115] 

 

4.3.5 S.aureus: Dataset G 

 

Classification Analysis: results 

 

A dataset of 56 antimicrobial peptides active on S.aureus (dataset G) was created 

to perform the classification analysis.  

The peptides with a MIC lower than 30 µM were called “active” and the peptides 

with a MIC greater than 30 µM were called "inactive". The molecular descriptors 

used in this analysis are 46, including length, charge, helicity, flexibility, polar 

and non-polar amino acids, etc.  
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In this analysis, the following parameters were set: 

 

 

Figure 46 Screenshot of  the experimenter's layout used for the classification analysis performed on 56 AMP active on 

S.aureus 

 

“Reorder observations” is an option used to makes the training and the validation 

sets equally informative. In this case, odd and even raws were chosen in the 

creation of the training and the validation sets. For the option “validation 

strategy”, that allows the choice of the model validation, the "k-fold validation" 

option that splits dataset into k parts (2 in this case) was chosen. Variables were 

chosen according to the correlation values. The core algorithm chosen in this 

analysis provides a GMDH neural network approach (section 4.2). In this case, a 

polynomial quadratic function was used: 

 

                                     
       

  

 

The upper limit for the number of network layers created by the algorithm is set to 

33 (default) and the initial layer width that defines how many neurons are added 

to the set of inputs at each new layer, is set to 1 (default). Finally, to calculate the 

performance of the predictions, the 20% of the dataset was validated. 
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Figure 47 Results of the classification analysis on 56 AMP active on S.aureus. At the top, there is the ROC curve 

calculated for observations used to train the model. It is equal to 0.94. In the chart below, there is the ROC calculated for 

the withheld observations. It is equal to 0.73. To the left of the graphs are shown the confusion matrix. 

 

In this analysis, the ROC curve calculated for observations used to create the 

model is equal to 0.94 while the ROC
 
calculated for the withheld observations is 

equal to 0.73 (figure 47).  

The equation of the model obtained is the following: 
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Where 

                                

                                                            

                                       –                                               

         –                                                                                       

         –              

                                                      

   

     –                                                              

     –                                              

 

 

Regression Analysis: results 

 

On the same set of AMP active on S.aureus (dataset G), a regression analysis was 

performed using the same experimental protocol of the classification analysis 

(figure 48). The molecular descriptors used in this analysis are 46, including 

length, charge, helicity, flexibility, polar and apolar amino acids, etc. The 

coefficient of determination (R
2
) calculated for observations used to create the 

model is equal to 0.84 while the R
2 

calculated for the withheld observations is 

equal to 0.72. 
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Figure 48 Performance of the model obtained. On the y axis there are the MIC values. On the x axis there are the AMP 

sequences. The gray line represents the MIC values for each of the 56 peptides in the dataset. The blue line represents how 

the model obtained (the equation) learned from the peptides of the training set. The red line represents how much the 

equation can be applied to the validation set (not used in the learning phase). The coefficient of determination (R
2
) 

calculated for the observations used to create the model (training set) is equal to 0.84, while the R
2 

calculated for the 

withheld observations (validation set)  is equal to 0.72 

 

The equation of the model obtained is the following: 

                                            

 

                                

      

       –                       

                                             –                                   

            –                                           –                             

      

      –                 –                                          
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Cytotoxic activity: an overview 

 

 

 

Figure 49 Representation of the action of antimicrobial peptides on blood erythrocytes 

 

For the new predictive analysis with GMDH method, they were selected AMP 

sequences for which, in the literature, were also known the hemolytic activity 

values. Due the fact that antimicrobial peptides are considered alternative drugs 

for living organisms, to know their cytotoxic activity is very important. In fact, the 

aim is to design antimicrobial peptides active against pathogenic microorganisms 

(bacteria, viruses and fungi) and non-toxic for humans (or other living organisms). 

These sequences were searched in a database, DBAASP (https://dbaasp.org), in 

which there are information for structure/activity studies about antimicrobial and 

hemolytic (cytotoxic) activities of AMP. The DBAASP search page allows users 

to search peptides according to their structural characteristics, source, synthesis 

type and target species. A total of 84 sequences of antimicrobial peptides for 

which were known the HC50 (the concentration of antimicrobial that kills the 

50% of red blood cells) [128] were found. If available in the database, the MIC 

values against organisms such as S.aureus, E.coli, P. aeruginosa and C. albicans 

were also extracted. For all the sequences, the values of the 573 1D and 2D 

molecular descriptors were calculated, as described in the section 2.1 (Chapter II). 
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4.3.6 Erythrocytes: Dataset H 

 

Classification Analysis: results 

 

This classification analysis was performed on 47 antimicrobial peptides active on 

erythrocytes (dataset H). In this analysis, all available molecular descriptors (573 

molecular descriptors) were used. The experimental protocol is based on the use 

of the combinatorial algorithm (section 4.2.1) without the addition of new 

functions. Observations, for the creation of training and test set,  were ordered by 

the odd and even rows. The validation strategy consists in a process that, at each 

cycle, divides the dataset into two groups until it finds the optimal model. The 

variables ranking is due to the correlation values and the validation criterion is 

based on the RMSE (eq.18). 

 

 

Figure 50 Screenshot of  the experimenter's layout used for the classification analysis performed on 47 AMP active on 

erythrocytes 

 

It was used the 20% of the dataset of AMP to validate the generated models. In 

this analysis, the ROC curve calculated for observations used to create the model 

is equal to 0.96 while the ROC
 
calculated for the withheld observations is equal to 

0.87. 
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The equation of the model obtained is the following: 

 

                                               

                                    

                          

 

Where 

a= length of the side chain [119] 

b= average relative probability of inner beta-sheet [129] 

c= side chain angle theta [130] 

d= side chain torsion angle phi [130] 

e= radius of gyration of side chain [130] 

f= Van der Waals parameter [130] 

g= SD of AA composition of total proteins [90] 

h= hydrophobic packing and spatial arrangement of amino acid residues [131] 
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Figure 51 Results of the classification analysis on 47 AMP active on erythrocytes. At the top, there is the ROC curve 

calculated for observations used to create the model. It is equal to 0.96. In the chart below , there is the ROC calculated for 

the withheld observations. It is equal to 0.87. To the left of the graphs are shown the confusion matrix. 

 

Regression Analysis: results 

 

To conduct the regression analysis on the 47 AMP active on erythrocytes (dataset 

H), the same experimental protocol of the classification analysis was used (figure 

50). The coefficient of determination (R
2
) calculated for observations used to 

create the model is equal to 0.54 while the R
2 

calculated for the withheld 

observations is equal to 0.59 (figure 52). 
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Figure 52 Performance of the model obtained. On the y axis there are the MIC values. On the x axis there are the AMP 

sequences.The gray line represents the MIC values for each of the 47 peptides in the dataset. The blue line represents how 

the model obtained (the equation) learned from the peptides of the training set. The red line represents how much the 

equation can be applied to the validation set (not used in the learning phase). The coefficient of determination (R
2
) 

calculated for the observations used to create the model (training set) is equal to 0.54, while the R
2 

calculated for the 

withheld observations (validation set)  is equal to 0.59 

 

The equation of the model obtained is the following: 

                                                          

                                                              

Where 

a= steric properties of the side chains [119] 

b-c-d-e-f = factors that describe the conformational properties of amino acid residues in globular proteins [132] 

g= normalized flexibility parameter [133] 

h= parameter that describes a protein domain linker [134] 

 

  



94 

4.4 Final comments 

 

One of the limits for the correct execution of a prediction analysis is the choice of 

the molecular descriptors. These analyses generate models based on an input-

output relationship. Input data are represented by molecular descriptors, while the 

output is the model that best responds, through the input data, to the problem that 

we have. In particular, the aim of this project was to establish a good relationship 

between the properties of AMP (input data) and their activity (question to answer) 

(figure 53).  

 

Figure 53 Prediction analyses look for a structure-activity relationship 

 

The results of a predictive analysis must be easily interpretable and molecular 

descriptors must be appropriate for the final model. There are many and 

heterogeneous molecular descriptors of AMP and this aspect represents a limit to 

the efficiency of a prediction analysis. To enrich the Yadamp database (Chapter 

II), data about AMP were extracted from different papers in the literature, or 

calculated. The activity data (MIC) were also extracted from papers in the 

literature. The results of the predictive analyses (described above) were 

satisfactory and they were implemented in the Yadamp database. However, they 

still suffered from the elevated number of data, the excessive heterogeneity and 

also possible experimental errors. For example, the results of the analyses with 

genetic algorithms has a high R
2
, but it is often accompanied by a high LOF (lack-
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of-fit). The risk of overfitting is high when many data are available and the 

network is excessively trained.  

Starting from the idea to create even more homogeneous antimicrobial peptide 

subsets and to generate accurate prediction models, PCA (principal component 

analysis) and cluster analyses were performed (Chapter V).  
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Chapter V 
 

5.1 PCA and Cluster Analysis: how does they work? 

 

“PCA is one of the most important results from applied linear algebra” [135] 

 

The principal component analysis (PCA) is the main application for reducing the 

size of a dataset without losing information. PCA also allows to study the 

relationships between different descriptors and prepares data for further analyses, 

for example regression studies. The aim of the PCA is to extract important 

information from the dataset and to represent it as a set of new orthogonal 

variables called principal components [136]. The original variables are 

transformed into an orthogonal set of linear combinations, where, each principal 

component is a combination of the original variables, v, defined using a loading 

coefficient, a (eq.33-34). 

                                     

                                    

Most of the variance of a dataset is usually contained in the first few components. 

The use of these principal components allows to proceed with subsequent analyses 

using a smaller dataset. If the variables are independent, PCA application is not 

productive. So, the basic idea is that the variables are inter-correlated (figure 54).  

Figure 54 Schematic rapresentation that illustrates how PCA can potentially help in reducing data dimensions with a 

hypothetical dataset of m variables. 
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Cluster analysis, like PCA, is also a multivariate analysis technique. Through this 

approach, it is possible to group data by minimizing the internal logical distance 

of each group and maximizing the distance between them. Logical distance is 

expressed through similarity and dissimilarity values. The aim is to identify 

groups in which the elements in each group are more similar to each other than the 

elements in other groups. The matrix of the starting data is transformed into a 

matrix of distances between the pairs of observations. Cluster analysis is basically 

based on two points: the definition of a distance measure between observations 

and the choice of the method by which the groups are formed. Using a Euclidean 

distance measure, each distance matrix element, dij, is given by: 

                        
 

   

 

Where i and j are two points in an n-dimensional space. The distance matrix was 

calculated (eq.35) and then used to classify samples into clusters of similar 

members.  

The second key point is the choice of a classification method (or algorithm). The 

most common classification methods are:  

 Aggregate hierarchical methods 

 Divisional hierarchical methods 

 Non-hierarchical methods 

Hierarchical methods consist of subsequent divisions of the data. In the case of 

aggregate hierarchical methods, the n initial data are fused into wider groups (at 

the end we have one group); in the case of divisive methods (or "scissors") are 

defined partitions of the initial set (at the end, n clusters contain each element). 

The main feature that distinguishes hierarchical from non-hierarchical methods is 

that, in the first case, when an object enters a cluster, it is no longer removed. The 

non-hierarchical method partitions the units into a predefined number of groups. 

The non-hierarchical method is essentially divided into two phases (figure 55): 
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1. The determination of an initial partition of the n individuals in G 

groups; 

 

2. The subsequent displacement of the units between the G groups to 

obtain the partition that best suits the concepts of homogeneity 

within the groups; 

The main limit of non-hierarchical methods is to have in advance an idea of the 

number of groups.  

 

 

Figure 55 Schematic representation that illustrates how the cluster analysis works 

 

In this work, non-hierarchical cluster analysis with k-means method was used. 

The goal is to minimize the total intra-cluster variance. Each cluster is identified 

by a centroid or midpoint (a representative cluster point). The algorithm follows 

an iterative procedure. Initially, it creates K partitions and assigns an entry point 

to each of them (randomly or using some heuristic information). At this point the 

algorithm calculates the centroid of each group. Then, the algorithm constructs a 

new partition by associating each entry point to the cluster in which centroid is 

closer to it. There is a continuous recalculation of the centroids until the algorithm 

converges (the algorithm found the maximum similarity within the groups). 
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5.1.2 PCA Analysis: results 

 

In the graph (figure 56), the principal component vector 1 (x axis) is related to the 

principal component vector 2 (y axis) values, generated from a dataset of 1151 

AMP with a length between 5 and 35 amino acids, active on S.aureus. These are 

the first two principal components vectors generated by PCA and contain the 

maximum amount of information in terms of variance. The PCA analysis was 

conducted using the software Materials Studio 7 and performed considering all the 

573 molecular descriptors relative to AMP. To display the results of this PCA, the 

Software Tableau was used (www.tableau.com).  

