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Introduction

How often do we try to get the best result with the least effort, spend

as little time as possible to perform a task or make the most of the re-

sources available in the workplace? In everyday life, the word ”optimize”

is therefore often present. In particular, the optimization has as its object

the study and the development of quantitative methodologies and tools for

the solution of decision problems. This is a discipline born in the mil-

itary field about 80 years ago. Over the years, it has found application

in several sectors such as logistics and production, finance and telecom-

munications. Currently it has become an indispensable tool for support-

ing decision-making processes. The problems faced are typically those

in which decisions have to be made on the use of resources available in

limited quantities in order to respect an assigned set of constraints, maxi-

mizing, for example, the benefit obtainable from the use of the resources

themselves.

Many problems of real-life as also problems of theoretical importance in

the field of operational research are combinatorial in nature. Combinato-

rial Optimization studies the optimization problems in which the feasible

set is defined in terms of combinatorial structures. Many of these problems

are defined on graphs (directed or undirected). The fundamental charac-

teristic of these problems is therefore to be defined on discrete space.

This doctoral thesis involves the study of three different combinatorial op-

timization problems defined on graphs: the Minimum Spanning Tree prob-

lem with Conflicting Edge Pairs (MSTC), the Close-enough Arc Routing

problem (CEARP) and the All Color Shortest Path problem (ACSP). All



these problems concern the identification of subgraphs and they are vari-

ants of well known problems. In the following the definition of these prob-

lems are reported.

• MSTC: Let G(V,E,P) be an undirected edge weighted graph, where

V is the set of n vertices, E the set of m edges and P ✓ E⇥E is the

set of conflict edge pairs. The MSTC consists of finding a minimum

spanning tree of G without conflicting edge pairs, that is for each pair

{ei,e j}2 P at most one between ei and e j belongs to the edges of the

spanning tree. The MSTC has been shown to be NP-hard.

• CEARP: Let G = (V,A,M) be a directed graph with a set of vertices

V , a set of arcs A, and a set of targets M located on arcs. Each arc in

A has a cost and an arc a 2 A covers a target m 2M iff the target is

either on the arc or within a predetermined distance (radius) from the

arc. Fixed a depot node, the CEARP consists of finding a minimum

cost tour starting and ending at the depot node, traversing a subset of

arcs such that all the targets in M are covered. The CEARP has been

shown to be NP-hard.

• ACSP: Let G = (V,E,C) be an undirected, connected and vertex la-

beled graph with V the set of vertices, E the set of the edges and

C the set of labels (or colors). The aim of ACSP is to find a path

of minimum cost such that all colors are reached at least once. The

ACSP has been shown to be NP-hard.

This dissertation is organized as follows. Chapter 1 provides some ba-

sic concepts and definitions needed to understand subsequent content. We

will analyze some elementary definitions of graph theory, as well as some

concepts of polyhedral theory.

Chapter 2 describes the Minimum Spanning Tree problem, the Arc Routing

problem and the Shortest Path problem from which MSTC, CEARP and



ACSP are originated, respectively. These last problems are addressed in

Chapter 3, 4 and 5. In Chapter 3 we propose a multi ethnic genetic algo-

rithm for the MSTC problem. Moreover three local search procedures are

developed to improve the solutions inside the population during the com-

putation [9]. Furthermore, we introduce a new set of valid inequalities

for the problem, based on the properties of its feasible solutions, and we

develop a Branch-and-Cut algorithm based on them [11]. Computational

tests are carried out on the benchmark instances proposed in literature and

on a new set of randomly generated instances.

In Chapter 4 we face the CEARP problem and we propose some tech-

niques to reduce the size of the input graph and a new effective mixed

integer programming (MIP) formulation for the problem [15]. The effec-

tiveness of the reduction techniques are showed. Computational results

obtained by comparing our MIP model with the existing exact methods

show that our algorithm is really effective in practice.

In Chapter 5 we propose some new properties for the ACSP problem, as

well as a compact representation of the feasible solutions. Furthermore,

we present a novel mathematical formulation and a metaheuristic approach

based on these ideas [10]. Computational results show the effectiveness of

our approach with respect to previous contributions proposed in literature.

A summary of the obtained results are reported at the end of this disser-

tation. Finally we present some remarks and future research directions.





Chapter 1

Some important concepts in the

integer and combinatorial

optimization

Many real-life problems can be faced by using mathematical programming models

(with variables of integer or continuous type). In particular, this approach plays an

important role in the resolution of real-life problems for which there is something to

be maximized or minimized, having to take into account some constraints and restric-

tions. It is a matter of considering a function of several variables (objective function)

to be maximized or minimized, subject to a set of constraints that constitute the set of

feasible solutions.

It would be enough to observe our daily life to realize the problems that can be

translated into optimization problems, such as determining the least long or the least

expensive route to go to work, manage the budget for the grocery shopping spending

the least time, etc. As it seems obvious that to solve this type of problems (when the

dimension is small) is not essential to use specific tools, however, they are essential in

the resolution of more complex problems. The aim therefore is to solve optimization

problems thanks to the help of the well-known tools in order to obtain the best possible

solution, when it is possible. We call optimal solution the best possible solution, i.e.

the feasible solution for which the objective function assume the minimum (or maxi-

16



1. Some important concepts in the integer and combinatorial optimization

mum) value.

In this chapter we introduce some basic concepts and definitions used in the next

chapters. In particular we give some elementary concepts of graph and polyhedral

theory.

The concepts described in this chapter refer to books [51], [60], [65] and [35].

1.1 Graph theory introduction

Graph Theory (introduced by the Swiss mathematician Euler (1707 - 1783)) consti-

tutes, like Mathematical Programming, a methodological body for modeling and solv-

ing decision problems. Among all, the problems we are going to face in these next

chapters concern the identification of particular subgraphs. It is therefore necessary to

give a brief overview of the basic concepts of graph theory.

A graph G consists of a sets couple (V, E) in which V is called the set of nodes

and E is called the set of edges. E is a subset of all the possible pairs of nodes in

V. We assume that V has cardinality n and E has cardinality m. If the pairs of nodes

are ordered, the graph is said directed, if are not ordered, the graph is said undirected.

From now on, when we refer to a directed graph we will talk about arcs and not edges

and we will indicate the graph with the pair of sets (V, A). Two edges that have a

common node are called adjacent. Furthermore, if there exists an edge e = (u,v) 2 E,

we say that the nodes v and u are adjacent, they are the endpoints of e and e is incident

to v and u. Following these definitions, we consider the set of all edges incident to a

node v, denoted by δ (v), so we can define the degree of the node v as the number of

these incident edges, i.e. |δ (v)|. When the degree of node v is equal to zero, i.e. there

are not incident edges to v, the node is called isolated. Given a set S ✓ V , with E(S)

we indicate the set of edges with both endpoints in S.

A sequence of k+1 nodes v0,v1, ...,vk such that, for every i = 1, ...,k, (vi�1,vi) 2 E or

(vi,vi�1) 2 E is called path (directed path if the graph is directed) and its length is k.

We can also see a path of length k as a sequence of adjacent edges two by two. A path

is called simple if no node is crossed more than once. A simple path in which the first

and last nodes coincide (i.e. v0 = vk) is called cycle of length k.

17



1. Some important concepts in the integer and combinatorial optimization

A graph is complete if there is an edge between any pair of nodes. Instead, a connected

graph is a graph that contains a single connected component (a subgraph where each

node is connected to all other nodes through a path). Considering a graph G = (V,E),

a subgraph G� = (V�,E�) of G is a graph in which V� ✓ V and E� ✓ E. Given a

graph G = (V,E), we say Eulerian cycle in G a cycle in G which crosses exactly once

all the edges of G. A graph G = (V,E) is called Eulerian graph if it contains at least

one Eulerian cycle.

1.2 Polyhedral theory

In this section we provide some basic results from linear algebra and some results

regarding the polyhedral theory. In the integer programming, one of the principal

objectives is finding a linear inequality description of the set of feasible points. Let Rn

be the set of n-dimensional vectors.

Definition 1.2.1 A set of points x1, ...,xk 2 R
n is linear independent if the unique so-

lution of ∑
k
i=1 λixi = 0 is λi = 0, i = 1, ...,k, where λi 2 R.

The maximum number of linearly independent points in R
n is n.

Definition 1.2.2 A set of points x1, ...,xk 2 R
n is affinely independent if the unique

solution of ∑
k
i=1 αixi = 0, ∑

k
i=1 αi = 0 is αi = 0, i = 1, ...,k, where αi 2 R.

Note that the linear independence implies the affine independent, but the affine

independence does not implies the linear independence. To clarify the relation between

them we can observe the following proposition.

Proposition 1.2.1 The following statements are equivalent:

• x1, ...,xk 2 R
n are affinely independent.

• The k�1 points x2� x1, ...,xk� x1 are linearly independent.

• (x1,�1), ...,(xk,�1) 2 R
n+1 are linearly independent.

The maximum number of affinely independent points in R
n is n+1, just consider

n linearly independent points in R
n and the zero vector.

18



1. Some important concepts in the integer and combinatorial optimization

Definition 1.2.3 A polyhedron P ✓ R
n is the set of points that satisfy a finite set of

linear inequalities, i.e. P = {x 2 R
n : Ax b}, where A 2 R

h⇥n and b 2 R
h.

A bounded polyhedron is called polytope.

Definition 1.2.4 A polyhedron P is of dimension k (dim(P) = k) if the maximum num-

ber of affinely independent points in P is k+1.

Definition 1.2.5 A polyhedron P✓ R
n is full-dimensional if dim(P) = n.

Following these definitions, we will see that surely a polyhedron is not full-dimen-

sional if at least one of the inequalities that define it, is satisfied with the equality from

all its points. To this aim we consider the sets M = {1, ...,m}, M= = {i 2M : aix = bi

for all x 2 P} and M = {i 2M : aix < bi for some x 2 P}. Note that M = M \M=.

In fact, let (A=,b=) and (A,b) be corresponding rows of (A,b), the following result

is valid.

Proposition 1.2.2 If P✓ R
n, then dim(P)+ rank(A=,b=)= n

Given a polyhedron P = {x 2 R
n : Ax  b}, there are some inequalities that are

necessary in describing P, while some others can be eliminated.

Definition 1.2.6 Given an inequality πx π0, we say that πx π0 is a valid inequality

for P if it is satisfy by all points in P.

Definition 1.2.7 If πx π0 is a valid inequality for P and if F = {x 2 P : πx = π0}, F

is called face of P. Moreover, if F 6= /0 and F 6= P, then F is a proper face induced by

πx π0.

Definition 1.2.8 A face F of P is a facet of P if dim(F) = dim(P)�1.

In the description of a polyhedron P, the facets are necessary and sufficient for the

description of P.

If P is full-dimensional, P possesses a single minimal description so that in the lin-

ear system that represents it, each inequality is unique to less than a positive multiplier.

19
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Chapter 2

Subgraph identification problems

In this thesis we will face NP-hard variants of three well-known and studied problems

in the context of combinatorial optimization. The purpose of this chapter is to describe

these variants and the problems from which they originate: the Minimum Spanning

Tree problem, the Arc Routing problem and the Shortest Path problem. Each of these

problems can be seen as a subgraph identification problems.

2.1 The Spanning Tree problems

The problem of finding a minimum spanning tree (MST) of a weighted undirected

graph is one of the best studied problems in the area of combinatorial optimization. In

this section we present the problem and two well-known mathematical formulations

for this problem. Then we explain some related problems and a specific NP-hard vari-

ant of the MST problem named ”Minimum Spanning Tree problem with Conflicting

Edge Pairs”.

Let G = (V,E) be an undirected connected graph, where V is the set of the vertices

and E is the set of the edges, respectively with cardinality n and m. A spanning tree T =

(V,ET ) of G is a connected and acyclic subgraph containing all vertices and a subset

ET ✓ E of the edges in G, that is a tree that spans over all vertices in G. Any spanning

tree of a connected graph with n vertices has exactly n� 1 edges. If we consider

a connected weighted graph G = (V,E) with w : E �! R+ function that assigns a

22



2. Subgraph identification problems

weight we to each edge e 2 E, the MST problem consists of finding a spanning tree

T = (V,ET ) with the minimum weight. The weight of a tree T (V,ET ) is the sum of the

edge weights in ET :

w(T ) = ∑
e2ET

we. (2.1)

The MST problem has direct applications in networks design context, including com-

puter networks, telecommunications networks, transportation networks, water supply

networks, and electrical grids.

A classical application of the MST regards the problem a telecommunications com-

pany must resolve laying cable to in new neighborhood. If the company is constrained

to bury the cable only along certain paths (e.g. along roads), then you can consider

a graph representing which points are connected by those paths. Some of those paths

might be more expensive because, for example, they are longer, or require the cable to

be buried deeper; these paths would be represented by edges with larger weights. A

spanning tree for that graph would be a subset of those paths that has no cycles but still

connects to every house; there might be several spanning trees possible. A minimum

spanning tree would be one with the lowest total cost, thus would represent the least

expensive path for laying the cable.

The MST problem can be formulated as follow, using decision variables xe associ-

ated with the edges of the graph G, with the following meaning:

xe =

8

<

:

1 if the edge e is selected

0 otherwise.

Using the classical subtour elimination constraints, an integer mathematical pro-

gramming formulation for MST is the following:

min ∑
e2E

wexe (2.2)

23



2. Subgraph identification problems

subject to

∑
e2E

xe = |V |�1 (2.3)

∑
e2E(S)

xe  |S|�1, 8S✓V, |S|� 3 (2.4)

xe 2 {0,1} 8e 2 E (2.5)

In this model, the objective function (2.2) minimizes the total weight of the span-

ning tree. Constraint (2.3) indicates that exactly the n� 1 edges (where |V | = n) can

be chosen in the solution while Constraints (2.4) are the classical subtour elimination

constraints to respect the request to avoid cycle in the solution. Finally, Constraints

(2.5) are variable definitions.

Integer programming problems are, in general, difficult to solve. Often a relax-

ation of the original problem, more easy to solve, is solved. Among all the types

of relaxation, the best known is the linear relaxation obtained by eliminating the re-

striction that the decisional variables xe in the model (2.2)-(2.5) must be integers. In

general, by eliminating the integrality constraint from the model, the objective func-

tion (min) of linear programming relaxation will have a lower optimal value than the

integer programming; for the minimum spanning tree problem, this does not happen.

In particular, the integer programming formulation and the linear programming formu-

lation have the same optimal value. This property is summarized in the follow result

by Edmonds in [23].

Theorem 2.1.1 The extreme points of the polyhedron defined by the linear program-

ming relaxation of the spanning tree model (2.3)- (2.5) are the 0-1 incidence vectors

of spanning trees.

In formulating the spanning tree problem as an integer program, we used the prop-

erty that a spanning tree of a graph G = (V,E) with n nodes is any subgraph containing

n� 1 edges that do not form cycles. Therefore, at most |S|� 1 edges in any tree can

connect any subset S of nodes in V . As an alternative, we could use a different but

equivalent definition of a spanning tree: it is a connected subgraph containing n� 1
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edges. This definition leads to the following Cutset f ormulation:

min ∑
e2E

wexe (2.6)

subject to

∑
e2E

xe = |V |�1 (2.7)

∑
e2δ (S)

xe � 1, 8S⇢V,S 6= /0 (2.8)

xe 2 {0,1} 8e 2 E (2.9)

The cutset δ (S) is a subset of edges with one end in S and the other end in V \ S.

Constraints (2.8) ensure that subsets S and V \S are connected.

2.1.1 NP-hard variants of minimum spanning tree problem

Many real problems can be modeled by graphs for which a spanning tree is required

as solution. Obviously in the real word it is necessary to take into account the different

constraints and specific characteristics of the problem to be solved; this have given

rise to the definition of more variants of spanning tree problems. Among all, in the

next subsections, we describe some it NP-hard variants like the Generalized Minimum

Spanning tree [50], the Spanning Tree with Minimum Branch Vertices [32] and the

Minimum Spanning Tree problem with Conflicting Edge Pairs ([17], [18]).

The Generalized Minimum Spanning Tree problem Let G = (V,E) be an undi-

rected graph with n nodes in V and m edges in E. For each edge ei 2 E there is

an associate weight wei
. The set V is partitioned in k 2 K clusters Vk and the set

E = {{i, j} : i 2Vk1
, j 2Vk2

s.t. k1 6= k2}. To solve the generalized minimum span-

ning tree problem (GMSTP) it is necessary to determine a tree of minimum total cost

that include one node for each cluster Vk. This problem was first introduced by [50]
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and the same authors proved that GMSTP is NP-Hard. An application in the real world

of GMSTP ([50]) is identified in the problem to choose how to position regional public

structures or service centers, which need to be connected to each other. In particular,

we are facing a GMSTP even when planning metropolitan networks and road networks.

The Minimum Branch Vertices problem Given a connected graph G = (V,E) with

the set V of vertices and the set E of the edges, the spanning tree with the minimum

branch vertices is the spanning tree with the minimum number of vertices with de-

gree greater than two. The interest in this problem arises for applications in optical

networks. In this context, it is necessary to connect the number of nodes limiting the

number of connections of each node. In particular, for this problem, the interest borns

to the practical application in the context of all-optical networks which are a class of

backbone wide area networks (WAN) where connections are routed by intermediate

nodes in the optical domain without electronic conversion. More details regarding this

application are reported in [7]. The problem was presented by Gargano et al. [32].

In the same paper, the authors analyzed computational complexity and proved it to be

NP-hard.

The Minimum Spanning Tree problem with Conflicting Edge Pairs The Mini-

mum Spanning Tree Problem with Conflicting Edge Pairs (MSTC) is a NP-Hard vari-

ant of the classical Minimum Spanning Tree problem. Let G(V,E,P) be an undirected

and edge weighted graph, P is a set of conflicting edge pairs so the MSTC problem

consists of finding a spanning tree of G of minimum cost without edges in conflict,

i.e. for each couple of edges ei,e j 2 P, a solution of the MSTC can contain at most

one between ei and e j. The problem was introduced by Darmann et al. [17], [18] and

arises in some real world applications like the installation of an oil pipeline system

connecting various countries [17] or the search of paths in a map of the city with re-

strictions [43]. This problem also finds application in the design of an offshore wind

farm network. The design of such systems is based on the connection layout of wind

turbines installed, realized through cables characterized by a certain capacity and a
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certain cost. Given the capacity of each cable, the system design begins by performing

a clustering of the turbines that can be connected to a single cable. Defined a cluster of

turbines, the next step consists of connecting them in the cheapest way (thus creating a

spanning tree of minimum cost). The additional request is to carry out this connection

by avoiding overlapped cables ([44]). By considering two overlapped cables as a con-

flicting pair, the problem just described coincides with the MSTC. Other applications

are mentioned in [66].

2.2 Arc routing problems

The purpose of arc routing problems is to determine a minimum cost route of a spec-

ified subset of a graph. Given the presence of problems of this kind in many real

fields, they have long been the subject of attention by mathematicians and operations

researchers. Already since 1736, the Swiss mathematician Euler faced the first docu-

mented problem of arc routing ([26]): the famous problem of the bridge of Königsberg.

It was a matter of proving the existence of a closed walk that crossed exactly once each

of the seven bridges over the Pregel river in Königsberg (Figure 2.1). Among the arc

routing problems, we also find the problem of the Chinese postman formulated by the

mathematician Meigu Gaun ([36]) who, during the Chinese cultural revolution, worked

as a post office worker. The problem can be formulated as follows: suppose there is a

postman who must deliver mail to a particular neighborhood. The postman wants to

find the shortest route in the neighborhood starting and ending in the same point, cov-

ering each street at least once. For an Eulerian graph, an Eulerian cycle is the optimal

solution. Other real contexts in which we find arc routing problems are, for example,

waste collection, snow removal and school bus routing. These problems have been

addressed by operational researchers after that for years of countless sums have been

wasted for these operations.

2.2.1 The Rural Postman Problem

Given a directed graph G = (V,A), in the Chinese postman problem, we look for a

closed walk that covers all the arcs in the graph with the minimum cost. In most real

contexts, however, the request is to cover a part of the arcs of a graph but not all. In
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these cases, in which the path must involve a subset R ✓ A of arcs of G, the problem

becomes a Rural Postman problem (RP). In [47], Lenstra and Rinnoy Kan showed that

RP is NP-hard. More details about these problems are presented in [24] and [25].

The Close-Enough Arc routing Problem The Close-Enough Arc Routing Problem

(CEARP) is a generalization of the Rural Postman problem in which we consider a

directed graph G = (V,A,M) with a set of vertices V , a set of arcs A, and a set of

targets M located on arcs. Traversing an arc have a cost; an arc a 2 A covers a target

m 2 M iff the target is either on the arc or within a predetermined distance (radius)

from the arc. Fixing a depot node, the CEARP consists of finding a minimum cost

tour starting and ending at the depot node, traversing a subset of arcs such that all the

targets in M are covered. The CEARP problem was introduced by Drexl [20, 21] that

proved the problem is NP-hard, and he proposed a branch-and-cut algorithm to solve

it. There are several real-life applications for this problem. The meter reading problem

is an important application of the CEARP: A vehicle with a receiver on board travels

over a street network. If it traverses a street and is closer than a certain distance to a

Figure 2.1: Schematic representation of the Königsber (XVIII century), currently

Kaliningrad.
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RFID meter (e.g., in a home), the receiver is able to read the value of the meter. An

interesting variant of this real-life problem is when flying drones are used to read the

meters [8].

2.3 Shortest path problems

When we have to find a path to go from a location to another, it would be ideal to be

able to choose the path that requires the least cost. In reality, to realize the least expen-

sive route, one must consider the different arcs cost to travel between a certain number

of intermediate points. In these cases we are dealing with shortest path problems. The

shortest path problems are problems in which we want to find a path between two ver-

tices (or nodes) in a graph such that the sum of the weights of its constituent arcs is

minimized. In same cases ”shortest path” is not related to the distance between one

place and another but it could be referred to the shortest route in terms of time or to the

less expensive route in terms of monetary cost.

Shortest path problems are closely related to our daily life. For example, when we

are traveling to get to work location, we should choose our route so that we can travel

less time to reach the destination. To this end, we could evaluate as the cost of each

intermediate path the time to be used for this segment, calculating, for example, this

cost in terms of vehicular traffic or uneven road. However, in the real life situations,

there are many possible routes and it is quite impossible for us to try all the possible

routes to find the one with the shortest amount of time. Therefore, we need a more

effective method to discover this path.

