
Università degli Studi di Salerno

Dottorato di Ricerca in Informatica e Ingegneria dell’Informazione
Ciclo 30 - a.a. 2016/2017

Tesi di Dottorato / Ph.D. Thesis

Round and Computational Efficiency of Two-Party Protocols

Supervisor Candidate
Prof. Giuseppe PERSIANO Michele CIAMPI

Ph.D. Program Director
Prof. Pasquale CHIACCHIO

Dipartimento di Ingegneria dell’Informazione
ed Elettrica e Matematica Applicata

Dipartimento di Informatica

ii

Abstract

A cryptographic protocol is defined by the behaviour of the involved parties and the messages
that those parties send to each other. Beside the functionality and the security that a cryp-
tographic protocol provides, it is also important that the protocol is efficient. In this thesis
we focus on the efficiency parameters of a cryptographic protocol related to the computational
and round complexity. That is, we are interested in the computational cost that the parties
involved in the protocol have to pay and how many interactions between the parties are required
to securely implement the functionality which we are interested in. Another important aspect
of a cryptographic protocol is related to the computational assumptions required to prove that
the protocol is secure. The aim of this thesis is to improve the state of the art with respect to
some cryptographic functionalities where two parties are involved, by providing new techniques
to construct more efficient cryptographic protocols whose security can be proven by relying on
better cryptographic assumptions.

The thesis is divided in three parts. In the first part we consider Secure Two-Party Com-
putation (2PC), a cryptographic technique that allows to compute a functionality in a secure
way. More precisely, there are two parties, Alice and Bob, willing to compute the output of a
function f given x and y as input. The values x and y represent the inputs of Alice and Bob
respectively. Moreover, each party wants to keep the input secret while allowing the other party
to correctly compute f(x, y). As a first result, we show the first secure 2PC protocol with black
box simulation, secure under standard and generic assumption, with optimal round complexity
in the simultaneous message exchange model. In the simultaneous message exchange model both
parties can send a message in each round; in the rest of this thesis we assume the in each round
only one party can send a message.

We advance the state of the art in secure 2PC also in a relaxed setting. More precisely, in this
setting a malicious party that attacks the protocol to understand the secret input of the honest
party, is forced to follow the protocol description. Moreover, we consider the case in which the
parties want to compute in a secure way the Set-Membership functionality. Such a functionality
allows to check whether an element belongs to a set or not. The proposed protocol improves the
state of the art both in terms of performance and generality. In the second part of the thesis
we show the first 4-round concurrent non-malleable commitment under one-way functions. A
commitment scheme allows the sender to send an encrypted message, called commitment, in
such a way that the message inside the commitment cannot be opened until that an opening
information is provided by the sender. Moreover, there is a unique way in which the commitment
can be open. In this thesis we consider the case in which the sender sends the commitment (e.g.
trough a computer network) that can be eavesdropped by an adversary. In this setting the
adversary can catch the commitment C and modify it thus obtaining a new commitment C ′

that contains a message related to the content of C. A non-malleable commitment scheme
prevents such attack, and our scheme can be proved secure even in the case that the adversary
can eavesdrop multiple commitments and in turn, compute and send multiple commitments.

The last part of the thesis concerns proof systems. Let us consider an NP-language, like

iii

the language of graph Hamiltonicity. A proof system allows an entity called prover to prove
that a certain graph (instance) contains a Hamiltonian cycle (witness) to another entity called
verifier. A proof system can be easily instantiated in one round by letting the prover to send
the cycle to the verifier. What we actually want though, is a protocol in which the prover is able
to convince the verifier that a certain graph belongs to the language of graph Hamiltonicity, but
in such a way that no information about the cycle is leaked to the verifier. This kind of proof
systems are called Zero Knowledge. In this thesis we show a non-interactive Zero-Knowledge
proof system, under the assumption that both prover and verifier have access to some honestly
generated common reference string (CRS). The provided construction improves the state of the
art both in terms of efficiency and generality. We consider also the scenario in which prover
and verifier do not have access to some honestly generated information and study the notion of
Witness Indistinguishability. This notion considers instances that admit more than one witness,
e.g. graphs that admit two distinct Hamiltonian cycle (as for the notion of Zero Knowledge,
the notion of Witness Indistinguishability makes sense for all the languages in NP, but for
ease of exposition we keep focusing our attention of the language of graph Hamiltonicity). The
security notion of Witness-Indistinguishability ensures that a verifier, upon receiving a proof
from a prover, is not able to figure out which one of the two Hamiltonian cycles has been used
by the prover to compute the proof. Even though the notion of Witness Indistinguishability is
weaker than the notion of Zero Knowledge, Witness Indistinguishability is widely used in many
cryptographic applications. Moreover, given that a Witness-Indistinguishable protocol can be
constructed using just three rounds of communication compared to the four rounds required to
obtain Zero Knowledge (with black-box simulation), the use of Zero-Knowledge as a building
block to construct a protocol with an optimal number of rounds is sometimes prohibitive. Always
in order to provide a good building block to construct more complicated cryptographic protocols
with a nice round complexity, a useful property is the so called Delayed-Input property. This
property allows the prover to compute all but the last round of the protocol without knowing
the instance nor the witness. Also, the Delayed-Input property allows the verifier to interact
with the prover without knowing the instance at all (i.e. the verifier needs the instance just to
decide whether to accept or not the proof received by the prover). In this thesis we provide the
first efficient Delayed-Input Witness-Indistinguishable proof system that consists of just three
round of communication.

iv

Acknowledgments

The first person that I want to thank is my advisor, Giuseppe Persiano. He introduced and
guided me into the to world of cryptography and I am honored to have been advised by him. A
huge thank you goes to Ivan Visconti, he taught me a lot and an important part of what I am
now is thanks to him. He was, and still is, a source of good advice not only in research, but also
in life. The dedication that Giuseppe and Ivan put into my formation is something that I would
have never expected when I started my PhD and I will be always grateful to them for this.

I am grateful to Rafail Ostrovsky that hosted me at UCLA, and gave me the opportunity to
spend part of my PhD in an incredible research group. My period in Los Angeles gave me a lot
under many aspects, and the time I spent working with a person with the experience and the
kindness of Rafail represents one of the most intense part of my PhD.

I am also thankful to Ivan Damgård and Claudio Orlandi for the warm welcome they gave
me when I visited Aarhus University. The time I spent at Aarhus was pleasant, and I had the
opportunity to work in an exciting environment with a research group full of nice and great
people.

A massive thank you is mandatory for Luisa Siniscalchi. We started the journey of the PhD
together and we have been working side by side in many occasions. She has always been patient
with me (which is not so easy) and an authentic friend, always ready to help me.

I am deeply thankful to my parents: Giuseppe and Giuseppina. They taught me the meaning
of working and implicitly pushed me toward the best I could achieve. They supported me in
many aspects of my life, and their wisdom, strength and acuity represent a huge aspiration for
me. I am thankful to my sister Caterina for all the advices she tried to gave. Her morality
represented and still represents a lighthouse for the darkest moments.

Last but not the least I want to say thank you to Paola, I cannot immagine what these three
years would have been without her.

v

vi

Contents

1 Introduction 1
1.1 Secure Two-Party Computation. 1
1.2 4-Round Concurrent Non-Malleable Commitment from OWFs 2
1.3 Efficient and Delayed-Input Proof System . 4

2 Preliminaries 7
2.1 Standard Definitions . 7
2.2 Commitment Schemes . 9

I Secure Two-Party Computation 13

3 Round Optimal 2-Party Computation 15
3.1 Introduction . 15
3.2 Special One-Sided Simulatable OT . 18
3.3 Definitions and Tools . 20

3.3.1 Delayed-Input Non-Malleable Zero Knowledge 21
3.3.2 Two-party Computation with a Simultaneous Message Exchange Channel 22
3.3.3 Oblivious Transfer . 23

3.4 Our OT Protocol Πγ
OT = (SOT , ROT) . 25

3.5 Secure 2PC in the Simultaneous Message Exchange Model 33
3.5.1 Formal Description of Our Π2PC = (P1, P2) 34

4 Private Set-Membership in the Semi-Honest Setting 41
4.1 Introduction . 41
4.2 Technical overview . 43

4.2.1 Why phasing and 2PC do not mix . 43
4.2.2 Our protocol . 43

4.3 Definitions and tools . 47
4.3.1 Two party computation . 47
4.3.2 Special private-key encryption . 47

4.4 Our Protocol Π∈ . 48
4.4.1 Formal description . 49
4.4.2 Complexity analysis . 50
4.4.3 Security proof . 51

4.5 Optimisations and extension . 58
4.6 Applications . 59

4.6.1 Computing statistics of the private intersection 59
4.6.2 Threshold PSI . 60

vii

II Concurrent Non-Malleable Commitments 61

5 Four-Round Concurrent Non-Malleable Commitments from One-Way Func-
tions 63
5.1 Introduction . 63
5.2 Definitions and tools . 68

5.2.1 Non-Malleable Commitments . 69
5.2.2 New Definitions: weak NM and SimWI . 70

5.3 4-Round One-Many SimWI From OWFs . 71
5.4 4-Round Concurrent NM Commitment Scheme 76
5.5 On the Weak Concurrent Property of [GRRV14] 81
5.6 Formal Proofs . 84

5.6.1 Formal Proof of Th. 5 . 84
5.6.2 Formal Proof of Th. 6 . 89

III Efficient Proof Systems 95

6 Delayed-Input Witness Indistinguishable Proofs of Knowledge 97
6.1 Introduction . 97

6.1.1 Our Results . 98
6.1.2 Our Techniques . 100
6.1.3 Comparison with the State of the Art . 102
6.1.4 Online/Offline Computation . 102

6.2 Preliminaries . 103
6.2.1 Three rounds and public coins . 104
6.2.2 Delayed-input protocols . 105
6.2.3 The DDH assumption . 107
6.2.4 Instance-Dependent Binding Commitment 108

6.3 Adaptive-Input Special-Soundness of Σ-protocols 109
6.3.1 Adaptive-Input Insecure Delayed-input Σ-protocols 109
6.3.2 A Compiler for Adaptive-Input Special Soundness 110
6.3.3 On the Adaptive-Input Soundness of [CPS+16a]’s Transform 112

6.4 Delayed-input three-round protocols for the threshold relation 114
6.4.1 Proof of Knowledge . 116
6.4.2 Adaptive-Input Witness Indistinguishability 117
6.4.3 Online performances . 120

6.5 Extension to Multiple Relations . 120
6.5.1 (Adaptive-Input) Proof of Knowledge . 123
6.5.2 Adaptive-Input Witness Indistinguishability 125

7 Non-Interactive Zero-Knowledge Without Programmable Random Oracles 127
7.1 Introduction . 127

7.1.1 Our Results . 129
7.1.2 Comparison . 131

7.2 HVZK Proof Systems and Σ-Protocols . 132
7.2.1 Challenge Lengths of 3-Round HVZK Proofs 133
7.2.2 3-Round Public-Coin HVZK Proofs for OR Composition of Statements . . 134

7.3 Non-Interactive Argument Systems . 135
7.4 NIWI Argument Systems from 3-Round HVZK Proofs 137

viii

7.5 Our Transform: Non-Interactive Zero Knowledge from HVZK 138
7.6 Efficiency Comparison . 141
7.7 An Optimal-Sound (and Not Special Sound) 3-Round Perfect Special HVZK Proof144

ix

Chapter 1

Introduction

The aim of a cryptographic protocol is, in general, to hide information from a malicious party
that does not have the permission to access to such information. This thesis focuses on cryp-
tographic protocols where two entities are involved. More precisely, we are going to consider
three classes of cryptographic functionality, and advance the state of the art providing more
efficient protocols to securely implements those functionality classes. In more details, in Part I
we consider Secure Two-Party Computation (2PC), and provide the first secure 2PC protocol
with black box-simulation, secure under standard and generic assumptions, with optimal round
complexity in the simultaneous message exchange model as stated in [COSV17c]. We also show
our new approach, proposed in [CO18], to securely implement the Set Membership functionality
in the semi-honest setting. The proposed construction can be combined with the right 2PC
techniques to achieve more efficient protocols for computations of the form z = f(X ∩Y) for ar-
bitrary functions f . In Part II we show a 4-round concurrent non-malleable commitment scheme
under the one-way functions (OWFs) as stated in [COSV17b], and in the last part we study the
proof systems1. More precisely, we first focus on the question of achieving adaptive-input proofs
of partial knowledge, showing an efficient construction, as stated in [CPS+16a], of a 3-round
public-coin witness-indistinguishable (k, n)-proof of partial knowledge where all instances can
be decided in the third round. For the latest contribution of Part III we consider the notion
of non-interactive Zero-Knowledge proof and show the construction provided in [CPSV16], that
improves the state of the art both in terms of efficiency and generality. We now give more details
about the contributions provided in each part of this thesis.

1.1 Secure Two-Party Computation.

Obtaining round-optimal secure computation [Yao82, GMW87] has been a long standing open
problem. For the two-party case the work of Katz and Ostrovsky [KO04] demonstrated that
5 rounds are both necessary and sufficient, with black-box simulation, when both parties need
to obtain the output. Their construction relies on the use of trapdoor permutations2. A more
recent work of Ostrovsky et al. [ORS15] showed that a black-box use of trapdoor permutations
is sufficient for obtaining the above round-optimal construction.

A recent work of Garg et al. [GMPP16] revisited the lower bound of [KO04] when the
communication channel allows both players to send messages in the same round, a setting that

1When discussing informally we will use the word proof to mean both an unconditionally sound proof and a
computationally sound proof (i.e., an argument). Only in the formal part of the thesis we will make a distinction
between arguments and proofs.

2The actual assumption is enhanced trapdoor permutations, but for simplicity in this work we will omit the
word enhanced assuming it implicitly.

1

has been widely used when studying the round complexity of multi-party computation. Focusing
on the simultaneous message exchange model, Garg et al. showed that 4 rounds are necessary
to build a secure two-party computation (2PC) protocol for every functionality with black-
box simulation. In the same work they also designed a 4-round secure 2PC protocol for every
functionality. However their construction compared to the one of [KO04] relies on much stronger
complexity assumptions. Indeed the security of their protocol crucially relies on the existence
of a 3-round 3-robust [Pol16] parallel non-malleable commitment scheme. According to [Pol16]
such commitment scheme can be constructed either through non-falsifiable assumptions (i.e.,
using the construction of [PPV08]) or through sub-exponentially-strong assumptions (i.e., using
the construction of [COSV16]). In very recent works [HHPV17, BGJ+17] it is showed how to
construct a 4-round protocol to securely compute every functionality for the multi-party case
under the Decisional Diffie-Hellman (DDH) assumption for the case of [HHPV17] and under the
LWE+DDH assumptions for the case of [BGJ+17].

Even given this new results, we have a gap in the state of affairs that leaves open the following
interesting open question:
Open Question: is there a 4-round construction for secure 2PC for any functionality in the
simultaneous message exchange model assuming (standard) trapdoor permutations?

In this thesis we answer positively to this question. Moreover, our construction for secure
two-party computation relies on a special 4-round protocol for oblivious transfer that nicely
composes with other protocols in parallel. We define and construct such special oblivious transfer
protocol from trapdoor permutations. This building block is clearly interesting on its own. Our
construction also makes use of a recent advance on non-malleability: a delayed-input 4-round
non-malleable zero knowledge argument.

In this part of the thesis we also consider the semi-honest model and Private-Set Intersection
(PSI), one of the most popular and practically relevant secure two-party computation tasks.
Designing special-purpose PSI protocols (which are more efficient than generic 2PC solutions)
is a very active line of research. In particular, a recent line of work has proposed PSI protocols
based on oblivious transfer (OT) which, thanks to recent advances in OT-extension techniques,
is nowadays a very cheap cryptographic building block. Unfortunately, these protocols cannot
be plugged into larger 2PC applications since in these protocols one party (by design) learns
the output of the intersection. Therefore, it is not possible to perform secure post-processing of
the output of the PSI protocol. In this thesis we propose a novel and efficient OT-based PSI
protocol that produces an “encrypted” output that can therefore be later used as an input to
other 2PC protocols. In particular, the protocol can be used in combination with all common
approaches to 2PC including garbled circuits, secret sharing and homomorphic encryption. Thus,
our protocol can be combined with the right 2PC techniques to achieve more efficient protocols
for computations of the form z = f(X ∩ Y) for arbitrary functions f .

1.2 4-Round Concurrent Non-Malleable Commitment from OWFs

Commitment schemes are a fundamental primitive in Cryptography. Here we consider the
intriguing question of constructing round-efficient schemes that remain secure even against man-
in-the-middle (MiM) attacks: non-malleable (NM) commitments [DDN91].

Non-malleable commitments. The round complexity of commitment schemes in the
stand-alone setting is nowadays well understood. Non-interactive commitments can be con-
structed assuming the existence of 1-to-1 one-way functions (OWFs) [GL89]; 2-round commit-
ments can be constructed assuming the existence of OWFs only. Moreover non-interactive
commitments do not exist if one relies on the black-box use of OWFs only [MP12]. Instead,
the round complexity of NM commitments after 25 years of research remains a fascinating open

2

question, in particular when taking into account the required computational assumptions. The
original construction of [DDN91] required a logarithmic number of rounds and the sole use of
OWFs. Then, through a long sequence of very exciting positive results [Bar02, PR03, PR05b,
PR05a, PR08b, PR08a, LPV08, PW10, Wee10, LP11, LP15, Goy11, GLOV12], the above open
question has been in part solved obtaining a constant-round3 (even concurrent) NM commitment
scheme by using any OWF in a black-box fashion. On the negative side, Pass proved that NM
commitments require at least 3 rounds [Pas13]4 when security is proved through a black-box
reduction to polynomial-time hardness assumptions.

Breaking the multiple rewind-slot barrier. The above papers left open the question
of achieving (concurrent) non-malleable commitments with optimal round complexity. A main
common issue for round-efficient non-malleable commitments is that typically a security proof
requires some simulation on the left and extraction on the right that should not interfere with
each other. Indeed, a known paradigm introduced by Pass [Pas04] proposes to have in a protocol
multiple potential rewind slots so that extraction and simulation can both be run without in 2
independent sequential steps. On the negative side, the use of multiple rewind slots increases
the round complexity of the protocol (i.e., two slots require at least 5 rounds).

More recently the multiple rewind-slot technique has been bypassed in [GRRV14] but only
for the (simpler) one-one case (i.e., just one sender and one receiver). In particular, Goyal et
al. [GRRV14] showed a one-one 4-round NM commitment scheme based on OWFs only. The
more recent work of Goyal et al. [GPR16] exploited the use of the NM codes in the split-state
model of Aggarwal et al. [ADL14] to show a 3-round one-one NM commitment scheme based on
the black-box use of any 1-to-1 OWF that is secure against super-polynomial time adversaries.
Ciampi et al. [COSV16] obtained concurrent non-malleability in 3 rounds starting from any
one-one non-malleable (and extractable) commitment scheme, but their security proof crucially
relies on the existence of one-way permutations secure against subexponential-time adversaries.
Assumptions against super-polynomial time adversaries allow to avoid multiple rewind slots
even in presence of polynomially many sessions since the security proof can rely on straight-line
simulation/extraction5. Recently, the work of Khurana [Khu17] appeared in TCC 2017, provides
a 3-round non-malleable commitment relying on the DDH assumption.