 

 

 

 

Figure 56 PCA on antimicrobial peptides active against S.aureus, with a length between 5 and 35 aa (1151 AMP). The 

colors refer to the phylum and the size of the circles to the MIC. The red color indicates synthetic peptides; the green color 

indicates the phylum of the peptides extracted from Chordata; the yellow color indicates the phylum of peptides extracted 

from Arthropoda; in the graph there is a clear division of the different phyla and a closeness between the variability in the 

phylum Chordata and the variability in the phylum Arthropoda. PCA is able to find correlations within a phylum from 

chemical physical characteristics 

 

In the graph in figure 56, the colors refer to the phyla and the size of the circles 

refers to the MIC. The red color indicates the synthetic peptides, the green color 

indicates the peptides extracted from the phylum Chordata and the yellow color 

indicates the peptides extracted from the phylum Arthropoda. We can appreciate a 

clear division of the two phyla (Chordata and Arthropoda) and the group of 

http://www.tableau.com/


101 
 

synthetic peptides. This division suggests that the peptides of these three phyla 

have different chemical-physical characteristics and different strategies of killing 

against the same microorganism (in this case S.aureus). However, the 

transmembrane proteomes, as demonstrated, are not very different. Therefore, it 

might be interesting to investigate the sequences of AMP in different phyla to 

identify common patterns and, eventually, a killing action against the same 

microorganisms. These considerations are important in order to design selective 

antimicrobial peptides. In addition, the study of these relationships could be a new 

development in the field of phylogenetics. In fact, the phylogenetic relationship 

among the kingdoms Animalia is a longstanding controversy and the proposed 

phylogenetic trees are very different [137]. 

 

5.1.3 Cluster Analysis: results 

 

Starting from the results of PCA, non-hierarchical Cluster Analyses (see 

paragraph 5.1) were performed on the antimicrobial peptides active against 

different target organisms. The purpose was to find, within each phylum, sets of 

AMP homogeneous in their physical and chemical characteristics. 

 

 

 

Figure 57 Cluster Analysis performed on 3054 AMP Red color indicates the phylum Chordata and the size of the circles 

indicates the MIC of the AMP on S.aureus. The cluster 2 shows a trend where increasing values of Activation Gibbs energy 

of unfolding correspond to a less activity of the peptides. 
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Figure 58 Cluster Analysis performed on 3054 AMP Green color indicates the phylum Arthropoda and the size of the 

circles indicates the MIC of the AMP against S.aureus. The clusters 3 and 8 show a trend where increasing values of the 

helicity parameter correspond to more active peptides. 

 

Here, some of the results obtained are shown. This analysis was performed on 

3054 antimicrobial peptides and the graphs were obtained by the Tableau software 

(figure 57-58). The figure 57 shows the relationship between the activation Gibbs 

energy of unfolding [122] and the antimicrobial activity of peptides against 

S.aureus in each cluster. In the figure 58, it is highlighted the relationship between 

the helicity parameter and the antimicrobial activity of the peptides in each 

cluster. In both graphs the AMP are divided in 10 clusters, the size of the shapes 

indicates the MIC against S.aureus and the color indicates the phylum from which 

the peptides were extracted. As shown in the figure 57, for the phylum Chordata 

in the Cluster 2, when the values of the activation Gibbs energy of unfolding 

increase, the activity of antimicrobial peptides decreases. This correlation has a 

logic: when the energy of unfolding and, therefore, the conformational instability 

of the peptides increases, their antimicrobial activity decreases. In the figure 58, 

for the phylum Arthropoda in the Cluster 3 and 8, the helicity and the activity of 

antimicrobial peptides are directly proportional. This means that a high probability 

of AMP to assume a more stable secondary structure corresponds to a higher 

antimicrobial activity.  
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These correlations and others allowed to create homogeneous datasets of AMP 

and to perform more accurate QSAR analyses. 
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Chapter VI 

6.1 How to make prediction analysis more informative? Search for new 

molecular descriptors 

 

The descriptors 1D and 2D currently available fail to capture all of the peptides 

properties. One of the goals of this project is to find new molecular descriptors of 

AMP. The peptides are extremely flexible molecules. When AMP interact and 

insert into the target membrane, they undergo conformational changes: in water, 

their structure is hydrophilic; when they interact with membranes, they expose a 

hydrophobic region [138].  

 

Figure 59 An image that illustrates a peptide that interacts with a target membrane and exposes its hydrophobic residues (in 

yellow). Water molecules are in blue. 

 

Therefore, the binding energy among the peptides when they associated on the 

membrane surface and also the binding energy between the peptides and the 

membrane or protein receptors, are molecular descriptors that would be interesting 

to calculate.  
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6.1.1 Creation of a new tool for Molecular Docking: YADA 

 

 

Figure 60 YADA software interface 

Most of the processes of signal transduction in biological systems is based on the 

interaction between molecules [139]. The receptors can bind some ligands 

(substrates, inhibitors, activators or neurotransmitters) and this interaction is 

expressed as binding energy. Specific residues of the target receptor are involved 

in this recognition and form the active site. Coenzymes and metal ions can act as 

cofactors of the reaction between receptors and ligands and specific inhibitors can 

stop it.  

There are currently more than 35.000 crystallographic or NMR structures of 

proteins available in the Protein Data Bank (https://www.rcsb.org). With the 

discovery of new techniques, such as X-ray crystallography, the number of 

macromolecules continues to grow over time. Most of these molecules has 

important roles in life processes and they are considered potential therapeutic 

targets [140]. We need to understand what are the mode of binding of a ligand 

against a target protein to establish relationships between structure and activity in 

the development of new drugs.  

Docking is a viable alternative to experimental techniques [141].  

https://www.rcsb.org/
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Figure 61 Traditional Drug Discovery 

 

The molecular docking studies the conformation of a molecule complexed with 

other species and calculates how strongly a ligand binds the target. The binding 

affinity of protein−ligand complexes is an open problem in computational 

bioscience [142]. The molecular docking uses specific algorithms to predict the 

geometry of the complex receptor-ligand and parameterized functions to estimate 

their affinity. An algorithm allows to generate a series of poses which are 

analyzed by a scoring function to identify the true binding mode(s) and to estimate 

their binding affinity (figure 62). There are several methods of docking: rigid-

body, flexible-ligand docking, and flexible ligand-flexible target [143].  

 

Figure 62 Thermodynamic of protein-ligand interactions 

 

https://faculty.missouri.edu/~tannerjj/bchem/fbdd-pdfs/perozzo-%20thermodynamics%20of%20proteins.pdf
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Vina (Vina Is Not Autodock) is the most used molecular docking program. 

Original Vina is a program of docking that predicts a series of poses between 

receptor and ligand and calculates the binding affinity [144]. When the protein 

and its ligands are known, the molecular docking returns a series of poses of this 

complex, using a specific algorithm. The limitation of an algorithm are the speed 

and the ability to find all the poses in the space. The thermodynamic of the 

receptor-ligand complex is represented by the scoring function that allows us to 

distinguish the better poses than worse [140]. Often, the active site of a receptor is 

unknown and the alternative is a blind docking. The blind docking scans the entire 

surface of the receptor to find all the possible active sites (figure 63). This 

procedure presents several limitations in terms of effectiveness and time. 

 

Figure 63 Blind docking explores all the surface of the target protein to find the best pose of a ligand 

 

No commercially available or free-to-use software for molecular docking consider 

the importance of conserved sequence in proteins [145]. The sequence and the 

function of a molecule are usually closely related but, despite numerous studies, it 

is not yet clear how the conserved amino acid residues are involved in the 

evolution and the role that they have in protein function [146]. During extensive 

docking analysis, it was observed that conserved residues often lie on binding 

sites [145].  
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This work can be divided into three parts: 

 

1)  Preliminary consideration: observation of protein-ligand complexes; 

2) Modifying Vina code and creation of a new docking system, called Yada (Yet 

Another Docking Approach); Yada is available for Windows and Linux and it is 

free to download at www.yada.unisa.it [146]; 

3)  Optimization and validation of Yada; 

 

It was done a careful literature search to demonstrate the hypothesis about the 

importance of conserved residues in the binding site of a protein. The preliminary 

analysis was very satisfactory.  

In order to perform an extensive statistical analysis of the location of binding 

regions on protein surfaces, pdb structures from the PDBBind database 

(http://www.pdbbind.org/) were checked. PDBBind is a collection of binding 

affinities for the protein-ligand complexes in the Protein Data Bank (PDB) [147]. 

Using Yasara, a molecular-graphics, -modeling and -simulation program, data 

about the structure, the conservation and the binding site of the receptors 

(http://www.yasara.org/) were obtained. For example, the figure 64 shows the 

surface of the Gamma-glutamyltranspeptidase from Bacillus subtilis (3WHR) in 

the bounded and unbounded form. The conserved residues are yellow.  

  

http://www.yada.unisa.it/
http://www.pdbbind.org/
http://www.yasara.org/
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Figure 64 Gamma-glutamyltranspeptidase surface from  Bacillus subtilis (3WHR) in the bounded and unbounded form. 

The conserved residues are yellow. 

 

In the figure 65 is also represented the surface of a protein, the Glutatione 

transferase A1-1 (1GSD), with the conserved residues colored in yellow, in 

bounded and unbounded form. 

 

Figure 65 Glutatione transferase A1-1 (1GSD), with the conserved residues colored in yellow, in bounded and unbounded 

form. 

 

In the figure 66 is represented the Arabidopsis Hexokinase 1 (AtHXK1) structure 

in ligand-free form (4QS8) and in glucose-bound form (4QS7). Conserved 

residues are in yellow.  
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Figure 66 Arabidopsis Hexokinase 1 (AtHXK1) surface in ligand-free form (4QS8) and in glucose-bound form (4QS7). 

Conserved residues are in yellow. 

In these cases and in others not shown here, it is clear that ligands bind conserved 

residues of their target proteins. 

The original dataset on which the preliminary considerations were made, was 

randomly checked and reduced to eliminate dimers or structures with cofactor to 

reach a total of 305 pdb entries (Appendix C). Each amino acid of a protein was 

indicated with an integer corresponding to the conservation, as listed in the 

database Pdbfinder2 (http://swift.cmbi.ru.nl/gv/pdbfinder/) [148].  

The conservation values can be obtained running a Blast search on the receptor 

sequence and then counting the number of punctual mutations. A value of 9 

means that a particular amino acid is found conserved more than 95% of the 

times. For each residue, it was calculated the distance between residues and the 

ligand barycenter. As preliminary observation, they were counted the residues 

with conservation 9, 8, and 7 with the minimum distance from the ligand. Highly 

conserved residues (dist_9) tend to be closer to the ligand than less conserved 

residues (dist_7). At the same time, at longer distances less conserved residues 

tend to prevail (figure 67). The graph in the figure shows that most ligands have a 

distance less than 5.5 Å from residues with a high degree of conservation. This 

confirmed the hypothesis that the conserved residues are involved in the binding 

http://swift.cmbi.ru.nl/gv/pdbfinder/
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site of the receptors. Then, the presence of conserved residues is an important 

condition to predict a binding site for a ligand. 

 

 

Figure 67 On the left the distance between the experimental position of a ligand and conserved residues in the binding site 

of the protein. On the right the distances of the experimental position of the ligands and the amino acidic residues, with a 

degree of conservation of 9 (high conservation), 8 (medium conservation) and 7 (low conservation). 
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6.1.2 Improving of the binding energy calculation  

 

Starting from the initial considerations on the importance of conserved residues in 

a molecule, the idea was to drive ligands toward conserved regions on the surface, 

adding an extra term to the force field. To implement this new docking algorithm 

it was decided to start from an already existing docking program: Vina. It is an 

efficient and open source program for molecular docking [145] . It was followed 

an approach similar to the one used by Fan et al. [149]: pose prediction and ligand 

ranking were considered separately. We defined as hotspot (HS) the barycenter of 

spatially related conserved residues. The conserved regions can be easily obtained 

by multiple sequence analysis, but an easier way consisted in downloading 

essential information from the server PDBFinder 2 [148]. The distance of a pose 

from the HS was used to modify the Vina function. The calculation of the binding 

energy was modified adding a term that depended on the reciprocal of the distance 

between a ligand and the nearest HS. The new energy took into account also the 

conservation value of the residues [145]. 