In a shortest path problem, given a directed or undirected weighted graph G =

(V,E) with a weight function w : E! R that associates a real value w(e) to each edge

e 2 E and a path p = [v0,v1, ...,vk], its weight w(p) is the sum of the weights of edges

that compose it, i.e. w(p) = ∑
k
i=1 w(vi�1,vi).

There are different variants regarding the shortest path problems as the case where

there is only one destination and then the request is to find a path from each node v2V

to the unique destination, at minimum cost. Other variants occur when the request is

to look for a shortest path between a predetermined pair of nodes or between all pairs
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of nodes. For more details about these problems we refer to the book [16].

2.3.1 All Color Shortest Path problem

The All-Colors Shortest Path (ACSP) is a combinatorial optimization problem, first

introduced in [3]. The problem is defined on undirected graphs, in which a numerical

attribute (weight) is associated to each edge, while a logical attribute (called color, or

label) is given for each vertex. Therefore the different colors, appearing in the graph,

partition the set of vertices into disjoint subsets. The aim of ACSP is to find the shortest

possibly non-simple path, spanning each color of the graph; that is, each path compos-

ing a feasible solution needs to visit at least a vertex belonging to each color.

The problem can find application in different contexts. For instance, in a road

network for the distribution of goods, vertices associated with the same color can rep-

resent different locations (warehouses or stores) in which specific types of goods can

be picked up or stocked. Applications related to mobile sensor roaming and path plan-

ning are cited in [3].

Among similar problems presented in the literature, we recall the Shortest Path

Tour (SPTP), the Forward Shortest Path Tour (FSPTP), the Generalized Traveling

Salesman (GTSP) and the Generalized Minimum Spanning Tree (GMST). The SPTP

([29]) is a polynomially solvable optimization problem in which, given a source vertex

s and a destination vertex d, the aim is to find a shortest path from s to d that crosses in

a given sequence at least a vertex for each different color. Any node of the graph can be

crossed while going from a color of the sequence to the following one. As for ACSP,

the optimal solution can be non-simple. In the FSPTP variant ([6]), instead, the nodes

associated to a given color can be visited only if at least a node of each preceding color

has already been visited. Despite the similarities in the solution structure, the lack of

predefined endpoints and of the predefined color visiting order make ACSP signifi-

cantly harder to tackle than SPTP and FSPTP. In GTSP the aim is to find a minimum-

cost hamiltonian tour that includes exactly a vertex for each different color. Therefore,

in this case each vertex can be visited at most once, and the solution needs to be a cy-

cle. GTSP is NP-Hard, and solution approaches have been mainly focused on Integer
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Programming methods ([45], [30], [31]), heuristics ([63],[61],[4]) or transformations

to reduce the problem to the classical TSP ([19]). Finally, in GMST, a tree spanning

all different colors with minimum weight is sought. Two different variants, in which

the tree is required to contain either exactly a vertex ([49],[27],[28],[34],[57],[52],[41])

or at least a vertex ([42],[22], [39]) for each different color have been proposed, both

being NP-Hard and hard to approximate.
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Chapter 3

Minimum spanning tree problem with

conflicting edge pairs

3.1 Introduction

The Minimum Spanning Tree Problem with Conflicting Edge Pairs (MSTC) is a NP-

Hard variant of the classical Minimum Spanning Tree problem. Given an undirected

and edge weighted graph G(V,E,P), where P is a set of conflicting edge pairs, MSTC

problem consists of finding a minimum spanning tree of G without edges in conflict.

The problem was introduced by Darmann et al. [17], [18]. In these works, the authors

proved that MSTC problem is NP-Hard and that it is polynomially solvable when all

the pairs in P are disjointed. Another polynomial case for MSTC problem occurs

when the pairs in P satisfy the transitive property ([66]) that is: if {e1,e2} 2 P and

{e2,e3} 2 P then even {e1,e3} is in P.

In the literature, there are several optimization problems with conflict constraints

such as the knapsack problem with conflict constraints [55], the maximum flow prob-

lems with disjunctive constraints [56], the bin packing problem with conflicts [58] and

the minimum cost perfect matching with conflict pair constraints [53].

Regarding the MSTC resolution, in [66] the authors proposed several heuristic ap-

proaches and two exact algorithms based on Lagrangian relaxation. When a conflict

free solution is not found, these heuristics return the number of conflict pairs present

in the solutions. In [59] a branch and cut approach based on the conflict graph, i.e.
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a graph where the set of nodes is E and the set of edges is P, was proposed. More-

over, the authors introduced a preprocessing phase that results very effective on some

sets of instances. In this chapter we propose a multi ethnic genetic algorithm for the

problem in which the fitness function is designed to simultaneously manage the two

goals of the problem and three local search procedures to improve the solutions inside

the population during the computation. Furthermore, we introduce a new set of valid

inequalities for the problem, based on the properties of its feasible solutions, and we

develop a Branch-and-cut algorithm based on them. The rest of the chapter is orga-

nized as follows. The problem is formally defined in section 3.2. The multi ethnic

genetic algorithm we developed is described in section 3.3. The proposed Branch-and-

Cut algorithm is described in section 3.4, while computational results are presented in

section 3.5.

3.2 Notations and problem definition

Let G(V,E,P) be an undirected edge weighted graph, where V is the set of vertices, E

the set of edges and P✓ E⇥E is the set of conflict edge pairs. Formally:

P = {{ei,e j} : ei 2 E,e j 2 E, ei and e j are in conflict}

Since the couples in P are not ordered, {ei,e j} and {e j,ei} are the same couple.

We denote by n and m the cardinality of V and E, respectively, and by wek
the non

negative weight of the edge ek.

Moreover, 8ek 2 E let P(ek,E) = {{ek,e j} 2 P : e j 2 E} be the set of conflict

edge pairs containing the edge ek and we indicate with χ(ek) the set of edges that are

in conflict with it. Furthermore, 8E 0 ✓ E let ζ (E 0) =
S

ek2E 0 P(ek,E
0) be the set of

conflict edge pairs induced by edges in E 0.

A spanning tree T (VT ,ET ) of G is a connected subgraph of G such that VT = V ,

ET ✓ E and |ET | = n� 1. The weight of T is denoted by W (T ) and it is given by

the sum of edges weights in ET while ζ (ET ) represents the set of conflict edge pairs

present in T and |ζ (ET )| the number of conflicts in T . When |ζ (ET )|= 0, we say that

T is conflict free.
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instance, the trees T1 and T2, depicted in Figure 3.1, are two optimal solutions for the

MCWST, with |ζ (ET1
)| = |ζ (ET2

)| = 1, when P = {{(1,2),(2,6)},{(1,2),(5,6)}}.

Since these optimal solutions are not conflict free, their weight is neglected. On the

contrary, if P = {{(1,2),(2,6)}}, both T1 and T2 are conflict free but T2 is better than

T1 because W (T2)<W (T1) (secondary goal).

From the definitions of MSTC and MCWST, it is easy to see that:

• T ⇤ optimal solution of MSTC =) T ⇤ optimal solution for MCWST;

• T ⇤ optimal solution of MCWST and |ζ (ET ⇤)|= 0 =) T ⇤ optimal solution for

the MSTC.

According to the previous observations, by addressing the MCWST problem, we

solve even the MSTC problem while, for the instances on which MSTC problem is

infeasible, we try to return a spanning tree with the minimum number of conflicts.

In this section, we propose a multi ethnic genetic algorithm for MCWST problem.

In particular, we define a fitness function which is able to manage the two goals of

the problem at the same time. Moreover, during the computation, we apply three local

search procedures to improve the solutions within the population. Finally, we compare

the multi-ethnic genetic algorithm with the heuristics proposed in [66] on their bench-

mark instances.

3.3.1 The Genetic Algorithm

In this subsection we introduce our genetic algorithm (GA) we have designed to solve

the MCWST. In subsection 3.3.3, we describe how GA is embedded within a multi

ethnic genetic framework to better explore the solution space and to improve its results.

Genetic algorithms, proposed for the first time by J. Holland in 1975 in his book

Adaptation in Natural and Artificial Systems [40], are a family of metaheuristics based

on the theory of Darwinian natural selection that regulates the biological evolution.

While this theory works on a population of individuals, a genetic algorithm operates

on a population of feasible solutions, called chromosomes, each of them composed

by genes. The inefficiency of enumerating all feasible solutions recommends fixing
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value. Moreover, given two or more conflict free chromosomes, the secondary goal

states that the one with the lowest weight must have a better fitness value. The fitness

function that satisfies the previous conditions is defined as follows:

f (T ) =

(

|ζ (ET )| if |ζ (ET )|> 0

W (T )�W (Tmax) otherwise
(3.1)

where W (Tmax) is an upper bound to the weight of any spanning tree of G. Accord-

ing to equation (3.1), lower the value of the fitness better the quality of the chromo-

some.

Note that the fitness value of any chromosome with conflicts is greater than zero

while the fitness value of any conflict free chromosome is negative because W (Tmax)�

W (T ). As a consequence, any conflict free chromosome is always better than any

chromosome with at least one conflict (primary goal). Moreover, the lower is W (T ),

the lower will be its fitness value (secondary goal).

For instance, let us consider again the graph G in Figure 3.1(a) with P={{(1,2),(2,6)}}.

An upper bound W (Tmax) can be easily computed by adding the five highest edge

weight of G obtaining W (Tmax) = 28. According to the equation 3.1, f (T1) =W (T1)�

W (Tmax) = 23�28 =�5 while f (T2) =W (T2)�W (Tmax) = 20�28 =�8 and there-

fore T2 is better than T1, as expected.

Initial population The initial population is composed by SizePop different chromo-

somes randomly generated. More in details, a random weight is assigned to each edge

of G and then a minimum spanning tree of G is computed by using Prim’s algorithm. If

the chromosome obtained is already inside the population then it is rejected because no

duplications are allowed. The procedure iterates until either SizePop different chromo-

somes are found or the threshold maxD is reached, where maxD denotes the maximum

number of duplicate chromosomes that can be found before stopping the procedure.

When this threshold is reached, SizePop is updated to the number of different chromo-

somes found so far.

The use of the MaxD threshold is necessary because it may happen that either

there are no SizePop different spanning trees in G or it is very expensive to identify

such trees through a random procedure.
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shown in Figure 3.3(c).

Mutation. In order to assure that the child chromosome Tc is different from par-

ents, the mutation operator is applied on it. This operator randomly selects one edge

in E \ETc
and introduces this edge in Tc generating a cycle. To obtain a new tree, one

of the edges in this cycle is randomly selected and removed. In this way, it is assured

a differentiation between the child chromosome and the parents, reflecting the natural

evolutionary process in which each genetic algorithm is inspired. This operation is

carried out a number of times equal to 5% of |V |. However, if during the computation

a conflict free chromosome is found, the mutation immediately stops and returns this

chromosome.

Insertion and Stopping Criteria. If the child chromosome obtained after the muta-

tion operator is already inside the population then it is rejected. Otherwise, the child

chromosome will replace one of the SizePop/2 worst chromosomes in the population,

selected in random way. As a consequence, the size of the population never changes

and the best chromosome found, during the computation, never leaves the population.

The genetic algorithm stops when a fixed number (maxIt) of iterations is reached.

3.3.2 Improvement procedures

In order to improve the best solution found by GA, we use three local search procedures

named: Conflicts Reduction Local Search (CR), Weight Reduction Local Search (WR)

and Neighborhood Weight Reduction Local Search (NWR). These procedures are in-

voked on all the chromosomes of the final population. Their aim is either to reduce the

conflicts in the chromosomes or to reduce the weight of the conflict free chromosomes.

In the following subsections the three procedures are described in details.

Conflicts Reduction Local Search The CR procedure is designed to reduce the

number of conflicts in the chromosomes and then it is invoked only on the chromo-

somes with at least one conflict. Given a chromosome T , the first step of the procedure

is to identify the edge ek 2 ET having the maximum number of conflicts with the other

edges of ET , i.e. ek = argmax
ei2ET

|P(ei,ET )|.
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The procedure removes ek from ET generating a forest composed by two subtrees

T1 and T2. To obtain a new chromosome T 0, CR connects T1 and T2 by using the edge

er 2 E \ET where er = argmin
ei2E\ET

|P(ei,ET \{ek})|. If |ζ (ET 0)| < |ζ (ET )| the procedure

restart from T 0 otherwise it stops. The new chromosome obtained by CR, if any, re-

places T in the population.

Weight Reduction Local Search The WR procedure is applied only on the conflict

free chromosomes and it tries to minimize their weight without adding conflicts. Given

a chromosome T , with |ζ (ET )| = 0, the procedure starts sorting, in ascending order,

the edges in E \ET according to their weights. Let L be the list of these sorted edges.

At each iteration, the procedure selects from L the next edge ek and if |P(ek,ET )| 1, it

introduces ek in ET thus generating a cycle in T . In order to obtain a new chromosome

it is necessary to break this cycle by removing one of its edges. There are two cases to

consider here:

• |P(ek,ET )|= 0

Let e j be the edge of the cycle with the maximum weight. Then e j is removed

from ET [{ek} yielding a new conflict free chromosome T 0. If W (T 0) <W (T )

then T  T 0, L {e j}[L \ {ek} and WR restarts from the beginning of L.

Otherwise the procedure selects the next edge of L.

• |P(ek,ET )|= 1

Let e j be the edge in conflict with ek in ET [ {ek}. If e j does not belong to

the cycle then ek is removed from the cycle, because no conflicts are allowed in

this phase, and the procedure selects the next edge in L. On the contrary, if e j

belongs to the cycle then it is removed yielding a new conflict free chromosome

T 0. If W (T 0) < W (T ) then T  T 0, L {e j}[L \ {ek} and WR restarts from

the beginning of L. Otherwise the procedure selects the next edge of L.

WR stops when all the edges in L have been selected and no improvements are

obtained.

Neighborhood Weight Reduction Local Search The NWR is another procedure

used to reduce the weight of conflict free chromosome. Given a conflict free chro-

mosome T , the procedure generates a neighborhood of T as follows. For each edge
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ek 2 E \ET such that |P(ek,ET )| = 0 or |P(ek,ET )| = 1, NWR inserts ek in ET yield-

ing a cycle. Now, if |P(ek,ET )| = 0 then the procedure breaks the cycle by removing

the edge e j with maximum weight and it produces a new conflict free chromosome

Tek
. Otherwise, if |P(ek,ET )| = 1, there is an edge e j 2 ET in conflict with ek. If e j

belongs to the cycle then NWR removes e j and it produces a new conflict free chro-

mosome Tek
otherwise no new chromosomes can be obtained in this iteration with the

edge ek. Then ek is rejected and a new iteration is carried out with the next edge of

E \ET . After the selection of all the edges in E \ET , the neighborhood of T is given

by: N(T ) =
[

ek2E\ET

Tek
. After the generation of N(T ), NWR selects the chromosome

T 0 2N(T ) with the minimum weight. If W (T 0)<W (T ) then T  T 0 and NWR gen-

erates the neighborhood of this new chromosome. Otherwise, the procedure stops.

Local search procedures framework The three local search procedures described

above are applied on the chromosomes of the final population according to the rules

shown in the diagram in Figure 3.4. More in details, let T ⇤ be the best chromosome

found by GA and let T be any chromosome of the final population. The following two

cases are considered:

• |ζ (ET )|= 0

In this case both the procedures, WR and NWR, are invoked on T yielding two

new chromosomes T1 and T2, respectively. If the lowest fitness between f (T1)

and f (T2) is better than f (T ⇤) then T ⇤ is updated accordingly.

• |ζ (ET )|> 0

In this case the CR procedure is invoked on T yielding a new chromosome T 0. If

|ζ (ET 0)|> 0 but f (T 0)< f (T ⇤) then we update T ⇤ with T 0 and we proceed with

the next chromosome into the population. Otherwise, if |ζ (ET 0)| = 0 the same

steps of the previous case are carried out.

3.3.3 Multi Ethnic Genetic Approach

The multi ethnic genetic algorithm (Mega) is a technique developed for the genetic

algorithms which is aimed at reducing the probability of remaining trapped at a local
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3.4.1 Basic Mathematical Model

In this subsection we present a mathematical model for the MSTC problem, based

on a traditional Subtour Elimination formulation for the MST with the additional con-

straints to avoid the conflicts. This model was also considered in [59]. The formulation

only uses a type of decision variables xe associated with the edges of G, with the fol-

lowing meaning:

xe =

8

<

:

1 if e is selected

0 otherwise

The mathematical programming formulation of the MSTC is the following one:

(ILP) min ∑
e2E

wexe (3.2)

s.t.

∑
e2E

xe = |V |�1, (3.3)

∑
e2E(S)

xe  |S|�1, 8S✓V,S 6= /0, (3.4)

xei
+ xe j

 1, 8{ei,e j} 2 P, (3.5)

xe 2 {0,1}, 8e 2 E. (3.6)

The objective function (3.2) minimizes the weight of the spanning tree. Constraint

(3.3) imposes the selection of n�1 edges (recall that |V |= n) while Constraints (3.4)

are the classical subtour elimination constraints. Finally, Constraints (3.5) ensure that

two edges in conflict cannot be simultaneously selected in the solution while con-

straints (3.6) are the integrality constraints.

3.4.2 Valid inequalities

In this subsection we present three classes of valid inequalities for the MSTC that we

used to design a Branch-and-Cut approach for this problem. The first class, named
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degree-cut inequalities, assure that there are not isolated vertices in the solution; we

use them to enforce the Subtour Elimination model. The second one, the conflict-cycle

inequalities combine the request of avoiding both cycles and conflicts and represent

our main contribution. Finally, the third class of inequalities are the well known odd-

cycle inequalities that are derived from the conflict graph structure. In the following

subsection we describe in details these valid inequalities.

The degree-cut inequalities Since the solution of the MSTC is a spanning tree then

for each node we have at least one incident edge selected. For this reason, we add to

our model the following valid inequalities:

∑
e2δ (v)

xe � 1, 8v 2V. (3.7)

The constraints (3.7) state explicitly that the degree of any node into the solution

must be greater than or equal to 1. These inequalities improve the relaxed solution

value of ILP model. Indeed, by removing the constraints (3.4) from ILP model, the

optimal solution is obtained by selecting the cheapest n� 1 edges of the graph. This

could lead to the presence of isolated nodes (i.e. with degree equal to zero) in the

solution. The inequalities (3.7) prevent the construction of these type of solutions.

Since the number of inequalities (3.7) is equal to n, no separation procedures are

applied but they are directly introduced into the ILP model as a priori constraints.

Obviously, these constraints are not necessary to represent the solutions space but, in

our experiments, they speed up the convergence of our Branch-and-Cut.

Conflict-cycle inequalities The conflict-cycle inequalities are a stronger version of

the subtour elimination constraints obtained by exploiting the conflicts among the

edges.

Let Ψ be a set of edges that generate a cycle in G, and let us suppose that two of

these edges are in conflict with another edge ec that does not belong to Ψ. Then, in

any feasible solutions of MSTC, the number of edges of Ψ[{ec} must be lower than

or equal to |Ψ|�1. The following theorem proves that these inequalities are valid for

the MSTC.
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Theorem 3.4.1 Let Ψ be a cycle of G and let ec be an edge outside this cycle that is

in conflict with two edges of Ψ. Then the constraint

∑
ei2Ψ

xei
+ xec

 |Ψ|�1, (3.8)

is a valid inequality for the MSTC problem.

proof 3.4.1 By contradiction, let us suppose that in a feasible solution of MSTC we

have:

∑
e

i
02Ψ

0

xe
i
0 + xeg

> |Ψ
0
|�1,

where Ψ
0
✓ E is a cycle of G, e

j
0 ,e

k
0 2 Ψ

0
, eg 2 E \Ψ

0
, and e

j
0 ,e

k
0 2 χ(eg). We

have to consider the following two cases:

• If xeg
= 0 then ∑e

i
02Ψ

0 xe
i
0 > |Ψ

0
|�1. However, this last condition violates Con-

straints (3.4). A contradiction.

• if xeg
= 1 then

∑
e

i
02Ψ

0

xe
i
0 +1 > |Ψ

0
|�1 ) ∑

e
i
02Ψ

0

xe
i
0 > |Ψ

0
|�2.

Due to this last condition at least one of variables xe
j
0 and xe

k
0 must be equal to

1, thereby violating the Constraints (3.5).

Inequalities of type (7) are called conflict-cycle inequalities.

In Figure 3.7 an example of how the inequalities (3.8) work is shown. Figure 3.7(a)

is the initial graph. Notice that the solution in Figure 3.7(b) satisfies the classical sub-

tour elimination constraints, while it is cut off by inequalities (3.8). Indeed, considering

the cycle Ψ = {e4,e5,e9,e8} (Figure 3.7(c)), we note that e5 and e9 belong to χ(e1)

(see Fig. 3.6).

47





3. Minimum spanning tree problem with conflicting edge pairs

5�1
2

= 2.

A Branch-and-Cut approach based on the ILP model and using, among the others,

the odd-cycle inequalities was presented in [59]. In the computational test section we

will carry out a comparison between our Branch-and-Cut approach and theirs.

3.4.3 Branch-and-Cut approach

In this subsection, we outline the main ingredients of our Branch-and-Cut algorithm

for the optimal MSTC solution as well as the separation procedures for the valid in-

equalities described in previous subsection. To obtain upper bounds that help pruning

the search tree, we use the algorithm described in section 3.3. However, since it is

known that even finding a feasible MSTC solution is NP-hard, there are several in-

stances where these upper bounds are not available because the multi-ethnic genetic

algorithm did not found them within a fixed time limit.

Initial relaxation The initial relaxation of ILP, named R(ILP), is composed by con-

straints (2),(4),(6) and the inequalities 0 xe  1.

Separation procedures The odd-cycle inequalities are separated by using the exact

algorithm proposed in [33] while the subtour elimination constraints are separated by

using the exact algorithm presented in [54].