In this work we break the multiple-slot barrier for concurrent NM commitments by showing
a 4-round scheme based on the sole existence of OWFs. While previous work relied on having
either 1) stronger assumptions or 2) multiple rewind slots or 3) non-generic assumptions, in this
work we introduce new techniques that allow to have just one rewind slot, minimal hardness
assumptions and full concurrency. More specifically we give the following four contributions.
Non-malleable commitments w.r.t. non-aborting adversaries. We prove that a subpro-

tocol of [GRRV14] is a 4-round statistically binding concurrent NM commitment scheme
from OWFs (resp. a 3-round perfectly binding concurrent NM commitment scheme from
1-to-1 OWFs), if the adversary is restricted to playing well-formed commitments in the
right sessions when receiving well formed commitments from the left sessions. We refer to
this weaker security notion as concurrent weak non-malleability (wNM).

Simulation-Witness-Independence. We define a new security notion for argument systems
w.r.t. man-in-the-middle attacks that we refer to as simulation-witness-independence
(SimWI). This security notion seemingly is not implied by previous notions as simulation-
extractability/soundness and strong non-malleable witness indistinguishability.

3The construction of [GLOV12] can be compressed to 6 rounds (see [GRRV14]).
4If instead one relies on non-standard assumptions or trusted setups (e.g., using trusted parameters, work-

ing in the random oracle model, relying on the existence of NM OWFs) then there exist non-interactive NM
commitments [DG03, PPV08].

5Hardness assumptions against subexponential-time adversaries were already used in [PR03, PW10, Wee10]
to improve the round-complexity of NM commitments.

3

4-Round One-Many SimWI from OWFs. We then construct a 4-round one-many SimWI
argument of knowledge for same specific languages by relying on OWFs only. This con-
struction circumvents the major problem caused by the need of rewinding on the left to
simulate and on the right to extract when there is only one available slot.

Concurrent wNM + One-Many SimWI ⇒ 4-Round Concurrent NM Commitments.
We present our new paradigm consisting in combining the above two notions in a protocol
that runs in parallel the concurrent wNM commitment scheme and the one-many SimWI
argument of knowledge. Therefore as main result of this work we upgrade concurrent
wNM to full-fledged concurrent non-malleability without any penalization in rounds and
assumptions.

1.3 Efficient and Delayed-Input Proof System

Proofs of partial knowledge allow a prover to prove knowledge of witnesses for k out of n
instances of NP languages. Cramer, Damgård and Schoenmakers [CDS94] provided an efficient
construction of a 3-round public-coin witness-indistinguishable (k, n)-proof of partial knowledge
for any NP language, by cleverly combining n executions of Σ-protocols for that language.
This transform assumes that all n instances are fully specified before the proof starts, and
thus directly rules out the possibility of choosing some of the instances after the first round.
In [CPS+16a] an improved transform where one of the instances can be specified in the last
round is provided. The authors of [CPS+16a] focus on (1, 2)-proofs of partial knowledge with
the additional feature that one instance is defined in the last round, and could be adaptively
chosen by the verifier. They left as an open question the existence of an efficient (1, 2)-proof of
partial knowledge where no instance is known in the first round. More in general, they left open
the question of constructing an efficient (k, n)-proof of partial knowledge where knowledge of all
n instances can be postponed. Indeed, this property is achieved only by inefficient constructions
requiring NP reductions [LS90].

In this thesis we focus on the question of achieving adaptive-input proofs of partial knowledge.
We provide through a transform the first efficient construction of a 3-round public-coin witness-
indistinguishable (k, n)-proof of partial knowledge where all instances can be decided in the
third round. Our construction enjoys adaptive-input witness indistinguishability. Additionally,
the proof of knowledge property remains also if the adversarial prover selects instances adaptively
at last round as long as our transform is applied to a proof of knowledge belonging to the widely
used class of proofs of knowledge described in [Mau15, CD98]. Since knowledge of instances and
witnesses is not needed before the last round, we have that the first round can be precomputed
and in the online/offline setting our performance is similar to the one of [CDS94].

Our new transform relies on the DDH assumption (in contrast to the transforms of [CDS94,
CPS+16a] that are unconditional). We also show how to strengthen the transform of [CPS+16a]
so that it also achieves adaptive soundness, when the underlying combined protocols belong to
the class of protocols described in [Mau15, CD98].

In the last part of this thesis we study the Fiat-Shamir (FS) transform. This transform uses a
hash function to generate, without any further overhead, non-interactive zero-knowledge (NIZK)
argument systems from constant-round public-coin honest-verifier zero-knowledge (public-coin
HVZK) proof systems. In the proof of zero knowledge, the hash function is modeled as a pro-
grammable random oracle (PRO). In TCC 2015, Lindell embarked on the challenging task of
obtaining a similar transform with improved heuristic security. Lindell showed that, for several
interesting and practical languages, there exists an efficient transform in the non-programmable
random oracle (NPRO) model that also uses a common reference string (CRS). A major con-
tribution of Lindell’s transform is that zero-knowledge is proved without random oracles and

4

this is an important step towards achieving efficient NIZK arguments in the CRS model without
random oracles. In this work, we analyze the efficiency and generality of Lindell’s transform and
notice a significant gap when compared with the FS transform. We then propose a new trans-
form that aims at filling this gap. Indeed our transform is almost as efficient as the FS transform
and can be applied to a broad class of public-coin HVZK proof systems. Our transform requires
a CRS and an NPRO in the proof of soundness, similarly to Lindell’s transform.

5

6

Chapter 2

Preliminaries

We denote the security parameter by λ and use “||” as concatenation operator (i.e., if a and
b are two strings then by a||b we denote the concatenation of a and b). For a finite set Q,
x← Q denotes a sampling of x from Q with uniform distribution. We use the abbreviation ppt
that stands for probabilistic polynomial time. We use poly(·) to indicate a generic polynomial
function.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset of {0, 1}∗×{0, 1}∗
such that membership of (x,w) in Rel can be decided in time polynomial in |x|. For (x,w) ∈ Rel,
we call x the instance and w a witness for x. For a polynomial-time relation Rel, we define the
NP-language LRel as LRel = {x|∃w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for
an NP-language L we denote by RelL the corresponding polynomial-time relation (that is, RelL
is such that L = LRelL). We denote by L̂ the language that includes both L and all well formed
instances that do not have a witness. Moreover we require that membership in L̂ can be tested
in polynomial time. We implicitly assume that a PPT algorithm that is supposed to receive an
instance in L̂ will abort immediately if the instance does not belong to L̂.

Let A and B be two interactive probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ)
the distribution of B’s output after running on private input β with A using private input α,
both running on common input γ. Typically, one of the two algorithms receives 1λ as input. A
transcript of 〈A(α), B(β)〉(γ) consists of the messages exchanged during an execution where A
receives a private input α, B receives a private input β and both A and B receive a common
input γ. Moreover, we will refer to the view of A (resp. B) as the messages it received during the
execution of 〈A(α), B(β)〉(γ), along with its randomness and its input. We say that a protocol
(A,B) is public coin if B sends to A random bits only. When it is necessary to refer to the
randomness r used by and algorithm A we use the following notation: A(·; r).

2.1 Standard Definitions

Definition 1 (Proof/argument system). A pair of ppt interactive algorithms Π = (P,V) con-
stitutes a proof system (resp., an argument system) for an NP-language L, if the following
conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:

Prob [〈P(w),V〉(x) = 1] = 1.

Soundness: For every interactive (resp., ppt interactive) algorithm P?, there exists a negligible
function ν such that for every x /∈ L and every z:

Prob [〈P?(z),V〉(x) = 1] < ν(|x|).

7

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-input complete-
ness if P needs x and w only to compute the last round and V needs x only to compute the
output. Before that, P and V run having as input only the size of x. The notion of delayed-
input completeness was defined in [CPS+16a]. We say that the transcript τ of an execution
b = 〈P(z),V〉(x) is accepting if b = 1.

Definition 2 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be
ensembles, where Xλ’s and Yλ’s are probability distribution over {0, 1}l, for same l = poly(λ).
We say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable, denoted
X ≈ Y , if for every ppt distinguisher D there exists a negligible function ν such that for
sufficiently large λ ∈ N,∣∣∣Prob [t← Xλ : D(1λ, t) = 1

]
− Prob

[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from a sample of Xλ,
it is possible to omit the auxiliary input 1λ. In this work we also use the definition of Statistical
Indistinguishability. This definition is the same as Definition 2 with the only difference that
the distinguisher D is unbounded. In this case use X ≡s Y to denote that two ensembles are
statistically indistinguishable.

Definition 3 (Proof of Knowledge [Dam10]). A pair (P,V) of PPT interactive machines is a
proof of knowledge with knowledge error k(·) for polynomial-time relation Rel if the following
properties hold:

• Completeness. For every (x,w) ∈ Rel, it holds that

Prob [〈P(w),V〉(x) = 1] = 1.

• Knowledge Soundness: there exists a probabilistic oracle machine Extract, called the ex-
tractor, such that for every interactive machine P? and for every input x accepted by V
when interacting with P? with probability ε(x) > k(x), ExtractP

?
(x) outputs a witness

w for x. Moreover, the expected number of steps performed by Extract is bounded by
poly(|x|)/(ε(x)− k(x)).

In our security proofs we make use of the following observation. An interactive protocol Π
that enjoys the property of completeness and PoK (AoK) with negligible soundness error is a
proof (an argument) system. Indeed suppose by contradiction that is not. By the definition of
PoK (AoK) it is possible to extract the witness for every theorem x ∈ {0, 1}λ proved by P? with
probability greater than negligible; contradiction.

We also consider the adaptive-input PoK/AoK property for all the protocols that enjoy
delayed-input completeness. Adaptive-input PoK/AoK ensures that the PoK/AoK property
still holds when a malicious prover can choose the statement adaptively at the last round. More
details about these notions are provided in Chapter 6.

Definition 4 (Witness Indistinguishable (WI)). An argument/proof system Π = (P,V), is
Witness Indistinguishable (WI) for a relation Rel if, for every malicious ppt verifier V?, there
exists a negligible function ν such that for all x,w,w′ such that (x,w) ∈ Rel and (x,w′) ∈ Rel it
holds that: ∣∣∣Prob [〈P(w),V?〉(x) = 1]− Prob

[
〈P(w′),V?〉(x) = 1

] ∣∣∣ < ν(|x|).

The notion of a perfect WI argument/proof system is obtained by requiring that ν(|x|) = 0.

8

2.2 Commitment Schemes

Definition 5 (Commitment Scheme). Given a security parameter 1λ, a commitment scheme
CS = (Sen,Rec) is a two-phase protocol between two ppt interactive algorithms, a sender Sen
and a receiver Rec. In the commitment phase Sen on input a message m interacts with Rec to
produce a commitment com, and the private output d of Sen.

In the decommitment phase, Sen sends to Rec a decommitment information (m, d) such that
Rec accepts m as the decommitment of com.

Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment scheme if the
following properties hold:
Correctness:

• Commitment phase. Let com be the commitment of the message m given as output of
an execution of CS = (Sen,Rec) where Sen runs on input a message m. Let d be the
private output of Sen in this phase.

• Decommitment phase1. Rec on input m and d accepts m as decommitment of com.

Statistical (resp. Computational) Hiding([Lin10]): for any adversary (resp. ppt ad-
versary) A and a randomly chosen bit b ∈ {0, 1}, consider the following hiding experiment
ExpHidingbA,CS(λ):

• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the
same length.

• Sen on input the message mb interacts with A to produce a commitment of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. ppt adversary) A, there exist a negligible function ν, s.t.:∣∣∣Prob [ExpHiding0
A,CS(λ) = 1

]
− Prob

[
ExpHiding1

A,CS(λ) = 1
] ∣∣∣ < ν(λ).

Statistical (resp. Computational) Binding: for every commitment com generated during
the commitment phase by a possibly malicious unbounded (resp. malicious ppt) sender
Sen? there exists a negligible function ν such that Sen?, with probability at most ν(λ),
outputs two decommitments (m0, d0) and (m1, d1), with m0 6= m1, such that Rec accepts
both decommitments.

We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.
When a commitment scheme (Com,Dec) is non-interactive, to not overburden the notation, we
use the following notation.
– Commitment phase. (com, dec) ← Com(m) denotes that com is the commitment of the

message m and dec represents the corresponding decommitment information.
– Decommitment phase. Dec(com, dec,m) = 1.

2-Round Instance-Dependent Trapdoor Commitments. Following [COSV17b] here we
define a special commitment scheme based on an NP-language L where sender and receiver also
receive as input an instance x. While correctness and computational hiding hold for any x, we
require that statistical binding holds for x 6∈ L and moreover knowledge of a witness for x ∈ L
allows to equivocate. Finally, we require that a commitment along with two valid openings
to different messages allows to compute the witness for x ∈ L. We recall that L̂ denotes the
language that includes L and all well formed instances that are not in L.

1In this work we consider only non-interactive decommitment phase.

9

Definition 6 (2-Round Instance-Dependent Trapdoor Commitments). Let 1λ be the security
parameter, L be an NP-language and RelL be the corresponding NP-relation. A triple of ppt
algorithms TC = (Sen,Rec,TFake) is a 2-Round Instance-Dependent Trapdoor Commitment
scheme if the following properties hold.

Correctness. In the 1st round, Rec on input 1λ and x ∈ L̂ outputs ρ. In the 2nd round Sen on
input the message m, 1λ, ρ and x ∈ L outputs (com, dec). We will refer to the pair (ρ, com)
as the commitment of m. Moreover we will refer to the execution of the above two rounds
including the exchange of the corresponding two messages as the commitment phase. Then
Rec on input m, x, com, dec and the private coins used to generate ρ in the commitment
phase outputs 1. We will refer to the execution of this last round including the exchange
of dec as the decommitment phase. Notice that an adversarial sender Sen? could deviate
from the behavior of Sen when computing and sending com and dec for an instance x ∈ L̂.
As a consequence Rec could output 0 in the decommitment phase. We will say that dec is
a valid decommitment of (ρ, com) to m for an instance x ∈ L̂, if Rec outputs 1.

Hiding. Given a ppt adversary A, consider the following hiding experiment ExpHidingbA,TC(λ, x)

for b = 0, 1 and x ∈ L̂R:

• On input 1λ and x, A outputs a message m, along with ρ.
• The challenger on input x,m, ρ, b works as follows: if b = 0 then it runs Sen on input

m, x and ρ, obtaining a pair (com, dec), otherwise it runs TFake on input x and ρ,
obtaining a pair (com, aux). The challenger outputs com.

• A on input com outputs a bit b′ and this is the output of the experiment.

We say that hiding holds if for any ppt adversary A there exist a negligible function ν,
s.t.: ∣∣∣Prob [ExpHiding0

A,TC(λ, x) = 1
]
− Prob

[
ExpHiding1

A,TC(λ, x) = 1
] ∣∣∣ < ν(λ).

Special Binding. There exists a ppt algorithm that on input a commitment (ρ, com), the pri-
vate coins used by Rec to compute ρ, and two valid decommitments (dec, dec′) of (ρ, com)
to two different messages m and m′, outputs w s.t. (x,w) ∈ RelL with overwhelming
probability.

Instance-Dependent Binding. For every malicious unbounded sender Sen? there exists a neg-
ligible function ν s.t. for a commitment (ρ, com) Sen?, with probability at most ν(λ), outputs
two decommitments (m0, d0) and (m1, d1) with m0 6= m1 s.t. Rec on input the private coins
used to compute ρ and x /∈ L accepts both decommitments.

Trapdoorness. For any ppt adversary A there exist a negligible function ν, s.t. for all x ∈ L
it holds that:∣∣∣Prob [ExpComA,TC(λ, x) = 1

]
− Prob

[
ExpTrapdoorA,TC(λ, x) = 1

] ∣∣∣ < ν(λ)

where ExpComA,TC(λ, x) and ExpTrapdoorA,TC(λ, x) are defined below2.

2We assume wlog that A is stateful.

10

ExpComA,TC(λ, x): ExpTrapdoorA,TC(λ, x):
-On input 1λ and x, A outputs (ρ,m). -On input 1λ and x, A outputs (ρ,m).
-Sen on input 1λ, x, m and ρ, outputs
(com, dec).

-TFake on input 1λ, x and ρ, outputs
(com, aux).
-TFake on input tk s.t. (x, tk) ∈ RelL,
x, ρ, com, aux and m outputs dec.

-A on input (com, dec) outputs a bit
b and this is the output of the experi-
ment.

-A on input (com, dec) outputs a bit
b and this is the output of the experi-
ment.

In this work we consider also a non-interactive version of Instance-Dependent Trapdoor Com-
mitments. The only difference in the definition is that the first round sent by the receiver to the
sender just disappears. In this case we use the following simplified notation.
– Commitment phase. (com, dec) ← Sen(m, 1λ, x) denotes that com is the commitment of the

message m and dec represents the corresponding decommitment information.
– Decommitment phase. 1← Rec(m,x, com, dec).
– Trapdoor algorithms. (com, aux) ← TFake(1λ, x), dec ← TFake(tk, x, com, aux,m) with

(x, tk) ∈ RelL.

In the rest of the work, we say that the sender uses the honest procedure when he computes
the commitment com of a message m along with the decommitment information dec running
Sen. Instead, the sender uses trapdoor procedure when he computes com and dec running TFake.

OWFs ⇒ 2-round instance-dependent trapdoor commitments for any NP language.
Here we recall the construction (SenH,RecH,TFakeH) of [FS89] for Hamiltonian graphs already
considered in [ORSV13] that satisfies Def. 6 and requires OWFs only.

SenH and RecH run as follows.

– RecH → SenH. RecH on input a graph G with n nodes computes and sends ρ to the sender,
where ρ is the 1st round of a two-round statistically binding commitment scheme from
OWFs of [Nao91].

– SenH on input a bit b, ρ and a graph G with n nodes works as follows. If b = 0 then SenH

picks a random permutation π and computes and sends the 2nd round of the statistically
binding commitment using ρ as 1st round and committing one-by-one to all bits of the
adjacency matrix of π(G). If instead b = 1, then SenH computes and sends the 2nd round
of the statistically binding commitment, using ρ as 1st round and committing to all bits of
the adjacency matrix of a a graph that consists of a random cycle H of n nodes. In both
cases, (ρ, com = (com1, . . . , comn2)) corresponds to the commitment of b. In the 1st case
dec corresponds to the randomness used by SenH, while in the 2nd case dec corresponds
to the decommitments of those n edges in the adjacency matrix that correspond to the
cycle.