To build a model of binding energy, besides the chemical-physical parameters 

already present in Vina, the distances between the ligands and the 20 amino acids 

and the shortest distances between ligands and the conserved residues, were 

considered. The descriptors were correlated with their experimental binding 

energy. It was used the method of genetic algorithms (look at the 3.1.1 paragraph), 

implemented in the Material Studio 7.0 package. The smoothness parameter was 

kept at the default value of 1.0 and the length of an individual was of 3 

descriptors. 500 individuals were let evolve over 5000 new generations. The best 

equation was taken based on the highest squared correlation coefficient (R
2
).  

The new formula (eq.36) generated to calculate the binding energy in Yada is: 
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where  

yaEnergy: binding energy calculated by Yada 

VinaEnergy: binding energy calculated by Vina 

ConsRes: an integer with value between 0 and 9 that indicates to the conservation 

degree of the closest HS to the pose 

 

6.1.3 Preliminary results and future perspectives 

 

One of the typical problems of docking software (and Vina makes no exception) is 

that the pose ranking is made in terms of energy. Vina uses a semi-empiric 

calculation of the pose energy. Unfortunately, the calculation of free energy is far 

from being optimal and, consequently, the ranking process is poor. In YADA the 

ranking process is separated by the energy evaluation and it is possible to evaluate 

the goodness of the free energy of binding using the distance of the ligand from 

the conserved residues of the protein (hot spots). Another element to consider is 

the solvation aspect. This is usually treated implicitly, that is, by the use of 

implicit solvents or by modification of other scoring functions. Here, it was 

considered explicitly structural water in binding site.  

The validation of a docking software is always a critical task. Several works 

already discussed this point [139]. The new ranking function (YaRank) was 

derived by the application of GA on a dataset of 180 proteins. The new energy 

function (YaEnergy) was calibrated on a set of more than 200 experimental free 

energies of binding (Appendix C). The accuracy of the new approach was tested 

on a set of 126 proteins and the results were compared to Vina, one of the most 

popular molecular docking tool (Appendix C). The docking procedure was total 

blind docking, 250 runs, Amber03 ff, without water molecules. We considered 

three aspects in blind docking: the goodness of the first pose in terms of RMSD 

between the docked pose, the experimental data, the free energy of binding and 

the execution time.  



115 
 

 

Figure 68 The RMSD of the best poses generated by YADA and VINA 

 

 

Figure 69 the RMSD of the best poses generated by YADA and VINA 

 

In the diagram (figure 68) it is possible to see the RMSD of the best poses 

generated by YADA and VINA. The RMSD obtained with YADA is smaller and 

so better than VINA in most cases. Also, if we consider as excellent a 

performance with a ligand of RMSD < 2 Å, as good a performance of RMSD 

between 2 Å and 7 Å and as poor a performance of RMSD > 7 Å, we note that 

YADA compared to VINA have a poor performance only in 17% of cases (figure 

69).  

As example of a different use from conservation regions, Yada was recently used 

to monitor the residue mobility of a series of protein. The first normal modes of 
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vibration have been calculated through the Maestro program [150] and the 

mobility of each residue was calculated as RMSD respect to the crystallographic 

structure (Appendix C). In the figure 70, the vibrational nodes, the invariant points 

on the protein surface, are shown in yellow. Yada can directly exploit these 

pivotal HS to assist the docking procedure.  

 

 

Figure 70 Low vibrational modes of the protein E.coli Guanylate Kinase (2ANC). The vibrational nodes, the invariant 

points on the protein surface, are shown in yellow.  

 

The approach is very flexible and it will permit the extension to AMP interacting 

with other peptides, protein receptors and target membranes.  
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Chapter VII 
 

7.1 Experimental studies: interaction between three new selective peptides 

and lipid vesicles 

 

After careful investigations using the "Yadamp predict" tool (see paragraph 2.1.1), 

three amino acid sequences potentially active on Gram + bacteria were identified. 

Through a combinatorial calculation, 10,000 amino acid sequences were 

generated. The Yadamp predict tool was used to predict their activity. Between 

these, three sequences were chosen: they had different amino acid sequences, 

obtained the consent of different algorithms and contained tryptophan. The 

presence of tryptophan in the sequence was an important requirement because the 

idea was to exploit its spectrophotometric properties to monitor the interaction of 

peptides with lipid vesicles. It is an aromatic amino acid with a maximum 

absorption and emission of 280 nm and ~360 nm, respectively. The properties of 

these three small and cationic peptides, called p458, p459 and p460, are listed in 

the figure 71.  

 

 

Figure 71 Properties of the three peptides designed (p458, p459 and p460) 

 

The peptide/membranes interaction experiments were performed at the University 

of the Balearic Islands, in the Laboratory of molecular biology of the professor 

Pablo Vicente Escribá Ruiz. It was studied the binding between the peptides p458, 

p459 and p460 and unilamellar vesicles of 400 nm. To determine the lipid 
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percentage to use for the preparation of the different types of liposomes, 

experimental data reported in the literature were considered (see the paragraph 

7.1.3) [151]. It was developed a protocol to evaluate the peptide-membrane 

binding by fluorescence and absorbance analyses, exploiting the aromatic 

properties of the amino acid tryptophan (Trp).  

Fluorescence and absorbance analyses showed that these three peptides 

preferentially interact with negatively charged lipid vesicles (DMPG
3
-DMPG:CL

4
 

3:1-PC
5
:CL 1:1) rather than with zwitterionic PC vesicles, principal component of 

eukaryotic membranes. The results suggest that the three peptides probably 

interact with the target membranes through different mechanisms of action. 

Furthermore, it seems that this interaction depends not only on the chemical-

physical characteristics of the peptides, but also on the structural changes that the 

membranes undergo. 

 

7.1.1 Synthesis of 3 new selective peptides 

 

The peptides p458 (WMLKKFRWMF), p459 (KILGKLWKWVK) and p460 

(KILKKIKKLLW) were synthesized by Ontores, in Zhejiang, China 

(http://www.ontoresinc.com/). The lyophilized peptides were dissolved in Milli-Q 

water, gently shaking until complete dissolution. Some aliquots of the solutions 

were prepared in order to work with small quantities and to avoid a possible 

degradation of the starting solutions. 

 

7.1.2 Buffer preparation 

 

A solution (100 mL) of HEPES and EDTA in pure water was prepared (pH=7.4), 

using the concentrations in the figure 72. A volume of 40 mL of this starting 

solution was extracted. To this solution, the required quantity of KCl (potassium 

chloride) was added. From the same starting solution of HEPES and EDTA, 

                                                             
3
 DMPG: 1, 2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

4
 CL: Bovine heart cardiolipin 

5
 PC: L-α-phosphatidylcholine 

http://www.ontoresinc.com/
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another volume of 40 mL was taken. To this solution, the required quantity of 

sucrose was added. In both cases, milli-Q water was added to a final volume of 50 

mL
6
 (figure 72). 

 

Figure 72 Saline and sucrose buffers preparation 

 

7.1.3 Preparation of lipid vesicles 

 

The hen egg L-α-phosphatidylcholine (PC) (figure 73) and the 1, 2-dimyristoyl-

sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) (figure 74) were purchased from 

Avanti Lipids (https://avantilipids.com/). The L-α-phosphatidylcholine is a neutral 

phospholipid, particularly abundant on the outer sheet of the eukaryotic plasma 

membrane [151]. DMPG is a negatively charged phospholipid, especially present 

in the membrane of Gram + bacteria [151]. Bovine heart cardiolipin (CL) (figure 

75) was purchased from Sigma Aldrich (www.sigmaaldrich.com). CL has two 

negative charges and it is mainly present in the Gram + bacteria membrane [151].  

                                                             
6
 For each experiment, it is advisable to prepare the two solutions (saline buffer and sucrose buffer) starting from the same mother 

solution, to have  the same conditions. 

https://avantilipids.com/
http://www.sigmaaldrich.com/
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Figure 73 L-α-phosphatidylcholine (PC) 

 

Figure 74 1, 2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) 

 

Figure 75 heart cardiolipin (CL) 
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The following lipid vesicles were prepared: PC, DMPG, DMPG:CL 3:1 and 

PC:CL 1:1. The same experimental protocol was used for the preparation of all 

these membranes. First, the concentration of the starting solution of lipids was 

proved using the Fiske method, based on the determination of the total amount of 

phosphorus [152]. At this point, the required quantity of the lipids was dissolved 

with a solution of chloroform:methanol 1:1, in a test tube. These organic solvents 

ensured a homogeneous lipid mixture. The chloroform was removed from the 

product by blowing a slow stream of argon over the chloroform solution. To 

remove the last traces of chloroform, the test tube was put on a vacuum system 

overnight (Figure 76).  

 

 

 

Figure 76 On the left the argon flow system; on the right the vacuum pump 

 

The next day, the dry lipid film formed at the bottom of the vial was suspended in 

sucrose buffer
7
 (figure 77). 

                                                             
7
 The buffer volume was arbitrary. The important thing was to prove the concentration of lipids. 
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Figure 77 The dry lipid film formed at the bottom of the vial was suspended in sucrose buffer 

 

The vial was shaken through an eppendorf vortex and then placed in a bath at 

~40°C for 5 minutes (this procedure was repeated for three times). The 

concentration of lipids in the vial was tested by determining the total amount of 

phosphorus, using the Fiske method [152]. Next, 10 cycles were carried out. Each 

of them provided freezing in liquid hydrogen for 1 minute and defrosting in a bath 

at ~40°C for 5 minutes. At this initial stage, the vesicles formed in the vial were 

MLV (multilamellar lipid vesicles) with the same size. To form 400 nm (0.4 μm) 

unilamellar lipid vesicles (LUV), the suspension of MLV was subjected to the 

lipid extrusion method, using an Avanti polar lipids extruder. This procedure 

(https://avantilipids.com/tech-support/liposome-preparation/luvet/) consisted in 

forcing the lipid suspension through a polycarbonate filter with a defined pore size 

(in our case 400 nm). The aim was to produce vesicles having the same diameter 

of the membrane pores. The extrusion was conducted at a temperature of ~50 °C. 

In this way, vesicles of 400 nm suspended in sucrose buffer were obtained (figure 

78). 

https://avantilipids.com/tech-support/liposome-preparation/luvet/
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Figure 78 Avanti polar lipids extruder used to generate LUV of 0.4 µM from MLV  

 

To balance the internal and the external environment of the liposome, saline 

buffer (see paragraph 3.2) was added to the vesicles solution, in a molar ratio of 

15:35 liposome solution:saline buffer
8
. The liposome solution was centrifuged at 

40.000 rpm for 50 minutes at 25 °C. The supernatant resulting from the 

centrifugation was then removed and the pellet was recovered in 300 μL of saline 

buffer. The concentration of lipids was then tested through the Fiske method 

[152]. At this point, the liposomes were ready for binding experiments. Until their 

use, the liposomes were retained at a temperature of +4 °C (for up to 48 h). 

 

  

                                                             
8
 The saline buffer was added to decrease the sucrose in the outer medium and to avoid the swelling of the vesicles.  
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7.2 Binding tests: fluorescence and absorbance analyses 

 

7.2.1 Molar ratio peptide:lipids 

 

For the binding tests, a peptide concentration of 25 μM
9
 was used. Each peptide 

was tested on PC liposomes in molar ratios peptide:PC of 1:20 and 1:50, on 

DMPG liposomes in a molar ratio peptide:DMPG of 1:50, on liposomes of 

DMPG:CL 3:1 in molar ratios peptide:lipids of 1:20 and 1:50 and, finally, on 

PC:CL 1:1 liposomes in molar ratios peptide:lipids of 1:20 and 1:50. 

 

7.2.2 Incubation 

 

Peptides and liposomes were incubated for 30 minutes at 25 °C, gently shaking 

through a shaker-vortex multi piastra. 