In the following, we describe our procedure to separate conflict-cycle inequali-

ties (3.8). Given a solution x̄ of R(ILP), we build a new graph G̃ = (V, Ẽ) where

Ẽ = {e = (i, j) 2 E : x̄e > 0}. To each edge ẽ 2 Ẽ the weight wẽ = 1� x̄ẽ is as-

signed. The conflict-cycle inequalities (3.8) are heuristically separated by using the

graph G̃ with the following procedure. Given any couple of nodes ṽ1, ṽ2 2 V such

that (ṽ1, ṽ2) 2 Ẽ, we look for the shortest path between them in G̃ which does not in-

clude the edge (ṽ1, ṽ2). If such a path exists, we append (ṽ1, ṽ2) to it, obtaining a cycle

Ψ̃✓ Ẽ. To individuate a violated inequality, we look for an edge ẽ3 2 χ(ẽ1)\χ(ẽ2)\Ψ̃

where ẽ1, ẽ2 2 Ψ̃ and such that ∑ẽ2Ψ̃ x̄ẽ + x̄ẽ3
> |Ψ̃|�1; hence we look for all possible

edges of this type and all the violated inequalities are introduced in the model. Note

that if ∑ẽ2Ψ̃ x̄ẽ + 1  |Ψ̃|� 1, it is impossible to find violated inequalities of the type

(3.8), hence we don’t look for them in this case. Furthermore, we decided to use an
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additional tolerance parameter εc � 0, meaning that we only consider violated inequal-

ities if ∑ẽ2Ψ̃ x̄ẽ + x̄ẽ3
> |Ψ̃|� 1+ εc. The computational complexity of this algorithm

is O(m2logn). In fact the individuation of a shortest path requires |Ẽ|log|V | and it is

invoked for each edge in Ẽ. We use an m x m binary matrix to state in O(1) that two

edges are in conflict.

Note that the separation procedure for the subtour elimination constraints cannot be

used for inequalities (3.8), because it is not sufficient to individuate the set of vertices

S that generate a cycle. We need to know what are the edges of the cycle to separate

the conflict-cycle inequalities.

Cutting plane phase At each iteration of the cutting-plane algorithm:

• if the variables in the LP solution are all integer, the subtour elimination con-

straints (3.4) are heuristically separated through a DFS procedure;

• otherwise, the following separation procedures are used:

1. Exact separation procedure [54] for the subtour elimination constraints (3.4).

2. Heuristic algorithm for separating the conflict-cycle inequalities (3.8) with

εc = 0.1.

3. Exact algorithm for separating the odd-cycle inequalities (3.9) only at the

root node.

If all separation procedures fail to find violated inequalities or a tailing-off criterium is

met, we branch on variables using the default parameters of CPLEX. The tailing-off is

applied when the improvement in the upper bound is less than 10�5 in five consecutive

iterations.

To keep the size of the LP as small as possible, in each node of the search tree we never

add more than 50 valid inequalities. The value of this parameter was chosen after a

preliminary tuning phase.

3.5 Computational results

In this subsection we present the computational results of the tests we made in order to

evaluate the performance and effectiveness of our two proposed approaches.
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3.5.1 Mega

The algorithm was coded in C++ on an OSX platform (Imac mid 2011), running on an

Intel Core i7-2600 3.4 GHz processor with 8 GB of RAM.

Mega was tested on the benchmark instances presented in [66] and was compared

with the tabu search (TS) algorithm proposed in the same paper. These benchmark

instances were generated by using a different value for nodes, edges and number of

conflicts and they are classified into two types: type 1 and type 2. By construction, in

all type 2 instances is present at least one conflict free solution while for the type 1

instances this is not assured. In order to have a fair comparative study, the CPU time

reported in [66] have been scaled according to the Whetstone benchmarks [1].

We now present the results of our tests. The first experiment we carried out is

aimed at verifying the stability of Mega by running the algorithm five times on each

instance and by comparing the best and average values found. Results are shown in

Table 3.1 that is organized as follows.

The first block of rows is related to instances of Type 1 (instances 1-23) while the

second block is related to instances of type 2 (instances 24-50). The first four columns

report data on the instances: the identifier (id), the number of nodes (n), the number

of edges (m) and the cardinality of P (p). The following two columns, AvgWeight and

AvgConf, show the average weight and the average number of conflicts computed on

the five runs while the next two columns report the weight (Weight) and the number

of conflict (Conf ) of the best solution found on the five runs. We remind that the best

solution is the one with the minimum number of conflicts and, if this solution has

zero conflicts, with the minimum weight of the tree. Note that, for the solutions with

conflicts, we do not report the weight because its value loses meaning in these cases.

Finally, the last column Gap shows the percentage gap between AvgConf and Conf.

This gap is computed with the following formula: 100⇥ Con f�AvgCon f
AvgCon f

.

Let us start the comparison on the instance of type 1. The primary goal is to min-

imize the number of conflicts. From this point of view, AvgConf and Conf are both

equal to zero on the instances 1-9, except 6, and instance 16. Conf is equal to 0 even

on the instances 6 and 13 while AvgConf is equal to 0.6 and 2.2 on them. This is an

acceptable difference. Unfortunately, the gap value on these last two instances loses
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id n m p AvgWeight AvgConf Weight Conf Gap

T
y
p
e

1
1 50 200 199 708 0.0 708 0.0 0.00%

2 50 200 398 770 0.0 770 0.0 0.00%

3 50 200 597 917 0.0 917 0.0 0.00%

4 50 200 995 1365.4 0.0 1336 0.0 0.00%

5 100 300 448 4099.2 0.0 4088 0.0 0.00%

6 100 300 897 - 0.6 6095 0.0 -100.00%

7 100 500 1247 4291.2 0.0 4275 0.0 0.00%

8 100 500 2495 6325 0.0 6199 0.0 0.00%

9 100 500 3741 7788 0.0 7665 0.0 0.00%

10 100 300 1344 - 10.4 - 10.0 -3.85%

11 100 500 6237 - 9.4 - 8.0 -14.89%

12 100 500 12474 - 37.8 - 35.0 -7.41%

13 200 600 1797 - 2.2 15029 0.0 -100.00%

14 200 600 3594 - 60.0 - 57.0 -5.00%

15 200 600 5391 - 143.2 - 142.0 -0.84%

16 200 800 3196 22350.8 0.0 22110 0.0 0.00%

17 200 800 6392 - 27.6 - 23.0 -16.67%

18 200 800 9588 - 88.6 - 87.0 -1.81%

19 200 800 15980 - 177.2 - 172.0 -2.93%

20 300 800 3196 - 55.0 - 52.0 -5.45%

21 300 1000 4995 - 23.4 - 21.0 -10.26%

22 300 1000 9990 - 180.6 - 176.0 -2.55%

23 300 1000 14985 - 330.2 - 329.0 -0.36%

T
y
p
e

2

24 50 200 3903 1636 0.0 1636 0.0 0.00%

25 50 200 4877 2043 0.0 2043 0.0 0.00%

26 50 200 5864 2338 0.0 2338 0.0 0.00%

27 100 300 8609 7434 0.0 7434 0.0 0.00%

28 100 300 10686 7968 0.0 7968 0.0 0.00%

29 100 300 12761 8166 0.0 8166 0.0 0.00%

30 100 500 24740 12652 0.0 12652 0.0 0.00%

31 100 500 30886 11232 0.0 11232 0.0 0.00%

32 100 500 36827 11481 0.0 11481 0.0 0.00%

33 200 400 13660 17728 0.0 17728 0.0 0.00%

34 200 400 17089 18617 0.0 18617 0.0 0.00%

35 200 400 20470 19140 0.0 19140 0.0 0.00%

36 200 600 34504 20716 0.0 20716 0.0 0.00%

37 200 600 42860 18025 0.0 18025 0.0 0.00%

38 200 600 50984 20864 0.0 20864 0.0 0.00%

39 200 800 62625 39895 0.0 39895 0.0 0.00%

40 200 800 78387 37671 0.0 37671 0.0 0.00%

41 200 800 93978 38798 0.0 38798 0.0 0.00%

42 300 600 31000 43721 0.0 43721 0.0 0.00%

43 300 600 38216 44267 0.0 44267 0.0 0.00%

44 300 600 45310 43071 0.0 43071 0.0 0.00%

45 300 800 59600 43125 0.0 43125 0.0 0.00%

46 300 800 74500 42292 0.0 42292 0.0 0.00%

47 300 800 89300 44114 0.0 44114 0.0 0.00%

48 300 1000 96590 71562 0.0 71562 0.0 0.00%

49 300 1000 120500 76345 0.0 76345 0.0 0.00%

50 300 1000 144090 78880 0.0 78880 0.0 0.00%

Table 3.1: Best and average values found by Mega on the type 1 and type 2 instances.

meaning because, for any value greater than zero of AvgConf, this gap is always equal

to 100%. On the remaining 12 instances, Gap is greater than 5% only 5 times. Regard-
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ID n m p Opt/Best TS Mega GapOpt GapTS

Weight Time Weight Time

1 50 200 199 708 711 1.17 708 0.71 0.00% -0.42%

2 50 200 398 770 785 1.13 770 0.68 0.00% -1.91%

3 50 200 597 917 1086 0.98 917 0.63 0.00% -15.56%

4 50 200 995 1324 1629 1.16 1336 0.66 0.91% -17.99%

5 100 300 448 4041 4207 6.33 4088 2.39 1.16% -2.83%

6 100 300 897 6523* - 5.99 6095 1.81 -6.56% -

7 100 500 1247 4275 4539 17.71 4275 5.18 0.00% -5.82%

8 100 500 2495 6653* 6812 17.09 6199 5.12 -6.82% -9.00%

9 100 500 3741 - 8787 14.94 7665 3.72 - -12.77%

Table 3.2: Type 1 Problems-Feasible.

ing the weight values, AvgWeight and Weight have the same value on the first three

instances. The maximum gap value is equal to 2.15% and it occurs on the instance 4.

In all other cases, the percentage gap is lower than 2%.

On all the instances of type 2, the best and average solutions coincide and these

solutions are all conflict free. These results show that type 2 instances are much easier

to solve than type 1 instances. A conclusion already reported in [66].

Summarizing, from the results of Table 3.1 we retrieve that on 30 out of 50 in-

stances the best and the average solutions of Mega coincide in terms of both number

of conflicts and weight value. On the remaining 20 instances, the gap on the number

of conflicts is only five times greater than 5%, ruling our the two “special cases” of

instances 6 and 13 where the value is 100% because Conf is equal to zero. Finally, on

the few instances where the weight value is different, this gap is very low. According

to these results, we can conclude that Mega has a good stability level.

In the next three tables, we compare the results of Mega with the tabu search TS

proposed in [66]. Following [66], Table 3.2 contains the subset of type 1 instances on

which the TS found a conflict free solution. Unfortunately, for the instance 6, only the

CPU time but not the weight is reported.

The first four columns show the characteristics of the instance as already men-

tioned for Table 3.1. The column Opt/Best reports the optimal solution value found

by mathematical model described in [66] and implemented in CPLEX. A time limit

of 5000 seconds is fixed and whenever CPLEX reaches this limit, the solution value
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is reported with the symbol “*”. This means that CPLEX did not certify the optimal-

ity of the solution and the value reported is an upper bound of the optimal solution.

Moreover, if CPLEX does not find a feasible solution, within the time limit, the sym-

bol “-” is shown. The next four columns report the weight (Weight) of the tree and

the CPU time (Time), in seconds, of TS and Mega, respectively. Since both the al-

gorithms always find conflict free solutions on this set of instances, we do not report

a column with the number of conflicts. The last two columns show the percentage

gap between the weight of Mega and the optimal solution (GapOpt) and between the

weight of Mega and TS (GapTS). These percentage gaps are computed with the for-

mulas: 100⇥ Mega(Weight)�Opt

Opt
and 100⇥ Mega(Weight)�T S(Weight)

T S(Weight) , respectively.

By comparing the solutions of Mega with the optimal ones, we can see that our

algorithm optimally solves the instances 1, 2, 3 and 7 while GapOpt is equal to 0.91%

and 1.16%, on the instances 4 and 5, respectively. On the instances 6 and 8, the solu-

tion values of Mega are significantly lower than the upper bounds found by CPLEX.

Finally, on the instance 9, Mega finds a feasible solution in 4 seconds while CPLEX

did not in 5000 seconds. These results prove the effectiveness of Mega because, often,

it finds the optimal solution or a solution very close to the optimal one.

The results of Table 3.2 show that Mega overcomes TS in terms of computational

time and solution quality. Indeed, the solutions found by Mega are always better than

the solutions found by TS with a percentage gap that ranges from 0.42% (instance 1)

to 17.99% (instance 4). In particular, on 5 out of 8 instances GapTS is greater than

5.8%. Finally, TS never finds an optimal solution while Mega does it four times. The

computational time spent on these instances is low for both algorithms but Mega is

always faster than TS.

Table 3.3 shows the results of GA and TS on the remaining type 1 instances on

which TS never finds conflict free solutions. The first four columns show the charac-

teristics of the instance. The next four columns report the number of conflicts (Conf )

and the CPU time (Time) of TS and Mega, respectively. The column Gap shows the

percentage gap between the Conf values of two algorithms. This percentage gap is

computed with the formula 100⇥ Mega(Con f )�T S(Con f )
T S(Con f ) .

We remind that for the type 1 instances it is not guaranteed the presence of a conflict

free spanning tree. However, Mega certified the presence of a conflict free solution on

two of these instances (13 and 16) while TS finds solutions with two conflicts on these
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id n m p TS Mega Gap

Conf Time Conf Time

10 100 300 1344 13 6.77 10 2.69 -23.08%

11 100 500 6237 11 15.17 8 4.98 -27.27%

12 100 500 12474 41 14.64 35 6.68 -14.63%

13 200 600 1797 2 72.48 0 12.23 -100.00%

14 200 600 3594 67 70.24 57 21.71 -14.93%

15 200 600 5391 149 80.12 142 29.43 -4.70%

16 200 800 3196 2 105.21 0 23.42 -100.00%

17 200 800 6392 39 98.01 23 28.20 -41.03%

18 200 800 9588 95 97.10 87 35.32 -8.42%

19 200 800 15980 178 104.93 172 44.48 -3.37%

20 300 800 3196 63 239.63 52 62.68 -17.46%

21 300 1000 4995 38 303.04 21 83.68 -44.74%

22 300 1000 9990 207 345.25 176 117.58 -14.98%

23 300 1000 14985 351 381.28 329 134.42 -6.27%

Avg 89.7 138.1 79.4 43.4

Table 3.3: Type 1 Problems-Feasible Unknown.

instances. Behind these two cases, it is evident that Mega is more effective than TS

because it always finds better solutions. Ruling out the instances 13 and 16, on the

remaining 12 instances the Gap value ranges from 3.37% to the 44.74% and this gap

is 8 times greater than 14%.

Regarding the performance, Mega is always faster than TS. More in details, Mega

solves all the instances up to 200 nodes in less than a minute while, in the same time, TS

solves only the first three instances. The maximum time spent by Mega is 135 seconds

on the instance 23 while TS requires 381 seconds on the same instance. According

to the average values reported on the last line of the table, we can state that Mega is

three times faster than TS and the solutions provided by Mega are 11.5% better than

the solutions of TS.

The last comparison is carried out on the type 2 instances and the results are shown

in Table 3.4. On these instances both the algorithms always find the optimal solution.

All these optimal solutions are conflict free and their weight is reported into the column

Opt. For this reason, we compare only the CPU times in this table. The first four

columns are the same of the previous table. The next three columns report the optimal
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id n m p Opt TS Mega Gap

24 50 200 3903 1636 1.32 0.46 -65.15%

25 50 200 4877 2043 1.93 0.47 -75.69%

26 50 200 5864 2338 1.56 0.51 -67.36%

27 100 300 8609 7434 8.03 1.88 -76.58%

28 100 300 10686 7968 7.47 1.68 -77.51%

29 100 300 12761 8166 7.88 1.72 -78.18%

30 100 500 24740 12652 19.29 3.30 -82.90%

31 100 500 30886 11232 16.77 3.48 -79.24%

32 100 500 36827 11481 15.16 3.51 -76.85%

33 200 400 13660 17728 30.27 7.25 -76.05%

34 200 400 17089 18617 38.63 7.49 -80.61%

35 200 400 20470 19140 26.64 7.40 -72.22%

36 200 600 34504 20716 82.49 11.17 -86.46%

37 200 600 42860 18025 96.16 11.35 -88.20%

38 200 600 50984 20864 122.67 12.38 -89.91%

39 200 800 62625 39895 117.33 16.35 -86.07%

40 200 800 78387 37671 106.52 15.70 -85.26%

41 200 800 93978 38798 105.42 16.02 -84.80%

42 300 600 31000 43721 112.03 18.61 -83.39%

43 300 600 38216 44267 153.88 21.28 -86.17%

44 300 600 45310 43071 98.99 24.32 -75.43%

45 300 800 59600 43125 214.50 31.86 -85.15%

46 300 800 74500 42292 191.63 34.31 -82.10%

47 300 800 89300 44114 245.12 34.25 -86.03%

48 300 1000 96590 71562 301.27 39.81 -86.79%

49 300 1000 120500 76345 287.49 31.60 -89.01%

50 300 1000 144090 78880 325.16 36.11 -88.89%

Avg 101.32 14.60

Table 3.4: Type 2 Problems.

weight (Opt) and the CPU time of TS and Mega, respectively. Finally, the column Gap

shows the percentage gap values of the CPU times.

It is evident from the values of column Mega that type 2 instances are easier to

solve than type 1 instances because all these instances are optimally solved in less than

37 seconds. Once again, Mega results always faster than TS with a percentage gap

that is always greater than 65%. In particular, this gap grows as the size of instance

56





3. Minimum spanning tree problem with conflicting edge pairs

We compared the results of BC with the Branch-and-Cut algorithm (from now on

called SU) proposed in [59]. Following [59], for all the experiments we considered a

time limit equal to 5000 seconds. Furthermore, we considered a memory limit set to 3

GB. In this previous work, the authors propose a preprocessing procedure to simplify

the instances before solving them. They divided the instances in two subsets, namely

type 1 and type 2. Instances belonging to type 2 resulted to be very easy to solve

after the preprocessing phase. Indeed, the authors do not present results about the SU

performances on these instances, since they state that after this preprocessing (taking

up to 18 seconds) all instances of this group were solved in negligible time. On these

same instances, the genetic algorithm that we used to initialize our method always

found (in up to 26 seconds) solutions that were very quickly certified to be optimal by

BC. For these reasons, we compare our results only on the harder type 1 instances. We

want to remark that we did not apply any preprocessing before solving them with BC.

As will be shown, despite this, we obtained better results in all cases except one. This

result, in our opinion, emphasizes the effectiveness of our algorithm.

Table 3.5 reports the results of the comparison between BC and SU.

The first four columns of the table show the information concerning the instance:

a numerical identifier (id), the number of nodes (n), of edges (m) and of conflict pairs

(p). The next two columns report the lower (LB) and upper (UB) bounds found by SU.

When the lower and the upper bounds coincide, i.e. an optimal solution is found, the

optimal value is reported between the LB and UB columns. When a ”-” is reported, no

feasible solution has been found. Finally, the last three columns report the lower bound,

the upper bound and the computational time (Time), in seconds, of BC. The bounds

are shown in bold whenever the solution found by BC is better than the solution found

by SU. In [59] the authors did not report the computational time spent by SU on these

instances, and therefore we cannot carry out a precise comparison between the two

Branch-and-Cut from this point of view.

The first 6 instances and instance n�8 are solved optimally by both algorithms.

The instance n�9, instead, is solved to optimality by BC in 1239.4 seconds, while it

was not solved by SU within 5000 seconds. Therefore, our algorithm provides a new

optimal solution for this set of instances. Both the algorithms certify the infeasibility

of instances n�15, 20 and 23. For the remaining 12 instances, BC produces better lower

bounds in all cases except one (instance n�21).
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Instance SU BC

id n m p LB UB LB UB Time

1 50 200 199 708 708 0.2

2 50 200 398 770 770 0.5

3 50 200 597 917 917 1.8

4 50 200 995 1324 1324 7.4

5 100 300 448 4041 4041 4.6

6 100 300 897 5658 5658 178.5

7 100 300 1344 6621.2 - 6635.4 - 5010.0

8 100 500 1247 4275 4275 11.5

9 100 500 2495 5951.4 6006 5997 1239.4

10 100 500 3741 6510.8 9440 6707.8 8049 5010.1

11 100 500 6237 7568.7 - 7729.3 - 5010.0

12 100 500 12474 9816.9 - 10560.2 - 5010.0

13 200 600 1797 13072.9 14707 13171.2 14086 5010.0

14 200 600 3594 17532.7 - 17595.0 - 5010.0

15 200 600 5391 Infeasible Infeasible 16.4

16 200 800 3196 20744.2 21852 20941.5 21553 5010.1

17 200 800 6392 26361.3 - 26526.7 - 5010.1

18 200 800 9588 29443.6 - 30634.2 - 5010.0

19 200 800 15980 33345.1 - 36900.2 - 5010.0

20 300 800 3196 Infeasible Infeasible 2911.1

21 300 1000 4995 51451.3 - 51398.4 - 5010.0

22 300 1000 9990 60907.8 - 61878.9 - 5010.0

23 300 1000 14985 Infeasible Infeasible 1820.0

Table 3.5: Comparison between the solution values of SU and BC algorithms.

With respect to the subset of instances that are not solved by BC and SU, both

algorithms found upper bounds in the same 3 cases (instances n� 10, 13 and 16), and

those found by BC are always better. It is worth noting the percentage gap value

between the upper and the lower bounds in these cases. This value is computed as

100⇥ UB�LB
UB

. On the instance n�10, the percentage gap is equal to 31.03% for SU and

16.66% for BC. On the instance n�13, it is equal to 11.11% for SU and 6.49% for BC.

Finally, for the instance n�16, it is equal to 5.07% for SU and 2.84% for BC. That is,

the percentage gap of BC for these instances is about half of the percentage gap of SU.

Regarding the performance, all the instances optimally solved by BC required less
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than 12 seconds, except for the instance n�9 for which, as previously mentioned, about

1240 seconds were spent. To certify the infeasibility, BC required around 16 seconds

on the instance n�15, 2911 seconds on the instance n�20 and 1820 seconds on the

instance n�23.