– RecH on input a bit b, a graph G with n nodes, dec and com works as follows. If b = 0 then
RecH verifies that com is a commitment of the adjacency matrix of π(G) where both π and
the decommitments of the adjacency matrix are taken from dec. If instead b = 1 then
RecH verifies that the decommitted edges in dec correspond to a cycle that was committed
in (ρ, com).

– TFakeH runs SenH on input ρ, a graph G with n nodes and b = 0 therefore obtaining
(com, dec). Then TFakeH on input 0 and a cycle in G outputs dec. Instead on input 1

11

and a cycle in G, TFakeH outputs the decommitments of the edges committed in (ρ, com)
corresponding to a cycle in π(G) where π was the permutation selected to compute com.

It is easy to see that the above construction is a 2-round instance-dependent trapdoor com-
mitment scheme from OWFs. While the construction can be used to commit to a bit, in the
rest of the thesis we will use this construction to commit to strings by implicitly assuming that
the above steps are repeated in parallel for each bit of the string. Moreover, note that since
Hamiltonicity is an NP-complete language, the above construction works for any NP-language
through NP reductions. For simplicity in the rest of the thesis we will omit the NP reduction
therefore assuming that the above scheme works directly on a given NP-language L. We also
observe that if a non-interactive statistically binding commitment scheme is used in the above
construction, then we obtain an instance-dependent trapdoor commitment where the commit-
ment phase is non-interactive as well. We also recall that non-interactive statistically binding
commitment scheme can be constructed from one-to-one OWFs.

12

Part I

Secure Two-Party Computation

13

Chapter 3

Round Optimal 2-Party Computation

3.1 Introduction

In this chapter we show a 4-round construction for secure 2PC for any functionality in the
simultaneous message exchange model assuming (standard) trapdoor permutations. Moreover
our construction only requires black-box simulation and is therefore round optimal given the
lower bound showed in [GMPP16]. We now describe our approach.

Along with the lower bound that we have mentioned above, in [GMPP16] is also provided
a construction for 2PC that needs a 3-round 3-robust parallel non-malleable commitment, and
constructing this primitive from standard polynomial-time assumptions is still an open problem.
We circumvent the use of this primitive through a different approach. As done in [GMPP16], we
start considering the 4-round 2PC protocol of [KO04] (KO protocol) that works only for those
functionalities where only one player receives the output (we recall that the KO protocols do
not assume the existence of a simultaneous message exchange channel). Then, as in [GMPP16]
we consider two simultaneous executions of the KO protocol in order to make both parties able
to obtain the output assuming the existence of a simultaneous message exchange channel. We
describe now the KO protocol and then we explain how we manage to avoid 3-round 3-robust
parallel non-malleable commitments.
The 4-round KO protocol. Following Fig. 3.1, at a very high level the KO protocol between
the players P1 and P2, where only P1 gets the output, works as follows. Let f be the function
that P1 and P2 want to compute. In the second round P2 generates, using his input, a Yao’s
garbled circuit C for the function f with the associated labels L. Then P2 commits to C using
a commitment scheme that is binding if P2 runs the honest committer procedure. This commit-
ment scheme however admits also an indistinguishable equivocal commitment procedure that
allows later to open the equivocal commitment as any message. Let com0 be such commitment.
In addition P2 commits to L using a statistically binding commitment scheme. Let com1 be
such commitment. In the last round P2 sends the opening of the equivocal commitment to
the message C. Furthermore, using L as input, P2 in the 2nd and in the 4th round runs as a
sender of a specific 4-round oblivious transfer protocol KOOT that is secure against a malicious
receiver and secure against a semi-honest sender. Finally, in parallel with KOOT, P2 computes a
specific delayed-input zero-knowledge argument of knowledge (ZKAoK) to prove that the labels
L committed in com1 correspond to the ones used in KOOT, and that com0 is binding since it
has been been computed running the honest committer on input some randomness and some
message. P1 plays as a receiver of KOOT in order to obtain the labels associated to his input and
computes the output of the two-party computation by running C on input the received labels.
Moreover P1 acts as a verifier for the ZKAoK where P2 acts as a prover.
The 4-round protocol of Garg et al. In order to allow both parties to get the output

15

in 4 rounds using a simultaneous message exchange channel, [GMPP16] first considers two
simultaneous execution of the KO protocol (Fig. 3.2). Such natural approach yields to the
following two problems (as stated in [GMPP16]): 1) nothing prevents an adversary from using
two different inputs in the two executions of the KO protocol; 2) an adversary could adapt his
input based on the input of the other party, for instance the adversary could simply forward
the messages that he receives from the honest party. To address the first problem the authors
of [GMPP16] add another statement to the ZKAoK where the player Pj (with j = 1, 2) proves
that both executions of the KO protocol use the same input. The second problem is solved
in [GMPP16] by using a 3-round 3-robust non-malleable commitment to construct KOOT and
the ZKAoK in such a way that the input used by the honest party in KOOT cannot be mauled
by the malicious party. The 3-robustness is required to avoid rewinding issues in the security
proof. Indeed, in parallel with the 3-round 3-robust non-malleable commitment a WIPoK is
executed in KOOT. At some point the security proof of [GMPP16] needs to rely on the witness-
indistinguishability property of the WIPoK while the simulator of the ZKAoK is run. The
simulator for the ZKAoK rewinds the adversary from the third to the second round, therefore
rewinding also the challenger of the WIPoK of the reduction. To solve this problem [GMPP16,
Pol16] rely on the stronger security of a 3-round 3-robust parallel non-malleable commitment
scheme. Unfortunately, constructing this tool with standard polynomial-time assumptions is
still an open question.
Our 4-round protocol. In our approach (that is summarized in Fig. 3.3), in order to solve
problems 1 and 2 listed above using standard polynomial-time assumption (trapdoor permuta-
tions), we replace the ZKAoK and KOOT (that uses the 3-round 3-robust parallel commitment
scheme) with the following two tools. 1) A 4-round delayed-input non-malleable zero-knowledge
(NMZK) argument of knowledge (AoK) NMZK from one-way functions (OWFs) recently con-
structed in [COSV17a] (the theorem proved by NMZK is roughly the same as the theorem
proved ZKAoK of [GMPP16]). 2) A new special OT protocol Πγ

−−→
OT

that is one-sided simulat-
able [ORS15]. In this security notion for OT it is not required the existence of a simulator
against a malicious sender, but only that a malicious sender cannot distinguish whether the
honest receiver uses his real input or a fixed input (e.g., a string of 0s). Moreover some security
against a malicious sender still holds even if the adversary can perform a mild form of “rewinds"
against the receiver, and the security against a malicious receiver holds even when an interactive
primitive (like a WIPoK) is run in parallel (more details about the security provided by Πγ

−−→
OT

will be provided later).
Our security proof. In our security proof we exploit immediately the major differences
with [GMPP16]. Indeed we start the security proof with an hybrid experiment where the sim-
ulator of NMZK is used, and we are guaranteed that the malicious party is behaving honestly
by the non-malleability/extractability of NMZK. In the next hybrid experiment we use the sim-
ulator of the OT protocol Πγ

−−→
OT

thus extracting the input from the adversary. In the rest of
the hybrid experiments we remove the input of the honest party, and use the input extracted
via Πγ

−−→
OT

to complete the interaction against the adversary. An important difference with the
approach used in [GMPP16] is that in all the steps of our security proof the simulator-extractor
of NMZK is used to check every time that the adversary is using the same input in both the
executions of the KO protocol even though the adversary is receiving a simulated NMZK of a
false statement. More precisely, every time that we change something obtaining a new hybrid
experiment, we prove that: 1) the output distributions of the experiments are indistinguishable;
2) the malicious party is behaving honestly (the statement proved by the NMZK given by the
adversary is true). We will show that if one of these two invariants does not hold then we can
make a reduction that breaks a cryptographic primitive.
The need of a special 4-round OT protocol. Interestingly, the security proof has to address

16

a major issue. After we switch to the simulator of the NMZK, we have that in some hybrid
experiment Hi, we need change the input of the receiver of Πγ

−−→
OT

(following the approach used in
the security proof of the KO protocol). To demonstrate the indistinguishability between Hi and
Hi−1 we want to rely on the security of Πγ

−−→
OT

against a malicious sender. Therefore we construct
an adversarial sender AOT of Πγ

−−→
OT

. AOT acts as a proxy for the messages of Πγ
−−→
OT

and internally
computes the other messages of our protocol. In particular, the 1st and the 3rd rounds of Πγ

−−→
OT

are given by the challenger (that acts as a receiver of Πγ
−−→
OT

), and the 2nd and the 4th messages
of Πγ

−−→
OT

are given by the malicious party. Furthermore, in order to compute the other messages
of our 2PC protocol AOT needs to run the simulator-extractor of NMZK that, and this requires
to rewind from the 3rd to 2nd round. This means that AOT needs to complete a 3rd round
of Πγ

−−→
OT

, for every different 2nd round that he receives (this is due to the rewinds made by the
simulator of NMZK that are emulated by AOT). We observe that since the challenger cannot be
rewound, AOT needs a strategy to answer to these multiple queries w.r.t. Πγ

−−→
OT

without knowing
the randomness and the input used by the challenger so far. For these reasons we need Πγ

−−→
OT

to enjoy an additional property: the replayability of the 3rd round. More precisely, given the
messages computed by an honest receiver, the third round can be indistinguishability used to
answer to any second round of Πγ

−−→
OT

sent by a malicious sender. Another issue is that the idea of
the security proof explained so far relies on the simulator-extractor of NMZK and this simulator
rewinds also from the 4th to the 3rd round. The rewinds made by the simulator-extractor allow
a malicious receiver to ask for different 3rd rounds of Πγ

−−→
OT

. Therefore we need our Πγ
−−→
OT

to be
also secure against a more powerful malicious receiver that can send multiple (up to a polynomial
γ) third rounds to the honest sender. As far as we know the literature does not provide an OT
with the properties that we require, so in this work we also provide an OT protocol with these
additional features. This clearly is of independent interest.

KOOT:
WIPoK + Com

ZKAoK
com0 = com(C) com1 = com(L)

C

P2 P1

Figure 3.1: The 4-round KO protocol from trapdoor permutations for functionalities where only
one player receives the output.

KOOT:
WIPoK+ZKAoK

com(C)com(L)

C

P2 P1

robust nmcom

com(C̃)com(L̃)

ZKAoK
KOOT:
WIPoK+

robust nmcomC̃

Figure 3.2: The 4-round protocol of [GMPP16] for any functionality assuming 3-round 3-robust
parallel non-malleable commitments in the simultaneous message exchange model.

17

Πγ
−−→
OT

NMZK

com(C) com(L)

C

P2 P1

com(C̃) com(L̃)

NMZK

C̃

Πγ
−−→
OT

Figure 3.3: Our 4-round protocol for any functionality assuming trapdoor permutations in the
simultaneous message exchange model.

3.2 Special One-Sided Simulatable OT

One of the main building blocks of our 2PC protocol is an OT protocol Πγ
OT = (SOT , ROT)

one-sided simulatable1. Our Πγ
OT has four rounds where the first (ot1) and the third (ot3) rounds

are played by the receiver, and the remaining rounds (ot2 and ot4) are played by the sender. In
addition Πγ

OT enjoys the following two additional properties.
1. Replayable third round. Let (ot1, ot2, ot3, ot4) be the messages exchanged by an honest

receiver and a malicious sender during an execution of Πγ
OT . For any honestly computed

ot′2, we have that (ot1, ot2, ot3) and (ot1, ot′2, ot3) are identically distributed. Roughly, we
are requiring that the third round can be reused in order to answer to any second round
ot′2 sent by a malicious sender.

2. Repeatability. We require Πγ
OT to be secure against a malicious receiver R? even when

the last two rounds of Πγ
OT can be repeated multiple times. More precisely a 4-round OT

protocol that is secure in this setting can be seen as an OT protocol of 2 + 2γ rounds,
with γ ∈ {1, . . . , poly(λ)} where λ represents the security parameter. In this protocol R?,
upon receiving the 4th round, can continue the execution with SOT by sending a freshly
generated third round of Πγ

OT up to total of γ 3rd rounds.
Roughly, we require that the output of such R? that runs Πγ

OT against an honest sender
can be simulated by an efficient simulator Sim that has only access to the ideal world
functionality FOT and oracle access to R?.

The security of Πγ
OT is based on the existence of trapdoor permutations2.

Our techniques. In order to construct Πγ
OT we use as a starting point the following basic

3-round semi-honest OT Πsh based on trapdoor permutations (TDPs) of [EGL82, KO04]. Let
l0, l1 ∈ {0, 1}λ be the input of the sender S and b be the input bit of the receiver R.

1. The sender S chooses a trapdoor permutation (f, f−1) ← Gen(1λ) and sends f to the
receiver R.

2. R chooses x← {0, 1}λ and z1−b ← {0, 1}λ, computes zb = f(x) and sends (z0, z1).
3. For c = 0, 1 S computes and sends wc = lc ⊕ hc(f−1(zc))

where hc(·) is a hardcore bit of f . If the parties follow the protocol (i.e. in the semi-honest
setting) then S cannot learn the receiver’s input (the bit b) as both z0 and z1 are random strings.
Also, due to the security of the TDP f , R cannot distinguish w1−b from random as long as z1−b
is randomly chosen. If we consider a fully malicious receiver R? then this protocol is not secure

1In the 2PC protocol we will actually use Πγ
−−→
OT

that roughly corresponds to parallel executions of Πγ
OT . More

details will be provided later.
2As suggested by Ivan Damgård and Claudio Orlandi in a personal communication, following the approach

of [GKM+00], Πγ
OT can be also constructed by relying on public key encryption schemes with special properties.

More precisely the public key encryption scheme has to be such that that either the ciphertexts can be sampled
without knowing the plaintext, or the public key can be sampled without knowing the corresponding secret key.
In this work we give a formal construction and proof only for trapdoor permutations.

18

anymore. Indeed R? could just compute z1−b = f(y) picking a random y ← {0, 1}λ. In this
way R? can retrieve both the inputs of the sender l0 and l1. In [KO04] the authors solve this
problem by having the parties engaging a coin-flipping protocol such that the receiver is forced
to set at least one between z0 and z1 to a random string. This is done by forcing the receiver to
commit to two strings (r0, r1) in the first round (for the coin-flipping) and providing a witness-
indistinguishable proof of knowledge (WIPoK) that either z0 = r0 ⊕ r′0 or z1 = r1 ⊕ r′1 where
r′0 and r′1 are random strings sent by the sender in the second round. The resulting protocol,
as observed in [ORS15], leaks no information to S about R’s input. Moreover the soundness of
the WIPoK forces a malicious R? to behave honestly, and the PoK allows to extract the input
from the adversary in the simulation. Therefore the protocol constructed in [KO04] is one-sided
simulatable. Unfortunately this approach is not sufficient to have an OT protocol that has a
replayable third round. This is due to the to the added WIPoK. More precisely, the receiver has
to execute a WIPoK (acting as a prover) in the first three rounds. Clearly, there is no 3-round
WIPoK such that given an accepting transcript (a, c, z) one can efficiently compute multiple
accepting transcripts w.r.t. different second rounds without knowing the randomness used to
compute a. This is the reason why we need to use a different approach in order to construct an
OT protocol simulation-based secure against a malicious receiver that also has a replayable 3rd
round.

Our construction: Πγ
OT . We start by considering a trick proposed in [ORS15]. In [ORS15]

the authors construct a 4-round black-box OT starting from Πsh. In order to force the receiver
to compute a random zb−1, in the first round R sends two commitments c0 and c1 such that
cb = Eqcom(·), c1−b = Eqcom(r1−b). Eqcom is a commitment scheme that is binding if the
committer runs the honest committer procedure; however this commitment scheme admits also
an indistinguishable equivocal commitment procedure that allows later to open the equivocal
commitment as any message. R then proves using a special WIPoK that either c0 or c1 is
computed using the honest procedure (i.e., at least one of these commitments is binding). Then S
in the second round computes r′0 ← {0, 1}λ, r′1 ← {0, 1}λ and two TDPs f0, f1 with the respective
trapdoor and sends (r′0, r

′
1, f0, f1) to R. R, upon receiving (r′0, r

′
1, f0, f1), picks x ← {0, 1}λ,

computes rb = fb(x)⊕ r′b and sends the opening of c1−b to the message r1−b and the opening of
cb to the message rb. At this point the sender computes and sends w0 = l0 ⊕ hc(f−1

0 (r0 ⊕ r′0)),
w1 = l1⊕hc(f−1

1 (r1⊕ r′1)). Since at least one between c0 and c1 is binding (due to the WIPoK),
a malicious receiver can retrieve only one of the sender’s input lb. We observe that this OT
protocol is still not sufficient for our propose due to the WIPoK used by the receiver (i.e., the
3rd round is not replayable). Moreover we cannot remove the WIPoK otherwise a malicious
receiver could compute both c0 and c1 using the equivocal procedure thus obtaining l0 and l1.
Our solution is to replace the WIPoK with some primitives that make replayable the 3rd round,
still allowing the receiver to prove that at least one of the commitments sent in the first round
is binding. Our key-idea is two use a combination of instance-dependent trapdoor commitment
(IDTCom) and non-interactive commitment schemes. An IDTCom is defined over an instance x
that could belong to the NP-language L or not. If x /∈ L then the IDTCom is perfectly binding,
otherwise it is equivocal and the trapdoor information is represented by the witness w for x.
Our protocol is described as follows. R sends an IDTCom tcom0 of r0 and an IDTCom tcom1

of r1. In both cases the instance used is com, a perfectly binding commitment of the bit b. The
NP-language used to compute tcom0 consists of all valid perfectly binding commitments of the
message 0, while the NP-language used to compute tcom1 consists of all valid perfectly binding
commitments of the message 1.

This means that tcomb can be opened to any value3 and tcom1−b is perfectly binding (we recall
3The decommitment information of com represents the trapdoor of the IDTCom tcomb.

19

that b is the input of the receiver). It is important to observe that due to the binding property
of com it could be that both tcom0 and tcom1 are binding, but it can never happen that they
are both equivocal. Now we can replace the two commitments and the WIPoK used in [ORS15]
with tcom0, tcom1 and com(b) that are sent in the first round. The rest of the protocol stay the
same as in [ORS15] with the difference that in the third round the openings to the messages r0

and r1 are w.r.t. tcom0 and tcom1. What remains to observe is that when a receiver provides
a valid third round of this protocol then the same message can be used to answer all second
rounds. Indeed, a well formed third round is accepting if and only if the opening w.r.t. tcom0

and tcom1 are well computed. Therefore whether the third round is accepting or not does not
depend on the second round sent by the sender.