 

 

7.2.3 Fluorescence Measures 

 

Fluorescence analyses were performed immediately after the incubation. 800 μL 

of the sample were put into a cuvette with an optical path of 1 cm and the sample 

was excited at a wavelength (λ) of 280 nm. The tryptophan emission spectra were 

recorded in a range of 300-400 nm at room temperature with a spectrophotometer 

(Cary Eclipse). 

 

7.2.4 Absorbance Measures 

 

After fluorescence analyses, the samples were prepared for absorbance tests. The 

idea was to separate the fraction of peptides bound to the target membrane from 

the unbound fraction. Then, each sample was separated into two ultracentrifuge 

tubes (400 µL per tube).  

                                                             
9
 I decided to use this concentration value after a series of preliminary tests during which I looked for the ideal concentration to detect the 

presence of peptide in absorbance and fluorescence analyses. 

http://www.bioscientifica.it/it/agitatori-orbitali/2140-shaker-vortex-multi-piastra-ad-alta-velocita.html
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The ultracentrifuge was set at 25.000 rpm for 1 h at 25 °C. At the end, the 

supernatant fraction was separated from the pellet fraction. The pellet, which 

contained liposomes with the bound peptides, was resuspended and recovered in 

400 μL of saline buffer and 10X sodium cholate
10

. Then, it was added ethanol 

(EtOH)
11

 to this solution, in a molar ratio of 1:2 saline buffer:ethanol. The 

supernatant fraction was also treated with 10X sodium cholate and EtOH to work 

in the same conditions of the pellet fraction. The final volume of each sample was 

about 1.2 mL. Each sample was slightly agitated and they were put it into a 

cuvette with an optical path of 1 cm. The absorbance was read at 280 nm. A 

detailed and illustrated explanation of the protocol can be found in Appendix D. 

 

7.3 Results 

 

7.3.1 Results of fluorescence tests 

 

Each spectrum was analyzed to determine the maximum emission value (λmax). 

The λmax of the amino acid tryptophan is strongly sensitive to the chemical around. 

This value depends on the position of the tryptophan. In fact, if the tryptophan is 

in a polar zone we can see a shift to the visible (red shift). If the environment in 

which tryptophan is located is hydrophobic, we can see a shift to UV (blue shift). 

For this reason, a blue shift phenomenon could indicate an interaction between the 

peptides and the hydrophobic chains of the lipids. The peptides p458, p459 and 

p460 alone have a maximum fluorescence emission of 356 nm, 355 nm and 361 

nm, respectively (figure 79). Therefore, the results in the figure 79 represent the 

control.  

                                                             
10

 Sodium Cholate is a water-soluble ionic detergent commonly used for membrane protein and lipid isolation, cell lysis and  liposome 
preparation 
11

Ethanol was added to break the possible micelles that sodium cholate could form and which could then interfere with the absorbance 
measurements 
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Figure 79 Maximum fluorescence emission of the p458,p459 and p460 peptides alone. They respectively have a λmax of 

356 nm, 355 nm and 361 nm 

 

Fluorescence analyses were performed on the solutions in which the peptides were 

incubated with the target membranes. Therefore, from a spectrum we expect to 

find two peaks: the λmax of the unbound peptide (control) and the λmax relative to 

the interaction between the peptide and the target membrane. In fact, only a part 

of the peptides binds to the membrane while the other remains in solution. 

Unfortunately, a spectrophotometer fails to be so sensitive and it reveals the result 

of the sum of smaller peaks. For this reason, a deconvolution analysis on the 

fluorescence results obtained was performed. The aim was to detect the hidden 

peaks that are not revealed by the instrument. A deconvolution indicates a 

correction technique based on the application of a special algorithm. The 

deconvolution algorithm allows to reconstruct the missing elements on a statistical 

basis, to remove the noise factors and to create a higher quality image (figure 80).  
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Figure 80 An example of how a deconvolution analysis works 

 

To perform the deconvolution analysis a application of the software Matlab 2017 

was used (Curve Fitting Toolbox 3.5.6). Curve Fitting Toolbox provides an app 

and functions for fitting curves and surfaces to data. After the calculation of all the 

maximum fluorescence emission values, the variations in fluorescence emission 

(Δλ) were determined by this formula: 

                   

            
Figure 81  Fluorescence variation (Δλ) that occurs when each peptide interacts with a specific model membrane, at 

different ratio peptide:lipids. 
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The parameter λ0 indicates the maximum fluorescence emission of each peptide, 

in the absence of lipid vesicles (figure 79). The graph in figure 81 shows the 

fluorescence variation (Δλ) that occurs when each peptide interacts with a specific 

model membrane, at different ratio peptide:lipids. Instead, the charts below (figure 

82-84) show in detail the λmax of each peptide when it interacts with the different 

lipid membranes. 

 

 

 

Figure 82 Fluorescence emission of the peptide p458 when it interacts with PC, DMPG, DMPG:CL 3:1 and PC: CL 1:1 

vescicles. The maximal wavelength of Trp fluorescence is plotted as a function of L/P molar ratio. 
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Figure 83 Fluorescence emission of the peptide p459 when it interacts with PC, DMPG, DMPG:CL 3:1 and PC: CL 1:1 

vesicles. The maximal wavelength of Trp fluorescence is plotted as a function of L/P molar ratio 

 

                  

Figure 84 Fluorescence emission of the peptide p460 when it interacts with PC, DMPG, DMPG:CL 3:1 and PC:CL 1:1 

vescicles. The maximal wavelength of Trp fluorescence is plotted as a function of L/P molar ratio 

 

 



130 

7.3.2 Results of absorbance tests 

 

After the fluorescence analysis, the samples were centrifuged to separate 

membrane-bound peptides (pellet fraction) from unbound peptides, which then 

remained in suspension (supernatant fraction). The sedimentation rate of 

suspended particles depends on their size and density. Sucrose buffer (see 

paragraph 7.1.2) was used to increase the density of the lipid vesicles. In fact, 

after ultracentrifugation, they all deposit on the bottom of the vial. The aim was to 

perform absorbance measurements on the pellet and supernatant fractions 

separately, in order to determine the amount of peptide bound to the liposomes 

(pellet fraction). The law of Lambert Beer correlates the amount of light absorbed 

by the sample (A) to the concentration (M) of the sample and to the optical path of 

the cuvette (l): 

 

                

 

The parameter ɛλ is the molar extinction coefficient, or molar attenuation 

coefficient. It is a measurement of how strongly a chemical species attenuates 

light at a given wavelength. It is an intrinsic property of the species. The molar 

extinction coefficient of the amino acid Tryptophan is 5690 M
-1

 cm
-1

. The 

absorption of tryptophan, amino acid present in the sequences of the three AMP 

studied, was measured when it was excited at 280 nm. The absorption is directly 

proportional to the concentration of the peptides. The absorbance (Abs) results 

were normalized by expressing the amount of peptide in the pellets as a 

percentage of the total material recovered from the starting material (eq.39):  

  

https://en.wikipedia.org/wiki/Chemical_species
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Intrinsic_property
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The histogram in the figure 85 shows a complete overview of the absorbance 

results obtained on the pellet fractions of the samples in which it was performed 

the binding between each peptide and the target membranes. 

 

 

Figure 85 A complete overview of the absorbance results obtained on the samples in which it was performed the binding 

between each peptide and the target membranes  
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7.4 Discussion 

 

Absorbance and fluorescence results allow us to formulate the first hypotheses 

about the behavior of these three candidate drugs. The results of the analyses 

performed on PC vesicles represent the average of three independent experiments. 

The peptide p458 alone has a λmax of 356 nm (figure 79). When this peptide 

interacts with PC membrane in ratios of 1:20 and 1:50 P:L, it has a λmax of 354 nm 

and 347 nm, respectively (figure 82): there is a slight blue shift and the behavior 

of this peptide appears to be dependent on the lipid concentration. Absorbance test 

confirms this aspect: the 42% of the peptide binds PC in a ratio of 1:20 P:L, while 

the 59% of the peptide binds PC in a ratio 1:50 P:L (figure 85). Due to this direct 

dependence on the lipid concentration, the idea was to test this peptide even on a 

higher lipid concentration. The absorbance test reveals that the 60% of the peptide 

binds the target membrane in a ratio of 1:75 peptide:PC and fluorescence test 

reveals that the λmax is equal to 347 nm (results not shown). Thus, the peptide 

p458 has a concentration-dependent behavior against the PC only up to a certain 

limit (ratio 1:50 P:L), after which its degree of interaction does not change. So, 

more than half of the p458 interacts with PC membranes in a ratio of 1:50 P:L, but 

the peptide probably interlaces a little or does not interlace between the 

hydrophobic lipid chains (the blue shift is very slight). The peptide p459 alone has 

a λmax of 355 nm (figure 79) and when it interacts with PC membrane in ratios of 

1:20 and 1:50 P:L the λmax assumes a value of 356 nm in both cases (figure 83). 

Absorbance analyses show that the 41% of the peptide binds PC membranes in 

1:20 P:L ratio, while the 44% binds PC membranes in a ratio 1:50 P:L (figure 85). 

This behavior, unlike the p458, does not seem to be affected by the variation in 

lipid concentration. In fact, the binding between p459 and PC membranes in a 

ratio of 1:75 P:L does not show a substantial variation (results not shown): the 

46% of p459 binds to the PC membrane and the λmax is equal to 360.7 nm. Then, 

the behavior of the peptide p459 when it contacts PC membranes is not dependent 

on the lipid concentration and the interaction (just over the 40% of the peptide) is 

only with the membrane surface: fluorescence analyses do not reveal a blue shift 

(figure 81).  
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Absorbance assays performed on the samples in which the binding between the 

peptide p460 and PC membranes occurred shows a behavior dependent on the 

lipid concentration. The 38% of the p460 binds PC vesicles in a ratio of 1:20 P:L, 

while the 53% of p460 binds PC vesicles in a ratio of 1:50 P:L (Figure 85). The 

57% of p460 binds PC vesicles in a ratio of 1:75 P:L (result not shown). This 

behavior does not result in a blue shift in fluorescence analysis. Then, probably, 

the amount of p460 that interacts with PC membranes is directly proportional to 

the lipid concentration, but it does not interfere with the hydrophobic lipid chains: 

fluorescence analyses do not reveal a blue shift (figure 81). Therefore, the 

peptides p458 and p460 interact with phosphatidylcholine in a way directly 

proportional to the lipid concentration, but the p458 tends to intercept slightly the 

hydrophobic chains while the p460 remains on the surface. Instead, the amount of 

the peptide p459 that binds the PC vesicles does not depend on the lipid 

concentration (it remains low even at higher lipid concentrations) and it does not 

seem to interfere with the hydrophobic chains. These preliminary results are very 

interesting because the PC is the major lipid component of the eukaryotic 

membranes and we are looking for candidate drugs that are not toxic to living 

organisms. 

The results of the binding between each peptide and DMPG vesicles represent the 

average of 4 independent experiments. All the fluorescence results obtained on the 

samples in which each peptide was incubated with DMPG vesicles in a ratio 1:50 

P:L show a blue shift in the emission (figure 81). This variation is particularly 

considerable for p458 and p459: when they interact with DMPG vesicles their 

λmax decreases by 25% and 20% respectively (figure 82-83). Instead, the peptide 

p460 decreases its λmax by ~10% when it contacts the DMPG vesicles. The results 

obtained with the absorbance analyses on the interaction between p458 and 

DMPG show that the 66% of the peptide binds the DMPG membrane (figure 85). 

This result, added to the blue shift phenomenon that we observe in the 

fluorescence analysis (figure 81), suggests that the p458 interacts a lot with 

DMPG and interferes with the hydrophobic chains. Probably, the p459 also 

interferes with the hydrophobic chains of the lipids, but with less affinity than the 
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p458: the absorbance analysis reveals that only the 50% of the peptide binds the 

DMPG vesicles (figure 85). The 57% of the peptide p460 binds DMPG 

membranes (figure 85), but this does not result in a high blue shift (figure 81). 

Probably, the peptide p460 adopts a mechanism of action that need more time to 

fully intercept the membrane. The interaction of these three cationic peptides with 

DMPG vesicles negatively charged was foregone: computational and in vitro 

analyses showed the importance of the charge factor. Consequently, the idea was 

to understand if the charge was a necessary and sufficient property for the 

binding. 

Then, the peptides were tested on membranes with a negative charge higher than 

the charge of the DMPG vesicles. DMPG:CL 3:1 vesicles were prepared and the 

binding with p458, p459 and p460 in ratios of 1:20 and 1:50 P:L was performed. 