In order to further investigate the effectiveness and performance of BC, we gener-

ated a new set of benchmark instances. The number of nodes n in this new set ranges

from 25 to 100, with incremental steps of size 25. The number of edges m is assigned

according to the following density values: 0.2, 0.3, 0.4. A random integer weight cho-

sen in the interval [10,30] is assigned to each edge. That is, a graph with density d

has m = dn(n� 1)/2 edges. This means that our instances are much denser than the

previous ones, in which the highest density value is about 0.16.

Given m edges, we can generate at most
�

m
2

�

= m(m� 1)/2 conflict pairs. The

number of conflict pairs associated to each instance is equal to 1%, 4% and 7% of

m(m�1)/2. We generated 5 different instances for each combination of parameters n,

m and p. Thus, in total we generated 180 new instances. The combinations of these

parameters allow us to determine which of them affects most the BC performances. It

is also worth noting that the new instances were generated ensuring their feasibility,

therefore there are no unfeasible instances as in the previous set.

We show the results on this new dataset in Tables 3.6, 3.7, 3.8 and 3.9. The meaning

of id, n, m and p are the same as for Table 3.5. Under the s columns we report the

value of a seed parameter that was used to generate different instances with the same

parameter values. The column MST indicates the value of the minimum spanning tree

without taking into account the conflicts set P. The last three columns report, as in

Table 3.5, the results of our approach (lower bound (LB) and upper bound (UB), or a

value in between when an optimum is found) and the computational times in seconds.

We can see that all instances with n= 25 (Table 3.6) are solved to optimality within

0.5 seconds, with 38 out of 45 of them requiring under 0.1 seconds. We can, however,

start noticing a trend with respect to how parameters affect the complexity of the in-

stances. Indeed, the 4 instances that required the most time to be solved all correspond

to cases in which the number of conflict pairs is the highest, with respect to the other

instances with the same number of edges. These cases correspond to instances n�36

(m = 60, p = 124), n�50 (m = 90, p = 281), n�65 and 66 (m = 120, p = 500), that are

solved in 0.3, 0.5, 0.5 and 0.4 seconds, respectively.
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The trend is confirmed for instances of all sizes. For n = 50 (Table 3.7) we can

observe that all instances with p equal or less than the 4% of
�

m
2

�

are again solved op-

timally, with computational times growing up to 6.3 seconds for m = 245, 7.5 seconds

for m = 367 and 13.8 seconds for m = 490. When p grows to the 7% of the maximum

number of conflicts, the related instances result to be considerably more difficult to

solve, since we reach a certified optimal solution only for 2 out of 15 of them, namely

instances n�80 and 83, solved in 1938.69 and 25.7 seconds, respectively. In the other

13 cases, the gap between the returned lower and upper bounds are between 2% and 8%

for m = 245, between 3% and 8% for m = 367 and between 3% and 7% for m = 490.

When n = 75 (Table 3.8) we are able to find optimal solutions for all the 15 in-

stances with p equal to the 1% of
�

m
2

�

. Computational times in these cases grow up

to 23.9 seconds once (instance n�132) and are lower than 5.5 seconds for the remain-

ing 14 instances. None of the remaining 30 instances is solved to optimality. When

p = 4% of
�

m
2

�

, we were always able to find both an upper and a lower bound, with

gaps between 1% and 6% for m = 555, between 1% and 5% for m = 832 and between

2% and 6% for m = 1110. It can be noticed that in 3 out of 5 cases for m = 832 as well

as in all 5 cases with m = 1110 the computational times are lower than the time limit,

as in these cases it was the memory limit to be reached first. The instances with the

p equal to the 7% of
�

m
2

�

are again the hardest, since we were able to identify a lower

bound only for one of them (instance n�156). Even in this case, the gap between upper

and lower bound is considerably high, being equal to 26%. In 13 out of 15 cases we

reached the memory limit.

Finally, we consider the results for instances with n = 100, reported in Table 3.9.

Again, all instances with p = 1% of
�

m
2

�

could be solved to optimality, within 71.8

seconds for m = 990, 249.6 seconds for m = 1485 and 214.4 seconds for m = 1980.

None of the instances with p = 4% of
�

m
2

�

was solved to optimality, and we were able

to identify a lower bound for each of them except one (instance n�164). The gaps

between lower and upper bounds are between 12% and 20% for m = 990, between

11% and 17% for m = 1485 and between 10% and 13% for m = 1980. The time limit

was always reached for the 5 instances with the smallest number of edges, while the

memory limit was always reached in the remaining 10 cases. Finally, when p = 7% of
�

m
2

�

we were never able to find an upper bound. The memory limit was reached for 6 of

these instances, while the time limit was reached in the other 9 cases. With respect to
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the MST column, we note that for no instance of our new dataset the optimal solution

coincides with this trivial lower bound.

To conclude we can note that, predictably, the factor that most affects the BC per-

formances is the ratio between the number of edges and the number of conflict pairs.

Indeed, as p grows with respect to m, it becomes more difficult to find feasible solu-

tions. Between instances with the same number of nodes, increasing the number of

edges while keeping constant this ratio have in many cases either marginal or unno-

ticeable effect on the performances. While increasing the number of nodes leads to

harder instances, even the largest ones (with up to 100 nodes and 1980 edges) with the

fewest number of conflict pairs could be solved to optimality within about 4 minutes.

Valid inequalities performance analysis In this section we evaluate the impact of

our valid inequalities on the effectiveness and performance of BC. To this end, we

compare BC with a “basic” Branch-and-Cut composed by constraints (3.3)-(3.6) and

(3.9). We will refer to this approach with the name Basic from now on. We carry on this

comparison on the larger and more diverse set of instances that we introduced in this

chapter. We recall that these instances are guaranteed to be feasible. In order to better

assess the effectiveness of our new valid inequalities, we did not provide a starting

solution for these tests. Furthermore, a 5000 seconds time limit was considered also

for these tests.

The results of this comparison are reported in Tables 3.10, 3.11, 3.12 and 3.13 .

The first column reports the instance id. The following eight columns report, for each

of the two approaches, the lower bound (LB), the upper bound (UB), the computational

time in seconds (Time) and the percentage gap (Gap) between the UB and LB values,

returned by CPLEX. As in the previous tables, whenever an optimal solution is found,

it is reported between the LB and UB columns.

No relevant information can be derived from the smallest instances with n = 25,

since they are all optimally solved by both models in less than a second (see Ta-

ble 3.10). The results in Table 3.11 (referring to n = 50) show that Basic and BC

do not solve to optimality the same subset of 14 instances. On these instances, the gap

value of BC is smaller than the one of Basic in 11 out of 14 cases. In 6 of these cases

(instances n�80, 81, 82, 95, 96 and 98) the gap difference is higher than 4%, while it is
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Instance BC

id n m p s MST LB UB Time

24 25 60 18 1 336 347 0.0

25 25 60 18 7 384 389 0.0

26 25 60 18 13 350 353 0.0

27 25 60 18 19 345 346 0.0

28 25 60 18 25 330 336 0.0

29 25 60 71 31 343 381 0.0

30 25 60 71 37 334 390 0.1

31 25 60 71 43 346 372 0.0

32 25 60 71 49 328 357 0.0

33 25 60 71 55 379 406 0.0

34 25 60 124 61 321 385 0.0

35 25 60 124 67 363 432 0.0

36 25 60 124 73 335 458 0.3

37 25 60 124 79 338 400 0.0

38 25 60 124 85 340 420 0.0

39 25 90 41 91 299 311 0.0

40 25 90 41 97 305 306 0.0

41 25 90 41 103 293 299 0.0

42 25 90 41 109 294 297 0.0

43 25 90 41 115 314 318 0.0

44 25 90 161 121 280 305 0.0

45 25 90 161 127 316 339 0.0

46 25 90 161 133 310 344 0.0

47 25 90 161 139 296 329 0.0

48 25 90 161 145 301 326 0.0

49 25 90 281 151 317 349 0.0

50 25 90 281 157 321 385 0.5

51 25 90 281 163 288 335 0.0

52 25 90 281 169 295 348 0.1

53 25 90 281 175 295 357 0.0

54 25 120 72 181 281 282 0.0

55 25 120 72 187 287 294 0.0

56 25 120 72 193 276 284 0.0

57 25 120 72 199 277 281 0.0

58 25 120 72 205 290 292 0.0

59 25 120 286 211 300 321 0.0

60 25 120 286 217 296 317 0.0

61 25 120 286 223 271 284 0.0

62 25 120 286 229 296 311 0.0

63 25 120 286 235 283 290 0.0

64 25 120 500 241 290 329 0.1

65 25 120 500 247 285 339 0.5

66 25 120 500 253 306 368 0.4

67 25 120 500 259 277 311 0.0

68 25 120 500 265 275 321 0.0

Table 3.6: Computational results of BC on new instances: n = 25
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Instance BC

id n m p s MST LB UB Time

69 50 245 299 271 607 619 0.0

70 50 245 299 277 592 604 0.0

71 50 245 299 283 620 634 0.0

72 50 245 299 289 600 616 0.1

73 50 245 299 295 579 595 0.0

74 50 245 1196 301 590 678 1.4

75 50 245 1196 307 587 681 3.2

76 50 245 1196 313 606 709 6.3

77 50 245 1196 319 575 639 1.5

78 50 245 1196 325 577 681 3.8

79 50 245 2093 331 567 791.20 833 5010.1

80 50 245 2093 337 604 835 1938.7

81 50 245 2093 343 577 773.23 840 5010.1

82 50 245 2093 349 598 820.02 836 5010.1

83 50 245 2093 355 594 769 25.7

84 50 367 672 361 562 570 0.1

85 50 367 672 367 545 561 1.4

86 50 367 672 373 555 573 0.0

87 50 367 672 379 553 560 0.0

88 50 367 672 385 543 549 0.5

89 50 367 2687 391 551 612 7.5

90 50 367 2687 397 546 615 6.6

91 50 367 2687 403 528 587 3.0

92 50 367 2687 409 549 634 7.3

93 50 367 2687 415 587 643 3.2

94 50 367 4702 421 558 701.26 726 5010.1

95 50 367 4702 427 555 719.45 770 5010.0

96 50 367 4702 433 571 723.89 786 5010.0

97 50 367 4702 439 541 669.84 711 5010.0

98 50 367 4702 445 599 737.31 764 5010.0

99 50 490 1199 451 537 548 0.1

100 50 490 1199 457 525 530 0.5

101 50 490 1199 463 543 549 0.0

102 50 490 1199 469 532 540 0.2

103 50 490 1199 475 534 540 0.0

104 50 490 4793 481 546 594 7.8

105 50 490 4793 487 529 579 13.8

106 50 490 4793 493 539 589 3.0

107 50 490 4793 499 528 577 7.5

108 50 490 4793 505 529 592 6.0

109 50 490 8387 511 534 631.43 678 5010.0

110 50 490 8387 517 528 626.72 651 5010.0

111 50 490 8387 523 539 658.38 689 5010.0

112 50 490 8387 529 541 662.22 682 5010.1

113 50 490 8387 535 542 641.31 674 5010.0

Table 3.7: Computational results of BC on new instances: n = 50.
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Instance BC

id n m p s MST LB UB Time

114 75 555 1538 541 837 868 0.7

115 75 555 1538 547 842 871 3.0

116 75 555 1538 553 805 838 0.3

117 75 555 1538 559 833 855 4.4

118 75 555 1538 565 830 857 4.1

119 75 555 6150 571 851 1023.72 1047 5010.0

120 75 555 6150 577 839 1008.82 1069 5010.2

121 75 555 6150 583 814 987.31 1040 5010.1

122 75 555 6150 589 828 985.64 998 5010.1

123 75 555 6150 595 825 962.55 994 5010.1

124 75 555 10762 601 817 1054.25 - 4647.3

125 75 555 10762 607 860 1069.51 - 3483.6

126 75 555 10762 613 815 1040.97 - 5010.0

127 75 555 10762 619 798 1006.30 - 5010.0

128 75 555 10762 625 838 1046.43 - 3208.1

129 75 832 3457 631 779 798 4.8

130 75 832 3457 637 795 821 1.1

131 75 832 3457 643 797 816 4.0

132 75 832 3457 649 802 820 23.9

133 75 832 3457 655 789 815 1.4

134 75 832 13828 661 782 873.83 903 3463.3

135 75 832 13828 667 805 901.81 953 4443.7

136 75 832 13828 673 780 873.67 892 5010.0

137 75 832 13828 679 786 885.57 915 4570.8

138 75 832 13828 685 792 886.87 896 5010.0

139 75 832 24199 691 805 949.55 - 1305.3

140 75 832 24199 697 788 907.80 - 1161.2

141 75 832 24199 703 789 910.00 - 953.0

142 75 832 24199 709 800 943.98 - 1224.2

143 75 832 24199 715 803 956.31 - 962.3

144 75 1110 6155 721 777 787 2.1

145 75 1110 6155 727 764 785 5.4

146 75 1110 6155 733 766 783 0.0

147 75 1110 6155 739 774 784 3.3

148 75 1110 6155 745 778 797 5.7

149 75 1110 24620 751 777 846.69 867 4067.5

150 75 1110 24620 757 760 829.23 851 4573.5

151 75 1110 24620 763 767 841.54 892 2189.8

152 75 1110 24620 769 767 841.62 864 2866.0

153 75 1110 24620 775 763 835.04 882 1783.3

154 75 1110 43085 781 769 868.72 - 1049.9

155 75 1110 43085 787 768 853.45 - 1350.7

156 75 1110 43085 793 779 884.67 1194 1522.3

157 75 1110 43085 799 762 853.00 - 1466.3

158 75 1110 43085 805 766 853.98 - 1461.4

Table 3.8: Computational results of BC on new instances: n = 75.
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Instance BC

id n m p s MST LB UB Time

159 100 990 4896 811 1070 1119 43.7

160 100 990 4896 817 1094 1137 11.8

161 100 990 4896 823 1076 1113 71.8

162 100 990 4896 829 1066 1110 48.6

163 100 990 4896 835 1044 1090 35.8

164 100 990 19583 841 1086 1249.38 - 5010.0

165 100 990 19583 847 1066 1225.76 1491 5010.0

166 100 990 19583 853 1063 1215.00 1510 5010.0

167 100 990 19583 859 1093 1264.17 1441 5010.2

168 100 990 19583 865 1080 1257.27 1560 5010.1

169 100 990 34269 871 1047 1262.00 - 3006.9

170 100 990 34269 877 1051 1290.68 - 3371.9

171 100 990 34269 883 1091 1318.54 - 3684.2

172 100 990 34269 889 1064 1282.38 - 3939.1

173 100 990 34269 895 1061 1304.45 - 3103.7

174 100 1485 11019 901 1049 1079 248.6

175 100 1485 11019 907 1029 1056 113.4

176 100 1485 11019 913 1034 1059 47.9

177 100 1485 11019 919 1024 1046 195.2

178 100 1485 11019 925 1040 1072 249.6

179 100 1485 44075 931 1040 1143.95 1374 3018.3

180 100 1485 44075 937 1030 1143.61 1291 2144.6

181 100 1485 44075 943 1028 1137.62 1344 3075.6

182 100 1485 44075 949 1028 1136.90 1286 3523.3

183 100 1485 44075 955 1028 1134.63 1370 2954.2

184 100 1485 77131 961 1019 1164.44 - 4773.8

185 100 1485 77131 967 1028 1168.20 - 5010.0

186 100 1485 77131 973 1031 1180.02 - 5010.0

187 100 1485 77131 979 1040 1183.53 - 5010.0

188 100 1485 77131 985 1030 1159.25 - 5010.0

189 100 1980 19593 991 1011 1031 214.4

190 100 1980 19593 997 1015 1036 42.8

191 100 1980 19593 1003 1007 1024 21.8

192 100 1980 19593 1009 1011 1025 27.4

193 100 1980 19593 1015 1010 1028 151.0

194 100 1980 78369 1021 1015 1096.83 1234 1938.3

195 100 1980 78369 1027 1005 1065.64 1187 2160.3

196 100 1980 78369 1033 1015 1087.39 1213 3595.6

197 100 1980 78369 1039 1009 1081.26 1221 2411.8

198 100 1980 78369 1045 1008 1084.09 1245 2385.6

199 100 1980 137145 1051 1004 1098.61 - 5010.1

200 100 1980 137145 1057 1010 1126.27 - 5010.1

201 100 1980 137145 1063 1012 1111.27 - 5010.1

202 100 1980 137145 1069 1024 1114.58 - 5010.1

203 100 1980 137145 1075 1014 1114.07 - 5010.2

Table 3.9: Computational results of BC on new instances: n = 100.
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higher than 6% in 3 of these cases. In the 3 cases in which the gap of Basic is smaller,

the difference is always lower than 2% (see instances n�97, 110 and 112). With respect

to the computational time performances, we note that BC is faster than Basic for 29 out

of the 31 instances that are solved to optimality by both approaches. In the two cases

in which Basic is faster the difference is negligible, being smaller than 0.2 seconds. On

the other hand, when BC is faster, the difference is greater than 3 seconds in 6 cases,

and greater than 2 seconds in 10 cases. The peak for both algorithms is instance n�83,

that is solved in 139 seconds by Basic and in 46.3 seconds by BC.

From the results of Table 3.12 (n = 75), we note that 15 instances are solved to

optimality by both models. In these cases, BC is always faster, often by a significant

margin. Indeed, BC requires up to one fourth of the time required by Basic in 7 out

of 15 cases, and up to one third in 9 cases. Moreover, both approaches find upper and

lower bounds for the same 15 instances. For BC, the gap between upper and lower

bounds is smaller than 5% in 11 cases, while it is smaller than 5% only in 4 cases for

Basic. Finally, no feasible solution is found by either of the two approaches for the

remaining 15 instances. For these instances, BC finds better lower bounds than Basic

in 12 cases.

Finally, we comment the results for the instances with n = 100 (Table 3.13). Both

algorithms solve to optimality 15 instances. In these cases, BC requires less computa-

tional time than Basic 13 times. We observe in particular that BC is about 500 times

faster for the instances n�189, and about 25 times faster for the instance n�193. In

5 cases, BC is at least twice faster than Basic. On the other hand, Basic is signifi-

cantly faster only once (instance n�176).For the remaining 30 instances, Basic is able

to find feasible solutions only twice (instances n�194 and 198), while BC finds feasi-

ble solutions in 5 additional cases (instances n�180, 183, 195, 196 and 197). Finally,

considering the 23 instances for which both algorithms do not find feasible solutions,

BC finds better lower bounds than Basic 17 times.

Overall, BC outperforms Basic significantly, being able to find more feasible solu-

tions, and having in most cases either faster convergence times or better solution gaps

when a time limit is reached.
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id Basic BC

LB UB Time Gap LB UB Time Gap

24 347 0.0 0.00% 347 0.0 0.00%

25 389 0.0 0.00% 389 0.0 0.00%

26 353 0.0 0.00% 353 0.0 0.00%

27 346 0.0 0.00% 346 0.0 0.00%

28 336 0.0 0.00% 336 0.0 0.00%

29 381 0.0 0.00% 381 0.0 0.00%

30 390 0.2 0.00% 390 0.1 0.00%

31 372 0.0 0.00% 372 0.0 0.00%

32 357 0.0 0.00% 357 0.0 0.00%

33 406 0.0 0.00% 406 0.0 0.00%

34 385 0.0 0.00% 385 0.0 0.00%

35 432 0.0 0.00% 432 0.0 0.00%

36 458 0.3 0.00% 458 0.3 0.00%

37 400 0.0 0.00% 400 0.0 0.00%

38 420 0.2 0.00% 420 0.0 0.00%

39 311 0.0 0.00% 311 0.0 0.00%

40 306 0.0 0.00% 306 0.0 0.00%

41 299 0.0 0.00% 299 0.0 0.00%

42 297 0.0 0.00% 297 0.0 0.00%

43 318 0.0 0.00% 318 0.0 0.00%

44 305 0.0 0.00% 305 0.0 0.00%

45 339 0.0 0.00% 339 0.0 0.00%

46 344 0.0 0.00% 344 0.0 0.00%

47 329 0.2 0.00% 329 0.1 0.00%

48 326 0.1 0.00% 326 0.1 0.00%

49 349 0.1 0.00% 349 0.0 0.00%

50 385 0.5 0.00% 385 0.4 0.00%

51 335 0.3 0.00% 335 0.0 0.00%

52 348 0.2 0.00% 348 0.2 0.00%

53 357 0.1 0.00% 357 0.1 0.00%

54 282 0.0 0.00% 282 0.0 0.00%

55 294 0.0 0.00% 294 0.0 0.00%

56 284 0.0 0.00% 284 0.0 0.00%

57 281 0.0 0.00% 281 0.0 0.00%

58 292 0.0 0.00% 292 0.0 0.00%

59 321 0.0 0.00% 321 0.1 0.00%

60 317 0.0 0.00% 317 0.0 0.00%

61 284 0.0 0.00% 284 0.0 0.00%

62 311 0.0 0.00% 311 0.0 0.00%

63 290 0.0 0.00% 290 0.0 0.00%

64 329 0.6 0.00% 329 0.3 0.00%

65 339 0.7 0.00% 339 0.6 0.00%

66 368 0.3 0.00% 368 0.4 0.00%

67 311 0.3 0.00% 311 0.3 0.00%

68 321 0.1 0.00% 321 0.0 0.00%

Table 3.10: Computational comparison between Basic and BC algorithms: n = 25.
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id Basic BC