Intuitively this protocol is also already secure when we consider a malicious receiver that can
send multiple third rounds up to a total of γ 3rd rounds, thus obtaining an OT protocol of 2+2γ
rounds (repeatability). This is because, even though a malicious receiver obtains multiple fourth
rounds in response to multiple third rounds sent by R?, no information about the input of the
sender is leaked. Indeed, in our Πγ

OT , the input of the receiver is fixed in the first round (only
one between tcom0 and tcom1 can be equivocal). Therefore the security of the TDP ensures
that only lb can be obtained by R? independently of what he does in the third round. In the
formal part of the thesis we will show that the security of the TDP is enough to deal with such
scenario.

We finally point out that the OT protocol that we need has to allow parties to use strings
instead of bits as input. More precisely the sender’s input is represented by (l10, l

1
1, . . . , l

m
0 , l

m
1)

where each lib is an λ-bit length string (for i = 1, . . . ,m and b = 0, 1), while the input of the
receiver is λ-bit length string.

This is achieved in two steps. First we construct an OT protocol where the sender’s input is
represented by just two m-bit strings l0 and l1 and the receiver’s input is still a bit. We obtain
this protocol by just using in Πγ

OT a vector of m hard-core bits instead of just a single hard core
bit following the approach of [KO04, GMPP16]. Then we consider m parallel execution of this
modified Πγ

OT (where the the sender uses a pair of strings as input) thus obtaining Πγ
−−→
OT

.

3.3 Definitions and Tools

Definition 7 (Yao’s garbled circuit). We view Yao’s garbled circuit scheme as a tuple of ppt
algorithms (GenGC,EvalGC) where GenGC is the generation procedure which generates a garbled
circuit for a circuit GCy along with labels, and EvalGC is the evaluation procedure which evaluates
the circuit on the correct labels. Each individual wire i of the circuit is assigned two labels, namely
Zi,0, Zi,1. More specifically, the two algorithms have the following format:

- (Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy) ← GenGC(1λ, F, y): GenGC takes as input a security pa-
rameter λ, a circuit F and a string y ∈ {0, 1}λ. It outputs a garbled circuit GCy along with
the set of all input-wire labels {Z1,b, . . . , Zλ,b}b∈{0,1}. The garbled circuit may be viewed as
representing the function F (·, y).

- v = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ): Given a garbled circuit GCy and a set of input-wire
labels Zi,xi where xi ∈ {0, 1} for i = 1, . . . , λ, EvalGC outputs either an invalid symbol ⊥,
or a value v = F (x, y).

The following properties are required.
Correctness. Prob [F (x, y) = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ)] = 1.
Security. There exists a ppt simulator SimGC such that for any (F, x) and uniformly

20

random labels Z1,x1 , . . . , Zλ,xλ , it holds that:

(GCy, Z1,x1 , . . . , Zλ,xλ) ≈ SimGC(1λ, F, x, v)

where (Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy)← GenGC(1λ, F, y) and v = F (x, y).

Definition 8 (Trapdoor permutation). Let F be a triple of ppt algorithms (Gen,Eval, Invert)
such that if Gen(1λ) outputs a pair (f, td), then Eval(f, ·) is a permutation over {0, 1}λ and
Invert (f, td, ·) is its inverse. F is a trapdoor permutation such that for all ppt adversaries A:

Prob
[

(f, td)← Gen(1λ); y ← {0, 1}λ, x← A(f, y) : Eval(f, x) = y
]
≤ ν(λ).

For convenience, we drop (f, td) from the notation, and write f(·), f−1(·) to denote algo-
rithms Eval(f, ·), Invert(f, td, ·) respectively, when f , td are clear from the context. Following
[KO04, GMPP16] we assume that F satisfies (a weak variant of) “certifiability”: namely, given
some f it is possible to decide in polynomial time whether Eval(f, ·) is a permutation over {0, 1}λ.
Let hc be the hardcore bit function for λ bits for the family F . λ hardcore bits are obtained from
a single-bit hardcore function h and f ∈ F as follows: hc(z) = h(z)||h(f(z))|| . . . ||h(fλ−1(z)).
Informally, hc(z) looks pseudorandom given fλ(z)4.

3.3.1 Delayed-Input Non-Malleable Zero Knowledge

Here we follow [COSV17a]. The definition of [COSV17a] allows the adversary to explicitly
select the statement, and as such the adversary provides also the witness for the prover. The
simulated game however will filter out the witness so that the simulator will receive only the
instance. This approach strictly follows the one of [SCO+01] where adaptive-input selection is
explicitly allowed and managed in a similar way. As final remark, this definition will require the
existence of a black-box simulator since a non-black-box simulator could retrieve from the code of
the adversary the witness for the adaptively generated statement. The non-black-box simulator
could then run the honest prover procedure, therefore canceling completely the security flavor
of the simulation paradigm.

Let Π = (P,V) be a delayed-input interactive argument system for a NP-language L with
witness relation RelL. Consider a ppt MiM adversary A that is simultaneously participating
in one left session and poly(λ) right sessions. Before the execution starts, P,V and A receive
as a common input the security parameter in unary 1λ. Additionally A receives as auxiliary
input z ∈ {0, 1}?. In the left session A verifies the validity of the prove given by P with respect
to the statement x (chosen adaptively in the last round of Π). In the right sessions A proves
the validity of the statements x̃1, . . . , x̃poly(λ)

5 (chosen adaptively in the last round of Π) to the
honest verifiers V1, . . . ,Vpoly(λ).

More precisely in the left session A, before the last round of Π is executed, adaptively selects
the statement x to be proved and the witness w, s.t. (x,w) ∈ RelL, and sends them to P.

Let ViewA(1λ, z) denote a random variable that describes the view of A in the above exper-
iment.

Definition 9 (Delayed-input NMZK). A delayed-input argument system Π = (P,V) for an NP-
language L with witness relation RelL is delayed-input non-malleable zero knowledge (NMZK) if
for any MiM adversary A that participates in one left session and poly(λ) right sessions, there
exists a expected ppt machine S(1λ, z) such that:

4 fλ(z) means the λ-th iteration of applying f on z.
5We denote (here and in the rest of the thesis) by δ̃ a value associated with the right session where δ is the

corresponding value in the left session.

21

1. Let (View, w1, . . . , wpoly(λ)) denote the output of S(1λ, z), for some z ∈ {0, 1}?. The
probability ensembles {S1(1λ, z)}λ∈N,z∈{0,1}? and {ViewA(1λ, z)}λ∈N,z∈{0,1}? are computa-
tionally indistinguishable over λ, where S1(1λ, z) denotes the first output of S(1λ, z).
2. For every i ∈ {1, . . . , poly(λ)}, if the i-th right session is accepting w.r.t. some statement
xi and A does not acts as a proxy (by simply sending back and forward the massages of
the left session), then wi is s.t. (xi, wi) ∈ RelL

6.

The above definition of NMZK allows the adversary to select statements adaptively in the
last round both in left and in the right sessions. Therefore any argument system that is NMZK
according to the above definition enjoys also adaptive-input argument of knowledge.

3.3.2 Two-party Computation with a Simultaneous Message Exchange Chan-
nel

Our Two-Party Computation (2PC) protocol is secure in the same model used in [GMPP16,
Pol16], therefore the following definition is taken almost verbatim from [GMPP16, Pol16].

A two-party protocol problem is cast by specifying a random process that maps pairs of
inputs to pairs of outputs (one for each party). We refer to such a process as a functionality
and denote it F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ where F = (F1, F2). That is, for every
pair of inputs (x, y), the output-pair is a random variable (F1(x, y), F2(x, y)) ranging over pairs
of strings. The first party (with input x) wishes to obtain F1(x, y) and the second party (with
input y) wishes to obtain F2(x, y).

Adversarial behaviour. Loosely speaking, the aim of a secure two-party protocol is to pro-
tect an honest party against dishonest behaviour by the other party. In this work, we consider
malicious adversaries who may arbitrarily deviate from the specified protocol. When considering
malicious adversaries, there are certain undesirable actions that cannot be prevented. Specifi-
cally, a party may refuse to participate in the protocol, may substitute its local input (and use
instead a different input) and may abort the protocol prematurely. One ramification of the ad-
versary’s ability to abort, is that it is impossible to achieve fairness. That is, the adversary may
obtain its output while the honest party does not. In this work we consider a static corruption
model, where one of the parties is adversarial and the other is honest, and this is fixed before
the execution begins.

Communication channel. In our result we consider a secure simultaneous message exchange
channel in which all parties can simultaneously send messages over the channel at the same
communication round but allowing a rushing adversary. Moreover, we assume an asynchronous
network7 where the communication is open and delivery of messages is not guaranteed. For
simplicity, we assume that the delivered messages are authenticated. This can be achieved using
standard methods.

Execution in the ideal model. An ideal execution proceeds as follows. Each party obtains
an input, denoted w (w = x for P1, and w = y for P2). An honest party always sends w to the
trusted party. A malicious party may, depending on w, either abort or send some w′ ∈ {0, 1}|w|
to the trusted party. In case it has obtained an input pair (x, y), the trusted party first replies
to the first party with F1(x, y). Otherwise (i.e., in case it receives only one valid input), the

6In this definition we do not consider identities, since we do not need them for our propose of constructing a
2PC protocol.

7The fact that the network is asynchronous means that the messages are not necessarily delivered in the order
which they are sent.

22

trusted party replies to both parties with a special symbol ⊥. In case the first party is malicious
it may, depending on its input and the trusted party’s answer, decide to stop the trusted party
by sending it ⊥ after receiving its output. In this case the trusted party sends ⊥ to the second
party. Otherwise (i.e., if not stopped), the trusted party sends F2(x, y) to the second party.
Outputs: an honest party always outputs the message it has obtained from the trusted party. A
malicious party may output an arbitrary (probabilistic polynomial-time computable) function
of its initial input and the message obtained from the trusted party.

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality where F = (F1, F2) and
let S = (S1, S2) be a pair of non-uniform probabilistic expected polynomial-time machines
(representing parties in the ideal model). Such a pair is admissible if for at least one i ∈ {0, 1}
we have that Si is honest (i.e., follows the honest party instructions in the above-described ideal
execution). Then, the joint execution of F under S in the ideal model (on input pair (x, y) and
security parameter λ), denoted IDEALF,S(z)(1

λ, x, y) is defined as the output pair of S1 and S2

from the above ideal execution.

Execution in the real model. We next consider the real model in which a real (two-party)
protocol is executed (and there exists no trusted third party). In this case, a malicious party
may follow an arbitrary feasible strategy; that is, any strategy implementable by non-uniform
probabilistic polynomial-time machines. In particular, the malicious party may abort the exe-
cution at any point in time (and when this happens prematurely, the other party is left with no
output). Let F be as above and let Π be a two-party protocol for computing F . Furthermore,
let A = (A1, A2) be a pair of non-uniform probabilistic polynomial-time machines (representing
parties in the real model). Such a pair is admissible if for at least one i ∈ {0, 1} we have that
Ai is honest (i.e., follows the strategy specified by Π). Then, the joint execution of Π under A
in the real model, denoted REALΠ,A(z)(1

λ), is defined as the output pair of A1 and A2 resulting
from the protocol interaction.

Definition 10 (secure two-party computation). Let F and Π be as above. Protocol Π is said
to securely compute F (in the malicious model) if for every pair of admissible non-uniform
probabilistic polynomial-time machines A = (A1, A2) that run with auxiliary input z for the
real model, there exists a pair of admissible non-uniform probabilistic expected polynomial-time
machines S = (S1, S2) (that use z as auxiliary input) for the ideal model, such that:

{REALΠ,A(z)(1
λ, x, y)}λ∈N,z,x,y∈{0,1}? ≈ {IDEALf,S(z)(1

λ, x, y)}λ∈N,z∈{0,1}? .

We note that the above definition assumes that the parties know the input lengths (this
can be seen from the requirement that |x| = |y|). Some restriction on the input lengths is
unavoidable, see Section 7.1 of [Gol04] for discussion. We also note that we allow the ideal
adversary/simulator to run in expected (rather than strict) polynomial-time. This is essential
for constant-round protocols.

3.3.3 Oblivious Transfer

Here we follow [ORS15]. Oblivious Transfer (OT) is a two-party functionality FOT , in which
a sender S holds a pair of strings (l0, l1), and a receiver R holds a bit b, and wants to obtain
the string lb. The security requirement for the FOT functionality is that any malicious receiver
does not learn anything about the string l1−b and any malicious sender does not learn which
string has been transferred. This security requirement is formalized via the ideal/real world
paradigm. In the ideal world, the functionality is implemented by a trusted party that takes the
inputs from S and R and provides the output to R and is therefore secure by definition. A real

23

Functionality FOT

FOT running with a sender S a receiver R and an adversary Sim
proceeds as follows:
• Upon receiving a message (send, l0, l1, S,R) from S where each

l0, l1 ∈ {0, 1}λ, record the tuple (l0, l1) and send send to R and
Sim. Ignore any subsequent send messages.

• Upon receiving a message (receive, b) from R, where b ∈ {0, 1}
send lb to R and receive to S and Sim and halt. (If no (send, ·)
message was previously sent, do nothing).

Figure 3.4: The Oblivious Transfer Functionality FOT .

world protocol Π securely realizes the ideal FOT functionalities, if the following two conditions
hold. (a) Security against a malicious receiver: the output of any malicious receiver R? running
one execution of Π with an honest sender S can be simulated by a ppt simulator Sim that has
only access to the ideal world functionality FOT and oracle access to R?. (b) Security against a
malicious sender. The joint view of the output of any malicious sender S? running one execution
of Π with R and the output of R can be simulated by a ppt simulator Sim that has only access
to the ideal world functionality functionality FOT and oracle access to S?. In this work we
consider a weaker definition of FOT that is called one-sided simulatable FOT , in which we do
not demand the existence of a simulator against a malicious sender, but we only require that a
malicious sender cannot distinguish whether the honest receiver is playing with bit 0 or 1. A
bit more formally, we require that for any ppt malicious sender S? the view of S? executing Π
with the R playing with bit 0 is computationally indistinguishable from the view of S? where
R is playing with bit 1. Finally, we consider the FmOT functionality where the sender S and the
receiver R run m executions of OT in parallel. The formal definitions of one-sided secure FOT
and one-sided secure FmOT follow.

Definition 11 ([ORS15]). Let FOT be the Oblivious Transfer functionality as shown in Fig. 3.4.
We say that a protocol Π securely computes FOT with one-sided simulation if the following holds:

1. For every non-uniform ppt adversary R? controlling the receiver in the real model, there
exists a non-uniform ppt adversary Sim for the ideal model such that

{REALΠ,R?(z)(1
λ)}z∈{0,1}λ ≈ IDEALFOT ,Sim(z)(1

λ)}z∈{0,1}λ

where REALΠ,R?(z)(1
λ) denotes the distribution of the output of the adversary R? (con-

trolling the receiver) after a real execution of protocol Π, where the sender S has inputs
l0, l1 and the receiver has input b. IDEALf,Sim(z)(1

λ) denotes the analogous distribution in
an ideal execution with a trusted party that computes FOT for the parties and hands the
output to the receiver.
2. For every non-uniform ppt adversary S? controlling the sender it holds that:

{ViewRΠ,S?(z)(l0, l1, 0)}z∈{0,1}? ≈ {ViewRΠ,S?(z)(l0, l1, 1)}z∈{0,1}?

where ViewRΠ,S?(z) denotes the view of adversary S? after a real execution of protocol Π with
the honest receiver R.

Definition 12 (Parallel oblivious transfer functionality FmOT [ORS15]). The parallel Oblivious
Transfer Functionality FmOT is identical to the functionality FOT , with the difference that takes

24

in input m pairs of string from S (l10, l
1
1, . . . , l

m
0 , l

m
1) (whereas FOT takes just one pair of strings

from S) and m bits from R, b1, . . . , bm (whereas FOT takes one bit from R) and outputs to the
receiver values (l1b1 , . . . , l

m
bm

) while the sender receives nothing.

Definition 13 ([ORS15]). Let FmOT be the Oblivious Transfer functionality as described in
Def. 12. We say that a protocol Π securely computes FmOT with one-sided simulation if the
following holds:

1. For every non-uniform ppt adversary R? controlling the receiver in the real model, there
exists a non-uniform ppt adversary Sim for the ideal model such that for every x1 ∈
{0, 1}, . . . , xm ∈ {0, 1}

{REALΠ,R?(z)(1
λ, (l10, l

1
1, . . . , l

m
0 , l

m
1), (x1, . . . , xm))} ≈

IDEALFmOT ,Sim(z)(1
λ), (l10, l

1
1, . . . , l

m
0 , l

m
1), (x1, . . . , xm))}z∈{0,1}λ

where REALΠ,R?(z)(1
λ) denotes the distribution of the output of the adversary R? (con-

trolling the receiver) after a real execution of protocol Π, where the sender S has inputs
(l10, l

1
1, . . . , l

m
0 , l

m
1) and the receiver has input (x1, . . . , xm). IDEALf,Sim(z)(1

λ) denotes the
analogous distribution in an ideal execution with a trusted party that computes FmOT for the
parties and hands the output to the receiver.
2. For every non-uniform ppt adversary S? controlling the sender it holds that for every
x1 ∈ {0, 1}, . . . , xm ∈ {0, 1} and for every y1 ∈ {0, 1}, . . . , ym ∈ {0, 1}:

{ViewRΠ,S?(z)((l
1
0, l

1
1, . . . , l

m
0 , l

m
1), (x1, . . . , xm))}z∈{0,1}? ≈

{ViewRΠ,S?(z)((l
1
0, l

1
1, . . . , l

m
0 , l

m
1), (y1, . . . , ym))}z∈{0,1}?

where ViewRΠ,S?(z) denotes the view of adversary S? after a real execution of protocol Π with
the honest receiver R.

We remark that in this notions of OT we do not suppose the existence of a simultaneous
message exchange channel.

3.4 Our OT Protocol Πγ
OT = (SOT , ROT)

We use the following tools.
1. A non-interactive perfectly binding, computationally hiding commitment scheme PBCOM =

(Com,Dec).
2. A trapdoor permutation F = (Gen,Eval, Invert)8 with the hardcore bit function for λ bits

hc(·) (see Def. 8).
3. A non-interactive IDTC scheme TC0 = (Sen0,Rec0,TFake0) for the NP-language L0 =
{com : ∃ dec s.t. Dec(com, dec, 0) = 1}.

4. A non-interactive IDTC scheme TC1 = (Sen1,Rec1,TFake1) for the NP-language L1 =
{com : ∃ dec s.t. Dec(com, dec, 1) = 1}.

Let b ∈ {0, 1} be the input of ROT and l0, l1 ∈ {0, 1}λ be the input of SOT , we now give the
description of our protocol following Fig. 3.5.