The idea to use cardiolipin is due to the fact that previous studies have shown the 

importance of this lipid in the membrane. Cardiolipin modulates the membrane 

composition to adapt to stress conditions and membrane fluidity [153]. The results 

obtained represent the average of 3 independent experiments. 

Compared to the binding on the DMPG membranes, among the three peptides 

only the p460 exhibits a greater affinity when it interacts with the DMPG:CL 3:1 

membranes: the 78% of the p460 binds the DMPG:CL 3:1 vesicles against the 

57% of the peptide that binds the DMPG vesicles (figure 85). However, the results 

of the fluorescence analyses are comparable (figure 84): when p460 binds DMPG 

vesicles in a ratio 1:50 P:L his λmax  is equal to 349 nm; when it binds DMPG 

vesicles at the same ratio P:L the λmax  is equal to 348 nm. So, a greater amount of 

peptide binds the DMPG:CL 3:1 membranes, but the mechanism of action appears 

the same and involves a slight intercalation between the hydrophobic chains. The 

peptide p458, on the other hand, is not affected by the increase of the membrane 

charge. In fact, the amount of the peptide that binds the vesicles of DMPG and the 

amount of the peptide that binds the DMPG: CL 3:1 (ratio of 1:50 P:L) vesicles 

are comparable (figure 85). The fluorescence results are also the same: in both 

cases the λmax  is equal to 331 nm (figure 82). This behavior suggests that the 
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charge is not the only factor involved in the interaction between the p458 and the 

target membranes, but there are also other factors (for example structural factors).  

The peptide p459 interacts a little more with DMPG:CL 3:1 membranes (ratio 

1:50 P:L) than with DMPG vesicle: the amount of the peptide linked to the 

DMPG:CL 3:1 increases by the 10% (figure 85). The results of fluorescence 

analysis are also comparable (figure 84): when p459 binds DMPG vesicles in a 

ratio 1:50 P:L his λmax  is equal to 336 nm; when it binds DMPG vesicles at the 

same ratio P:L the λmax  is equal to 334 nm.  Therefore, like p458, the p459 is not 

affected by the increase in negative charge of the target membranes and probably 

there are other factors to consider. 

Finally, the peptides were tested on a membrane with the same negative charge of 

the DMPG to see if the behavior of the peptides on these membranes was the 

same. Compared to the binding with the DMPG vesicles, a lower amount of p458 

binds to PC:CL 1:1 vesicles in a ratio of 1:50 P:L (figure 85). This is confirmed 

by the fluorescence analysis that shows a slighter blue shift (figure 81). This 

result, compared with the result on the DMPG:CL 3:1 vesicles, suggests that for 

the peptide p458 the charge is a necessary but not sufficient factor. A comparable 

amount of p459 binds the membranes of DMPG and PC:CL 1:1 in a ratio of 1:50 

P:L, but this peptide shows less affinity for the DMPG:CL 3:1 membranes, 

despite the increase in negative charge. Fluorescence analysis, however, suggests 

that the p459 acts similarly on DMPG and DMPG:CL 3:1 (probably it interferes 

with the hydrophobic chains), but it acts in a different manner on PC:CL 1:1 

membranes. In fact, in this case the blue shift is less marked. The fact that a 

cationic peptide, in terms of quantity, binds more to a less negative charged 

membrane, suggests that even in this case the charge is a necessary but not 

sufficient factor. Therefore, probably, the membrane composition and therefore 

some structural factors, influences the mechanism of action of these AMP. The 

p460 peptide interacts in larger amounts with PC:CL 1:1 vesicles than with 

DMPG vesicles, despite the same negative charge, but fluorescence results are 

comparable (figure 84). So, it seems that p460 has more affinity for the PC:CL 1:1 
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vesicles than for the DMPG (probably due to structural factors), but in both cases 

we see a blue shift that suggests that the peptide interacts with the hydrophobic 

chains of the lipids (figure 81). The interaction of p460 with DMPG:CL 3:1 

vesicles also shows a blue shift and it is comparable with the blue shift that we see 

after the binding with the other two membranes (figure 81). However, the 

increased charge of the DMPG:CL 3:1 permits that a greater amount of peptide 

binds to the membrane: the absorbance analyses show that the 78% of the p460 

binds the DMPG:CL 3:1 vesicles (figure 85). So, even in this case the charge is a 

necessary factor for the interaction but it is not sufficient for the insertion of the 

peptide into the membrane. 
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Chapter VIII 
 

8.1 What has been done in this work?  

 

This work includes two approaches: a computational and a preliminary 

experimental approach. Computational results were the starting point for the 

subsequent tests in vitro. In 2012, the database Yadamp was created from the 

research group in which this work was carried out. The main idea was to facilitate 

the access to important information on AMP, such as the activity and the 

chemical-physical properties of these molecules. The activity of the peptides was 

extracted from the literature and the physical-chemical properties calculated by 

online tools or by Matlab scripts. In this work, an important contribution was 

given to improve the Yadamp database. When Yadamp was created it contained 

2133 sequences of antimicrobial peptides. During this work, 1009 new sequences 

of AMP were manually extracted from the scientific literature. For these 

sequences 573 chemical-physical parameters were calculated. In this regard, this 

work also intersects with another parallel project that involved the creation of a 

new molecular docking system: Yada. The idea was to study the interaction of 

AMP with other peptides, protein receptors and target membranes in terms of 

binding energy. 

The philosophy behind Yadamp was to permit QSAR analyses and the creation of 

activity model against pathogenic microorganisms. Yadamp allowed the creation 

of homogeneous subsets of AMP: the hypothesis was that peptides with the same 

chemical-physical characteristics shared the same mechanism of action against 

target microorganisms. In this work, new computational prediction procedures 

have been employed and allowed to generate many activity models against 

pathogenic microorganisms Gram + and Gram - (Chapter III-IV-V). They were 

implemented in the “Yadamp predict” tool (http://yadamp.unisa.it/predict.aspx). It 

allows researchers to submit sequences of unknown molecules and to see if and to 

which organisms these molecules are potentially active. Users can also know the 

degree of reliability of their results through appropriate statistical validation 

http://yadamp.unisa.it/predict.aspx
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systems. The “Yadamp predict” tool suggested three amino acid sequences that 

potentially could bind Gram + bacteria (Chapter VII). These sequences were 

chosen on their diversity in the amino acid sequence, on the consensus that they 

obtained from different algorithms and on the presence of the amino acid 

tryptophan in their sequence. By exploiting the known spectrophotometric 

properties of the tryptophan, the interaction of these peptides with vesicles of 400 

nm with different lipid composition was evaluated through fluorescence and 

absorbance analyses. The preliminary results suggest that the interaction of these 

three candidate sequences with the target liposomes does not depend only on the 

charge parameter, but probably also on structural changes of the membranes due 

to the lipid polymorphism. It is known that lipids, when forming a membrane, can 

be assembled into a variety of phases with different geometry. It depends on their 

chemical structure and also on external variables, such as temperature or pressure. 

This feature influences different cellular processes [154]. We can hypothesize a 

structural rearrangement of the membrane caused by the interaction with the 

peptides. Cardiolipin (CL), for example, is a phospholipid with two phosphate 

groups and four acyl chains [155]. The small size of the polar group of CL 

increases the propensity to form non-lamellar inverted phases. This tendency, 

however, is attenuated by the presence of negative charges of the mutually 

repulsive phosphate groups [156]. 

 

8.2 What will be done?  

 

Starting from the preliminary results obtained in silico and in vitro, the idea is to 

repeat these analyses and, also, to prove the activity of these peptides by 

microbiological tests. At the same time, molecular dynamics simulations of 

peptide/membrane systems are in progress. The aim is to clarify the mechanism of 

action of AMP. Furthermore, the software Yada will permit the study of the 

interaction of AMP with other peptides, protein receptors and target membranes 

(Chapter VI). The calculation of the binding energy is also important to enrich the 
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pool of molecular descriptors available and to obtain even more efficient 

prediction results. 

 

8.3 Conclusions 

 

Drug discovery is the long and very complex process by which new drugs are 

found. It requires many years of research, experimental tests, clinical studies and a 

high economic capital. It is necessary to wait 12-14 years before having a new 

drug on the market. The identification of new potentially active molecules is 

certainly a delicate step. Usually, a series of possible candidates (lead compounds) 

is available. The large amount and the heterogeneity of these substances makes 

this process long and expensive. The identification of a lead compound and its 

optimization can take up to three years of work. An approach that can shorten the 

research time and the optimization of a drug candidate is the study of the 

quantitative structure-activity relationship (QSAR). It is the search of a 

relationship between the three-dimensional structure of a molecule and its 

bioactivity. The computational approach has speeded up the lead optimization 

process by multiple degrees in the last two decades. This is a profitable operation 

that allows to test thousands of compounds by a priori rejecting unattractive 

compounds and reducing the number of possible candidates. However, it is not 

easy to get the optimal results through the QSAR analysis, due to the preparation 

of the data and to poor application of statistical methods. For example, an optimal 

QSAR analysis needs an adequately sized data set. The real challenge is to verify 

if the predictions will come true or not: it is not obvious that what is calculated 

through computational techniques gives a positive result. The initial idea was to 

identify correlations between the structure and the activity of AMP to clarify their 

mechanism of action and to design new active and selective molecules. However, 

this approach is possible only working on homogeneous datasets of AMP and 

looking for new molecular descriptors. Many techniques, including PCA and 

cluster analysis, have been used to find homogeneous datasets of AMP (Chapter 

V). Furthermore, a new docking system was created to study the interaction of 
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these molecules with the target membranes in terms of binding energy (Chapter 

VI). In fact, the descriptors 1D and 2D currently available fail to capture all of the 

peptides properties. The peptides are extremely flexible molecules and undergo 

conformational changes: in water, their structure is hydrophilic; when they 

interact with membranes, they expose a hydrophobic region. 

The optimization of computational analyses significantly reduces the time of the 

drug discovery process. More generally, this work gives guidelines on the 

automation of a large part of the drug discovery process to proceed towards in 

vitro and in vivo experimentation in a more targeted way.  

All together, these findings support the proposed mechanism of action of the 3 

peptides and pave the way for novel and more focused design of antimicrobial 

peptides. 
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Appendices 

Appendix A 

Matlab Scripts 

Calculate_Charge.m 
 

% This script computes the charge at three different pH 5, 7, 9 

using pKa values taken from Lehninger Principles of Biochemistry. 

load pKa_value.mat 

fid = fopen('AMP.txt', 'r'); 

fid2 =fopen('AMP_Charge.txt','w'); 

fprintf(fid2, 'Calculation of charge at pH5,7 and 9\n'); 

fprintf(fid2, 'sequence             pH5         pH7         

pH9\n'); 

string = fgetl(fid) 

while string ~= -1 

    val5=0; 

    val7=0; 

    val9=0; 

    peptide_length = length(string);   

    for j = 1:peptide_length 

        switch string(j) 

            case ('K') 

                val5=val5 + 10.^10.5/(10.^10.5+ 10^5); 

                val7=val7 + 10.^10.5/(10.^10.5+ 10^7); 

                val9=val9 + 10.^10.5/(10.^10.5+ 10^9);               

            case ('R') 

                val5=val5 + 10.^12.4/(10.^12.4+ 10^5); 

                val7=val7 + 10.^12.4/(10.^12.4+ 10^7); 

                val9=val9 + 10.^12.4/(10.^12.4+ 10^9); 

            case ('H') 

                val5=val5 + 10.^6/   (10.^6+ 10^5); 

                val7=val7 + 10.^6/   (10.^6+ 10^7); 

                val9=val9 + 10.^6/   (10.^6+ 10^9);      

            case ('Y') 

                val5=val5 - 10.^5/(10.^10+ 10^5); 

                val7=val7 - 10.^7/(10.^10+ 10^7); 

                val9=val9 - 10.^9/(10.^10+ 10^9);               

            case ('D') 

                val5=val5 - 10.^5/(10.^3.86+ 10^5); 

                val7=val7 - 10.^7/(10.^3.86+ 10^7); 

                val9=val9 - 10.^9/(10.^3.86+ 10^9);               

            case ('E') 

                val5=val5 - 10.^5/(10.^4.25+ 10^5); 

                val7=val7 - 10.^7/(10.^4.25+ 10^7); 

                val9=val9 - 10.^9/(10.^4.25+ 10^9);               

            case ('C') 

                val5=val5 - 10.^5/(10.^8.33+ 10^5); 

                val7=val7 - 10.^7/(10.^8.33+ 10^7); 

                val9=val9 - 10.^9/(10.^8.33+ 10^9);               

        end; 

    end; 

    val5 = val5 + 10.^9.69/(10.^9.69 + 10^5)- 10.^5/(10.^2.34+ 

10^5) 

    val7 = val7 + 10.^9.69/(10.^9.69 + 10^7)- 10.^7/(10.^2.34+ 

10^7); 

    val9 = val9 + 10.^9.69/(10.^9.69 + 10^9)- 10.^9/(10.^2.34+ 

10^9); 

    fprintf(fid2, '%s\t\t\t%f\t%f\t%f\n', string, val5, val7, 

val9); 