LB UB Time Gap LB UB Time Gap

69 619 1.2 0.00% 619 0.1 0.00%

70 604 0.2 0.00% 604 0.1 0.00%

71 634 0.1 0.00% 634 0.0 0.00%

72 616 0.5 0.00% 616 0.2 0.00%

73 595 0.1 0.00% 595 0.0 0.00%

74 678 3.1 0.00% 678 1.9 0.00%

75 681 3.9 0.00% 681 2.4 0.00%

76 709 7.5 0.00% 709 6.1 0.00%

77 639 1.5 0.00% 639 1.3 0.00%

78 681 8.0 0.00% 681 5.3 0.00%

79 773.43 826 5010.1 6.36% 781.81 820 5010.0 4.66%

80 806.36 870 5010.0 7.31% 832.56 842 5010.0 1.12%

81 759.95 869 5010.0 12.55% 769.48 811 5010.1 5.12%

82 798.78 857 5010.0 6.79% 820.00 836 5010.0 1.91%

83 769 139.0 0.00% 769 46.3 0.00%

84 570 0.2 0.00% 570 0.2 0.00%

85 561 2.1 0.00% 561 2.1 0.00%

86 573 0.0 0.00% 573 0.2 0.00%

87 560 0.0 0.00% 560 0.0 0.00%

88 549 1.5 0.00% 549 1.5 0.00%

89 612 6.6 0.00% 612 10.5 0.00%

90 615 9.5 0.00% 615 7.6 0.00%

91 587 4.3 0.00% 587 3.9 0.00%

92 634 13.7 0.00% 634 7.9 0.00%

93 643 6.0 0.00% 643 2.7 0.00%

94 691.99 741 5010.0 6.61% 696.65 744 5010.0 6.36%

95 708.06 797 5010.0 11.16% 719.42 753 5010.0 4.46%

96 716.14 838 5010.0 14.54% 718.56 797 5010.1 9.84%

97 668.85 711 5010.1 5.93% 664.13 721 5010.0 7.89%

98 726.68 810 5010.0 10.29% 731.33 777 5010.0 5.88%

99 548 3.3 0.00% 548 0.9 0.00%

100 530 1.2 0.00% 530 0.7 0.00%

101 549 3.1 0.00% 549 0.4 0.00%

102 540 5.8 0.00% 540 0.3 0.00%

103 540 0.3 0.00% 540 0.0 0.00%

104 594 7.5 0.00% 594 6.5 0.00%

105 579 17.3 0.00% 579 14.7 0.00%

106 589 7.6 0.00% 589 4.6 0.00%

107 577 9.7 0.00% 577 6.6 0.00%

108 592 8.8 0.00% 592 7.6 0.00%

109 626.81 684 5010.1 8.36% 632.20 666 5010.0 5.08%

110 619.41 658 5010.0 5.86% 621.49 663 5010.0 6.26%

111 654.44 683 5010.0 4.18% 653.81 678 5010.0 3.57%

112 654.48 700 5010.1 6.50% 655.34 710 5010.1 7.70%

113 640.66 677 5010.0 5.37% 644.17 657 5010.0 1.95%

Table 3.11: Computational comparison between Basic and BC algorithms: n = 50.
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3. Minimum spanning tree problem with conflicting edge pairs

id Basic BC

LB UB Time Gap LB UB Time Gap

114 868 10.5 0.00% 868 0.9 0.00%

115 871 11.5 0.00% 871 5.7 0.00%

116 838 5.2 0.00% 838 0.3 0.00%

117 855 12.6 0.00% 855 7.1 0.00%

118 857 7.4 0.00% 857 4.3 0.00%

119 1012.44 1107 5010.0 8.54% 1016.73 1059 5010.1 3.99%

120 1001.68 1089 5010.1 8.02% 1003.86 1114 5010.0 9.89%

121 980.65 1057 5010.1 7.22% 984.46 1084 5010.0 9.18%

122 975.79 1013 5010.0 3.67% 979.31 1017 5010.2 3.71%

123 953.45 1060 5010.0 10.05% 960.47 1003 5010.1 4.24%

124 1046.74 - 5010.0 - 1054.48 - 5010.0 -

125 1064.37 - 5010.0 - 1070.88 - 5010.0 -

126 1033.18 - 5010.0 - 1040.94 - 5010.0 -

127 1006.13 - 5010.0 - 1006.35 - 5010.0 -

128 1047.47 - 5010.0 - 1048.05 - 5010.0 -

129 798 51.3 0.00% 798 36.7 0.00%

130 821 50.5 0.00% 821 1.0 0.00%

131 816 25.1 0.00% 816 15.2 0.00%

132 820 33.8 0.00% 820 23.3 0.00%

133 815 40.3 0.00% 815 8.9 0.00%

134 871.54 916 5010.2 4.85% 875.65 891 5010.0 1.72%

135 897.83 969 5010.1 7.34% 899.49 947 5010.1 5.02%

136 867.48 943 5010.1 8.01% 869.94 905 5010.1 3.87%

137 879.01 952 5010.1 7.67% 879.68 920 5010.1 4.38%

138 883.89 899 5010.0 1.68% 884.78 896 5010.0 1.25%

139 951.91 - 5010.1 - 955.79 - 4332.2 -

140 912.91 - 5010.1 - 913.03 - 3362.6 -

141 913.16 - 5010.1 - 915.04 - 2839.6 -

142 950.36 - 5010.1 - 949.84 - 3795.0 -

143 958.86 - 5010.1 - 960.83 - 2776.8 -

144 787 55.9 0.00% 787 17.7 0.00%

145 785 84.3 0.00% 785 10.0 0.00%

146 783 68.1 0.00% 783 1.3 0.00%

147 784 69.5 0.00% 784 12.0 0.00%

148 797 69.9 0.00% 797 22.4 0.00%

149 847.08 855 5010.0 0.93% 846.49 857 5010.0 1.23%

150 825.59 897 5010.1 7.96% 827.87 860 5010.2 3.74%

151 839.97 902 5010.0 6.88% 840.73 901 5010.2 6.69%

152 838.72 894 5010.2 6.18% 840.80 877 5010.2 4.13%

153 835.07 880 5010.2 5.11% 837.77 868 5010.1 3.48%

154 873.46 - 3332.9 - 870.27 - 2357.1 -

155 854.24 - 3116.3 - 857.00 - 3106.8 -

156 883.54 - 3801.8 - 885.94 - 3443.8 -

157 856.67 - 3946.8 - 856.22 - 3448.3 -

158 857.41 - 3938.4 - 859.11 - 3146.2 -

Table 3.12: Computational comparison between Basic and BC algorithms: n = 75.
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3. Minimum spanning tree problem with conflicting edge pairs

id Basic BC

LB UB Time Gap LB UB Time Gap

159 1119 117.3 0.00% 1119 88.8 0.00%

160 1137 58.3 0.00% 1137 12.3 0.00%

161 1113 126.0 0.00% 1113 66.7 0.00%

162 1110 91.9 0.00% 1110 71.0 0.00%

163 1090 93.6 0.00% 1090 20.4 0.00%

164 1247.59 - 5010.0 - 1249.38 - 5010.0 -

165 1216.97 - 5010.1 - 1217.29 - 5010.0 -

166 1206.80 - 5010.0 - 1211.03 - 5010.0 -

167 1256.52 - 5010.1 - 1258.81 - 5010.0 -

168 1250.44 - 5010.0 - 1253.76 - 5010.0 -

169 1254.25 - 5010.0 - 1264.77 - 5010.0 -

170 1288.38 - 5010.0 - 1295.60 - 5010.0 -

171 1309.62 - 5010.0 - 1323.71 - 5010.0 -

172 1274.36 - 5010.0 - 1283.59 - 5010.0 -

173 1298.12 - 5010.0 - 1309.11 - 5010.0 -

174 1079 270.0 0.00% 1079 282.7 0.00%

175 1056 195.6 0.00% 1056 141.2 0.00%

176 1059 8.1 0.00% 1059 142.8 0.00%

177 1046 218.2 0.00% 1046 117.3 0.00%

178 1072 367.5 0.00% 1072 249.0 0.00%

179 1141.12 - 5010.1 - 1141.83 - 5010.1 -

180 1141.56 - 5010.1 - 1141.95 1801 5010.2 36.59%

181 1133.96 - 5010.2 - 1134.27 - 5010.1 -

182 1133.23 - 5010.2 - 1135.19 - 5010.1 -

183 1131.49 - 5010.2 - 1132.51 1691 5010.1 33.03%

184 1163.15 - 5010.0 - 1164.44 - 5010.0 -

185 1160.56 - 5010.0 - 1168.20 - 5010.0 -

186 1187.83 - 5010.0 - 1180.02 - 5010.0 -

187 1183.69 - 5010.0 - 1183.53 - 5010.0 -

188 1164.47 - 5010.0 - 1159.25 - 5010.0 -

189 1031 2293.5 0.00% 1031 4.3 0.00%

190 1036 549.6 0.00% 1036 256.5 0.00%

191 1024 601.8 0.00% 1024 319.8 0.00%

192 1025 582.9 0.00% 1025 472.9 0.00%

193 1028 750.4 0.00% 1028 30.1 0.00%

194 1096.39 1550 5010.4 29.27% 1097.00 1521 5010.1 27.88%

195 1062.91 - 5010.2 - 1064.18 1540 5010.1 30.90%

196 1084.42 - 5010.1 - 1086.79 1437 5010.2 24.37%

197 1080.75 - 5010.1 - 1083.45 1506 5010.2 28.06%

198 1083.57 1597 5010.3 32.15% 1083.75 1684 5010.1 35.64%

199 1100.57 - 5010.1 - 1098.61 - 5010.1 -

200 1125.85 - 5010.1 - 1126.27 - 5010.1 -

201 1110.66 - 5010.1 - 1111.27 - 5010.1 -

202 1118.69 - 5010.1 - 1114.58 - 5010.1 -

203 1114.14 - 5010.1 - 1114.07 - 5010.2 -

Table 3.13: Computational comparison between Basic and BC algorithms: n = 100.
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Chapter 4

A flow formulation for the

Close-enough arc routing problem

4.1 Introduction

The close-enough arc routing problem is a generalization of the classic arc routing

problem and it has many interesting real-life applications. In this chapter, we propose

some techniques to reduce the size of the input graph and a new effective mixed in-

teger programming formulation for the problem. Our experiments on directed graphs

show the effectiveness of our reduction techniques. Computational results obtained by

comparing our MIP model with the existing exact methods show that our algorithm is

really effective in practice.

4.2 Problem definition

The Close-Enough Arc Routing Problem (CEARP) is a generalization of the Rural

Postman Problem (RPP). Let G = (V,A,M) be a directed graph with a set of vertices

V , a set of arcs A, and a set of targets M located on arcs. An arc a 2 A covers a target

m2M iff the target is either on the arc or within a predetermined distance (radius) from

the arc. Let N = {(m,a)|m 2M,a 2 A} be a set containing the couple (target m, arc a)

if and only if the arc a covers the target m, and let ci j be the cost associated with arc a=

(i, j) 2 A. Finally, let v0 2V indicate the depot node. The CEARP consists of finding
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4. A flow formulation for the Close-enough arc routing problem

a minimum cost tour starting and ending at the depot node v0, traversing a subset of

arcs such that all the targets in M are covered. The CEARP problem was introduced

by Drexl [20, 21], he proved that the problem is NP-hard, and he proposed a branch-

and-cut algorithm. Shuttleworth et al. [62] proposed four heuristics to solve instances

with approximately 9000 arcs. A mixed integer programming (MIP) formulation for

the problem was introduced by Há et al. [37]; the same authors presented a new IP

formulation in [38]. Ávila et al. [2] proposed a branch-and-cut algorithm which they

compared with the model presented in [38], providing good computational results. In

[48], Lum et al. propose some techniques to partition a graph in order to simplify its

structure.

The remainder of this chapter is organized as follows. In Section 4.3, we present

our new MIP formulation. In Section 4.4, we show the computational results of our

approach, comparing them with recent results proposed in [2] and [38] and, finally, in

Section ??, we present our conclusions.

4.3 Flow formulation

In this section, we propose a very effective mathematical programming formulation

for the CEARP based on an efficient graph reduction procedure. Moreover, we show

how, using any vertex cover computed on the input graph, we can take advantage of its

features to identify a set of important vertices for the routing problems.

4.3.1 Graph reduction

In order to improve the resolution process, we prove some properties of the problem

and we provide some definitions that will help us to reduce the size of input instances.

we prove some problem’s properties useful to reduce the size of input instances

using some idea presented in [48]. For this purpose, we give the following definitions:

Definition 4.3.1 We say that the edge e 2 E cover the meter m 2M, if (m,e) 2 A.

Definition 4.3.2 For each m 2 M, C(m) = {a 2 A|(m,a) 2 N} is the set of all the

arcs that cover the target m.
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4. A flow formulation for the Close-enough arc routing problem

It is possible to reduce the number of targets, taking into consideration the following

property:

Property 4.3.1 Let m1,m2 2 M be a couple of targets, the target m2 is redundant if

C(m1)✓C(m2).

proof 4.3.1 Let G0 = (V,A,M0) be the graph where M0 = M \ {m2}. Each tour T 0 in

G0 covering each target in M0 contains at last one arc a 2C(m1) and then the tour T 0

is also a feasible tour for the graph G = (V,A,M) (see Fig. 4.1).

In the following, we give two definitions to characterize the set of vertices and the

set of arcs that are necessary in every feasible solution.

Definition 4.3.3 The set V̂ = {v2V | 9m2M such that v= i or v= j, 8(i, j)2C(m)}

is the set of necessary vertices.

Definition 4.3.4 The set Â = {a 2 A | 9m 2M : C(m) = {a}} is the set of necessary

arcs.

Finally, by using the following two properties, we can try to reduce the size of the

input instances.

Property 4.3.2 The target m 2M is redundant if 9 a 2 Â such that a 2C(m).

Property 4.3.3 The target m2M is redundant if 9 (i, j)2C(m) such that i2 V̂ or j2

V̂ .

4.3.2 The Vertex Cover

In this section, to strengthen the MIP model, we will use some information obtained

from solving a vertex cover problem related to the directed graph G = (V,A,M) defin-

ing our problem. We consider the graph G0 = (V,E,M) obtained from G by transform-

ing each directed arc into an undirected edge and leaving in E only edges associated

with arcs of G that cover at least one target in M. On G0, we solve a vertex cover prob-

lem getting a subset (VC) of its vertices such that each edge of G0 is incident to at least
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4. A flow formulation for the Close-enough arc routing problem

(a) (b)

(c)

Figure 4.2: (a) Edges in which there is at least one target (red dot). (b) All edges in

which it is possible to read at least one target. (c) A feasible solution.
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4. A flow formulation for the Close-enough arc routing problem

• fi j 2 R+
0 are the flow variables associated with arc (i, j).

The model can be formulated as follows:

Minimize ∑
(i, j)2A

ci jxi j (4.1)

∑
a=(i, j)2A|(m,a)2N

xi j � 1 8 m 2M (4.2)

xi j � 1 8 (i, j) 2 Â (4.3)

∑
j2V |(i, j)2A

xi j� ∑
j2V |( j,i)2A

x ji = 0 8 i 2V (4.4)

∑
(0, j)2A

f0 j � 1 (4.5)

∑
j2V |(i, j)2A

fi j� ∑
j2V |( j,i)2A

f ji = 0 8 i 2V \ (VC[{0}) (4.6)

∑
j2V |(i, j)2A

fi j� ∑
j2V |( j,i)2A

f ji = 1 8 i 2 V̂ \{0} (4.7)

∑
j2V |(i, j)2A

fi j� ∑
j2V |( j,i)2A

f ji = ∑
j2V |(i, j)2A

xi j 8 i 2VC \ (V̂ [{0}) (4.8)

fi j Mxi j 8 (i, j) 2 A (4.9)

xi j 2 Z+
0 8 (i, j) 2 A (4.10)

fi j 2 R+
0 8 (i, j) 2 A (4.11)

The set of constraints (4.2) ensure that each target is covered at least from one arc

of the solution and constraints (4.3) ensure that each necessary arc is in the solution.

The set of constraints (4.4) ensure that for each node, the number of selected arcs in

its forward star corresponds to the number of selected arcs in its backward star. The

constraint (4.5) ensures outcoming flow from the depot. The set of constraints (4.6) set

to 0 the amount of in-flow for all the vertices not necessary to guarantee the connection

of the final solution. Constraints (4.7) set to 1 the amount of in-flow for all the vertices

that we know will be traversed in any feasible solution. Constraints (4.8) defined for

each vertex that could be used to ensure the connection of the solution, set an in-flow

equal to the time that the vertex is traversed in the solution. Constraints (4.9) ensure
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4. A flow formulation for the Close-enough arc routing problem

that we can have flow only on the arcs used in the solution.

4.4 Computational results

In this section, we present computational results obtained by using the MIP model.

Our experiments were performed on a OSX 10.9 operating system, 16 GB of RAM

and a quad-core processor Intel I7 running at 2.6 GHz. The MIP model was coded in

Java and solved using IBM ILOG CPLEX 12.5.

The computational tests are performed on the set of benchmark instances presented

in [37]. We compared our MIP model with the exact approaches proposed in [2, 38].

In Table 4.1 there are two sets of instances. In the first set, we have |V | = 500 and

|A|= 1500 while, in the second one, we have |V |= 500 and |A|= 1000. For each set,

we have four different numbers of targets (1
2
|A|, |A|, 5|A|, 10|A|).

Table 4.1 shows that our algorithm solves to optimality 39 instances. For these two

sets, our approach is competitive with the approach of Avilá et al. and outperforms

the results of Há et al.. Table 4.2 shows that in terms of computational times our MIP

model outperforms the previous approaches. In terms of numbers of solved instances,

our approach is always better than Há et.al. [38]. For the sparse instances (|A|= 1000),

our model outperforms the results of Ávila et al. [2] with respect to computation times.

For the dense instances (|A|= 1500), Ávila et al. are able to find the optimal solution

in 20 instances. Our approach finds the optimal solution in 19 instances; we can certify

optimality for 14 instances and for the remaining 6 instances, our gap is always less

than the 1%.
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4. A flow formulation for the Close-enough arc routing problem

Há et al. Avilá et al. Cerrone et al. Há et al. Avilá et al. Cerrone et al.

1500 0 0.5 105431.4 104892.6 104892.6 1000 0 0.5 76333.0 76033.0 76033.0

1500 1 0.5 97335.3 96766.0 96791.6 1000 1 0.5 84337.2 84237.2 84237.2

1500 2 0.5 112429.6 112102.1 112102.1 1000 2 0.5 *89353.5 89653.5 89653.5

1500 3 0.5 95378.1 94897.8 94897.8 1000 3 0.5 76384.4 75954.9 75954.9

1500 4 0.5 102423.9 101991.0 101991.0 1000 4 0.5 85397.0 85097.1 85097.1

1500 0 1 *129459.7 129570.6 129570.6 1000 0 1 *82387.1 82687.1 82687.1

1500 1 1 123423.0 123123.0 123123.0 1000 1 1 *89396.5 89896.5 89896.5

1500 2 1 133418.3 133418.3 133418.3 1000 2 1 98351.8 98051.8 98051.8

1500 3 1 116458.8 115943.8 115943.8 1000 3 1 82344.2 82344.2 82344.2

1500 4 1 117403.4 116721.5 116721.5 1000 4 1 *91315.6 91915.6 91915.6

1500 0 5 162497.8 162097.8 162097.8 1000 0 5 100495.3 100395.4 100395.4

1500 1 5 *160492.7 160792.8 160792.8 1000 1 5 109418.5 109318.5 109318.5

1500 2 5 177442.4 177242.4 177242.4 1000 2 5 114462.3 114362.3 114362.3

1500 3 5 *151452.9 151852.9 151852.9 1000 3 5 *103470.9 103791.0 103791.0

1500 4 5 *161433.4 161833.4 161833.4 1000 4 5 *112425.0 112625.0 112625.0

1500 0 10 *174404.1 174504.1 174504.1 1000 0 10 *110427.9 110528.0 110528.0

1500 1 10 173404.5 173404.5 173404.5 1000 1 10 *113494.1 113694.2 113694.2

1500 2 10 185430.8 185330.8 185330.8 1000 2 10 *123433.9 126660.0 126660.0

1500 3 10 162471.7 162071.7 162071.7 1000 3 10 115481.4 115281.4 115281.4

1500 4 10 *168434.3 168734.3 168734.3 1000 4 10 128463.2 128163.3 128163.3

Table 4.1: In both subtables, the first column shows the name of the instance, the

remaining three columns show the objective function values. The star (*) is associ-

ated with outliers (maybe depending on a different parsing of the instances). Optimal

solutions are in bold.

Há et al. Avilá et al. Cerrone et al.

Opt found Time Opt found Time Opt found Time

1500 0.5 0 7202.9 5 830.5 1 874.0

1500 1 2 4499.9 5 1235.5 3 433.5

1500 5 5 154.5 5 49.2 5 14.6

1500 10 5 205.9 5 50.1 5 9.9

1000 0.5 3 4155.6 5 245.7 5 47.7

1000 1 4 2447.8 5 88.6 5 13.3

1000 5 5 315.1 5 28.3 5 6.0

1000 10 5 82.3 5 20.3 5 4.4

Table 4.2: For the three models compared in this section, we show the running times

(seconds) and the number of certified optimal solutions. Each row of the table shows

the average value on five instances.
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Chapter 5

Properties, formulation and a

two-level metaheuristic for the

all-colors shortest path problem

Given an undirected graph in which each vertex is assigned to a color, in the all-colors

shortest path problem we look for a minimum cost shortest path spanning all different

colors. The problem is known to be NP-Hard and hard to approximate. In this chapter

we propose some new properties, as well as a compact representation for feasible solu-

tions. Furthermore, we present a novel mathematical formulation and a metaheuristic

approach based on these ideas. Computational results show the effectiveness of our

approach with respect to previous contributions.

5.1 Introduction

The All-Colors Shortest Path (ACSP) is a combinatorial optimization problem, first

introduced in [3]. The problem is defined on undirected graphs, in which a numerical

attribute (weight) is associated to each edge, while a logical attribute (called color,

or label) is given for each vertex. Therefore the different colors, appearing in the

graph, partition the set of vertices into disjoint subsets. The aim of ACSP is to find the

shortest, possibly non-simple path, spanning each color of the graph; that is, each path

composing a feasible solution needs to visit at least a vertex belonging to each color.
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5. Properties, formulation and a two-level metaheuristic for the ACSP problem

As mentioned, the optimal solution of the problem could correspond to a non-

simple path, meaning that a vertex may be visited more than once. As an exam-

ple, consider the graph illustrated in Figure 5.1. The value reported on each edge

represents its cost (for instance, the weight of {v1,v2} is 4), while the ci label next

to each vertex denotes its color. A (simple) path reaching every color is, for in-

stance, [v1,v4,v2,v3,v6,v5,v7], whose cost is 14. Despite visiting twice vertices v4

and v5, and visiting once the additional vertex v8, the all-colors shortest path is instead

[v1,v4,v2,v4,v5,v3,v5,v6,v8,v7]. Indeed, in this case, the cost of the path is 10.