8We recall that for convenience, we drop (f, td) from the notation, and write f(·), f−1(·) to denote algorithms
Eval(f, ·), Invert(f, td, ·) respectively, when f , td are clear from the context. Also we omit the generalization to
a family of TDPs.

25

In the first round ROT runs Com on input the message to be committed b in order to obtain
the pair (com, dec). On input the instance com and a random string r1

b−1, ROT runs Sen1−b in
order to compute the pair (tcom1−b, tdec1−b). We observe that the Instance-Dependent Binding
property of the IDTCs, the description of the NP-language L1−b and the fact that in com the
bit b has been committed, ensure that tcom1−b can be opened only to the value r1

b−1.
9 ROT runs

the trapdoor procedure of the IDTC scheme TCb. More precisely ROT runs TFakeb on input
the instance com to compute the pair (tcomb, aux). In this case tcomb can be equivocated to
any message using the trapdoor (the opening information of com), due to the trapdoorness of
the IDTC, the description of the NP-language Lb and the message committed in com (that is
represented by the bit b). ROT sends tcom0, tcom1 and com to SOT .

In the second round SOT picks two random strings R0, R1 and two trapdoor permutations
(f0,1, f1,1) along with their trapdoors (f−1

0,1 , f
−1
1,1). Then SOT sends R0, R1, f0,1 and f1,1 to ROT .

In the third round ROT checks whether or not f0,1 and f1,1 are valid trapdoor permutations.
In the negative case ROT aborts, otherwise ROT continues with the following steps. ROT picks
a random string z′1 and computes z1 = fb,1(z′1). ROT now computes r1

b = z1 ⊕ Rb and runs
TFakeb on input dec, com, tcomb, aux and r1

b in order to obtain the equivocal opening tdecb of
the commitment tcomb to the message r1

b . ROT renames rb to r1
b and tdecb to tdec1

b and sends
to SOT (tdec1

0, r
1
0) and (tdec1

1, r
1
1).

In the fourth round SOT checks whether or not (tdec1
0, r

1
0) and (tdec1

1, r
1
1) are valid

openings w.r.t. tcom0 and tcom1. In the negative case SOT aborts, otherwise SOT computes
W 1

0 = l0 ⊕ hc(f−λ0,1 (r1
0 ⊕ R0)) and W 1

1 = l1 ⊕ hc(f−λ1,1 (r1
1 ⊕ R1)). Informally SOT encrypts his

inputs l0 and l1 through a one-time pad using as a secret key the pre-image of r1
0 ⊕ R0 for l0

and the pre-image of r1
1 ⊕ R1 for l1. SOT also computes two trapdoor permutations (f0,2, f1,2)

along with their trapdoors (f−1
0,2 , f

−1
1,2) and sends (W 1

0 ,W
1
1 , f0,2, f1,2) to ROT . At this point the

third and the fourth rounds are repeated up to γ − 1 times using fresh randomness as showed
in Fig. 3.5. In the last round no trapdoor permutations are needed/sent.

We observe that a malicious sender S?OT could easily understand the input bit of ROT when
γ > 1. This is not a problem since for our application we need to prove the security of Πγ

OT to
hold against malicious sender only for γ = 1. We only consider γ = poly(λ) when proving the
security of Πγ

OT against malicious receiver.
In the output phase, ROT computes and outputs lb = W 1

b ⊕hc(z′1). That is, ROT just uses
the information gained in the fourth round to compute the output. It is important to observe
that ROT can correctly and efficiently compute the output because z′ = r1

b ⊕ Rb. Moreover
ROT cannot compute l1−b because he has no way to change the value committed in tcom1−b
and invert the TDP since it is suppose to be hard without having the trapdoor.

In order to construct our protocol for two-party computation in the simultaneous message
exchange model we need to consider an extended version of Πγ

OT , that we denote by Πγ
−−→
OT

=

(S−−→OT , R−−→OT). In Πγ
−−→
OT

the S−−→OT ’s input is represented bym pairs (l10, l
1
1, . . . , l

m
0 , l

m
1) and the R−−→OT ’s

input is represented by the sequence b1, . . . , bm with bi ∈ {0, 1} for all i = 1, . . . ,m. In this case
the output of R−−→OT is (lb1 , . . . , lbm). We construct Πγ

−−→
OT

= (S−−→OT , R−−→OT) by simply considering
m parallel iterations of Πγ

OT and then we prove that it securely computes FmOT with one-sided
simulation (see Definition 13).

Proof sketch. The security proof of Πγ
OT is divided in two parts. In the former we prove

the security against a malicious sender with γ = 1 and in the latter we prove the security of
Πγ
OT against a malicious receiver with γ = poly(λ). In order to prove the security against

malicious sender we recall that for the definition of one-sided simulation it is just needed the no

9com does not belong to the NP-language Lb−1, therefore tcom1−b is a perfectly binding commitment.

26

ROT (b) SOT (l0, l1)

(com, dec)← Com(1λ, b);
(tcomb, aux)← TFakeb(1

λ, com);
r1−b ← {0, 1}λ;
(tcom1−b, tdec1−b)← Sen1−b(1

λ, r1−b, com).
com, tcom0, tcom1
−−−−−−−−−−−−−−−−−−→

R0 ← {0, 1}λ;
R1 ← {0, 1}λ;
(f0,1, f

−1
0,1)← Gen(1λ);

(f1,1, f
−1
1,1)← Gen(1λ).

R0, R1, f0,1, f1,1
←−−−−−−−−−−−−−−−−−−

z′1 ← {0, 1}λ;
z1 = fλb,1(z′1);
r1b = z1 ⊕Rb;
tdec1b ← TFakeb(dec, com, tcomb, aux, r

1
b);

tdec11−b = tdec1−b, r11−b = r1−b. (tdec10, r
1
0), (tdec11, r

1
1)

−−−−−−−−−−−−−−−−−−→
(f0,2, f

−1
0,2)← Gen(1λ);

(f1,2, f
−1
1,2)← Gen(1λ);

W 1
0 = l0 ⊕ hc(f−λ0,1 (r10 ⊕R0));

W 1
1 = l1 ⊕ hc(f−λ1,1 (r11 ⊕R1)).

W 1
0 ,W

1
1 , f0,2, f1,2

←−−−−−−−−−−−−−−−−−−
z′2 ← {0, 1}λ;
z2 = fλb,2(z′2);
r2b = z2 ⊕Rb;
tdec2b ← TFakeb(dec, com, tcomb, aux, r

2
b);

tdec21−b = tdec1−b, r21−b = r1−b. (tdec20, r
2
0), (tdec21, r

2
1)

−−−−−−−−−−−−−−−−−−→
(f0,3, f

−1
0,3)← Gen(1λ);

(f1,3, f
−1
1,3)← Gen(1λ);

W 2
0 = l0 ⊕ hc(f−λ0,2 (r20 ⊕R0));

W 2
1 = l1 ⊕ hc(f−λ1,2 (r21 ⊕R1)).

W 2
0 ,W

2
1 , f0,3, f1,3

←−−−−−−−−−−−−−−−−−−
.
.
.

(tdecγ0 , r
γ
0), (tdecγ1 , r

γ
1)

−−−−−−−−−−−−−−−−−−→
W γ

0 ,W
γ
1

←−−−−−−−−−−−−−−−−−−
Output lb = W 1

b ⊕ hc(z′1).

Figure 3.5: Description of Πγ
OT .

27

information about R’s input is leaked to S?. We consider the experiment H0 where R’s input is
0 and the experiment H1 where R’s input is 1 and we prove that S? cannot distinguish between
H0 and H1. More precisely we consider the experiment Ha where tcom0 and the corresponding
opening is computed without using the trapdoor (the randomness of com) and relying on the
trapdoorness of the IDTCom TC0 we prove that H0 ≈ Ha. Then we consider the experiment
Hb where the value committed in com goes from 0 to 1 and prove that Ha ≈ Hb due to the
hiding of com. We observe that this reduction can be made because to compute both Ha and Hb

the opening informations of com are not required anymore. The proof ends with the observation
that Hb ≈ H1 due to the trapdoorness of the IDTCom TC1.

To prove the security against a malicious receiver R? we need to show a simulator Sim. Sim
rewinds R? from the third to the second round by sending every time freshly generated R0

and R1. Sim then checks whether the values r1
0 and r1

1 change during the rewinds. We recall
that com is a perfectly binging commitment, therefore only one between tcom0 and tcom1 can
be opened to multiple values using the trapdoor procedure (com can belong only to one of the
NP-languages L0 and L1). Moreover, intuitively, the only way that R? can compute the output
is by equivocating one between tcom0 and tcom1 based on the values R0, R1 received in the
second round. This means that if during the rewinds the value opened w.r.t. tcomb changes,
then the input that R? is using is b. Therefore the simulator can call the ideal functionality thus
obtaining lb. At this point Sim uses lb to compute W 1

b according to the description of Πγ
OT and

sets W 1
1−b to a random string. Moreover Sim will use the same strategy used to compute W 1

b

and W 1
1−b to compute, respectively W i

b and W i
1−b for i = 2, . . . , γ. In case during the rewinds

the value r1
0, r

1
1 stay the same, then Sim sets both W 1

0 and W 1
1 to random strings. We observe

that R? could detect that now W 1
0 and W 1

1 are computed in a different way, but this would
violate the security of the TDPs.

Theorem 1. Assuming TDPs, for any γ > 0 Πγ
−−→
OT

securely computes FmOT with one-sided
simulation. Moreover the third round is replayable.

Proof. We first observe that in third round of Πγ
OT only the opening information for the IDTCs

tcom0 and tcom1 are sent. Therefore once that a valid third round is received, it is possible
to replay it in order to answer to many second rounds sent by a malicious sender. Roughly,
whether the third round of Πγ

OT is accepting or not is independent of what a malicious sender
sends in the second round. Therefore we have proved that Πγ

OT has a replayable third round. In
order to prove that Πγ

OT is one-sided simulatable secure for FOT (see Definition 11) we divide
the security proof in two parts; the former proves the security against a malicious sender, and
the latter proves the security against a malicious receiver. More precisely we prove that Πγ

OT
is secure against a malicious receiver for an arbitrary chosen γ = poly(λ), and is secure against
malicious sender for γ = 1 (i.e. when just the first four rounds of the protocol are executed).

Security against a malicious sender. In this case we just need to prove that the output
of S?OT of the execution of Πγ

OT when ROT interacts with S?OT using b = 0 as input is com-
putationally indistinguishable from when ROT uses b = 1 as input. The differences between
these two hybrid experiments consist of the message committed in com and the way in which
the IDTCs are computed. More precisely, in the first experiment, when b = 0 is used as input,
tcom0 and the corresponding opening (tdec1

0, r
1
0) are computed using the trapdoor procedure (in

this case the message committed in com is 0), while tcom1 and (tdec1
1, r

1
1) are computed using

the honest procedure. In the second experiment, tcom0 and the respective opening (tdec1
0, r

1
0)

are computed using the honest procedure, while tcom1 and (tdec1
1, r

1
1) are computed using the

trapdoor procedure of the IDTC scheme. In order to prove the indistinguishability between
these two experiments we proceed via hybrid arguments. The first hybrid experiment H1 is

28

equal to when ROT interacts with against S?OT according Πγ
OT when b = 0 is used as input.

In H2 the honest procedure of IDTC is used instead of the trapdoor one in order to compute
tcom0 and the opening (tdec1

0, r
1
0). We observe that in H2 both the IDTCs are computed using

the honest procedure, therefore no trapdoor information (i.e. the randomness used to compute
com) is required. The computational-indistinguishability between H1 and H2 comes from the
trapdoorness of the IDTC TC0. In H3 the value committed in com goes from 0 to 1. H2 and H3

are indistinguishable due to the hiding of PBCOM. It is important to observe that a reduction
to the hiding of PBCOM is possible because the randomness used to compute com is no longer
used in the protocol execution to run one of the IDTCs. In the last hybrid experiment H4 the
trapdoor procedure is used in order to compute tcom1 and the opening (tdec1

1, r
1
1). We observe

that it is possible to run the trapdoor procedure for TC1 because the message committed in com

is 1. The indistinguishability between H3 and H4 comes from the trapdoorness of the IDTC.
The observation that H4 corresponds to the experiment where the honest receiver executes Πγ

OT
using b = 1 as input concludes the security proof.

Security against a malicious receiver. In order to prove that Πγ
OT is simulation-based

secure against malicious receiver R?OT we need to show a ppt simulator Sim that, having only
access to the ideal world functionality FOT , can simulate the output of any malicious R?OT
running one execution of Πγ

OT with an honest sender SOT . The simulator Sim works as follows.
Having oracle access to R?OT , Sim runs as a sender in Πγ

OT by sending two random strings R0

and R1 and the pair of TDPs f0,1 and f1,1 in the second round. Let (tdec1
0, r

1
0), (tdec1

1, r
1
1)

be the messages sent in the third round by R?OT . Now Sim rewinds R?OT by sending two fresh
random strings R0 and R1 such that R0 6= R0 and R1 6= R1.

Let (tdec
1
0, r

1
0), (tdec

1
1, r

1
1) be the messages sent in the third round by R?OT after this rewind,

then there are only two things that can happen10:
1. r1

b? 6= r1
b? and r1

1−b? = r1
1−b? for some b? ∈ {0, 1} or

2. r1
0 = r1

0 and r1
1 = r1

1.
More precisely, due to the perfect binding of PBCOM at most one between tcom0 and tcom1

can be opened to a different message. Therefore R?OT can either open both tcom0 and tcom1 to
the same messages r1

0 and r1
1, or change in the opening of at most one of them. This yields to

the following important observation. If one among r1
0 and r1

1 changes during the rewind, let us
say rb? for b? ∈ {0, 1} (case 1), then the input bit used by R?OT has to be b?. Indeed we recall
that the only efficient way (i.e. without inverting the TDP) for a receiver to get the output is
to equivocate one of the IDTCs in order to compute the inverse of one between R0 ⊕ r1

0 and
R1 ⊕ r1

1. Therefore the simulator invokes the ideal world functionality FOT using b? as input,
and upon receiving lb? computes W 1

b? = lb? ⊕ hc(f−λb?,1(r1
b? ⊕ Rb?)) and sets W 1

1−b? to a random
string. Then sends W 1

0 and W 1
1 with two freshly generated TDPs f0,2, f1,2 (according to the

description of Πγ
OT given in Fig. 3.5) to R?OT . Let us now consider the case where the opening

of tcom0 and tcom1 stay the same after the rewinding procedure (case two). In this case, Sim
comes back to the main thread and sets both W 1

0 and W 1
1 to a random string. Intuitively if

R?OT does not change neither r1
0 nor r1

1 after the rewind, then his behavior is not adaptive on
the second round sent by Sim. Therefore, he will be able to compute the inverse of neither
R0 ⊕ r1

0 nor R1 ⊕ r1
1. That is, both R0 ⊕ r1

0 and R1 ⊕ r1
1 would be the results of the execution

of two coin-flipping protocols, therefore both of them are difficult to invert without knowing the
trapdoors of the TDPs. This implies that R?OT has no efficient way to tells apart whether W 1

0

and W 1
1 are random strings or not.

Completed the fourth round, for i = 2, . . . , γ, Sim continues the interaction with R?OT by

10R?OT could also abort after the rewind. In this case we use the following standard argument. If p is the
probability of R?OT of giving an accepting third round, λ/p rewinds are made until R?OT gives another answer.

29

always setting both W i
0 and W i

1 to a random string when r1
0 = ri0 and r1

1 = ri1, and using
the following strategy when r1

b? 6= rib? and r1
1−b? = ri1−b? for some b? ∈ {0, 1}. Sim invokes

the ideal world functionality FOT using b? as input, and upon receiving lb? computes W i
b? =

lb?⊕hc(f−λb?,i(r
i
b?⊕Rb?)), setsW i

1−b? to a random string and sends with them two freshly generated
TDPs f0,i+1, f1,i+1 to R?OT . When the interaction against R?OT is over, Sim stops and outputs
what R?OT outputs. We observe that the simulator needs to invoke the ideal world functionality
just once. Indeed, we recall that only one of the IDTCs can be equivocated, therefore once that
the bit b? is decided (using the strategy described before) it cannot change during the simulation.
The last thing that remains to observe is that it could happen that Sim never needs to invoke
the ideal world functionality in the case that: 1) during the rewind the values (r1

0, r
1
1) stay the

same; 2) rib = rjb for all i, j ∈ {1, . . . , γ} and all b = {0, 1}. In this case Sim, even though it does
not need to query the ideal functionality to internally complete an interaction with R?OT we
assume, without loss of generality, that Sim invokes the ideal functionality by using a random
bit b? ∈ {0, 1}.

We formally prove that the output of Sim is computationally indistinguishable from the
output of R?OT in the real world execution for every γ = poly(λ). The proof goes trough
hybrid arguments starting from the real world execution. We gradually modify the real world
execution until the input of the honest party is not needed anymore such that the final hybrid
would represent the simulator for the ideal world. We denote by OUTHi,R?OT (z)(1

λ) the output
distribution of R?OT in the hybrid experiment Hi.
– H0 is identical to the real execution. More precisely H0 runs R?OT using fresh randomness

and interacts with him as the honest sender would do on input (l0, l1).
– Hrew

0 proceeds according to H0 with the difference that R?OT is rewound up to the second
round by receiving two fresh random strings R0 and R1. This process is repeated until R?OT
completes the third round again (every time using different randomness). More precisely,
if R?OT aborts after the rewind then a fresh second round is sent up to λ/p times, where
p is the probability of R?OT of completing the third round in H0. If p = poly(λ) then the
expected running time of Hrew

0 is poly(λ) and its output is statistically close to the output
of H0. When the third round is completed the hybrid experiment comes back to the main
thread and continues according to H0

– H1 proceeds according to Hrew
0 with the difference that after the rewinds executes the fol-

lowing steps. Let r1
0 and r1

1 be the messages opened by R?OT in the third round of the
main thread and r1

0 and r1
1 be the messages opened during the rewind. We distinguish two

cases that could happen:
1. r1

0 = r1
0 and r1

1 = r1
1 or

2. r1
b? 6= r1

b? and r1
1−b? = r1

1−b? for some b? ∈ {0, 1}.
In this hybrid we assume that the first case happen with non-negligible probability. Af-
ter the rewind H1 goes back to the main thread, and in order to compute the fourth
round, picks W 1

0 ← {0, 1}λ computes W 1
1 = l1 ⊕ hc(f−λ1,1 (r1

1 ⊕R1)), (f0,2, f
−1
0,2)← Gen(1λ),

(f1,2, f
−1
1,2) ← Gen(1λ) and sends (W 1

0 ,W
1
1 , f0,2, f1,2) to R?OT . Then the experiment con-

tinues according to H0. Roughly, the difference between H0 and H1 is that in the latter
hybrid experiment W 1

0 is a random string whereas in H1 W
1
0 = l0 ⊕ hc(f−λ0,1 (r1

0 ⊕R0)).
We now prove that the indistinguishability between H0 and H1 comes from the security

of the hardcore bit function for λ bits hc for the TDP F . More precisely, assuming
by contradiction that the outputs of H0 and H1 are distinguishable we construct and
adversary AF that distinguishes between the output of hc(x) and a random string of λ
bits having as input fλ(x). Consider an execution where R?OT has non-negligible advantage
in distinguishing Hrew

0 from H1 and consider the randomness ρ used by R?OT and the first
round computed by R?OT in this execution, let us say com, tcom0, tcom1. AF , on input the

30

randomness ρ, the messages r1
0 and r1

1 executes the following steps.
1. Start R?OT with randomness ρ.
2. Let (f,H, fλ(x)) be the challenge. Upon receiving the first round (com, tcom0, tcom1)

by R?OT , compute R0 = r1
0 ⊕ fλ(x), pick a random string R1, compute (f1,1, f

−1
1,1)←

Gen(1λ), set f0,1 = f and sends R0, R1, f0,1, f1,1 to R?OT .
3. Upon receiving (tdec1

0, r
1
0), (tdec1

1, r
1
1) computeW 1

0 = l0⊕H, W 1
1 = l1⊕hc(f−λ1,1 (r1

1⊕
R1)), (f0,2, f

−1
0,2)← Gen(1λ), (f1,2, f

−1
1,2)← Gen(1λ) and send (W 1

0 ,W
1
1 , f0,2, f1,2). 11

4. Continue the interaction with R?OT according to H1 (and Hrew
0) and output what

R?OT outputs.
This part of the security proof ends with the observation that if H = hc(x) then R?OT

acts as in Hrew
0 , otherwise R?OT acts as in H1.