142 

    string = fgetl(fid);  

end; 

fclose('all'); 

Calculate_Boman_index.m 

% This script computes the Boman index in accordingly with Journal 

of Internal Medicine 2003; 254: 197–215 

fid = fopen('AMP.txt', 'r'); 

fid2 = fopen('AMP_BomanIndex.txt','w'); 

fprintf(fid2, 'Boman index of alpha AMPs\n\n'); 

string = fgetl(fid); 

while string ~= -1 

    peptide_lenght = length(string);   

    temp = 0;    

    bindex=0; 

    for j = 1: peptide_lenght 

%         mono = 1; 

            first = char(string(j)); 

            switch first 

                case ('W') 

                    aminoacidA = 2.33; 

                case ('C') 

                    aminoacidA = 1.28; 

                case ('M') 

                    aminoacidA = 2.35; 

                case ('H') 

                    aminoacidA = -4.66; 

                case ('Y') 

                    aminoacidA = -0.14; 

                case ('F') 

                    aminoacidA = 2.98; 

                case ('Q') 

                    aminoacidA = -5.54; 

                case ('N') 

                    aminoacidA = -6.64; 

                case ('I') 

                    aminoacidA = 4.92; 

                case ('R') 

                    aminoacidA = -14.92; 

                case ('D') 

                    aminoacidA = -8.72; 

                case ('P') 

                    aminoacidA = 0; 

                case ('T') 

                    aminoacidA = -2.57; 

                case ('K') 

                    aminoacidA = -5.55; 

                case ('E') 

                    aminoacidA = -6.81; 

                case ('V') 

                    aminoacidA = 4.04; 

                case ('S') 

                    aminoacidA = -3.40; 

                case ('G') 

                    aminoacidA = 0.94; 

                case ('A') 

                    aminoacidA = 1.81; 

                case ('L') 

                    aminoacidA = 4.92;   

            end; 

            temp = temp + aminoacidA; 

    end; 

    bindex = -temp/ peptide_lenght; 

    fprintf(fid2, '%f\t%s\n', bindex, string); 

    string = fgetl(fid); 
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end; 

fclose('all'); 

 

Calculate_HydrophobicityMoment_Flexibility.m 
 

% This script computes the mean hydrophobicity and the hydrophobic 

moment in accordingly with Faraday Symp. Chem. Soc., 1982, 17, 109-

120. 

% In addition it computes the Flexibility value in accordingly with 

Angew. Chem. Int. Ed. 2003, 42, 2269 – 2272. 

load string_Hydrophobicity 

fid = fopen('AMP.txt', 'r'); 

fid2 =fopen('AMP_HydrophobicMoment.txt','w'); 

fid3 =fopen('AMP_Flexibility.txt','w'); 

fprintf(fid2, 'Hydrophobic moments of alpha AMPs\n'); 

fprintf(fid2, 'length      h_mom_a     mean_hm_a   h_mom_b     

mean_hm_b   h_mom_c     mean_hm_c\n'); 

fprintf(fid3, 'Flexibility of alpha AMPs\n'); 

  

string = fgetl(fid); 

while string ~= -1 

    hxa=0; 

    hxb=0; 

    hxc=0; 

    hya=0; 

    hyb=0; 

    hyc=0; 

    flex=0; 

    peptide_lenght = length(string);   

    for j = 1:peptide_lenght 

        s= sin(1.7453*j); 

        c= cos(1.7453*j); 

        switch string(j) 

            case ('A') 

                hxa=hxa+c*values(1,1); 

                hya=hya+s*values(1,1); 

                hxb=hxb+c*values(1,2); 

                hyb=hyb+s*values(1,2); 

                hxc=hxc+c*values(1,3); 

                hyc=hyc+s*values(1,3); 

                flex= flex+18; 

            case ('R') 

                hxa=hxa+c*values(2,1); 

                hya=hya+s*values(2,1); 

                hxb=hxb+c*values(2,2); 

                hyb=hyb+s*values(2,2); 

                hxc=hxc+c*values(2,3); 

                hyc=hyc+s*values(2,3); 

                flex= flex+4.6; 

            case ('N') 

                hxa=hxa+c*values(3,1); 

                hya=hya+s*values(3,1); 

                hxb=hxb+c*values(3,2); 

                hyb=hyb+s*values(3,2); 

                hxc=hxc+c*values(3,3); 

                hyc=hyc+s*values(3,3); 

                flex= flex+20; 

            case ('D') 

                hxa=hxa+c*values(4,1); 

                hya=hya+s*values(4,1); 

                hxb=hxb+c*values(4,2); 

                hyb=hyb+s*values(4,2); 
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                hxc=hxc+c*values(4,3); 

                hyc=hyc+s*values(4,3); 

                flex= flex+20; 

            case ('C') 

                hxa=hxa+c*values(5,1); 

                hya=hya+s*values(5,1); 

                hxb=hxb+c*values(5,2); 

                hyb=hyb+s*values(5,2); 

                hxc=hxc+c*values(5,3); 

                hyc=hyc+s*values(5,3); 

                flex= flex+20;   % estimated by comparison with Ser 

            case ('Q') 

                hxa=hxa+c*values(6,1); 

                hya=hya+s*values(6,1); 

                hxb=hxb+c*values(6,2); 

                hyb=hyb+s*values(6,2); 

                hxc=hxc+c*values(6,3); 

                hyc=hyc+s*values(6,3); 

                flex= flex+7.2; 

            case ('E') 

                hxa=hxa+c*values(7,1); 

                hya=hya+s*values(7,1); 

                hxb=hxb+c*values(7,2); 

                hyb=hyb+s*values(7,2); 

                hxc=hxc+c*values(7,3); 

                hyc=hyc+s*values(7,3); 

                flex= flex+8.2; 

            case ('G') 

                hxa=hxa+c*values(8,1); 

                hya=hya+s*values(8,1); 

                hxb=hxb+c*values(8,2); 

                hyb=hyb+s*values(8,2); 

                hxc=hxc+c*values(8,3); 

                hyc=hyc+s*values(8,3); 

                flex= flex+39; 

            case ('H') 

                hxa=hxa+c*values(9,1); 

                hya=hya+s*values(9,1); 

                hxb=hxb+c*values(9,2); 

                hyb=hyb+s*values(9,2); 

                hxc=hxc+c*values(9,3); 

                hyc=hyc+s*values(9,3); 

                flex= flex+4.8; 

            case ('I') 

                hxa=hxa+c*values(10,1); 

                hya=hya+s*values(10,1); 

                hxb=hxb+c*values(10,2); 

                hyb=hyb+s*values(10,2); 

                hxc=hxc+c*values(10,3); 

                hyc=hyc+s*values(10,3); 

                flex= flex+2.3; 

            case ('L') 

                hxa=hxa+c*values(11,1); 

                hya=hya+s*values(11,1); 

                hxb=hxb+c*values(11,2); 

                hyb=hyb+s*values(11,2); 

                hxc=hxc+c*values(11,3); 

                hyc=hyc+s*values(11,3); 

                flex= flex+10; 

            case ('K') 

                hxa=hxa+c*values(12,1); 

                hya=hya+s*values(12,1); 

                hxb=hxb+c*values(12,2); 

                hyb=hyb+s*values(12,2); 
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                hxc=hxc+c*values(12,3); 

                hyc=hyc+s*values(12,3); 

                flex= flex+3.4; 

            case ('M') 

                hxa=hxa+c*values(13,1); 

                hya=hya+s*values(13,1); 

                hxb=hxb+c*values(13,2); 

                hyb=hyb+s*values(13,2); 

                hxc=hxc+c*values(13,3); 

                hyc=hyc+s*values(13,3); 

                flex = flex+ 7;  % intermediate value between L and 

K 

    case ('F') 

                hxa=hxa+c*values(14,1); 

                hya=hya+s*values(14,1); 

                hxb=hxb+c*values(14,2); 

                hyb=hyb+s*values(14,2); 

                hxc=hxc+c*values(14,3); 

                hyc=hyc+s*values(14,3); 

                flex= flex+7.6; 

            case ('P') 

                hxa=hxa+c*values(15,1); 

                hya=hya+s*values(15,1); 

                hxb=hxb+c*values(15,2); 

                hyb=hyb+s*values(15,2); 

                hxc=hxc+c*values(15,3); 

                hyc=hyc+s*values(15,3); 

                flex= flex+0.1; 

            case ('S') 

                hxa=hxa+c*values(16,1); 

                hya=hya+s*values(16,1); 

                hxb=hxb+c*values(16,2); 

                hyb=hyb+s*values(16,2); 

                hxc=hxc+c*values(16,3); 

                hyc=hyc+s*values(16,3); 

                flex= flex+25; 

            case ('T') 

                hxa=hxa+c*values(17,1); 

                hya=hya+s*values(17,1); 

                hxb=hxb+c*values(17,2); 

                hyb=hyb+s*values(17,2); 

                hxc=hxc+c*values(17,3); 

                hyc=hyc+s*values(17,3); 

                flex= flex+11; 

            case ('W') 

                hxa=hxa+c*values(18,1); 

                hya=hya+s*values(18,1); 

                hxb=hxb+c*values(18,2); 

                hyb=hyb+s*values(18,2); 

                hxc=hxc+c*values(18,3); 

                hyc=hyc+s*values(18,3); 

                flex = flex+8; % estimated by comparison with Phe 

            case ('Y') 

                hxa=hxa+c*values(19,1); 

                hya=hya+s*values(19,1); 

                hxb=hxb+c*values(19,2); 

                hyb=hyb+s*values(19,2); 

                hxc=hxc+c*values(19,3); 

                hyc=hyc+s*values(19,3); 

                flex = flex+8; % estimated by comparison with Phe 

            case ('V') 

                hxa=hxa+c*values(20,1); 

                hya=hya+s*values(20,1); 
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                hxb=hxb+c*values(20,2); 

                hyb=hyb+s*values(20,2); 

                hxc=hxc+c*values(20,3); 

                hyc=hyc+s*values(20,3); 

                flex= flex+3; 

        end; 

    end; 

    flex = flex/peptide_lenght; 

    hydro_moment_a = sqrt(hxa*hxa + hya*hya); 

    mean_hydro_moment_a = hydro_moment_a/peptide_lenght; 

    hydro_moment_b = sqrt(hxb*hxb + hyb*hyb); 

    mean_hydro_moment_b = hydro_moment_b/peptide_lenght; 

    hydro_moment_c = sqrt(hxc*hxc + hyc*hyc); 

    mean_hydro_moment_c = hydro_moment_c/peptide_lenght; 

    fprintf(fid2, 

'%d\t\t\t%f\t%f\t%f\t%f\t%f\t%f\t%s\n',peptide_lenght, 

hydro_moment_a, mean_hydro_moment_a, hydro_moment_b, 

mean_hydro_moment_b, hydro_moment_c, mean_hydro_moment_c, string); 

    fprintf(fid3, '%f\n', flex); 

    string = fgetl(fid); 

end;  

fclose('all'); 

 

Parsing_Helicity_prediction.m 
 

% This script produces the Helicity prediction values after 

computing by DSC algorithm presents in Discovery Studio from 

Accelrys. 

fid = fopen('Yadamp-DscPrediction.txt', 'r'); 

fid2 =fopen('AMP_Helicitiy.txt','w'); 

fprintf(fid2, 'Helicity prediction\n\n'); 

string = fgetl(fid); 

number = 0; 

j=1; 

flag = 0; 

tot = 0; 

while string ~= -1 

    string = fgetl(fid); 

    peptide_lenght = 0; 

    if string  

        if string(1) == 'D' 

            string = fgetl(fid); 

            for i= 14:67 

                number = double(string(i)); 

                if number <= 32 

                    flag =0; 