Figure 5.1: Example graph with 8 vertices, 12 edges and 7 colors

To the best of our knowledge, the only previous contribution in the literature re-

garding ACSP is [3]. In this work, after introducing the problem, the authors show it

to be NP-Hard and inapproximable to a constant factor. They then present an integer

linear programming flow-based formulation, as well as three heuristic and three meta-

heuristic algorithms. The heuristic algorithms are iterative rounding methods based

on LP relaxations of the mathematical formulation, while the metaheuristics include

a simulated annealing (SA), an ant colony optimization method (ACO) and a genetic

algorithm (GA).

It is important to note that the definition of the problem given in [3] does not match

exactly ours. Indeed, in the previous work the path is required to start from a predefined

source vertex. We call this variant the All-Colors Shortest Path with Starting Vertex

(ACSP-SV). In a further variant, one may consider as set of candidate starting vertices

those assigned to a given color (All-Colors Shortest Path with Starting Color, or ACSP-

SC). In this chapter, we mainly focus on the ACSP problem variant, that is, we do not
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5. Properties, formulation and a two-level metaheuristic for the ACSP problem

make any assumption about the starting vertex; however, all the approaches that we

present are easily adaptable to solve ACSP-SV and ACSP-SC. Indeed, we also present

a comparison among our heuristic and model and those proposed in [3] for ACSP-SV

in Section 5.5. In Section 2, we also show ACSP and ACSP-SV to be computationally

equivalent.

In this chapter, we propose some properties, a novel formulation and a metaheuris-

tic algorithm to solve ACSP. The metaheuristic that we propose is a Variable Neigh-

borhood Search (VNS), and is based on the concept of two-level solutions. That is,

for each problem solution we consider a high-level, abstract representation of it, cor-

responding to the order in which colors are encountered, in addition to the low-level

(actual) one. As will be shown, by jointly operating on the two levels we obtained a

fast and effective algorithm.

The rest of the chapter is organized as follows. In Section 5.2 we define the problem

formally, and present some of its properties. In Section 5.3 we present a mathematical

formulation for the problem, while our VNS algorithm is discussed in Section 5.4.

Section 5.5 presents our computational results.

5.2 Problem definition and properties

Let G = (V,E,C) be an undirected, connected and vertex labeled graph, where V =

{v1, . . . , vn} is the set of vertices, E = {e1, . . . ,em} is the set of edges and C = {c1, . . . ,ck}

is a set of labels (or colors), with |C|  |V |. Moreover, let ω : E ! R
+ be a function

assigning a positive weight to each edge, and γ : V !C be a function assigning a color

to each vertex. We denote by Vc the subset of vertices of V having the color c, that is

Vc = {v 2 V : γ(v) = c}. We use the notation p = [vp
1 ,v

p
2 ,. . . ,v

p
h ] to denote a path p of

G; that is, for each i 2 {1, . . .h�1}, v
p
i 2V , v

p
i+1 2V and {v

p
i ,v

p
i+1} 2 E.

The aim of ACSP is to find a path p = [vp
1 ,v

p
2 ,. . . ,v

p
h ] such that i) all colors are

reached at least once, that is, 8c j 2C 9vp
i : γ(vp

i ) = c j; ii) the overall weight of the path

ω(p) = ∑
h�1
i=1 ω({v

p
i ,v

p
i+1}) is minimized.

In ACSP-SV, the starting vertex of any given feasible solution must be a predefined

source vertex vsrc 2 V . In ACSP-SC, the starting vertex must be chosen among those

associated with a predefined color csrc 2C.

Clearly, the problem is correctly defined only if |C|� 2; indeed, if |C|= 1 selecting
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5. Properties, formulation and a two-level metaheuristic for the ACSP problem

any vertex brings to a trivial optimal solution with value 0. It is also straightforward

to observe that no feasible solution exists if a given color ci 2C is not assigned to any

vertex in V .

We now discuss some ACSP properties. In [3], the authors proved that the follow-

ing results hold for ACSP-SV:

Theorem 5.2.1 ACSP-SV is NP-Hard.

Theorem 5.2.2 ACSP-SV is inapproximable to a constant factor.

Proposition 5.2.3 Let [vsrc, . . . ,vh] be the optimal solution for an ACSP-SV instance.

The path does not traverse any edge {vi,v j} more than once in the same direction.

The proof provided in [3] for Proposition 5.2.3 is directly applicable to ACSP as well,

while the ones for Theorems 1 and 2 are adaptable with trivial modifications. Further-

more, in the following we show the existence of polynomial-time reductions from each

of the two problems to the other.

We start from the reduction from ACSP to ACSP-SV. Let G = (V,E,C) be an input

graph for ACSP. Considering a new vertex v0 and a new color c0, such that γ(v0)= c0, we

build a new graph G0 = (V 0,E 0,C0), where V 0 = V [ {v0}, E 0 = E [ {{v0,vi} 8vi 2 V}

and C0 = C [ {c0}. Each edge {vi,v j} 2 E has the same weight in both G and G0,

and each node vi 2 V is assigned the same color in the two graphs. Furthermore,

the weight of each edge incident to v0 in G0 is equal to 2|E|ωmax + 1, where ωmax is

max({ω({vi,v j}) : {vi,v j} 2 E}).

We first need to show a preliminary result.

Lemma 5.2.4 Let p0 = [v0,vp
1 . . . ,v

p
h ] be an optimal solution for ACSP-SV in the above

described graph G0, with source vertex v0. The path p0 visits v0 exactly once.

proof 5.2.1 By contradiction, let us suppose that p0 visits v0 more than once, i.e. there

exists at least a k = 1, . . . ,h such that v
p
k = v0. Since ω({v0,vi}) = 2|E|ωmax +1, 8vi 2

V , ω(p0) � 4|E|ωmax + 2. Now, let q = [v
q
1 . . . ,v

q
k ] be an optimal ACSP solution in G.

From Proposition 5.2.3, we know that ω(q)  2|E|ωmax. By adding the vertex v0 at

the beginning of q, we obtain a new path q0 = [v0,v
q
1 . . . ,v

q
k ] that is a ACSP-SV feasible

solution with ω(q0) 4|E|ωmax+1. This means that ω(q0)< ω(p0), contradicting the

hypothesis.
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We are now ready to prove the reduction.

Proposition 5.2.5 The path p = [vp
1 . . . ,v

p
h ] is an optimal solution for ACSP in G if and

only if p0 = [v0,vp
1 . . . ,v

p
h ] is an optimal solution for ACSP-SV in G0, with source vertex

v0.

proof 5.2.2 =) Let us first assume that p is optimal for ACSP in G and, by con-

tradiction, that p0 is not optimal for ACSP-SV in G0 with source v0. We note that,

however, p0 is surely a feasible solution for the latter problem. Let q0 = [v0,v
q
1 . . . ,v

q
k ]

be the optimal one; it follows that ω(q0) < ω(p0). Furthermore, by Lemma 5.2.4, we

know that q = [v
q
1 . . . ,v

q
k ] obtained by removing {v0,v

q
1} from q0, does not contain v0

and is therefore a feasible ACSP solution in G. Since ω({v0,vp
1}) = ω({v0,v

q
1}), then

ω(q)< ω(p), which contradicts the hypothesis on the optimality of p.

(= Now, let us assume that p0 is optimal and that p is not. Again from Lemma

5.2.4, we know that p is feasible for ACSP in G. Let q = [v
q
1 . . . ,v

q
k ] be an optimal ACSP

solution in G; therefore, ω(q)< ω(p). We obtain that q0 = [v0,v
q
1 . . . ,v

q
k ] is feasible for

ACSP-SV in G0 with source v0, and ω(q0)< ω(p0), which is again a contradiction.

Let us now illustrate the reduction from ACSP-SV to ACSP. Let G = (V,E,C) be

an input graph for ACSP-SV, with source vertex vsrc 2 V . Considering a new vertex

v0 and a new color c0, such that γ(v0) = c0, we build a new graph G0 = (V 0,E 0,C0),

where V 0 =V [{v0}, E 0 = E [{{v0,vsrc}} and C0 =C[{c0}. Edges {vi,v j} 2 E have

the same weight in both G and G0, and nodes vi 2 V have the same color in the two

graphs. Moreover, the weight of {v0,vsrc} is equal to 2|E|ωmax + 1 (again, ωmax is

max({ω({vi,v j}) : {vi,v j} 2 E})).

We will first present two preliminary results (Lemmas 5.2.6 and 5.2.7), and then

prove the reduction (Proposition 5.2.8).

Lemma 5.2.6 Any optimal solution for ACSP in the above described graph G0 visits

v0 exactly once, and v0 is one of the two endpoints of the path.

proof 5.2.3 Let us assume that p = [vsrc . . . ,v
p
h ] is an optimal ACSP-SV solution in

G. From Proposition 5.2.3, ω(p)  2|E|ωmax. We note that p0 = [v0,vsrc . . . ,v
p
h ] is

feasible for ACSP in G0, since it visits all colors in C0 using edges contained in E 0, and

ω(p0) 4|E|ωmax +1.
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Any feasible ACSP solution in G0 needs to visit v0, in order to reach color c0. How-

ever, by construction, if such a solution visits v0 multiple times or contains v0 as an

internal node, it crosses the edge {v0,vsrc} more than once. Therefore, such a solution

has a weight that is strictly greater than the one of p0, and is not optimal.

Lemma 5.2.7 Given any feasible ACSP solution [vp
1 . . . ,v

p
h ], the reverse path [vp

h . . . ,v
p
1 ]

is also a feasible solution and has identical weight.

Since ACSP is defined on undirected graphs, it is straightforward to see that Lemma

5.2.7 holds.

Proposition 5.2.8 The path p = [vsrc . . . ,v
p
h ] is an optimal solution for ACSP-SV in G

(with source vsrc) if and only if p0 = [v0,vsrc . . . ,v
p
h ] is an optimal solution for ACSP in

G0.

proof 5.2.4 First of all we note that, from Lemmas 5.2.6 and 5.2.7, whenever consid-

ering an optimal ACSP solution in G0, without loss of generality we can consider v0

to be its starting vertex. We also note that, by construction, its adjacent vertex will

always be vsrc.

=) Let us first assume that p is optimal for ACSP-SV in G with source vsrc, and

that p0 is not optimal for ACSP in G0. Obviously, p0 is a feasible solution for the lat-

ter problem. Let q0 = [v0,vsrc . . . ,v
q
k ] be the optimal one, and let us call q its subpath

[vsrc . . . ,v
q
k ]. From Lemma 5.2.6, q does not contain v0. Since q visits all colors in C, it

is a feasible ACSP-SV solution in G with source vsrc. Moreover, ω(q0)< ω(p0), there-

fore ω(q)< ω(p) in G, which contradicts the hypothesis on the optimality of p.

(= Let p0 = [v0,vsrc . . . ,v
p
h ] be optimal for ACSP in G0; again from Lemma 5.2.6, its

subpath p = [vsrc . . . ,v
p
h ] is feasible for ACSP-SV in G with source vsrc. If we suppose

that p is not optimal, then there must exist a feasible solution q = [vsrc . . . ,v
q
k ] such that

ω(q)< ω(p). However, in this case, q0 = [v0,vsrc . . . ,v
q
k ] is a feasible ACSP solution in

G0 and its objective function is better than the one of p0, which is again a contradiction.

We now report some additional properties that we found for ACSP, and that we

used in both our mathematical model and VNS.

Proposition 5.2.9 Let p⇤= [vp⇤

1 , . . . ,vp⇤

h ] be an optimal solution for the ACSP problem.

Then i) γ(vp⇤

h ) must be different from γ(vp⇤

i ) 8i = {1, ..,h� 1}, and ii) γ(vp⇤

1 ) must be

different from γ(vp⇤

i ) 8i = {2, ..,h}.
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proof 5.2.5 Let us first prove i). It is easy to understand that if γ(vp⇤

i ) = γ(vp⇤

h ) for

some i= {1, ..,h�1}, then all colors are visited by the subpath p0= [vp⇤

1 , . . . ,vp⇤

h�1]. But

then, p0 is a feasible solution and it is cheaper than p⇤, contradicting the hypothesis.

Given that no assumption is made on v
p⇤

1 , the sub-property also holds for the ACSP-SV

and ACSP-SC problem variants. We can prove ii) analogously. Indeed, if γ(vp⇤

1 ) =

γ(vp⇤

i ) for some i = {2, ..,h}, it follows that p00 = [vp⇤

2 , . . . ,vp⇤

h ] is a feasible ACSP

solution that is cheaper than p⇤. This sub-property does not necessarily hold for ACSP-

SV and ACSP-SC, since the choice of the first endpoint is constrained.

Before introducing the next property, we present an alternative representation for

any feasible solution. Let p = [vp
1 ,v

p
2 , . . . ,v

p
h ] be a feasible path for ACSP, that we also

define the low-level representation of the path itself. The high-level representation of

p is the path p0 =< v
p0

1 ,vp0

2 , . . . ,vp0

|C| > of G0 = (V,{V ⇥V},C), containing the vertices

corresponding to the first occurrence of each color in p. For each consecutive couple of

vertices v
p0

i and v
p0

i+1, the weight of the related edge is equal to ω({v
p0

i ,vp0

i+1}) if it also

belongs to p, or to the sum of the weight of the edges between the two vertices in p

otherwise. In the following, we will also use the term high-level (or low-level) solution

to refer to a solution in the corresponding representation. Note that we use square and

angle brackets to distinguish low-level and high-level solutions, respectively.

In Figure 5.2(a) we show the optimal solution for the example of Figure 5.1, while

in Figure 5.2(b) its high-level representation is shown. In this figure, we use dotted

lines to highlight edges that substitute subpaths of p. That is, in Figure 5.2(b) edge

{v2,v5} replaces the subpath [v2,v4,v5], {v3,v6} replaces [v3,v5,v6], and {v6,v7} re-

places [v6,v8,v7].

(a) Low-level (actual) solution

(b) High-level solution

Figure 5.2: Low-level and high-level optimal solution for the instance of Figure 5.1
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Clearly, if p0=< v
p0

1 ,vp0

2 , . . . ,vp0

|C| > is the high-level representation of a path p, they

have the same cost and share the same starting vertex. Furthermore, from Proposition

5.2.9, we know that if v
p0

|C| is not the final vertex of p, we can drop all subsequent

vertices from the path and obtain a better feasible solution. In particular, the high-level

and the low-level representation of an optimal solution will always share the same

endpoints.

We can now present the following result, connected to the concept of high-level

solution:

Proposition 5.2.10 Let p0 =< v
p0

1 , . . . ,vi,v j, . . . ,v
p0

|C| > be a high-level, optimal ACSP

solution. Then, the subpath between any couple of consecutive vertices vi and v j in

the corresponding low-level solution is the shortest path between vi and v j in the input

graph G.

proof 5.2.6 Let vi and v j be any couple of consecutive vertices in p0, and let SP(i, j)

denote their shortest path in G. Let us suppose by contradiction that the low-level

representation p of p0 contains a subpath between them that is not their shortest path

in G; it follows that the cost of this subpath is strictly greater than the one of SP(i, j).

Therefore, by replacing this subpath with SP(i, j), we obtain a feasible ACSP solution

that is better than p0, contradicting the hypothesis.

5.3 Mathematical model

In this section we introduce a mathematical model for the ACSP, whose solutions will

be used to verify the effectiveness of our metaheuristic.

Starting from the graph G, we build a new directed graph Gd = (V d,Ed,Cd). V d

contains all vertices of V , as well as a dummy source s and a dummy sink t. Ed contains

both arcs (vi,v j) and (v j,vi) for each edge {vi,v j} 2 E, and both arcs have the same

weight of the original edge. Additionally, Ed contains arcs {(s,vi) : vi 2V}[{(vi, t) :

vi 2 V}; these arcs have cost zero. We define δ+(vi,G
d) = {v j 2 V d : (vi,v j) 2 Ed}

and ∆+(vi,G
d) = {(vi,v j)2Ed}. We similarly define δ�(vi,G

d) = {v j 2V d : (v j,vi)2

Ed} and ∆�(vi,G
d) = {(v j,vi) 2 Ed}. Finally, Cd contains all colors in C, as well as

two additional ones, cs, ct ; these colors are assigned to s and t, respectively, while all
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other nodes have the same color assigned in the two graphs. In the solution, we will

look for a path from s to t crossing at least a vertex for each color in C.

The decision variables are the following:

• xi: binary variable equal to 1 if vertex vi 2 V belongs to the solution, and 0

otherwise.

• yi j: binary variable equal to 1 if arc (vi,v j) 2 Ed belongs to the solution, and 0

otherwise. These variables are binary since no arc of Ed will be crossed more

than once in the solution found by the model. By effect of Proposition 5.2.3, this

does not compromise its optimality.

The mathematical model is the following:

min ∑
(vi,v j)2Ed

ω(vi,v j)yi j (5.1)

∑
vi2Vc

xi � 1 c 2C (5.2)

∑
vk2δ�(vi,Gd)

yki � xi vi 2V (5.3)

∑
vk2δ�(vi,Gd)

yki = ∑
v j2δ+(vi,Gd)

yi j vi 2V (5.4)

∑
vi2δ+(s,Gd)

ysi = 1 (5.5)

∑
i2δ�(t,Gd)

yit = 1 (5.6)

yi j  xi (vi,v j) 2 Ed : vi 2V (5.7)

∑
(vi,v j)2∆�(v j,Gd)|vi /2S,v j2S

yi j � xk S✓V d \{s},vk 2 S (5.8)

xi 2 {0,1} vi 2V (5.9)

yi j 2 {0,1} (vi,v j) 2 Ed (5.10)

The objective function (5.1) minimizes the cost of the individuated path. Con-

straints (5.2) ensure that at least a vertex for each color is visited. Constraints (5.3)

and (5.4) impose that there is at least an ingoing arc for each visited vertex, and that
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the number of ingoing and outgoing arcs is the same for each of them, respectively.

Constraints (5.5) and (5.6) state that there must be exactly one edge leaving s and one

edge entering t, respectively. Constraints (5.7) state than an arc (vi,v j) with i 2V can

belong to the solution if vi belongs to it as well. Constraints (5.8) ensure that all vis-

ited vertices are connected to s, and hence that the solution is connected. They are a

modified version of the “directed connectivity constraints” and they state that, for each

subset S ✓ V d \{s}, if a visited vertex vk belongs to S then there must be at least one

arc entering in S. Finally, constraints (5.9)-(5.10) are variable definitions.

We now present some additional valid inequalities for our model, and briefly dis-

cuss how to adapt it to the ACSP-SV and ACSP-SC variants.

5.3.1 Valid inequalities

In order to speed up the resolution of the model, in the following we introduce further

constraints to break symmetry and take advantage of some of the properties introduced

in the previous section.

• Symmetry often heavily affects the computational time required by integer pro-

gramming models to find the optimal solution. Unfortunately, in the case of

ACSP there is symmetry that must be managed by using additional constraints.

Indeed, from Lemma 5.2.7, if [vp
1 , . . . ,v

p
h ] is a feasible ACSP solution, then [vp

h , ... . . . ,v
p
1 ]

is feasible as well and has identical cost. These two paths would correspond to

two distinct feasible solutions for our model ([s,vp
1 , . . . ,v

p
h , t] and [s,vp

h , . . . ,v
p
1 , t],

respectively).

We break this symmetry by introducing a new constraint, ensuring that the index

of the first endpoint is always lower than the index of the last one. Formally,

∑
vi2V

iysi  ∑
v j2V

jy jt (5.11)

This constraint, along with constraints (5.5)-(5.6), produces the desired effect.

• As a consequence of Proposition 5.2.9, we know that in the optimal solution the

two endpoints have different colors. Hence, we introduced the following valid
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inequalities:

∑
vi2Vc

ysi + ∑
v j2Vc

y jt  1 c 2C (5.12)

Our computational tests showed that these constraints improve the LP relaxation

value and, in general, they reduce the time needed to find the optimal solution.

• Let vi be a vertex contained in the optimal path; let c be its color. Again from

Proposition 5.2.9, we know that no vertex v j 2Vc \{vi} can be the final endpoint.

This is expressed by the following constraints:

∑
v j2Vc\{vi}

y jt  1� xi c 2C,vi 2Vc (5.13)

Analogous constraints are also valid with respect to the starting endpoint:

∑
v j2Vc\{vi}

ys j  1� xi c 2C,vi 2Vc (5.14)

In the following we refer to the formulation (5.1)-(5.14) as ILP2 formulation.

5.3.2 Adapting the model to ACSP-SC and ACSP-SV

In order to adapt our model for the ACSP-SC and ACSP-SV, it is sufficient to solve the

above presented mathematical formulation on differently defined directed graphs. Let

us define Gd0 = (V d,Ed0 ,Cd) the directed graph for ACSP-SC, and Gd00 = (V d,Ed00 ,Cd)

the one for ACSP-SV. For each vi 2V d \{s} and v j 2V d \{s}, both Ed0 and Ed00 contain

(vi,v j) if and only if the arc is contained in Ed , and the arc has the same weight that it

has in Ed . Furthermore, Ed0 contains arcs {(s,vi) : vi 2Vcsrc
}, while Ed00 contains only

the arc (s,vsrc), and these arcs have cost zero.

It is easy to understand that Gd0 and Gd00 model the requirements on the first end-

point of the path related to the ACSP-SC and ACSP-SV problems, respectively. Fur-

thermore, given the above mentioned requirements, Constraints (5.11) and (5.14) are
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not valid for these variants of the problem.

In Section 5.5, we refer to the ACSP-SV formulation (that is, (5.1)-(5.10),(5.12),(5.13)

on graph Gd00) as ILP2-SV.

5.4 Variable Neighborhood Search

In Section 5.2 we introduced the concept of high-level solutions, whose main advan-

tage is that they represent feasible solutions as fixed-length, simple paths, showing in

which order (and with which vertex) each color is first reached. As already discussed,

supposing to be able to determine the color visiting sequence of the optimal solution,

as well as the correct vertex for each color, finding the optimal solution would be an

easy task, since we would just need to connect such vertices by means of shortest paths.