– H2 proceeds according to H1 with the difference that both W0 and W1 are set to random
strings. Also in this case the indistinguishability between H1 and H2 comes from the
security of the hardcore bit function for λ bits hc for the family F (the same arguments of
the previous security proof can be used to prove the indistinguishability between H2 and
H1).

– H3 In this hybrid experiment we consider the case where after the rewind, with non-negligible
probability, r1

b? 6= r1
b? and r1

1−b? = r1
1−b? for some b? ∈ {0, 1}.

In this case, in the main thread the hybrid experiment computesW 1
b? = lb?⊕hc(f−λb?,1(r1

b?⊕
Rb?)), picks W 1

1−b? ← {0, 1}? sends W 1
0 ,W

1
1 with two freshly generated TDPs f0,2, f1,2.

H3 now continues the interaction with R?OT according to H2. The indistinguishability
between H2 and H3 comes from the security of the hardcore bit function for λ bits hc
for the TDP F . More precisely, assuming by contradiction that H2 and H3 are distin-
guishable, we construct and adversary AF that distinguishes between the output of hc(x)
and a random string of λ bits having as input fλ(x). Consider an execution where R?OT
has non-negligible advantage in distinguish H2 from H3 and consider the randomness ρ
used by R?OT and the first round computed in this execution, let us say com, tcom0, tcom1.
AF , on input the randomness ρ, the message b? committed in com and the message r1

1−b?
committed tcom1−b? , AF executes the following steps.
1. Start R?OT with randomness ρ.
2. Let (f,H, fλ(x)) be the challenge. Upon receiving the first round (com, tcom0, tcom1)

by R?OT , compute R1−b? = r1
1−b? ⊕ fλ(x), pick a random string Rb? , computes

(fb?,1, f
−1
b?,1)← Gen(1λ), sets f1−b?,1 = f and send (R0, R1, f0,1, f1,1) to R?OT .

3. Upon receiving (tdec1
0, r

1
0), (tdec1

1, r
1
1) compute W 1

1−b? = l1−b? ⊕ H, W 1
b? = lb? ⊕

hc(f−λb?,1(r1
b?⊕Rb?)), (f0,2, f

−1
0,2)← Gen(1λ), (f1,2, f

−1
1,2)← Gen(1λ) and send (W 1

0 ,W
1
1 , f0,2, f1,2).

4. Continue the interaction with R?OT according to H2 (and H3) and output what R?OT
outputs.

This part of the security proof ends with the observation that if H = hc(x) then R?OT acts
as in H2, otherwise he acts as in H3.

– Hj3 proceeds according to H3 with the differences that for i = 2, . . . , j

1. if rib? 6= r1
b? for some b? ∈ {0, 1} thenHj3 picksW i

1−b? ← {0, 1}λ, computesW i
b? = lb?⊕

hc(f−λb?,i(r
i
b? ⊕Rb?)) and sends W i

0,W
i
i with two freshly generated TDPs f0,i+1, f1,i+1

to R?OT otherwise

11Observe that R?OT could send values different from r1
0 and r1

1 in the third round. In this case AF just
recomputes the second round using fresh randomness and asking another challenge f,H, f

λ
(x) to the challenger

until in the third round the messages r1
0 and r1

1 are received again. This allows AF to break the security of f
because we are assuming that in this experiment R?OT opens, with non-negligible probability, tcom0 to r1

0 and
tcom1 to r1

1.

31

2. Hj3 picks W i
0 ← {0, 1}λ and W i

1 ← {0, 1}λ and sends W i
0,W

i
1 with two freshly gener-

ated TDPs f0,i+1, f1,i+1 to R?OT .
Roughly speaking, if R?OT changes the opened message w.r.t. tcomb? , thenW i

b? is correctly
computed and W i

1−b? is sets to a random string. Otherwise, if the opening of tcom0 and
tcom1 stay the same as in the third round, then both W i

0 and W i
1 are random strings (for

i = 2, . . . , j). We show that OUTHj−1
3 ,R?OT (z)

(1λ) ≈ OUTHj3,R?OT (z)
(1λ) in two steps. In

the first step we show that the indistinguishability between these two hybrid experiments
holds for the first case (when rib? 6= r1

b? for some bit b?), and in the second step we show
that the same holds when ri0 = r1

0 and ri1 = r1
1.

We first recall that if rib? 6= r1
b? , then tcom1−b? is perfectly binding, therefore we have

that ri1−b? = r1
1−b? . Assuming by contradiction that Hj−1

3 and Hj3 are distinguishable
then we construct and adversary AF that distinguishes between the output of hc(x) and a
random string of λ bits having as input fλ(x). Consider an execution where R?OT has non-
negligible advantage in distinguishingHj−1

3 fromHj3 and consider the randomness ρ used by
R?OT and the first round computed by R?OT in this execution, let us say com, tcom0, tcom1.
AF , on input the randomness ρ, the message b? committed in com and the message r1

1−b?
committed tcom1−b? , executes the following steps.
1. Start R?OT with randomness ρ.
2. Let f,H, fλ(x) be the challenge. Upon receiving the first round (com, tcom0, tcom1)

by R?OT , compute R1−b? = r1
1−b? ⊕ fλ(x), pick a random string Rb? , compute

(f0,1, f
−1
0,1)← Gen(1λ) and (f1,1, f

−1
1,1)← Gen(1λ) send R0, R1, f0,1, f1,1 to R?OT .

3. Continue the interaction with R?OT according to Hj−1
3 using f1−b?,j = f instead of

using the generation function Gen(·) when it is required.
4. Upon receiving (tdecj0, r

j
0), (tdecj1, r

j
1) compute W j

1−b? = l1−b? ⊕ H,12 W j
b? = lb? ⊕

hc(f−λb?,j(r
j
b? ⊕ Rb?)), (f0,j+1, f

−1
0,j+1) ← Gen(1λ), (f1,j+1, f

−1
1,j+1) ← Gen(1λ) and sends

(W j+1
0 ,W j+1

1 , f0,j+1, f1,j+1).
5. Continue the interaction with R?OT according to Hj−1

3 (and Hj3) and output what
R?OT outputs.

This step of the security proof ends with the observation that if H = hc(x) then R?OT
acts as in Hj−1

3 , otherwise he acts as in Hj3.
The second step of the security proof is almost identical to the proof used to argue the

indistinguishability between the outputs of H0 and H2.
The entire security proof is almost over, indeed the output of Hγ3 corresponds to the output

of the simulator Sim and OUTH3,R?OT (z)(1
λ) = OUTH1

3,R
?
OT (z)(1

λ) ≈ OUTH2
3,R

?
OT (z)(1

λ) · · · ≈
OUTHγ3 ,R?OT (z)(1

λ). Therefore we can claim that the output of H0 is indistinguishable from the
output of Sim when at most one between l0 and l1 is used.

Theorem 2. Assuming TDPs, for any γ > 0 Πγ
−−→
OT

securely computes FmOT with one-sided
simulation. Moreover the third round is replayable.

Proof. The third round of Πγ
−−→
OT

is replayable due to the same arguments used in the security
proof of Theorem 1. We now prove that Πγ

−−→
OT

securely computes FmOT with one-sided simulation
according to Definition 13. More precisely to prove the security against the malicious sender
S?−−→
OT

we start by consider the execution H0 that correspond to the real execution where the input
b1, . . . , bm is used by the receiver and then we consider the experiment Hi where the input used
by the receiver is 1− b1, . . . , 1− bi, bi+1, . . . , bm. Suppose now by contradiction that the output

12It is important to observe that r1
b? = rjb? .

32

distributions of Hi and Hi+1 (for some i ∈ {1,m−1}) are distinguishable, then we can construct
a malicious sender S?OT that breaks the security of Πγ

OT against malicious sender. This allow
us to claim that the output distribution of H0 is indistinguishable from the output distribution
of Hm. A similar proof can be made when the malicious party is the receiver. More precisely,
we start by consider the execution H0 that correspond to the real execution where the input
((l10, l

1
1), . . . , (lm0 , l

m
1)) is used by the sender and then we consider the experiment Hi where the

simulator instead of the honest sender procedure is used in the first i parallel executions of Πγ
OT .

Supposing by contradiction that the output distributions ofHi andHi+1 (for some i ∈ {1,m−1})
are distinguishable, then we can construct a malicious receiver R?OT that breaks the security of
Πγ
OT against malicious sender. We observe that in Hi in the first i parallel executions of Πγ

OT
the simulator Sim is used and this could disturb the reduction to the security of Πγ

OT when
proving that the output distribution of Hi is indistinguishable from the output distribution of
Hi+1. In order to conclude the security proof we need just to show that Sim’s behaviour does
not disturb the reduction. As described in the security proof of Πγ

OT , the simulation made by
Sim roughly works by rewinding from the third to the second round while from the fourth round
onwards Sim works straight line. An important feature enjoyed by Sim is that he maintains the
main thread. Let COT be the challenger of Πγ

OT against malicious receiver, our adversary R?OT
works as following.

1. Upon receiving the first round of Πγ
−−→
OT

from R?−−→
OT

, forward the (i+ 1)-th component ot1

to COT 13.
2. Upon receiving ot2 from COT interacts against R?−−→

OT
by computing the second round of

Πγ
−−→
OT

according to Hi (Hi+1) with the difference that in the (i + 1)-th position the value
ot2 is used.

3. Upon receiving the third round of Πγ
−−→
OT

from R?−−→
OT

, forward the (i+ 1)-th component ot3

to COT .
4. Upon receiving ot4 from COT interacts against R?−−→

OT
by computing the fourth round of

Πγ
−−→
OT

according to Hi (Hi+1) with the difference that in the (i + 1)-th position the value
ot4 is used.

5. for i = 2, . . . , γ follow the strategy described in step 3 and 4 and output what R?−−→
OT

outputs.
We recall that in Hi (as well as in Hi+1) in the first i execution of Πγ

OT the simulator is
used, therefore a rewind is made from the third to the second round. During the rewinds R?OT
can forward to R?−−→

OT
the same second round ot2. Moreover, due to the main thread property

enjoyed by Sim, after the rewind R?OT can continue the interaction against R?−−→
OT

without rewind
C?. Indeed if Sim does not maintains the main thread then, even though the same ot2 is used
during the rewind, R?−−→

OT
could send a different ot3 making impossible to efficiently continue the

reduction.

3.5 Secure 2PC in the Simultaneous Message Exchange Model

Overview of our protocol: Π2PC = (P1, P2). In this section we give an high-level overview
of our 4-round 2PC protocol Π2PC = (P1, P2) for every functionality F = (F1, F2) in the si-
multaneous message exchange model. Π2PC consists of two simultaneous symmetric executions

13We recall that Πγ
−−→
OT

is constructed by executing in parallelm instantiations of Πγ
OT , therefore in this reduction

we are just replacing the (i+ 1)-th component of every rounds sent to R?−−→
OT

with the value received by COT . Vice
versa, we forward to C? the (i+ 1)-th component of the rounds received from R?−−→

OT
.

33

of the same subprotocol in which only one party learns the output. In the rest of the thesis
we indicate as left execution the execution of the protocol where P1 learns the output and as
right execution the execution of the protocol where P2 learns the output. In Fig. 3.6 we provide
the high level description of the left execution of Π2PC . We denoted by (m1,m2,m3,m4) the
messages played in the left execution where (m1,m3) are sent by P1 and (m2,m4) are sent by P2.
Likewise, in the right execution of the protocol the messages are denoted by (m̃1, m̃2, m̃3, m̃4)
where (m̃1, m̃3) are sent by P2 and (m̃2, m̃4) are sent by P1. Therefore, messages (mj , m̃j)
are exchanged simultaneously in the j-th round, for j ∈ {1, . . . , 4}. Our construction uses the
following tools.
- A non-interactive perfectly binding computationally hiding commitment scheme PBCOM =

(Com,Dec).
- A Yao’s garbled circuit scheme (GenGC,EvalGC) with simulator SimGC.
- A protocol Πγ

−−→
OT

= (S−−→OT , R−−→OT) that securely computes FmOT with one-sided simulation.
- A 4-round delayed-input NMZK AoK NMZK = (PNMZK,VNMZK) for the NP-language LNMZK

that will be specified later (see Sec. 3.5.1 for the formal definition of LNMZK).
In Figure 3.6 we propose the high-level description of the left execution of Π2PC where P1

runs on input x ∈ {0, 1}λ and P2 on input y ∈ {0, 1}λ.

3.5.1 Formal Description of Our Π2PC = (P1, P2)

We first start by defining the following NP-language

LNMZK =
{(
comGC, comL,GC, (ot1, ot2, ot3, ot4)

)
:

∃(decGC, decL, input, α, β, ω) s.t.(
(Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GC)← GenGC(1λ, F1, input;ω)

)
AND(

Dec(comL, decL, Z1,0||Z1,1||, . . . , ||Zλ,0||Zλ,1) = 1
)
AND(

ot1 and ot3are obtained by running R−−→OT on input 1λ, input, α
)
AND(

õt
2 and õt

4 are obtained by running S−−→OT on input

(1λ, Z1,0, Z1,1, . . . , Zλ,0, Zλ,1, β)
)}
.

The NMZK AoK NMZK used in our protocol is for the NP-language LNMZK described above.
Now we are ready to describe our protocol Π2PC = (P1, P2) in a formal way.
Protocol Π2PC = (P1, P2)

Common input: security parameter λ and instance length `NMZK of the statement of the
NMZK.

P1’s input: x ∈ {0, 1}λ, P2’s input: y ∈ {0, 1}λ.
Round 1. In this round P1 sends the message m1 and P2 the message m̃1. The steps

computed by P1 to construct m1 are the following.
1. Run VNMZK on input the security parameter 1λ and `NMZK thus obtaining the first

round nmzk1 of NMZK.
2. Run R−−→OT on input 1λ, x and the randomness α thus obtaining the first round ot1 of

Πγ
−−→
OT

.
3. Set m1 =

(
nmzk1, ot1

)
and send m1 to P2.

Likewise, P2 performs the same actions of P1 constructing message m̃1 =
(

˜nmzk
1
, õt

1).
Round 2. In this round P2 sends the message m2 and P1 the message m̃2. The steps

computed by P2 to construct m2 are the following.
1. Compute (Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy)← GenGC(1λ, F2, y;ω).

34

P1(x) P2(y)
Run R−−→OT on input 1λ, x and randomness α
to get ot1;
Run VNMZK on input 1λ to get nmzk1.

m1 =(
ot1, nmzk1

)
−−−−−−−−−−−−−−−−−−→

(Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy)
← GenGC(1λ, F1, y;ω);
(comL, decL)
← Com(Z1,0||Z1,1||, . . . , ||Zλ,1);
(comGCy , decGCy)← Com(GCy);
Run S−−→OT on input 1λ, ot1, (Z1,0,
Z1,1, . . . , Zλ,0, Zλ,1)
and randomness β to get ot2;
Run PNMZK on input 1λ and nmzk1

to get nmzk2.
m2 =(
comL, ot2, comGCy , nmzk2

)
←−−−−−−−−−−−−−−−−−−

Run R−−→OT on input ot2 to get ot3;
Run VNMZK on input nmzk2 to get
nmzk3.

m3 =(
c0, z0, c1, z1, ot3, nmzk3

)
−−−−−−−−−−−−−−−−−−→

Run S−−→OT on input ot3 to get ot4;
Run PNMZK on input nmzk3,
stma and wstm

b to get nmzk4.
m4 =(
ot4,GCy, nmzk4

)
←−−−−−−−−−−−−−−−−−−

Run R−−→OT in input ot4 thus
obtaining Z1,x1

, . . . , Zλ,xλ ;

If VNMZK on input nmzk4 and stm outputs 1
output v = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ);

otherwise output ⊥.

aInformally, NMZK proves that: 1) P2 has performed both oblivious transfers correctly using the same input y; 2) the
Yao’s gabled circuit GCy is correctly computed and 3) the value GCy sent in the last round represents the message committed
in comGCy .

bwstm is s.t. (stm, wstm) ∈ RelLNMZK .

Figure 3.6: High-level description of the left execution of Π2PC .

35

2. Compute (comGCy , decGCy)← Com(GCy) and
(comL, decL)← Com(Z1,0||Z1,1||, . . . , ||Zλ,0||Zλ,1)14.

3. Run PNMZK on input 1λ and nmzk1 thus obtaining the second round nmzk2 of NMZK.
4. Run S−−→OT on input 1λ, Z1,0, Z1,1, . . . , Zλ,0, Zλ,1, ot1 and the randomness β thus ob-

taining the second round ot2 of Πγ
−−→
OT

.
5. Set m2 =

(
ot2, comL, comGCy , nmzk2

)
and send m2 to P1.

Likewise, P2 performs the same actions of P1 constructing message m̃2 =
(
õt

2
, ˜comL, ˜comG̃Cx

, ˜nmzk
2)
.

Round 3. In this round P1 sends the message m3 and P2 the message m̃3. The steps
computed by P1 to construct m3 are the following.
1. Run VNMZK on input nmzk2 thus obtaining the third round nmzk3 of NMZK.
2. Run R−−→OT on input ot2 thus obtaining the third round ot3 of Πγ

−−→
OT

.
3. Set m3 =

(
nmzk3, ot3

)
and send m3 to P2.