                     

                else 

                    peptide_lenght = peptide_lenght +1; 

                        tot = tot + number-48;  

                    flag = 0; 

                end 

            end 

            tot = tot/ (peptide_lenght); 

            fprintf(fid2, '%f\t%s\n', tot, string); 

            tot =0; 

            flag = 0; 

        end 

    end     

end  

fclose('all'); 
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Calculate_InstabilityIndex.m 
 

% This script computes the Instability index in accordingly with 

Protein Engineering vol.4 no.2 pp.155-161. 1990. 

load aminoacids_instability.mat 

load instability_matrix.mat 

fid = fopen('AMP.txt', 'r'); 

fid2 =fopen('AMP_InstabilityIndex.txt','w'); 

fprintf(fid2, 'Instability index of alpha AMPs\n\n'); 

string = fgetl(fid); 

  

while string ~= -1 

    iindex=0; 

    temp=0; 

  

    peptide_lenght = length(string);   

     

    dimers = nmercount(string, 2); 

    dimers_number = length(dimers); 

     

for j = 1:dimers_number 

  

            dimer  = sscanf(char(dimers(j)), '%c'); 

            first = char(dimer(1)); 

            switch first 

                case ('W') 

                    aminoacidA = 1; 

                case ('C') 

                    aminoacidA = 2; 

                case ('M') 

                    aminoacidA = 3; 

                case ('H') 

                    aminoacidA = 4; 

                case ('Y') 

                    aminoacidA = 5; 

                case ('F') 

                    aminoacidA = 6; 

                case ('Q') 

                    aminoacidA = 7; 

                case ('N') 

                    aminoacidA = 8; 

                case ('I') 

                    aminoacidA = 9; 

                case ('R') 

                    aminoacidA = 10; 

                case ('D') 

                    aminoacidA = 11; 

                case ('P') 

                    aminoacidA = 12; 

                case ('T') 

                    aminoacidA = 13; 

                case ('K') 

                    aminoacidA = 14; 

                case ('E') 

                    aminoacidA = 15; 

                case ('V') 

                    aminoacidA = 16; 

                case ('S') 

                    aminoacidA = 17; 

                case ('G') 

                    aminoacidA = 18; 

                case ('A') 
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                    aminoacidA = 19; 

                case ('L') 

                    aminoacidA = 20;   

            end; 

            temp(1) = aminoacidA; 

            second   = char(dimer(2)); 

            switch second 

                case ('W') 

                    aminoacidA = 1; 

                case ('C') 

                    aminoacidA = 2; 

                case ('M') 

                    aminoacidA = 3; 

                case ('H') 

                    aminoacidA = 4; 

                case ('Y') 

                    aminoacidA = 5; 

                case ('F') 

                    aminoacidA = 6; 

                case ('Q') 

                    aminoacidA = 7; 

                case ('N') 

                    aminoacidA = 8; 

                case ('I') 

                    aminoacidA = 9; 

                case ('R') 

                    aminoacidA = 10; 

                case ('D') 

                    aminoacidA = 11; 

                case ('P') 

                    aminoacidA = 12; 

                case ('T') 

                    aminoacidA = 13; 

                case ('K') 

                    aminoacidA = 14; 

                case ('E') 

                    aminoacidA = 15; 

                case ('V') 

                    aminoacidA = 16; 

                case ('S') 

                    aminoacidA = 17; 

                case ('G') 

                    aminoacidA = 18; 

                case ('A') 

                    aminoacidA = 19; 

                case ('L') 

                    aminoacidA = 20;   

            end; 

            temp(2) = aminoacidA; 

        iindex = iindex + INSTMATRIX(temp(1),temp(2)); 

    end; 

    iindex = 10/peptide_lenght*iindex; 

  

    fprintf(fid2, '%f\t%s\n', iindex, string); 

    string = fgetl(fid); 

  

end; 

fclose('all'); 
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Appendix  B 

 

Statistical validation of the models obtained: calculation of accuracy, 

precision, sensitivity and  specificity parameters and calculation of the index 

score 

 

len_start = 8 

len_stop = 83 

scoremat =  

for i in range(1,6): 

 scoremat[i] =  

scoremat[1][1] = 2 

scoremat[1][2] = 1 

scoremat[1][3] = 0 

scoremat[1][4] = -1 

scoremat[1][5] = -2 

scoremat[2][1] = 2 

scoremat[2][2] = 2 

scoremat[2][3] = 1 

scoremat[2][4] = 0 

scoremat[2][5] = -1 

scoremat[3][1] = 0 

scoremat[3][2] = 1 

scoremat[3][3] = 1 

scoremat[3][4] = 0 

scoremat[3][5] = -1 

scoremat[4][1] = -1 

scoremat[4][2] = 0 

scoremat[4][3] = 0 

scoremat[4][4] = 1 

scoremat[4][5] = 0 

scoremat[5][1] = -2 

scoremat[5][2] = -1 

scoremat[5][3] = -1 

scoremat[5][4] = 0 

scoremat[5][5] = 2 

 

def tclass(val): 

 val = float(val) 

 if (val<=2): 

  return 1 

 if (val >2 and val <=5): 

  return 2 

 if (val >5 and val <=10): 

  return 3 

 if (val >10 and val<=30): 

  return 4 

 if (val > 30): 

  return 5 

 

for k in range(8,84): 
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 for i in range(k,84): 

  

 #statistiche  

  TN = 0 

  TP = 0 

  FP = 0 

  FN = 0 

  PRECISION=0 

  SENSITIVITY=0 

  ACCURACY=0 

  SPECIFICITY = 0 

  SCORE=0 

 #media valori osservati sperimentali 

  mv = 0 

  r2 = 0 

  numerator = 0 

  denominator = 0 

  denom = [] 

  numpep = 0 

  #print "7\t",i,"\t", 

  #print "Len 7 =>",i,"Num pep:", 

  #open file 

  inp = open("input.txt") 

  while 1: 

   line = inp.readline(); 

   line = line.replace("\n","") 

   if (line==""): 

    break; 

   seq = line.split("\t")[0] 

   l = len(seq) 

   if (l>=k and l <=i): 

    lenw = line.split("\t")[1] 

    yi= line.split("\t")[2] 

    fi= line.split("\t")[3] 

    fi = fi.replace(",",".") 

    yi = yi.replace(",",".") 

    fi = tclass(fi) 

    yi = tclass(yi) 

    mv +=float(yi) 

    numpep += 1 

    numerator += pow(float(yi) - float(fi),2) 

    denom.append(yi) 

    #print yi,fi 

  

    gmic = yi 

    gpredict = fi 

      

    SCORE += scoremat[fi][yi] 

  

    #attivo (gruppo a*,a,b,c) 

    if (gmic <= 4): 

     if (gpredict<=4): #active predicted 

as active 

      TP+=1 

     else: 

      FN+=1  #active predicted 

as not active 

     pass 
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    if (gmic >= 5): 

     if (gpredict>=5): #not active 

predicted as not active 

      TN+=1 

     else: 

      FP+=1  #not active 

predicted as active 

  if (numpep==0): 

   continue; 

  mv = mv/numpep 

  for p in denom: 

   denominator += pow(float(p)-mv,2) 

       PRECISION = float(TP)/ (float(TP)+float(FP)+0.00001) 

  

  SENSITIVITY= float(TP)/ (float(TP)+float(FN)+0.00001) 

  ACCURACY= (float(TP)+float(TN))/ (numpep+0.00001) 

  SPECIFICITY= float(TN)/ (float(TN)+float(FP)+0.00001) 

  SCORE = SCORE 

  #attivare queste due righe per calcolare lo score 

  print k,"\t",i,"\t",SCORE 

  print i,"\t",k,"\t",SCORE 

  #attivare la riga seguente per precision etc... 

  #print 

k,"\t",i,"\t",PRECISION,"\t",ACCURACY,"\t",SENSITIVITY,"\t",

SPECIFICITY 

 #print numpep,"R2=",1- 

 (numerator/denominator),"TP:",TP,"TN:",TN,"FP:",FP,"FN:",FN 

  #print "\tPRECISION:",PRECISION, 

  #print "\tSENSITIVITY:",SENSITIVITY, 

  #print "\tACCURACY:",ACCURACY, 

  #print "\tSPECIFICITY:",SPECIFICITY 

 inp.close() 
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Appendix C 

 

List of 25 PDB used for vibrational analysis  

 

 

 

 

List of 305 PDB used for Yada calibration 

 

 