Our VNS algorithm is based on this fundamental idea, trying to iteratively improve a

current candidate solution as follows:

1. Given a feasible, high-level solution, we look for new solutions by perturbing

the color visiting sequence using two classical neighborhood strategies for TSP

problems, that is, relocate and 2-opt;

2. Once a new color visiting sequence has been decided in the above step, we deter-

mine locally optimal choices for the vertices of the colors involved in the pertur-

bation.

Hence, we determine first the color sequence, and then the actual vertices of new

high-level solutions. Once these vertices are chosen for a new high-level solution, it

is easy to reconstruct the corresponding low-level one, since these vertices will always

be connected by means of shortest paths. In this sense, we say that our approach works

on two levels.

We also developed a greedy heuristic based on this fundamental idea, that operates

in |C|�1 steps and is used to produce the first feasible solution.

Algorithm 1 presents the pseudocode of our metaheuristic approach. After indi-

viduating a starting feasible solution using the heuristic algorithm described in Section

5.4.1, we look for improvements by means of a local search that uses relocate neigh-

borhoods As soon as this local search step fails to find an improvement, we apply a

new local search using a 2-opt neighborhood strategy. If we manage to improve the
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Algorithm 1: VNS pseudocode

1 sol GreedyInit();
2 bestSol sol;

3 for i = 1 to MaxShakes do

4 improvement true;

5 while improvement = true do

6 while improvement = true do

7 sol0 Relocate(sol);
8 if ob jFunction(sol0)< ob jFunction(sol) then

9 sol sol0;

10 else

11 improvement f alse;

12 sol0 2-opt(sol);
13 if ob jFunction(sol0)< ob jFunction(sol) then

14 sol sol0;

15 improvement true;

16 if ob jFunction(sol)< ob jFunction(bestSol) then

17 bestSol sol;

18 sol Shake(sol);

19 return bestSol;

current solution, the algorithm goes back to the relocate local search, otherwise we

attempt to escape from the current local optimum by means of a shake operator, and

the algorithm iterates. The two local search operators are presented in Section 5.4.2,

while the shake operator is discussed in Section 5.4.3. When the 2-opt local search

fails and a pre-defined number of shakes has been reached, the algorithm ends and the

best solution found is returned.

5.4.1 Initialization algorithm

In a preliminary step, we evaluate the shortest paths among each couple of vertices

of G by using the Floyd-Warshall algorithm (see [16]). As well known, the algorithm

operates in O(|V |3) time.

The initialization algorithm then performs |C| steps to produce a feasible ACSP

solution. In the first step, a random vertex is chosen as first endpoint. In the i-th
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step (i = 2, . . . , |C|) the algorithm chooses, among all vertices whose colors differ from

those of the vertices chosen in the previous steps, the one whose shortest path from the

vertex chosen in the (i�1)-th step has minimum weight.

It is clear that, after the |C|-th step, the sequence of chosen vertices is a high-level

feasible solution. Since the Floyd-Warshall algorithm allows to reconstruct each short-

est path by means of an auxiliary predecessor matrix, we are also able to reconstruct

the corresponding low-level solution.

The initialization algorithm is easy to adapt to ACSP-SV and ACSP-SC. Indeed, in

the first case the starting vertex is always chosen to be vsrc, while in the second case it

will be a random one among those associated to csrc.

5.4.2 Relocate and 2-Opt Local Search

Let p =< v
p
1 , . . . ,v

p

|C| > be the current high-level solution. Consider the associated

color sequence < c
p
1 , . . . ,c

p

|C| >, where c
p
i = γ(vp

i ). Our two local search operators

work as follows.

• The relocate local search performs |C|2 � |C| iterations, each building a new

neighbor, operating in two steps:

1. For i 2 {1, . . . , |C|}, the vertex in the i-th position is removed from p, hence

we obtain an incomplete high-level solution < v
p
1 , . . . ,v

p
i�1,v

p
i+1, v

p

|C| >. If

i = 1 or |C|, the solution is simply truncated to remove the corresponding

endpoint. Otherwise, new locally optimal vertex choices are made for colors

c
p
i�1 and c

p
i+1, since v

p
i�1 and v

p
i+1 may no longer be favorable choices now

that they are directly connected in the high-level solution. Consider for in-

stance the case of Figure 5.3(b), in which new vertices must be chosen for

c
p
3 and c

p
5 after removing v

p
4 from the solution show in Figure 5.3(a).

2. For each incomplete solution obtained from the previous step, |C|� 1 new

complete high-level solutions are obtained by adding a newly chosen vertex

with color c
p
i in each position j 2 {1, . . . , |C|}, j 6= i. For instance, in Figure

5.4(a), color c
p
i = c

p
4 is relocated in the second position ( j = 2).

• In the 2-opt local search, each new neighbor is generated by removing two edges

from the current high-level solution and replacing them with two different ones.
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Overall,
|C2|�|C|

2
neighbors are created, operating as follows:

– For each i = 1, . . . , |C|� 1 and j = i+ 1, . . . , |C|, a neighbor p0 whose se-

quence of colors in its high-level representation is < c
p
1 , . . . ,c

p
i�1,c

p
j , . . . ,

c
p
i ,c

p
j+1, . . . ,c

p

|C| > is generated, where the color visiting sequence between

j and i in p0 is the inverse of p. For instance, given the high-level solution

p with |C|= 6 in Figure 5.5(a), by applying a 2-opt operation corresponding

to i = 3 and j = 5 we obtain a neighbor whose color visiting sequence is

shown in Figure 5.5(b), that is, < c
p
1 ,c

p
2 ,c

p
5 ,c

p
4 ,c

p
3 ,c

p
6 >. The choice for a

given color c
p
k in p0 will be v

p
k if k /2 {i� 1, i, j, j+ 1}, while a new choice

is required otherwise. That is, we determine new choices for the endpoints

of the edges involved in the swap. If i = 1, c
p
j becomes the color of the new

starting endpoint, and similarly, if j = |C|, c
p
i is the new final color.

We now describe how new vertices are chosen when needed for the two steps of

each relocate iteration, as well as for each 2-opt iteration. In the following, we de-

fine undecided the colors for which a new vertex has to be chosen, according to the

previously described steps.

The underlying idea is to generate for each of these three steps an auxiliary directed

graph Ga = (V a,Ea), containing all candidate vertices belonging to each undecided

color. In Ga, each vertex of an undecided color ci has an ingoing arc that connects it to

the vertex that would precede it in the high-level solution that we are building, as well

as an outgoing one to the vertex that would follow it. If ci is preceded or followed in

our solution by another undecided color c j, its vertices are connected to all vertices of

c j. The weight of each arc in Ga is equal to the cost of the shortest path between its

endpoints in the original graph G. Dummy source or destination nodes are considered

to handle special cases in which preceding or following nodes do not exist. By looking

for shortest paths in Ga, we identify the new vertices for the undecided colors. In more

detail:

• Relocate, Step 1: Let us assume that v
p
i�2 and v

p
i+2 both exist. In this case,

V a is composed of {v
p
i�2,v

p
i+2}[Vc

p
i�1
[Vc

p
i+1

. Ea contains edges (vp
i�2,v

0),8v0 2

Vc
p
i�1

, arcs (v0,v00),8v0 2 Vc
p
i�1
,v00 2 Vc

p
i+1

and arcs (v00,vp
i+2),8v

00 2 Vc
p
i+1

. We then

use the Dijkstra algorithm to find a shortest path in Ga from v
p
i�2 and v

p
i+2; by

construction, this path will cross exactly one vertex with color c
p
i�1 and one vertex
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with color c
p
i+1. Figure 5.3(c)-(d) shows graph Ga and the individuated shortest

path (edge weights are omitted).

If c
p
i�1 is the starting color, v

p
i�2 is substituted by a dummy source, which is

connected in Ga to the vertices with color c
p
i�1 though zero-weighted edges. With

an analogous reasoning, we replace v
p
i+2 with a dummy destination if c

p
i+1 is the

last color reached by the solution.

• Relocate, Step 2: Let us assume that c
p
i has to be relocated in the j-th position,

with 1 < j < |C|. Let vprv and vnxt be the vertices that will precede and follow

the new vertex. In the auxiliary graph, V a contains {vprv,vnxt}[Vc
p
i
, while Ea

contains arcs (vprv,v0) and (v0,vnxt) 8v0 2 Vc
p
i
. By looking for a shortest path

between vprv and vnxt , we identify a vertex with color c
p
i . Figure 5.4(b)-(d) show

these steps and the final high-level representation of the newly built neighbor.

If j = 1, vprv does not exist; the procedure reduces to selecting the vertex in Vc
p
i

whose shortest path distance from vnxt = v
p
1 is minimal. The same holds with

respect to vprv = v
p

|C| if j = |C|.

• 2-opt: In Ga, for each color c
p
k 2C, V a contains v

p
k if k /2 {i�1, i, j, j+1}, or Vc

p
k

otherwise. Given any couple of consecutive colors c
p
k and c

p
q in the new solution,

Ea will contain an arc from each vertex with color c
p
k to each vertex with color c

p
q

in V a.

If the first and last endpoint of the path do not belong to undecided colors (i�

1 > 1 and j + 1 < |C|), we look for a shortest path between them. Otherwise,

if i� 1  1, the first endpoint belongs to either color c
p
i�1 = c

p
1 or c

p
j ; in both

cases, this endpoint is not known. Hence, we consider a dummy source that is

connected to each vertex with color c
p
1 (or c

p
j , respectively) with zero-weighted

arcs. Analogously, if j+1� |C|, the last endpoint of the path has color c
p
j+1 = c

p

|C|

or c
p
i . In these cases, we add a dummy destination.

Figure 5.5(c) shows the Ga auxiliary graph for the considered example; note that

since i� 1 = 2 > 1 we do not need the dummy source (the first endpoint v
p
1 is

known), while the dummy destination is needed ( j = 5= |C|�1). Figures 5.5(d)-

(e) show the shortest path found and the related high-level neighbor solution,

respectively.
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5.4.3 Shake operator

The shake operator performs a number of random perturbations to the current solution,

in order to try to escape from the local optimum. In more detail, every time that

the shake operator is invoked, it performs
|C|

shake1
relocate operations. For each of these

operations, the i and j values used in the two steps of the relocate procedure are chosen

randomly. Overall, a total of shake2 shake operations are performed, and every shake2
shake3

invocations of the operator, the current solution is rebuilt from scratch by using the

initialization algorithm described in Section 5.4.1. The values chosen for parameters

shake1, shake2 and shake3 are reported in Section 5.5.

5.5 Computational results

This section presents the test scenarios and the results obtained during our computa-

tional test phase. Our VNS algorithm was coded using the C++ programming lan-

guage, while the mathematical formulations were implemented and solved using the

IBM ILOG CPLEX 12.6.1 solver. All tests were performed in single thread mode on a

machine with an Intel Xeon E5-2650 v3 processor running at 2.3 GHz and 128 GB of

RAM. With respect to the VNS parameters, after a preliminary tuning phase we chose

the values shake1 = 3, shake2 = |V | and shake3 = 5. For CPLEX, we considered a

time limit equal to 3600 seconds. Whenever the solver reaches this threshold, the re-

lated solution value is marked with a “*” symbol to highlight that this value is an upper

bound of the optimal solution.

The following two subsection contain results for the ACSP-SV and ACSP prob-

lems, respectively.

5.5.1 Comparisons on the ACSP-SV problem

In this subsection, we compare the effectiveness and the performance of our formula-

tion and VNS metaheuristic with the formulation and heuristics proposed in [3] for the

ACSP-SV problem.

We start by comparing the performance of our ILP2-SV formulation with the for-

mulation proposed in [3], named ILP. Both formulations were implemented by us, and

compared on our testing environment.
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Instances ILP2-SV ILP GAP

n m k LP Obj Time LP Obj Time LP Obj

50 189 10 37.03 40 0.40 26.01 40 10.53 42.39% 0.00%

50 152 20 101.00 101 0.06 79.35 101 3.20 27.29% 0.00%

50 154 25 129.34 132 0.21 106.36 132 6.08 21.60% 0.00%

100 338 25 128.81 138 3.04 94.33 138 86.91 36.55% 0.00%

100 330 40 207.62 220 1.25 148.55 220 19.82 39.76% 0.00%

100 373 50 229.28 233 0.95 192.91 233 35.74 18.85% 0.00%

200 734 50 179.69 223 158.22 119.95 223* 3612.17 49.81% 0.00%

200 746 75 373.51 399 87.47 310.25 399 2013.22 20.39% 0.00%

Table 5.1: Comparison of the ILP2-SV and ILP formulations for ACSP-SV on the

instances proposed in [3].

A first comparison between ILP and ILP2-SV was carried out on the dataset of

instances proposed in [3], having a number of vertices between 50 and 200 and a

number of colors between 10 and 75. The instance files have been provided by the

authors.

The results of this comparison are reported in Table 5.1. Under the Instances head-

ing, we report the instances characteristics (number of vertices n, number of edges

m and number of colors k). The next six columns report the root linear relaxation

value (LP), the solution value (Obj) and the computational time (Time), in seconds,

for ILP2-SV and ILP, respectively. Finally, under the GAP heading, we report the gap

percentage between the linear relaxation values and between the solution values, re-

spectively. These gaps are computed by using the formulas 100⇥ LP(ILP2�SV )�LP(ILP)
LP(ILP)

and 100⇥ Ob j(ILP2�SV )�Ob j(ILP)
Ob j(ILP) , respectively.

The results under the GAP heading show that the linear relaxation of ILP2-SV is

always better than the one of ILP, with gaps ranging from 18.85% to 49.81%. With

respect to solutions quality, we note that ILP2-SV always finds the optimal one, while

ILP reaches the time limit once (see the case with 200 nodes and 50 colors), hence it is

not able to certify the optimality of the solution found in this case. Regarding compu-

tational times, ILP2-SV is always faster than ILP, solving 6 out of 8 instances in less

than 4 seconds, and requiring about 158 seconds in the worst case. The computational

times of ILP are significantly higher, and worse in all cases. Indeed, as already men-

tioned, in the worst case it reaches the time limit, on the last instance it requires about

2013 seconds, and on the remaining 6 instances the computational time ranges from 3
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to 87 seconds. The results of Table 5.1 clearly show that ILP2-SV outperforms ILP on

this dataset.

A second comparison among the two formulations was carried out on a new, larger

set of instances. Our instances were generated with respect to 3 parameters: the num-

ber of vertices n, the number of edges m and the number of colors k. The vertices

are randomly disposed in a square area of size 50x50. The value of n is chosen in the

set {25,50,75,100,150}. The number of edges m is chosen by using a density d that

ranges in the set {0.2,0.3,0.4,0.5} (m = n(n�1)
2
⇥ d). Finally, the number of colors k

belongs to the set {d0.1ne,d0.2ne,d0.3ne,d0.4ne}. We generated 5 instances for each

combination of parameters, discarding the case n = 25, k = d0.1ne= 3, which resulted

to be particularly trivial and in which it would not make sense to define the 2-opt op-

erator (these instances were also used to test our VNS, as will be discussed in Section

5.5.2). Therefore, our dataset is composed in total of 76 different scenarios and 380

individual instances. For these tests, the node indexed with 0 was also assumed to be

the ACSP-SV source vertex. Our instances are available online1.

Table 5.2 contains the results of the comparison between ILP2-SV and ILP on

this new set of instances. Table headings have the same meaning that they have for

Table 5.1, with the addition of column m which reports the value of the additional

instance parameter. However, in this case we report average values for each scenario.

We can note that the linear relaxation values of ILP2-SV are again always better

than the ones of ILP, with a percentage gap that ranges from about 1.5% to over 100%.

In 56 out of 76 scenarios, the percentage gap is greater than 20%. As a consequence,

we observe a remarkable difference between the effectiveness of ILP2-SV and ILP.

Indeed, ILP2-SV reaches the time limit without finding the optimal solution only once

(150 nodes, 4470 edges, 30 colors). On the other hand, ILP reaches the time limit

24 times, and the first failures occur on the instances with 75 nodes. The solution

percentage gap is lower than -5% in 14 out these 24 cases, and it decreases down

to about -35%. We note in particular that ILP never finds the optimal solution for the

instances with n = 150. With respect to performances, ILP2-SV is most of the times an

order of magnitude faster than ILP. We can note that the scenarios with up to 100 nodes

are optimally solved by ILP2-SV within about 3.5 minutes. On the same scenarios, ILP

reaches the time limit 8 times. In the 15 scenarios with 150 nodes solved to optimality

1http://www.dipmat2.unisa.it/people/carrabs/www/DataSet/ACSP Instances.zip
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Instances ILP2-SV ILP GAP

n m k LP Obj Time LP Obj Time LP Obj

25 60 5 67.97 72.40 0.08 47.31 72.40 0.30 43.69% 0.00%

25 90 5 57.33 61.40 0.07 39.36 61.40 0.49 45.65% 0.00%

25 120 5 39.66 47.40 0.04 32.80 47.40 0.33 20.90% 0.00%

25 150 5 39.19 46.00 0.10 29.96 46.00 0.52 30.79% 0.00%

25 60 8 116.64 117.20 0.11 86.73 117.20 1.04 34.48% 0.00%

25 90 8 98.22 100.20 0.03 74.97 100.20 1.40 31.02% 0.00%

25 120 8 82.26 89.20 0.13 68.63 89.20 1.66 19.86% 0.00%

25 150 8 80.25 85.20 0.10 66.46 85.20 1.64 20.76% 0.00%

25 60 10 149.80 157.20 0.01 137.37 157.20 0.44 9.05% 0.00%

25 90 10 118.16 137.40 0.04 107.68 137.40 1.55 9.73% 0.00%

25 120 10 109.14 110.00 0.07 99.76 110.00 1.09 9.41% 0.00%

25 150 10 81.21 104.20 0.11 79.96 104.20 4.42 1.56% 0.00%

50 245 5 37.67 44.40 0.24 21.85 44.40 3.84 72.36% 0.00%

50 367 5 28.84 39.00 0.21 17.30 39.00 6.28 66.74% 0.00%

50 490 5 23.87 37.40 0.33 15.21 37.40 8.26 56.94% 0.00%

50 612 5 24.25 29.60 0.55 12.27 29.60 7.90 97.61% 0.00%

50 245 10 78.73 96.60 0.28 62.62 96.60 9.10 25.73% 0.00%

50 367 10 73.89 80.40 0.33 51.44 80.40 9.93 43.65% 0.00%

50 490 10 66.12 81.00 0.80 44.98 81.00 36.40 47.00% 0.00%

50 612 10 54.61 69.80 0.90 36.82 69.80 25.07 48.30% 0.00%

50 245 15 152.49 176.20 0.34 125.39 176.20 10.38 21.61% 0.00%

50 367 15 129.13 136.60 0.41 102.33 136.60 14.19 26.19% 0.00%

50 490 15 112.05 134.20 0.74 88.59 134.20 31.59 26.49% 0.00%

50 612 15 100.14 111.60 0.96 76.12 111.60 28.93 31.55% 0.00%

50 245 20 223.05 228.60 0.28 188.52 228.60 6.47 18.32% 0.00%

50 367 20 193.58 205.00 0.48 165.63 205.00 14.56 16.88% 0.00%

50 490 20 148.33 161.40 0.65 125.47 161.40 22.71 18.22% 0.00%

50 612 20 157.06 171.60 0.80 133.60 171.60 22.24 17.56% 0.00%

75 555 8 48.51 58.60 1.05 23.79 58.60 20.18 103.93% 0.00%

75 832 8 41.99 62.80 2.55 27.91 62.80 82.42 50.46% 0.00%

75 1110 8 30.16 46.40 4.06 18.48 46.40 80.05 63.20% 0.00%

75 1387 8 34.45 43.60 2.71 20.04 43.60 44.49 71.87% 0.00%

75 555 15 97.19 121.40 0.95 79.93 121.40 40.24 21.59% 0.00%

75 832 15 94.64 111.80 5.12 70.67 111.80 145.38 33.91% 0.00%

75 1110 15 75.00 96.40 4.49 55.10 96.40 407.45 36.10% 0.00%

75 1387 15 60.35 90.80 7.68 47.56 90.80 701.17 26.88% 0.00%

75 555 23 187.52 222.40 3.53 162.47 222.40 154.83 15.42% 0.00%

75 832 23 158.94 178.00 2.94 127.54 178.00 402.89 24.62% 0.00%

75 1110 23 138.30 161.20 7.90 107.63 162.00* 973.69 28.49% -0.49%

75 1387 23 131.89 147.00 3.70 105.30 147.00 254.37 25.25% 0.00%

75 555 30 291.01 307.20 1.70 237.69 307.20 109.54 22.43% 0.00%

75 832 30 204.28 234.00 1.45 181.19 234.00 68.79 12.74% 0.00%

75 1110 30 200.79 217.00 3.41 165.65 217.00 369.20 21.21% 0.00%

75 1387 30 186.20 208.40 8.96 153.63 209.00* 982.64 21.20% -0.29%

100 990 10 51.71 70.80 4.94 26.39 70.80 258.00 95.95% 0.00%

100 1485 10 40.64 58.20 6.77 23.84 58.20 155.52 70.48% 0.00%

100 1980 10 29.90 52.00 10.54 22.68 52.00 381.85 31.85% 0.00%

100 2475 10 32.17 49.20 25.50 19.71 49.60* 1341.44 63.22% -0.81%

100 990 20 128.05 149.60 5.48 91.30 149.60 343.70 40.26% 0.00%

100 1485 20 92.75 119.60 11.85 71.46 119.60 905.75 29.80% 0.00%

100 1980 20 76.00 121.40 22.04 64.89 122.40* 2300.55 17.12% -0.82%

100 2475 20 64.00 103.60 23.79 56.79 108.60* 1947.42 12.70% -4.60%

100 990 30 225.80 246.80 10.27 172.88 246.80 354.60 30.61% 0.00%

100 1485 30 184.57 211.80 8.67 149.75 211.80 440.12 23.25% 0.00%

100 1980 30 153.70 185.00 202.05 121.44 192.00* 2441.90 26.57% -3.65%

100 2475 30 134.31 173.20 195.68 104.38 183.00* 3258.62 28.67% -5.36%

100 990 40 315.86 341.00 3.77 270.11 341.00 232.40 16.94% 0.00%

100 1485 40 269.10 297.80 10.63 229.42 297.80 775.97 17.30% 0.00%

100 1980 40 215.75 237.60 7.72 179.59 237.60 325.57 20.14% 0.00%

100 2475 40 204.92 236.40 57.14 164.52 239.00* 3063.54 24.55% -1.09%

150 2235 15 58.97 89.20 58.22 36.10 97.20* 3612.09 63.33% -8.23%

150 3352 15 40.97 74.00 275.76 29.76 81.40* 3191.23 37.64% -9.09%

150 4470 15 42.87 69.40 243.49 30.57 80.00* 3612.18 40.26% -13.25%

150 5587 15 30.32 65.80 539.53 28.44 78.60* 3612.21 6.62% -16.28%

150 2235 30 159.26 186.40 144.21 110.01 196.00* 3377.19 44.77% -4.90%

150 3352 30 122.61 156.80 373.97 93.27 174.80* 3612.07 31.46% -10.30%

150 4470 30 91.96 144.40* 1209.91 75.75 181.80* 3612.11 21.40% -20.57%

150 5587 30 91.77 136.80 743.04 76.95 191.00* 3612.17 19.25% -28.38%

150 2235 45 276.83 318.00 107.23 222.08 343.00* 3612.15 24.65% -7.29%

150 3352 45 209.45 253.60 233.50 165.19 293.60* 3612.14 26.80% -13.62%

150 4470 45 192.62 230.00 396.87 147.59 256.20* 3612.12 30.51% -10.23%

150 5587 45 169.15 208.00 888.98 133.94 276.60* 3612.16 26.29% -24.80%

150 2235 60 405.33 433.40 56.06 339.73 434.40* 2646.15 19.31% -0.23%

150 3352 60 317.41 352.60 150.30 271.63 364.00* 2953.43 16.85% -3.13%

150 4470 60 266.24 312.20 608.61 232.13 331.00* 3513.10 14.69% -5.68%

150 5587 60 243.86 294.60 1066.29 198.13 454.25* 3612.22 23.08% -35.15%

Table 5.2: Comparison of the ILP2-SV and ILP formulations for ACSP-SV on the new

set of instances.
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by ILP2-SV, the model requires up to about 18 minutes, while as mentioned the time

limit is always reached by ILP.