Likewise, P2 performs the same actions of P1 constructing message m̃3 =
(

˜nmzk
3
, õt

3).
Round 4. In this round P2 sends the message m4 and P1 the message m̃4. The steps

computed by P2 to construct m4 are the following.
1. Run S−−→OT on input ot3, thus obtaining the fourth round ot4 of Πγ

−−→
OT

.
2. Set stm = (comGCy , comL,GCy, õt1, ot2, õt3, ot4) and wstm = (decGCy , decL, y, α̃, β, ω).
3. Run PNMZK on input nmzk3, stm and wstm thus obtaining the fourth round nmzk4 of

NMZK.
4. Set m4 =

(
nmzk4, ot4,GCy

)
and send m4 to P1.

Likewise, P1 performs the same actions of P2 constructing message m̃4 =
(

˜nmzk
4
, õt

4
, G̃Cx

)
.

Output computation.
P1’s output: P1 checks if the transcript (nmzk1, nmzk2, nmzk3, nmzk4) is accepting w.r.t.
stm. In the negative case P1 outputs ⊥, otherwise P1 runs R−−→OT on input ot4 thus obtaining
Z1,x1 , . . . , Zλ,xλ and computes the output v1 = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ).
P2’s output: P2 checks if the transcript ˜nmzk

1
, ˜nmzk

2
, ˜nmzk

3
, ˜nmzk

4
is accepting w.r.t.

~stm. In the negative case P2 outputs ⊥, otherwise P2 runs R−−→OT on input õt
4 thus obtaining

Z̃1,y1 , . . . , Z̃λ,yλ and computes the output v2 = EvalGC(G̃Cx, Z̃1,y1 , . . . , Z̃λ,yλ).
High-level overview of the security proof. Due to the symmetrical nature of the

protocol, it is sufficient to prove the security against one party (let this party be P2). We
start with the description of the simulator Sim. Sim starts the simulator of Πγ

−−→
OT

SimOT which
outputs the input y? used by the malicious party. Sim sends y? to the ideal functionality F
and receives back (v1, v2) =

(
F1(x, y?), F2(x, y?)

)
. Then, Sim computes (G̃C?, (Z̃1, . . . , Z̃λ)) ←

SimGC(1λ, F2, y
?, v2) and answer to SimOT using (Z̃1, . . . , Z̃λ) (we recall that Sim acts as the

ideal functionality FmOT for SimOT). Moreover, instead of committing to the labels of Yao’s
garbled circuit, in the second round Sim commits to 0 and G̃C? is sent in the last round. Then
Sim runs the simulator SimNMZK of NMZK. For the messages of ΠOT where P1 acts as the
receiver, Sim runs R−−→OT on input 0λ instead of using x. In our security proof we proceed through
a sequence of hybrid experiments, where the first one corresponds to the real-world execution
and the final represents the execution of Sim in the ideal world. The core idea of our approach is
to run the simulator of NMZK, while extracting the input from P ?2 . By running the simulator of
NMZK we are able to guarantee that the value extracted via SimOT is correct, even though P ?2
is receiving proofs for a false statement. Indeed in each intermediate hybrid experiment that we
will consider, also the extractor of NMZK is run in order to extract the witness for the theorem
proved by P ?2 . In this way we can prove that the value extracted via SimOT is consistent with

14Instead of one commitment for each label, P2 commits to the concatenation of all the labels of the garbled
circuit GCy.

36

the input that P ?2 is using in the other part of the protocol (e.g. in the construction of the
garbled circuit and in the execution of Πγ

−−→
OT

in which the adversary acts as a sender). For what
we have discussed, the simulator of NMZK rewinds first from the third to the second round (to
extract the trapdoor), and then from the fourth to the third round (to extract the witness for the
statement proved by P ?2). We need to show that these rewinding procedures do not disturb the
security proof when we rely on the security of Πγ

−−→
OT

. This is roughly the reason why we require
the third round of Πγ

−−→
OT

to be reusable and the security of Πγ
−−→
OT

against malicious receiver to
hold for any γ = poly(λ).

Theorem 3. Assuming TDPs, Π2PC securely computes every two-party functionality F =
(F1, F2) with black-box simulation.

Proof. In order to prove that Π2PC securely computes F = (F1, F2), we first observe that, due
to the symmetrical nature of the protocol, it is sufficient to prove the security against one party
(let this party be P2). We now show that for every adversary P ?2 , there exists an ideal-world
adversary (simulator) Sim such that for all inputs x, y of equal length and security parameter
λ:

{REALΠ2PC ,P
?
2 (z)(1

λ, x, y)} ≈ {IDEALF,Sim(z)(1
λ, x, y)}.

Our simulator Sim is the one showed in Sec. 3.5.1.
In our security proof we proceed through a series of hybrid experiments, where the first

one corresponds to the execution of Π2PC between P1 and P ?2 (real-world execution). Then,
we gradually modify this hybrid experiment until the input of the honest party is not needed
anymore, such that the final hybrid would represent the simulator (simulated execution).

We now give the descriptions of the hybrid experiments and of the corresponding security
reductions. We denote the output of P ?2 and the output of the procedure that interacts against
P ?2 on the behalf of P1 in the hybrid experiment Hi with {OUTHi,P ?2 (z)(1

λ, x, y)}x∈{0,1}λ,y∈{0,1}λ .
- H0 corresponds to the real executions. More in details, H0 runs P ?2 with a fresh randomness,

and interacts with it as the honest player P1 does using x as input. The output of the
experiment is P ?2 ’s view and the output of P1. Note that we are guarantee from the
soundness of NMZK that stm ∈ LNMZK, that is: 1)P ?2 uses the same input y? in both the
OT executions; 2) the garbled circuit committed in comGCy and the corresponding labels
committed in comL are computed using the input y?; 3) the garbled circuit sent in the last
round is actually the one committed in comGCy .

- H1 proceeds in the same way of H0 except that the simulator SimNMZK of NMZK is used in
order to compute the messages of NMZK played by P1. Note that SimNMZK rewinds P ?2
from the 3rd to the 2nd round in oder to extract the trapdoor. The indistinguishability
between the output distribution of these two hybrids experiments holds from the property
1 of NMZK (see Definition 9). In this, and also in the next hybrids, we prove that
Prob [stm /∈ LNMZK] ≤ ν(λ). That is, we prove that P ?2 behaves honestly across the hybrid
experiments even though he is receiving a simulated proof w.r.t. NMZK and ˜stm does not
belong to LNMZK. In this hybrid experiment we can prove that if by contradiction this
probability is non-negligible, then we can construct a reduction that breaks the property
2 of NMZK (see Definition 9). Indeed, in this hybrid experiment, the theorem that P ?2
receives belongs to LNMZK and the simulator of SimNMZK is used in order to compute and
accepting transcript w.r.t. NMZK. Therefore, relying on property 2 of Definition 9 we
know that there exists a simulator that extracts the the witness for the statement stm
proved by P ?2 with all but negligible probability.

37

- H2 proceeds in the same way of H1 except that the simulator of Πγ
−−→
OT

, SimOT , is used instead
of the sender algorithm S−−→OT . We recall that SimOT requires to interact with the ideal
functionality FmOT . In this case the hybrid experiment H2 acts on the behalf of the FmOT by
answering to a query y? made by SimOT using the garbled circuit labels (Z̃1,y?1

, . . . , Z̃λ,y?λ).
From the simulatable security against malicious receiver of Πγ

−−→
OT

for every γ = poly(λ)

follows that the output distributions of H2 and H1 are indistinguishable. Suppose by
contradiction this claim does not hold, then we can show a malicious receiver R?−−→

OT
that

breaks the simulatable security of Πγ
−−→
OT

against a malicious receiver. In more details,
let COT be the challenger of Πγ

−−→
OT

. R?−−→
OT

plays all the messages of Π2PC as in H1 (H2)
except for the messages of Πγ

−−→
OT

. For these messages R?−−→
OT

acts as a proxy between COT
and P ?2 . In the end of the execution R?−−→

OT
runs the distinguisher D that distinguishes

{OUTH1,P ?2 (z)(1
λ, x, y)} from {OUTH2,P ?2 (z)(1

λ, x, y)} and outputs what D outputs. We
observe that if COT acts as the simulator then P ?2 acts as in H2 otherwise he acts as in H1.

To argue that Prob [stm /∈ LNMZK] ≤ ν(λ) also in this hybrid experiment we use the
simulator-extractor SimNMZK in order to check whether the theorem proved by P ?2 is still
true. If it is not the case then we can construct a reduction to the simulatable security
against malicious receiver of Πγ

−−→
OT

. Note that SimNMZK rewinds from the 4th to the 3rd
round in order to extract the witness wstm for the statement stm proved by P ?2 . These
rewinds could cause P ?2 to ask multiple third rounds of OT õt

3
i (i = 1, . . . , poly(λ)). In this

case R?−−→
OT

can simply forward õt
3
i to COT and obtains from COT an additional õt

4
i . This

behaviour of R?−−→
OT

is allowed because Πγ
−−→
OT

is simulatable secure against a malicious receiver
even when the last two rounds of Πγ

−−→
OT

are executed γ times (as stated in Theorem 1).
Therefore the reduction still works if we set γ equals to the expected number of rewinds
that SimNMZK could do. We observe that since we have proved that stm ∈ LNMZK, then the
value y? queried by SimOT corresponds to the input used by P ?2 in the overall execution
of the protocol. That is, P ?2 uses y? to both compute the garbled circuit and to complete
the execution Πγ

−−→
OT

in which she acts as a sender. On top of this observation, we obtain
that in H1 the value v1 = F1(x, y?) corresponds, with overwhelming probability, to the
valued computed by running the garbled circuit GCy received by P ?2 using as input the
labels Z1,x1 , . . . , Zλ,xλ .

- H3 differs from H2 in the way the rounds of Πγ
−−→
OT

, where P ?2 acts as sender, are computed.
More precisely instead of using x as input, 0λ is used. Note that from this hybrid onward it
is not possible anymore to compute the output by running EvalGC as in the previous hybrid
experiments. This is because we are not able to recover the correct labels to evaluate the
garbled circuit. Therefore H3 computes the output by directly evaluating v1 = F1(x, y?),
where y? is the input of P ?2 obtained by SimOT .

The indistinguishability between the output distributions of H3 and H2 comes from
the security of Πγ

−−→
OT

against malicious sender. Indeed, suppose by contradiction that it is
not the case, then we can show a malicious sender S?−−→

OT
that breaks the indistinguisha-

bility based security of Πγ
−−→
OT

against a malicious sender. In more details, let COT be the
challenger. S?−−→

OT
plays all the messages of Π2PC as in H3 (H2) except for the messages of

OT where he acts as a receiver. For these messages S?−−→
OT

plays as a proxy between COT
and P ?2 . At the end of the execution S?−−→

OT
runs the distinguisher D that distinguishes

{OUTH2,P ?2 (z)(1
λ, x, y)} from {OUTH3,P ?2 (z)(1

λ, x, y)} and outputs what D outputs. We
observe that if COT computes the messages of Πγ

−−→
OT

using the input 0λ then P ?2 acts as in
H3 otherwise he acts as in H2. In this security proof there is another subtlety. During the

38

reduction S?−−→
OT

runs SimNMZK that rewinds from the third to the second round. This means
that P ?2 could send multiple different second rounds ot2

i of OT (with i = 1, . . . , poly(λ)).
S?−−→
OT

cannot forward these other messages to COT (he cannot rewind the challenger). This
is not a problem because the third round of Πγ

−−→
OT

is replayable (as proved in Theorem 1).
That is the round ot3 received from the challenger can be used to answer to any ot2. To
prove that Prob [stm /∈ LNMZK] ≤ ν(λ) we use the same arguments as before by observing
the the rewinds made by the simulator-extractor from the fourth round to the third one
do not affect the reduction.

- H4 proceeds in the same way ofH3 except for the message committed in ˜comL. More precisely,
instead of computing a commitment of the labels (Z̃1,0, Z̃1,1, . . . , Z̃λ,0, Z̃λ,1), a commitment
of 0λ|| . . . ||0λ is computed. The indistinguishability between the output distributions of
H3 and H4 follows from the hiding of PBCOM. Moreover, Prob [stm /∈ LNMZK] ≤ ν(λ) in
this hybrid experiment due to the same arguments used previously.

- H5 proceeds in the same way of H4 except for the message committed in ˜comGCy : instead of
computing a commitment of the Yao’s garbled circuit G̃Cx, a commitment of 0 is computed.
The indistinguishability between the output distributions of H4 and H5 follow from the
hiding of PBCOM. We have that Prob [stm /∈ LNMZK] ≤ ν(λ) in this hybrid experiment
due to the same arguments used previously.

- H6 proceeds in the same way ofH5 except that the simulator SimGC is run (instead of GenGC)
in order to obtain the Yao’s garbled circuit and the corresponding labels. In more details,
once y? is obtained by SimOT (in the third round), the ideal functionality F is invoked on
input y?. Upon receiving (v1, v2) =

(
F1(x, y?), F2(x, y?)

)
the hybrid experiment compute

(G̃C?, Z̃1, . . . , Z̃λ) ← SimGC(1λ, F2, y
?, v2) and replies to the query made by SimOT with

(Z̃1, . . . , Z̃λ). Furthermore, in the 4th round the simulated Yao’s garbled circuit G̃C? is sent,
instead of the one generated using GenGC. The indistinguishability between the output
distributions of H5 and H6 follows from the security of the Yao’s garbled circuit. To prove
that Prob [stm /∈ LNMZK] ≤ ν(λ) we use the same arguments as before by observing the
the rewinds made by the simulator-extractor from the fourth round to the third one do
not affect the reduction.

The proof ends with the observation that H6 corresponds to the simulated execution with
the simulator Sim.

39

40

Chapter 4

Private Set-Membership in the
Semi-Honest Setting

4.1 Introduction

Private Set Intersection (PSI) is one of the most practically relevant secure two-party computa-
tion (2PC) tasks. In PSI two parties hold two sets of strings X and Y , respectively. At the end
of the protocol one (or both) party should learn the intersection of the two sets Z = X ∩ Y and
nothing else about the input of the other party.

There are many real-world applications in which PSI is required. As an example, when
mobile users install messaging apps, they need to discover whom among their contacts (from
their address book) is also using the app, in order to be able to start communicating seamlessly
with them. Doing so requires users to learn the intersection of their contact list with the list of
registered users of the service which is stored at the server side. This is typically done by having
users send their contact list to the server that can then compute the intersection and return the
result to the user. Unfortunately this solution is very problematic not only for the privacy of
the user, but for the privacy of the users’ contacts as well! In particular, some of the people
in the contact list might not want their phone number being transferred and potentially stored
by the server, but they have no control over this.1 Note that this is not just a theoretically
interesting problem and that Signal (one of the most popular end-to-end encrypted messaging
app) has recently recognized this as being a real problem and offered partial solutions to it.2

PSI has many other applications, including computing intersections of suspect lists, private
matchmaking (comparing interests), testing human genome [BBC+11], privacy-preserving ride-
sharing [HOS17], botnet detection [NMH+10], advertisment conversion rate [IKN+17] and many
more.

History of PSI. From a feasibility point of view, PSI is just a special case of 2PC and therefore
any generic 2PC protocol (such as [GMW87]) could be used to securely evaluate PSI instances
as well. However, since PSI is a natural functionality that can be applied in numerous real-
world applications, many efficient protocols for this specific functionality have been proposed,
with early results dating back to the 80s [Sha80, Mea86]. The problem was formally defined

1Some apps do not transfer the contact list in cleartext, but a hashed version instead. However, since the
domain space of phone numbers is small enough to allow for brute forcing of the hashes, this does not guarantee
any real privacy guarantee.

2Unfortunately, the Signal team has concluded that current PSI protocols are too inefficient for they application
scenario and relied on trusted-hardware instead, in the style of [TLP+17]. See https://signal.org/blog/
private-contact-discovery/ for more details on this.

41

https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/

in [FNP04] and follow up work increased the efficiency of PSI protocols to have complexity
only linear in the inputs of the parties [JL10, CT10]. However, these protocol still require to
expensive expensive public-key operations (e.g., exponentiations) for every element in the input
sets. As public-key operations are orders of magnitudes more expensive than symmetric key
operations, these protocols are not practically efficient for large input sets. In the meanwhile,
generic techniques for 2PC had improved by several orders of magnitude and the question of
whether special purpose protocols or generic protocols were most efficient has been debated
in [HEK12, CT12]. Due to its practical relevance, PSI protocols in the server-aided model have
been proposed as well [KMRS14].

OT-based PSI. The most efficient PSI protocols today are those following the approach of
Phasing [PSSZ15, PSZ14]. These protocols make extensive use of a cryptographic primitive
known as oblivious transfer (OT). While OT provably requires expensive public-key operation,
OT can be “extended” as shown by [IKNP03, ALSZ13, KK13] i.e., the few necessary expen-
sive public-key operations can be amortized over a very large number of OT instances, and the
marginal cost of OT is only a few (faster) symmetric key operations instead. In particular, im-
provements in OT-extension techniques directly imply improvements to PSI protocols as shown
by e.g., [KKRT16, OOS17].

In a nutshell, the Phasing protocol introduced two important novel ideas to the state of
the art of PSI. First, they give an efficient instantiation of the private set membership protocol
(PSM) introduced in [FIPR05] based on OT. Second, they show how to efficiently implement
PSI from PSM using hashing techniques. (An overview of their techniques is given below).

Our Contribution. The main contribution of this chapter is to give an efficient instantiation
of PSM that provides output in encrypted format and can therefore be combined with further
2PC protocols. Our PSM protocol can be naturally combined with the hashing approach of
Phasing to give a PSI protocol with encrypted output achieving the same favourable complexity
in the input sizes. This enables to combine the efficiency of modern PSI techniques with the
potentials of general 2PC. Combining our protocols with the right 2PC post-processing allows
to more efficiently evaluate functionalities of the form Z = f(X ∩ Y) for any function f . To the
best of our knowledge ours is the best special purpose PSI protocol which can be combined with
2PC techniques for post-processing, and therefore we propose the first alternative to circuit-based
PSI.

Like in Phasing we only focus on semi-honest security. Using the protocol together with an
actively secure OT-extension protocol such as [ALSZ15, KOS15] would result in a protocol with
privacy but not correctness (e.g., the view of the protocol without the output can be efficiently
simulated), which is a meaningful notion of security in some settings. PSI protocols with security
against malicious adversaries have been proposed in e.g., [HL08, RR17]. It is an interesting open
problem to design efficient protocols which are both secure against active adversaries and that
produce encrypted output. Also, like in Phasing, we only focus on the two-party setting. The
recent result of [HV17] has shown that multiparty set-intersection can be computed efficiently.
Extending our result to the multiparty case is an interesting future research direction.