1a07 
 
1a0q 

 
1a1b 

 
1a1e 

 
1a28 

 
1a42 

 
1a4g 

 
1a4k 

 
1a4q 

 
1a6w 

 
1a9u 

 1aaq 
 
1abe  1abf 

 
1acj 

 
1acl 

 
1acm 

 
1aco 

 
1aec 

 
1aha 

 
1ai5 

 
1aj7 

 1ake 
 
1aoe 

 
1apt 

 
1apu 1aqw 

 
1ase 

 
1atl 

 
1azm 

 
1b58 

 
1b59 

 
1b6n 

 1b9v 
 
1baf 

 
1bbp 

 
1bgo 

 
1bl7 

 
1blh 1bma 

 
1bmq 

 
1byb 

 
1byg 

 
1c12 

 1c1e 
 
1c2t 

 
1c5c 

 
1c5x 

 
1c83 

 
1cbs 

 
1cbx 

 
1cdg  1cf8 

 
1cil 

 
1cin 

 1ckp 
 
1cle 

 
1com 

 
1coy 

 
1cps 

 
1cqp 

 
1ctr 

 
1ctt 

 
1cvu 

 
1cx2 1d0l 

 1d3h 
 
1d4p 

 
1dbb 

 
1dbj 

 
1dbm 

 
1dd7 

 
1dg5 

 
1dhf 

 
1did 

 
1die 1dmp 

 1dog 1dr1 
 
1dwb 

 
1dwc 

 
1dwd 

 
1dy9 

 
1eap 

 
1ebg 

 
1eed 

 
1ei1 

 
1ejn 

 1ela 
 
1elb 

 
1elc  1eld 

 
1ele 

 
1eoc 

 
1epb 

 
1epo 

 
1eta 

 
1etr 

 
1ets 

 1ett 
 
1etz 

 
1f0r 

 
1f0s 

 
1f3d 1fax 

 
1fbl 

 
1fen 

 
1fgi 

 
1fig 

 
1fkg 

 1fki 
 
1fl3 

 
1flr 

 
1frp 

 
1ghb 

 
1glp 

 
1glq  1gpy 

 
1hak 

 
1hdc 

 
1hdy 

 1hef 
 
1hfc 

 
1hiv 

 
1hos 

 
1hpv 

 
1hri 

 
1hsb 

 
1hsl 

 
1htf  1hti 

 
1hvr 

 1hyt 
 
1ibg 

 
1icn 

 
1ida 

 
1igj 

 
1imb 

 
1ivb 

 
1ivc 

 
1ivd 

 
1ive 

 
1ivq 

1jao 
 
1jap 

 
1kel 

 
1kno 

 
1lah 

 
1lcp 

 
1ldm 

 
1lic 

 
1lkk 

 
1lmo 

 
1lna 

 1mmq 
 
1mnc 

 
1mrg 

 
1mrk  1mts 

 
1mtw 

 
1mup 

 
1nco 

 
1ngp 

 
1nis 

 
1nsd 

 1okl 
 
1okm 

 
1pbd 

 
1pdz 

 
1pgp 

 
1pha 1phd 

 
1phf 

 
1phg 

 
1poc 

 
1ppc 

1pph 
 
1ppi 

 
1ppl 

 
1pso 

 
1ptv 

 
1qbr 

 
1qbt 

 
1qbu 1pph 

 
1qh7 

 
1ql7 

1dgf  	1dgg  	1dgh      	2wwo  	2wwn

 3whs  	2pfk 	1pfk 3b8d  	3tu9

1pv7  	4b5z  	4b60  	  2anc  	2f3r

 	1gsd  	1gsf  	4qs8    	4qs7  	3whr

 	1ruz  	1rvt  	1d4c    	1d4e  	1pv6



153 
 

  
1qpe 

 
1qpq 

 
1rbp 

 
1rds 

 
1rne 

 
1rnt 

 
1rob 

 
1rt2 

 
1sln 

 
1slt 

  
1snc 

 1srf 
 
1srg 

 
1srh 

 
1srj 

 
1stp 

 
1tdb 

 
1tka 

 
1tlp 

 
1tmn 

 
1tng 

 
1tnh 

 1tni  1tnl 
 
1tph 

 
1tpp 

 
1trk 

 
1tyl 

 
1ukz 

 
1ulb 

 
1uvs 

 
1uvt 

 
1vgc 

 1vrh 
 
1wap 

 
1xid  1xie 

 
1xkb 

 
1ydr 

 
1yds 

 
1ydt 

 
1yee 

 
25c8 

 
2aad 

 2ack 
 
2ada 

 
2ak3 

 
2cgr 

 
2cht 2cmd 

 
2cpp 

 
2ctc 

 
2dbl 

 
2er7 

 
2fox 

 2gbp 
 
2h4n 

 
2ifb 

 
2lgs 

 
2mcp 

 
2mip 

 
2pcp  2phh 

 
2pk4 

 
2plv  2qwk 

 2r04 
 
2r07 

 
2sim 

 
2tmn 

 
2tsc 

 
2yhx 

 
2ypi 

 
3cla 

 
3cpa  3erd 

 
3ert 

3gpb 
 
3gch  

 
3hvt 

 
3mth 

 
3nos 

 
3pgh 

 
3ptb 

 
3tpi 

 
4aah 

 
4cox 

 
4cts 

 4dfr 
 
4er2 

 
4est 

 
4fab 

 
4fbp 

 
4lbd 

 
4phv 

 
4tpi 

 
5abp 

 
5cpp 

 
5er1 

 5p2p 
 
6abp  6cpa 

 
6rnt 

 
6rsa 

 
7cpa 

 
7tim 

 
8gch 1lpm 1lyb 1mmb 

1lst 
 
1lyl 

 
1mbi 

 
1mcq 

 
1mcr 

 
1mdr 

 
1ml1 

 
1mld 1qcf 1pph  

 

  
 

List of 126 PDB from the Astex set used for the validation 

 

 

pdb RMSD VINA 
(Å) 

RMSD YADA 
(Å) 

1a28 18.95 27.43 

1a6w 0.52 2.15 

1a9u 0.47 0.89 

1abe 2.52 1.02 

1abf 21.97 4.47 

1acj 23.88 1.39 

1acl 32.85 1.24 

1aec 15.52 5.66 

1aha 16.32 1.13 

1aj7 4.53 23.06 

1ake 21.13 24.38 

1aoe 0.31 0.32 

1apt 1.21 1.93 

1apu 0.96 0.71 

1b59 18.77 1.59 

1bbp 34.57 21.58 

1bgo 5.61 2.01 

1bl7 0.36 0.81 

1blh 2.7 1.67 

1bmq 2.99 3.51 

1byb 24.68 0.37 

1c12 20.34 2.27 

1c2t 26.81 21.79 

1c5c 5.11 4.78 

1c5x 0.67 1.19 

1c83 28.91 26.51 

1cbs 0.54 0.72 

1cle 4.78 13.71 

1coy 15.86 14.04 
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1cqp 7.12 0.51 

1cvu 21.13 24.22 

1d3h 12.67 10.02 

1d4p 0.48 0.51 

1dbb 1.14 1.11 

1dbj 2.77 31.64 

1dbm 0.39 0.51 

1dg5 5.09 6.22 

1dhf 5.14 6.86 

1die 3.28 22.61 

1dmp 19.05 0.62 

1dog 4.97 1.94 

1dwb 0.67 9.61 

1dwc 1.03 0.42 

1dwd 1.4 0.43 

1eap 0.81 0.84 

1ebg 28.43 20.7 

1ejn 11.86 11.52 

1epb 13.96 1.52 

1eta 26.44 26.94 

1etr 0.9 0.58 

1ets 0.35 9.44 

1ett 6.58 1.87 

1etz 31.05 5.15 

1fen 21.36 0.36 

1fgi 59.91 8.73 

1fig 3.48 3.48 

1fkg 0.41 0.4 

1fki 35 13.39 

1flr 18.73 5.92 

1glp 8.74 0.74 

1glq 12.99 1.81 

1gpy 4.22 3.11 

1hak 5.68 8.06 

1hos 10.55 0.46 

1hpv 6.05 0.58 

1htf 12.99 7.51 

1hvr 7.61 1.79 

1ida 0.22 0.4 

1igj 7.02 5.34 

1kel 23.32 32.34 

1ldm 2.93 7.89 

1lic 4.64 0.45 

1lmo 4.52 1.41 

1mdr 1.03 1.48 

1mrg 5.03 1.1 

1nco 0.41 0.54 

1ngp 30.06 2.44 

1pbd 0.11 0.15 

1pgp 18.09 19.77 

1qbr 5.93 0.09 

1qbt 11.99 0.39 

1qbu 11.97 0.32 

1qcf 2.9 3.14 

1qh7 0.37 1.52 

1rbp 16.08 0.34 

1rds 2.3 0.32 

1rne 4.16 0.42 

1rt2 41.87 4.54 

1srf 1.57 2.83 

1srg 1.75 0.48 

1srh 2.66 7.49 

1srj 26.35 0.84 

1stp 0.57 0.8 

1tph 4.19 5.86 

1ulb 14.59 1.27 

1uvs 0.98 8.52 

1uvt 0.64 1.14 

1vrh 44.47 3.23 

1ydr 30.21 4.49 

1yds 9.33 0.27 

1yee 17.72 21.09 

25c8 56.31 19.85 

2ack 9.84 1.33 

2cgr 60.13 32.33 

2cmd 0.18 0.38 

2dbl 4.57 3.87 

2ifb 2.64 0.65 



155 
 

2mcp 15.3 2.85 

2pcp 18.19 19.22 

2pk4 0.3 0.34 

2plv 32.61 8.47 

2r04 46.3 6.27 

2sim 0.35 0.74 

2tsc 3.55 25.4 

2yhx 1.89 8.11 

2ypi 1.85 2.43 

3ert 0.7 0.49 

3gch 2.86 1.15 

3gpb 25.24 1.89 

4cts 0.22 17.54 

4fab 4.45 4.18 

4lbd 16.2 0.23 

4phv 0.27 0.21 

5abp 10.05 9.44 

6abp 22.49 2.97 

7tim 5.95 4.27 

 

 

Correlation between experimental binding energy and Yada calculation 

 

 

pdb Experimental 

binding 

energy  

Predicted 

values 

1AAQ 11.5 6.8 

1BB0 11.4 7.3 

1BMN 11.5 8.2 

1BWB 11.5 10.7 

1CEA 6.76 4.6 

1D4J 11.4 9.7 

1FQ5 11.5 10.1 

1FWU 5.0 6.3 

1FWV 5.0 5.6 

1G7V 8.7 7.3 

1GWW 4.8 6.9 

1GX0 5.7 6.8 

1GX8 8.7 7.2 

1GZC 4.7 6.3 

1H61 5.9 7.7 

1IT6 11.4 8.5 

1K21 11.4 7.5 

1K22 11.5 8.3 

1LZQ 11.4 7.8 

1M2R 8.8 9.4 

1MU6 11.4 8.9 

1SRE 5.2 7.2 

1T7R 8.1 9.9 

1TOJ 4.6 8.4 

1TSY 6.7 8.2 

1UTJ 5.2 8.7 

1VJC 4.8 7.4 

1W5X 11.5 10.1 

1Y2F 6.7 7.0 

1YSG 4.8 8.1 

1ZC9 4.3 8.0 

1ZPA 11.5 8.2 

2IKO 7.4 8.3 

2IWS 8.7 8.6 

2J77 6.6 7.0 

2J95 11.5 9.0 

2NMY 11.4 9.6 

2NMZ 11.4 9.3 

2NNK 11.4 9.5 

2NNO 8.7 7.2 

2NNP 11.4 9.9 

2OIQ 6.8 10.3 

2P3I 4.7 5.9 

2UWL 11.5 8.5 

2V00 4.9 7.5 

2VSL 11.5 5.5 

2VT3 5.6 7.0 

2VXN 6.8 7.3 

2W0S 4.5 7.3 

2W47 6.7 7.9 

2WIB 6.7 8.2 

2WJ2 11.4 6.6 

2XGS 4.4 7.9 
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2XYE 11.4 8.5 

2XYF 11.5 8.5 

2Y82 11.5 10.4 

2ZXA 11.4 8.1 

3A1C 5.4 7.4 

3ARQ 8.7 9.6 

3ATV 7.2 8.2 

3B24 5.9 9.0 

3B68 11.5 9.8 

3BXG 6.7 8.4 

3C2O 4.5 8.8 

3CFN 6.8 7.1 

3CJ5 8.6 7.6 

3D0E 11.5 8.6 

3D1V 4.7 7.3 

3O83 11.4 10.5 

3EOS 11.5 8.6 

3F33 4.5 3.8 

3F34 4.3 4.0 

3F35 4.3 3.6 

3F82 11.4 10.1 

3HAU 8.7 7.7 

3OXC 11.5 9.3 

3PJT 6.6 9.4 

3PJU 6.6 9.7 

3Q7Q 7.7 8.7 

3QBC 6.7 8.7 

3QLM 8.7 8.5 

3QX9 5.5 7.2 

3S76 6.8 8.1 

3SW2 11.4 9.8 

3TCP 11.4 7.8 

3U7S 11.5 8.1 

3UUG 6.1 8.2 

3V2P 8.7 7.3 

3W07 4.6 7.6 

3ZK6 8.6 8.9 

4A6B 11.4 9.4 

4AGD 11.5 8.3 

4B32 4.5 6.1 

4B33 4.5 5.7 

4BAO 11.4 8.2 

4BUP 6.7 7.8 

4DMW 6.7 7.5 

4DY6 6.0 8.6 

4E6Q 11.4 9.3 

4F1Q 6.7 6.4 

4F3H 8.7 8.2 

4G3E 11.4 9.5 

4G3F 11.4 9.2 

4G3G 11.5 8.2 

4GBY 4.7 6.9 

4HPI 6.6 6.3 

4I67 8.7 6.7 

4IPJ 6.6 6.8 

4J7E 6.6 7.4 

4JFL 6.7 7.9 

4LBP 6.7 8.0 

4LIL 6.6 7.2 

9HVP 11.4 8.8 

1AJ7 5.3 5.9 

1AU2 10.8 11.1 

1BXQ 10.1 9.1 

1C83 6.6 8.8 

1CET 3.9 7.6 

1CPS 9.1 8.4 

1DMP 13.0 10.8 

1EED 6.5 8.6 

1EPO 10.9 9.6 

1FAX 10.1 9.4 

1FIG 8.5 6.1 

1G2K 10.9 10.6 

1HIH 11.0 9.5 

1HOS 11.7 9.1 

1IVP 10.3 7.9 

1LBF 10.7 8.6 

1LOQ 5.0 8.1 

1LYX 6.2 8.7 

1M0O 3.2 7.3 

1NJ5 10.0 9.4 

1P6E 4.0 7.7 

1QB6 8.3 9.1 

1QBN 8.0 9.3 

1TFT 11.3 7.6 

1TNK 2.0 8.2 

1TNL 2.6 8.9 

1TOM 11.3 9.2 

1UJ5 4.2 8.7 

1W31 4.9 8.7 

1WVJ 9.2 9.5 

1XS7 10.4 7.9 

1YYY 6.9 11.1 

2BPV 10.5 9.5 

2BXU 9.8 8.7 

2E9U 11.1 9.8 

2E9V 10.8 9.2 
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2V2C 4.7 9.3 

3D1Y 11.2 10.9 

3EOU 9.6 8.9 

3ERT 13.1 9.3 

3MI2 10.6 9.5 

3PRS 10.7 9.3 

3VFQ 7.1 9.0 

4AYY 11.2 10.0 

4BT5 3.8 7.8 

4FJZ 8.6 9.3 

4GR3 10.7 7.6 

4TIM 2.9 8.8 

 

 
 
Friedman LOF 

 
 
24.1 

R-squared 0.24 
Adjusted R-squared 0.23 
Cross validated R-squared 0.23 
Significance-of-regression F-value 24.5 
Critical SOR F-value (95%) 4.11 
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Appendix D 

  

Experimental protocol 
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