A final comparison for the ACSP-SV problem is carried out between our VNS

metaheuristic and those proposed in [3] for the problem. We recall that in this work

the authors present 3 metaheuristics, namely a simulated annealing (SA), an ant colony

optimization (ACO) and a genetic algorithm (GA). Moreover, they describe 3 heuris-

tics based on iterative rounding of a mathematical formulation for the problem that

they develop. The heuristics differ with respect to the variables on which the rounding

is performed, and are called LPx, LPf and LPf/x respectively. These 6 algorithms were

tested on the same dataset of Table 5.1. The results for these algorithms are taken from

[3].

Table 5.3 contains the results of this comparison, with the results of the 4 meta-

heuristics (that is, our VNS and the ones in [3]) reported in the (a) subtable, and the

rounding heuristics in the (b) subtable. In [3], for each instance and algorithm, the

obtained result is reported in terms of proportion with respect to the optimal objective

function value, found using CPLEX. Furthermore, since the 3 metaheuristics are non

deterministic, the authors perform 10 independent runs for each of them and report the

best and average solutions found, respectively. In order to be comparable, we ran our

tests and reported our results accordingly; these values are contained in the Avg Obj

and Best Obj columns for each metaheuristic, while the average computational times in

seconds can be found in the Avg Time columns. The results for a single run was instead

reported for each instance and each of the 3 heuristics, and we report these results in

Table 5.3(b). In order to improve the computational times comparability (in [3], an

AMD Phenom II X4 810 machine running at 2.67 GHz with 2 GB of RAM was used),

we referred to the CPU performance comparative table provided by the UC Berkeley

SETI@home experiment website1, based on Whetstone benchmarks. By comparing

the GFLOPS/core values, we divided all computational times reported in [3] by 1.21.

We can see that our VNS appears to be remarkably more effective than the previous

approaches. The optimal solution is found in all 10 runs in one case (n = 50, k = 10),

and in the best case for 5 out 8 instances. In the computational tests performed in [3],

only SA (the most time-intensive approach) was able to find the optimal solution for the

same instance in all 10 runs. The ACO algorithm was able to find the optimal solution

1https://setiathome.berkeley.edu/cpu list.php
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for this instance in the best case; no other instance was ever solved to optimality by

any of their 6 proposed approaches.

On average, VNS found solutions diverging from the optimal one within 1% in 4

cases, 2% and 3% in one case each, and within 5% for the two largest instances with

200 vertices. In the best case, this threshold is never larger than 4%. On the other hand,

the gap grow up to 46%, 55% or 58% for the previous 3 metaheuristics in the best case,

and up to 50%, 62% or 72% in the average case. The overall best-performing rounding

heuristic (LPf ) found a solution with an objective function gap equal to 15% for the

instance with n = 50, k = 10, growing up to 39% for n = 200, k = 50.

With respect to the computational times, we note that GA algorithm appears to be

the fastest one, running within 5 seconds on average. The ACO algorithm, while being

slower than VNS on the smaller instances, appears to have roughly similar computa-

tional times on the largest ones; for n = 200, k = 75 the average computational time

is 154.88 seconds for VNS and 139.81 seconds for ACO. The SA heuristic appears

to be the most time intensive, being often at least one order of magnitude slower than

VNS. The rounding heuristics have low computational times, being generally slower

than GA and faster than ACO and VNS.

5.5.2 Comparisons on the ACSP problem

In this section, we use our VNS algorithm to solve the ACSP problem on our new

instances, presented in the previous section. We compare the solution values found

by VNS with the optimal values (or upper bounds) found by ILP2. In order to better

verify the stability of the VNS and be consistent with the previously presented tests,

we performed 10 independent runs of our metaheuristic on each instance. Table 5.4

presents the collected results. The first 3 columns contain the instance characteris-

tics; the following 4 columns contain the results for our formulation (ILP2 heading)

and metaheuristic (VNS heading). Finally, the last column reports the gap value, in

percentage, between the solutions of ILP2 and of VNS; in more detail, this value is

computed as 100⇥ Ob j(V NS)�Ob j(ILP2)
Ob j(ILP2) .

For each row, we present average values (in terms of objective function value and

computational times in second) of all the computational tests performed for each sce-

nario and for each of the two approaches.
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The results reported in the GAP column show the effectiveness of VNS, that often

finds either optimal solutions or very close ones. In particular, given the 74 scenarios

that are solved by optimality by ILP2, we can see that the same solution is also found

by VNS 23 times. Moreover, the gap value is lower than 1% for 53 out of 76 scenarios,

and lower than 2% for 71 out of 76 scenarios. The gap value is higher than 3% only

twice.

It is worth noting that on the smallest scenarios, with up to 75 nodes, the gap

value is lower than 1% on 44 out of 46 scenarios; a single scenario (n = 50, m = 612,

k = 5) among them has a peak corresponding to 3.54%, however we can note that the

related solution values are small and therefore, in absolute terms, the solution values

are not very far also in this case (22.60 for ILP2, 23.40 for VNS). Overall, the instance

characteristics do not appear to influence the VNS performances in this case.

On the largest scenarios, gap value peaks occur instead on sparse scenarios with a

number of colors equal to d0.3ne or d0.4ne. In particular, the highest gaps can be noted

for the following scenarios: n = 100, m = 990, k = 30 (1.65%); n = 100, m = 990,

k = 40 (1.55%); n = 150, m = 2235, k = 45 (3.20%); n = 150, m = 2235, k = 60

(2.78%). The easiest scenarios for VNS are generally the ones containing less colors,

where the gap values are almost always lower than 1%.

Regarding the performances, we can see that VNS runs in less than 5 seconds for

the scenarios with up to 100 nodes, while for the largest ones it runs within 44 seconds.

The parameter that mainly affects the performance is the number of colors. This was

expected, since a higher number of colors leads to longer high-level solutions and

therefore to a higher number of relocate and 2-opt operations. We can see that, for

instance, all scenarios with k = d0.1ne are solved within 1 second, regardless of the

number of nodes. The instances with a number of colors equal to d0.2ne, d0.3ne and

d0.4ne are instead solved within 5, 16 and 44 seconds, respectively.
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(a) Metaheuristics results

Instances VNS SA [3]

n m k
Avg

Obj

Best

Obj

Avg

Time

Avg

Obj

Best

Obj

Avg

Time*

50 189 10 1.00 1.00 0.03 1.00 1.00 27.62

50 152 20 1.01 1.00 0.13 1.14 1.11 38.85

50 154 25 1.01 1.01 0.21 1.17 1.12 45.99

100 338 25 1.01 1.00 1.09 1.23 1.18 168.00

100 330 40 1.03 1.00 4.13 1.33 1.22 215.50

100 373 50 1.02 1.00 8.95 1.39 1.32 276.76

200 734 50 1.05 1.03 32.30 1.51 1.46 870.14

200 746 75 1.05 1.04 154.88 1.62 1.55 1231.93

Instances ACO [3] GA [3]

n m k
Avg

Obj

Best

Obj

Avg

Time*

Avg

Obj

Best

Obj

Avg

Time*

50 189 10 1.06 1.00 1.92 1.07 1.05 0.35

50 152 20 1.19 1.17 6.74 1.23 1.12 0.45

50 154 25 1.18 1.12 11.46 1.33 1.22 0.59

100 338 25 1.26 1.17 11.63 1.22 1.15 0.79

100 330 40 1.33 1.28 31.41 1.54 1.40 1.08

100 373 50 1.40 1.29 57.74 1.56 1.45 1.90

200 734 50 1.44 1.39 52.43 1.58 1.45 2.48

200 746 75 1.50 1.46 139.81 1.72 1.58 4.71

(b) Rounding heuristics results

Instances LPx [3] LPf [3] LPf/x [3]

n m k Obj Time* Obj Time* Obj Time*

50 189 10 3.15 1.46 1.15 0.85 2.08 0.80

50 152 20 1.86 2.10 1.16 1.12 1.19 0.99

50 154 25 1.90 2.28 1.32 1.48 1.36 0.98

100 338 25 2.14 4.80 1.21 2.59 1.51 2.79

100 330 40 2.00 7.43 1.32 3.46 1.46 3.35

100 373 50 1.81 7.18 1.16 3.32 1.12 2.91

200 734 50 2.35 33.78 1.39 19.38 1.69 19.47

200 746 75 1.96 42.78 1.33 25.39 1.48 19.15

Table 5.3: Comparison of heuristics for ACSP-SV. Computational times reported in

[3] are divided by 1.21
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Instances ILP2 VNS GAP

n m k Obj Time Obj Time

25 60 5 51.40 0.05 51.40 0.00 0.00%

25 90 5 37.60 0.09 37.60 0.00 0.00%

25 120 5 38.40 0.13 38.40 0.00 0.00%

25 150 5 33.20 0.11 33.20 0.00 0.00%

25 60 8 81.00 0.05 81.00 0.00 0.00%

25 90 8 88.40 0.13 88.40 0.00 0.00%

25 120 8 80.00 0.16 80.00 0.00 0.00%

25 150 8 79.20 0.19 79.40 0.00 0.25%

25 60 10 141.80 0.05 141.80 0.00 0.00%

25 90 10 123.20 0.13 123.60 0.00 0.32%

25 120 10 103.20 0.09 103.20 0.01 0.00%

25 150 10 87.80 0.12 87.80 0.00 0.00%

50 245 5 30.60 0.35 30.80 0.00 0.65%

50 367 5 24.80 0.40 24.80 0.01 0.00%

50 490 5 25.80 0.61 25.80 0.00 0.00%

50 612 5 22.60 1.27 23.40 0.00 3.54%

50 245 10 85.20 0.42 85.20 0.03 0.00%

50 367 10 70.20 0.52 70.20 0.03 0.00%

50 490 10 69.20 1.30 69.26 0.03 0.09%

50 612 10 63.80 1.78 63.80 0.03 0.00%

50 245 15 153.00 0.51 153.60 0.08 0.39%

50 367 15 125.80 0.89 126.24 0.09 0.35%

50 490 15 125.40 1.31 125.40 0.08 0.00%

50 612 15 104.80 1.81 104.80 0.07 0.00%

50 245 20 211.80 0.42 212.72 0.14 0.43%

50 367 20 191.20 0.54 194.92 0.14 1.95%

50 490 20 154.20 0.76 155.32 0.14 0.73%

50 612 20 159.60 0.94 160.30 0.13 0.44%

75 555 8 51.40 1.93 51.40 0.05 0.00%

75 832 8 46.00 1.83 46.28 0.05 0.61%

75 1110 8 36.80 3.52 36.80 0.05 0.00%

75 1387 8 36.80 5.20 36.80 0.05 0.00%

75 555 15 111.40 1.95 111.52 0.18 0.11%

75 832 15 103.20 6.08 103.20 0.19 0.00%

75 1110 15 89.80 8.46 90.50 0.18 0.78%

75 1387 15 83.00 10.27 83.00 0.17 0.00%

75 555 23 203.00 2.46 206.18 0.51 1.57%

75 832 23 173.20 4.71 174.58 0.45 0.80%

75 1110 23 153.40 11.71 153.90 0.43 0.33%

75 1387 23 139.60 6.51 140.04 0.47 0.32%

75 555 30 289.80 1.81 292.90 1.12 1.07%

75 832 30 228.00 2.57 229.92 0.99 0.84%

75 1110 30 208.00 4.07 209.90 0.97 0.91%

75 1387 30 198.00 7.53 199.40 0.92 0.71%

100 990 10 59.40 5.28 59.46 0.16 0.10%

100 1485 10 46.80 9.80 46.92 0.16 0.26%

100 1980 10 42.40 16.84 42.52 0.16 0.28%

100 2475 10 42.40 34.81 42.40 0.15 0.00%

100 990 20 138.40 11.63 140.10 0.64 1.23%

100 1485 20 111.00 34.22 111.54 0.60 0.49%

100 1980 20 110.60 48.98 111.40 0.60 0.72%

100 2475 20 96.80 40.00 98.02 0.57 1.26%

100 990 30 236.80 7.79 240.70 1.96 1.65%

100 1485 30 202.80 11.95 205.08 1.78 1.12%

100 1980 30 174.40 48.78 176.28 1.71 1.08%

100 2475 30 163.80 109.93 165.00 1.59 0.73%

100 990 40 324.40 5.78 329.42 4.67 1.55%

100 1485 40 287.60 12.42 291.84 4.37 1.47%

100 1980 40 229.80 17.77 231.90 3.82 0.91%

100 2475 40 228.40 40.50 230.94 3.89 1.11%

150 2235 15 77.00 47.50 77.46 1.00 0.60%

150 3352 15 66.60 150.67 67.12 0.97 0.78%

150 4470 15 60.20 300.98 60.26 0.93 0.10%

150 5587 15 56.80 383.15 57.46 0.92 1.16%

150 2235 30 180.00 182.17 181.96 4.52 1.09%

150 3352 30 145.60 210.39 146.60 4.27 0.69%

150 4470 30 134.80* 1042.86 136.82 4.15 1.50%

150 5587 30 130.00 1322.56 131.56 3.92 1.20%

150 2235 45 307.20 91.18 317.04 15.83 3.20%

150 3352 45 248.40 413.83 253.56 14.24 2.08%

150 4470 45 222.00 501.15 224.58 12.50 1.16%

150 5587 45 200.80 750.11 203.32 13.15 1.25%

150 2235 60 424.60 78.92 436.40 43.06 2.78%

150 3352 60 344.40 191.68 352.32 38.00 2.30%

150 4470 60 303.40 771.11 309.20 37.39 1.91%

150 5587 60 289.60* 1742.00 294.46 34.80 1.68%

Table 5.4: Computational results of VNS and ILP2 for the ACSP problem on the new

set of instances.
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Chapter 6

Conclusions

This last chapter contains a summary of the approaches developed to solve the pre-

sented subgraph identification problems. In particular, the conclusions are presented

with respect to each chapter and some future research.

6.1 The Minimum Spanning Tree problem with Con-

flicting Edge Pairs (Chapter 3)

In this chapter, we studied the Minimum Spanning Tree problem with Conflicting Edge

Pairs. Furthermore, we defined a variant of this problem named Minimum Conflict

Weighted Spanning Tree problem, and we developed a genetic algorithm to solve it

and three local search procedures to improve the quality of the solution found. To

obtain a better exploration of the solution space, we embedded the genetic algorithm

in a multi ethnic genetic framework.

The computational results show that Mega often finds the optimal solution or a

solution close to the optimal one. Moreover, it found two new conflict free solutions

with respect to the best known solutions in the literature. Finally, Mega significantly

outperforms the tabu search heuristic, proposed in the literature, both in terms of com-

putational time and quality of the solutions found.

To solve the Minimum Spanning Tree problem with Conflicting Edge Pairs prob-

lem, in the same chapter we described a novel Branch-and-Cut approach. In particular,
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6. Conclusions

our main contribution is related to the proposal of a new set of valid inequalities, based

on combined properties belonging to any feasible solution. Furthermore, we tested the

approach we designed on the benchmark instances and compared it with a previous

one. Our tests showed our approach to perform better on all instances except one, de-

spite not using a preprocessing algorithm presented in the previous work in order to

simplify the instances. Moreover, we created a new set of feasible instances, in order

to test farther our approach and allow other researchers to have access to a wider set

of benchmark instances for the problem. Future research will focus on finding new

effective valid inequalities in order to improve our Branch-and-Cut approach.

6.2 The Close-Enough Arc Routing problem (Chapter

4)

We proposed a new MIP model for the CEARP based on a flow formulation and in-

troduced some properties useful to reduce the size of the graph instances. For the

benchmark instances, our graph reduction allowed to decrease the number of targets.

This decrease ranges from 20% to 90% of the total number of them. The computational

results show the effectiveness of our approach. For several instances, our approach is

substantially faster than competing solution techniques.

6.3 The All Color Shortest Path problem (Chapter 5)

In this chapter we presented some new properties, as well as a mathematical formu-

lation and a VNS metaheuristic for the all-colors shortest path problem. Our meta-

heuristic takes advantage of the concept of high-level solution, a fixed-length repre-

sentation of any feasible solution. Our computational results shows that our approach

outperforms significantly some previously introduced ones in the case in which the

first vertex of the path is fixed, and that is able to find accurate solutions in fast compu-

tational times when the first endpoint is unconstrained. With respect to future develop-

ments, we intend to further study the problem and develop efficient exact approaches,
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6. Conclusions

possibly based on Branch-and-Cut strategy. The development of new, more effective

metaheuristics could also represent an interesting research direction.

110



6. Conclusions

111



References

[1] Whetstone benchmarks. 51
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[3] Y. Can Bilge, D. Çagatay, B. Genç, M. Sari, H. Akcan, and C. Evrendilek. All

colors shortest path problem. arXiv:1507.06865. 30, 80, 81, 82, 83, 98, 99, 102,

106

[4] B. Bontoux, C. Artigues, and D. Feillet. A memetic algorithm with a large neigh-

borhood crossover operator for the generalized traveling salesman problem. Com-

puters and Operations Research, 37(11):1844–1852, 2010. 31

[5] F. Carrabs, C. Cerrone, and R. Cerulli. A tabu search approach for the circle

packing problem. In 2014 17th International Conference on Network-Based In-

formation Systems, pages 165–171. IEEE, 2014. 75

[6] F. Carrabs, R. Cerulli, P. Festa, and F. Laureana. On the Forward Shortest

Path Tour Problem, volume Optimization and Decision Science: Methodologies

and Applications: ODS, Sorrento, Italy, September 4-7, 2017, pages 529–537.

Springer International Publishing, Cham, 2017. 30

[7] F. Carrabs, R. Cerulli, M. Gaudioso, and M. Gentili. Lower and upper bounds for

the spanning tree with minimum branch vertices. Computational Optimization

and Applications, 56(2):405–438, 2013. 26

[8] Francesco Carrabs, Carmine Cerrone, Raffaele Cerulli, and Manlio Gaudioso.

A novel discretization scheme for the close enough traveling salesman problem.

Computers & Operations Research, 78:163–171, 2017. 29

112



REFERENCES

[9] Francesco Carrabs, Carmine Cerrone, and Rosa Pentangelo. A multi-ethnic ge-

netic approach for the minimum conflict weighted spanning tree problem. Net-

works (under revision), 2017. 3

[10] Francesco Carrabs, Raffaele Cerulli, Rosa Pentangelo, and Andrea Raiconi.

Properties, formulation and a two-level metaheuristic for the all-colors shortest

path problem. Computational Optimization and Applications (under revision),

2017. 3

[11] Francesco Carrabs, Raffaele Cerulli, Rosa Pentangelo, and Andrea Raiconi. Min-

imum spanning tree with conflicting edge pairs: a branch-and-cut approach. An-

nals of Operations Research (in press), 2018. 3

[12] C. Cerrone, R. Cerulli, and M. Gaudioso. Omega one multi ethnic genetic ap-

proach. Optimization Letters, 10(2):309–324, 2016. 42

[13] Carmine Cerrone, Raffaele Cerulli, and Manlio Gaudioso. Omega one multi

ethnic genetic approach. Optimization Letters, 10(2):309–324, 2016. 75

[14] Carmine Cerrone, Raffaele Cerulli, and Bruce Golden. Carousel greedy: a gen-

eralized greedy algorithm with applications in optimization. Computers & Oper-

ations Research, 85:97–112, 2017. 75

[15] Carmine Cerrone, Raffaele Cerulli, Bruce Golden, and Rosa Pentangelo. A flow

formulation for the close-enough arc routing problem. In Antonio Sforza and

Claudio Sterle, editors, Optimization and Decision Science: Methodologies and

Applications, pages 539–546, Cham, 2017. Springer International Publishing. 3

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Press, 3rd edition, 2009. 30, 92

[17] A. Darmann, U. Pferschy, and J. Schauer. Determining a minimum spanning

tree with disjunctive constraints. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), 5783 LNAI:414–423, 2009. 25, 26, 32

[18] A. Darmann, U. Pferschy, J. Schauer, and G.J. Woeginger. Paths, trees and match-

ings under disjunctive constraints. Discrete Applied Mathematics, 159(16):1726–

1735, 2011. 25, 26, 32

113



REFERENCES
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