We also compare the computation complexity of our scheme for PSM with the circuit-based
PSI approaches of [PSZ16]. The result of this comparison is that our protocol has better per-
formance then all the circuit-based PSI approaches (which can be combined with further post-
processing) proposed in [PSZ16] (see Sec. 4.4.2 for more details).

42

4.2 Technical overview

4.2.1 Why phasing and 2PC do not mix

We start with a quick overview of the PSM protocol in Phasing [PSSZ15, PSZ14], to explain
why their protocol inherently reveals the intersection to one of the parties. From a high-level
point of view, the protocol is conceptually similar to the PSM protocol from OPRF of [FIPR05],
except that the OPRF is replaced with a similar functionality efficiently implemented using OT.
For simplicity, here we will use the OPRF abstraction.

The goal of a PSM protocol is the following: the receiver R has input x, and the sender S
has input a set Y ; at the end of the protocol the receiver learns whether x ∈ Y or not while the
sender learns nothing. The protocol starts by using the OPRF subprotocol, so that R learns
x∗ = Fk(x) (where k is known to S), whereas S learns nothing about x. Now S evaluates
the PRF on her own set and sends the set Y ∗ = {y∗ = Fk(y)|y ∈ Y } to R, who checks if
x∗ ∈ Y ∗ and concludes that x ∈ Y if this is the case. In other words, we map all inputs into
pseudorandom strings and then let one of the parties test for membership “in the clear”. Since
the party performing the test doesn’t have access to the mapping (e.g., the PRF key), this party
can only check for the membership of x and no other points (i.e., all elements in Y ∗ \ {x∗} are
indistinguishable from random in R’s view).

From the above description, it should be clear that the Phasing PSM inherently reveals the
output to one of the parties. Turning this into a protocol which provides encrypted output is
a challenging task. Here is an attempt at a “strawman” solutions: we change the protocol such
that R still learns the pseudorandom string x∗ = Fk(x) corresponding to x, but now S sends
a value for every element in the universe. Namely, for each i (in the domain of Y) S sends an
encryption of whether i ∈ Y “masked” using Fk(i) e.g., S sends ci = Fk(i) ⊕ E(i ∈ Y)3. Now
R can compute cx ⊕ x∗ = E(x ∈ Y) i.e., an encrypted version of whether x ∈ Y , which can be
then used as input to the next protocol.

While this protocol produces the correct result, its complexity is exponential in the bit-legnth
of |x|, which is clearly not acceptable.

Intuitively, we know that only a polynomial number of ci’s will contain encryptions of 1, and
therefore we need to find a way to “compress” all the ci corresponding to i 6∈ Y into a single one,
to bring the complexity of the protocol back to O(|Y |). In the following, after defining some
useful notation, we give an intuitive explanation on how to do that.

4.2.2 Our protocol

Notation. We introduce some useful (and informal) notation in order to make easier to un-
derstand the ideas behind our construction. We let Y = {y1, . . . , yM} be the input set of S, and
we assume w.l.o.g., that |Y | = M = 2m.4 All strings have the same length e.g., |x| = |yi| = λ.5.
We will use a special symbol ⊥ such that x 6= ⊥ ∀x. We use a function Prefix(x, i) that outputs
the i most significant bits of x. (Prefix(x, i) 6= Prefix(x, j) when i 6= j independently of the value
of x) and for simplicity we define Prefix(Y, i) to be the set constructed by taking the i most
significant bits of every element in Y .

3The exact format of the “encryption” E(·) would depend on the subsequent 2PC protocol and is irrelevant
for this high-level description.

4Sets can always be padded with dummy elements, but the complexity of the protocol can match M that in
practice can be M ≈ 2m−1.

5We can assume λ to be smaller than the (statistical) security parameter s and we will denote the bit decom-
position of x by x = xλ . . . x1.. Otherwise before running the protocol the parties can hash their input down and
run the protocol with inputs h(x) and h(Y) = {h(y1), . . . , h(yM)}. Clearly if x = yi then h(x) = h(yi), and for
correctness we need that Pr[h(x) ∈ h(Y) ∧ x 6∈ Y] < 2−s.

43

The protocol uses a symmetric key encryption scheme Sym = (Gen,Enc,Dec) with the ad-
ditional property that given a key k ← Gen(1s) it is possible to efficiently verify if a given
ciphertext is in the range of k (see Sec. 4.3 for a formal definition).

Finally, the output of the protocol will be one of two strings γ0, γ1 chosen by S, respectively
denoting x 6∈ Y and x ∈ Y . The exact format of the two strings depends on the protocol used
for post-processing. For instance if the post-processing protocol is based on: 1) garbled circuits,
then γ0, γ1 will be the labels corresponding to some input wire; 2) homomorphic encryption, then
γb = Enc(pk, b) for some homomorphic encryption scheme Enc; 3) secret-sharing, then γb = s2⊕b
where s2 is a uniformly random share chosen by S, so that if R defines its own share as s1 = γb
then it holds that s1 ⊕ s2 = b.6

In order to “compress” the elements of Y we start by considering an undirected graph with
a level structure of λ + 1 levels. The vertices in the last level of this graph will correspond to
the elements of Y . More precisely, we associate the secret key kbλbλ−1...b1 of a symmetric key
encryption scheme Sym to each element y = bλbλ−1 . . . b1 ∈ Y . The main idea is to allow the
receiver to obliviously navigate this graph in order to get the key kbλbλ−1...b1 if x = y, for some
y = bλbλ−1 . . . b1 ∈ Y , or a special key k? otherwise. Moreover we allow the receiver to navigate
the graph efficiently, that is, every level of the graph is visited only once.

Once a key k is obtained by the receiver, the sender sends O(|Y |) ciphertexts in a such a way
that the key obtained by the receiver can decrypt only one ciphertext. Moreover the plaintext
of this ciphertext will correspond to γ0 or γ1 depending on whether x ∈ Y or not.

First step: construct the graph G. Each graph level i ∈ {0, . . . , λ} has size at most
|Prefix(i, Y)|+ 1.

More precisely, for every t = bλbλ−1 . . . bλ−i ∈ Prefix(Y, i) there is a node in the level i of G
that contains a key kbλbλ−1...bλ−i . In addition, in the level i there is a special node, called sink
node that contains a key k?i (which we refer to as sink key). The aim of k?i is to represent all
the values that do not belong to Prefix(i, Y).

Let us now describe how the graph G is constructed. First, for i = 1, . . . , λ the key (for a
symmetric key encryption scheme) k?j is generated using the generation algorithm Gen(·). As
discussed earlier the aim of this keys is to represent the elements that do not belong to Y . More
precisely, the sink key k?i , with i ∈ {1, . . . , λ} represents all the values that do not belong to
Prefix(Y, i) and the key k?λ (the last sink key) will be used to encrypt the output γ0 corresponding
to non-membership in the last step of our protocol. Note that if Prefix(x, i) 6∈ Prefix(Y, i) then
Prefix(x, j) 6∈ Prefix(Y, j) for all j > i. Therefore, once entered in a sink node, the sink path is
never abandoned and thus the final sink key k?λ, will be retrieved (which allows to recover γ0).

Let us now give a more formal idea of how G is constructed.

• The root of G is empty, and in the second level there are two vertices k0 and k1 where7,
for b = 0, 1

kb =

{
k ← Gen(1s), if b ∈ Prefix(Y, 1)

k?1, otherwise

• For each vertex kt in the level i ∈ {1, . . . , λ} and for b = 0, 1 create the node kt||b as follows
(if it does not exists) and connect kt to it.

6Here we use ⊕-secret sharing without loss of generality. Any 2-out-2 secret sharing would work here.
7In abuse of notation we refer to a vertex using the key represented by the vertex itself.

44

kt||b =


k ← Gen(1s), if t||b ∈ Prefix(Y, i+ 1)

k?i+1, if t||b /∈ Prefix(Y, i+ 1)

k?i+1, if kt = k?i

We observe that a new node kt||b is generated only when t||b ∈ Prefix(Y, i). In the other
cases the sink node k?i+1 is used.

In Fig. 4.1 we show an example of what the graph G looks like for the set Y = {010, 011, 110}.
In this example it is possible to see how, in the 2nd level, all the elements that do not belong to
Prefix(Y, 2) are represented by the sink node k?2. Using this technique we have that in the last
level of G one node (k?3 in this example) is sufficient to represent all the elements that do not
belong to Y . Therefore, we have that the last level of G contains at most |Y |+ 1 elements. We
also observe that every level of G cannot contain more than |Y |+ 1 nodes.

k0 k1

k01 k⋆2 k11

k⋆3 k110k010 k011

0 1

01 0 1

1 0
0 1

Y = {010,011,110}

Figure 4.1: Example of how the graph G appears when the sender holds the set Y .

Second step: oblivious navigation of G. Let x = xλxλ−1 . . . x1 be the receiver’s (R’s)
private input and Y be the sender’s (S’s) private input. After S constructs the graph G we
need a way to allow R to obtain kxλxλ−1...x1 if x ∈ Y and the sink key k?λ otherwise. All the
computation has to be done in such a way that no other information about the set Y is leaked
to the receiver, and as well that no information about x is leaked to the sender. In order to do
so we use λ executions of 1-out-of-2 OT. The main idea is to allow the receiver to select which
branch to explore in G depending on the bits of x. More precisely, in the first execution of OT,
R will receive the key kxλ iff there exists an element in Y with the most significant bit equal to
xλ, the sink key k?1 otherwise. In the second execution of OT, R uses xλ−1 as input and S uses
(c0, c1) where c0 is computed as follows:

- For each key in the second level of G that has the form kt||0, the key kt||0 is encrypted
using the key kt.

- For every node v in the first level that is connected to a sink node k?2 in the second level,
compute an encryption of k?2 using the key contained in v.

- Pad the input with random ciphertexts up to the upper bound for the size of this layer
(more details about this step are provided later).

- Randomly permute these ciphertexts.

45

The procedure to compute the input c1 is essentially the same (the only difference is that in
this case we consider every key with form kt||1 and encrypt it using kt).

Roughly, in this step every key contained in a vertex u of the second level is encrypted using
the keys contained in the vertex v of the previous level that is connected to u. For example,
following the graph provided in Fig.4.1, c0 would be equal to {Enc(k0, k

?
2),Enc(k1, k

?
2)} and c1

to {Enc(k0, k01),Enc(k1, k11)}.
Thus, after the execution of OT R receives cxλ−1

that contains the ciphertexts described above
where only one of these can be decrypted using the key k obtained in the first execution of OT.
The obtained plaintext corresponds to the key kxλxλ−1

if Prefix(x, 2) ∈ Prefix(Y, 2), to the sink key
k?2 otherwise. The same process is iterated for all the levels of G. More generally if Prefix(x, j) ∈
Prefix(Y, j) then after the j−th execution of OT R can compute the key kxλxλ−1...xλ−j using
the key obtained in the previous phase. Conversely if Prefix(x, j) /∈ Prefix(Y, j) then the sink
key k?j is obtained by R. We observe that after every execution of OT R does not know which
ciphertext can be decrypted using the key obtained in the previous phase, therefore he will try to
decrypt all the ciphertext until the decryption procedure is successful. To avoid adding yet more
indexes to the (already heavy) notation of our protocol we deal with this using a private-key
encryption scheme with efficiently verifiable range. We note that this is not necessary and that
when implementing the protocol one can instead use the point-and-permute technique [BMR90].
This, and other optimisations and extensions of our protocol, are described in Section 4.5.

Third step: obtain the correct share. In this step S encrypts the output string γ0 using
the key k?λ and uses all the other keys in the last level of G to encrypt the output string γ1.8

At this point the receiver can only decrypt either the ciphertext that contains γ0 if x /∈ Y or
one (and only one) of the ciphertexts that contain γ1 if x ∈ Y . In the protocol that we have
described so far R does not know which ciphertext can be decrypted using the key that he has
obtained. Also in this case we can use a point-and-permute technique to allow R to identify the
only ciphertext that can be decrypted using his key.

On the need for padding. As describe earlier, we might need to add some padding to the
OT sender’s inputs. To see why we need this we made the following observation. We recall that
in the i-th OT execution the sender computes an encryption of the keys in the level i of the
artificial graph G using the keys of the previous level (i − 1).9 As a result of this computation
the sender obtains the couple (ci0, c

i
1), that will be used as input of the i-th OT execution, where

ci0 (as well as ci1) contains a number of encryptions that depends upon the number of vertices
on level (i − 1) of G. We observe that this leaks informations about the structure of G to the
receiver, and therefore leaks information about the elements that belong to Y . Considering the
example in Fig. 4.1, if we allow the receiver to learn that the 2nd level only contains 3 nodes,
then the receiver will learn that all the elements of Y have the two most significant bits equal
to either t or t′ for some t, t′ ∈ {0, 1}2 (in Fig.4.1 for example we have t = 01 and t′ = 11).
However, note that the receiver will not learn the actual values of t and t′.

We finally note that the technique described in this section can be seen as a special (and
simpler) example of securely evaluating a branching program. Secure evaluation of branching
programs has previously been considered in [IP07, MN12]: unfortunately these protocols cannot
be instantiated using OT-extension and therefore will not lead to practically efficient protocols
(the security of these protocols is based on strong OT which, in a nutshell, requires the extra
property that when executing several OTs in parallel, the receiver should not be able to correlate
the answers with the queries beyond correlations which follow from the output).

8The key k?λ could not exists; e.g. if Y contains all the strings of λ bits.
9The only exception is the first OT execution where just two keys are using as input.

46

4.3 Definitions and tools

4.3.1 Two party computation

A two-party protocol problem is cast by specifying a random process that maps pairs of inputs
to pairs of outputs (one for each party). We refer to such a process as a functionality and denote
it as F = (F1, F2). That is, for every pair of inputs x, y ∈ {0, 1}s, the output-pair is a random
variable (F1(x, y), F2(x, y)) ranging over pairs of strings. The first party (with input x) wishes to
obtain F1(x, y) and the second party (with input y) wishes to obtain F2(x, y). We often denote
such a functionality by (x, y)→ (F1(x, y), F2(x, y)).

Let F = (F1, F2) be a probabilistic polynomial-time functionality and let Π = (P1, P2) be a
two-party protocol for computing F where P1 and P2 denote the two parties. The view of the
party Pi (i ∈ {1, 2}) during an execution of Π on (x, y) and security parameter s is denoted by
viewΠ

Pi
(x, y, 1s).

The output of the party Pi (i ∈ {1, 2}) during an execution of Π on (x, y) and security param-
eter s is denoted by outputΠ

Pi
(1s, x, y) and can be computed from its own view of the execution.

We denote the joint output of both parties by outputΠ(1s, x, y) = (outputΠ
P1

(1s, x, y), outputΠ
P2

(1s, x, y)).

Definition 14 (Secure two-party computation [HL10]). Let F = (F1, F2) be a functionality. We
say that Π securely computes F in the presence of static semi-honest adversaries if there exist
probabilistic polynomial-time algorithms SimP1 and SimP2 called simulators, such that

{(SimP1(1s, x, F1(x, y)), F (x, y))}{x,y,s} ≈ {viewΠ
P1

(1s, x, y), outputΠ(1sx, y)}{x,y,s}

and

{(SimP2(1s, y, F2(x, y)), F (x, y))}{x,y,s} ≈ {viewΠ
P2

(1s, x, y), outputΠ(1s, x, y)}{x,y,s}

where x, y ∈ {0, 1}? such that |x| = |y|, and s ∈ N.

4.3.2 Special private-key encryption

In our construction we use a private-key encryption scheme with two additional properties. The
first is that given the key k, it is possible to efficiently verify if a given ciphertext is in the range
of k. With the second property we require that an encryption under one key will fall in the
range of an encryption under another key with negligible probability

As discussed in [LP09], it is easy to obtain a private-key encryption scheme with the prop-
erties that we require. According to Definition 2 of [LP09] we give the following definition.

Definition 15. Let Sym = (Gen,Enc,Dec) be a private-key encryption scheme and denote the
range of a key in the scheme by Ranges(k) = {Enc(k, x)}x∈{0,1}s. Then

1. We say that Sym has an efficiently verifiable range if there exists a ppt algorithm M such
that M(1s, k, c) = 1 if and only if c ∈ Ranges(k). By convention, for every c /∈ Ranges(k),
we have that Dec(k, c) = ⊥.

2. We say that Sym has an elusive range if for every probabilistic polynomial-time machine
A, there exists a negligible function ν(·) such that

Probk←Gen(1s)[A(1s) ∈ Ranges(k)] < ν(s).

47

In order to make the security proof of our scheme easier, without loss of generality we assume
Sym to be secure in the setting where the challenge messages m0 and m1 are lists of λ values.
That is m0 = {m1

0, . . . ,m
λ
0} and m1 = {m1

1, . . . ,m
λ
1}. The challenger, upon receiving these lists

picks b← {0, 1}, defines an empty list cx and for i = 1, . . . λ acts as follows:

1. computes ki ← Gen(1s);

2. computes Enc(ki,m
i
b) and adds it to cx.

The aim of the adversary is to guess the bit b having on input just m0, m1, cx and an auxiliary
input z.

4.4 Our Protocol Π∈

In this section we provide the formal description of our protocol Π∈ = (S,R) for the functionality
F∈ = (F∈S ,F

∈
R) where

F∈S : {{0, 1}λ}M × {γ0, γ1} × {0, 1}λ −→ ⊥

and

F∈R : {{0, 1}λ}M × {γ0, γ1} × {0, 1}λ −→ {γ0, γ1}

(Y, x) 7−→

{
γ1 if x ∈ Y
γ0 otherwise

Where γ0 and γ1 are arbitrary strings and are part of the sender’s input. Therefore our scheme
protects both Y and γ1−b, when γb is received by R.

For the formal description of Π∈, we collapse the first and the second step from the infor-
mation description in Section 4.2 into a single one. That is, instead of constructing the graph
G, we only compute the keys at level i in order to feed the i-th OT execution with the correct
inputs. The way in which the keys are computed is the same as the vertices for G are computed,
we just do not need to physically construct G to allow S to efficiently compute the keys.

We use the following tools.

1. A protocol ΠOT = (SOT ,ROT) that securely (according to Definition 14) computes the
following functionality

FOT : ({0, 1}? × {0, 1}?)× {0, 1} −→ {⊥} × {0, 1}?

((c0, c1), b) 7−→ (⊥, cb).

2. A symmetric key encryption scheme Sym = (Gen,Enc,Dec) with efficiently verifiable range
and elusive range.

3. In our construction we make use of the following function

δ : N −→ N
i 7−→ min{2i, |Y |}.

48

The function computes the maximum number of vertices that can appear in the level i of
the graph G. As discussed before, the structure of G leaks information about Y . In order to
avoid this information leakage about Y , it is sufficient to add some padding to the OT sender’s
input so that the input size become |Y |. Indeed, as observed above, every level contains at most
|Y | vertices. Actually, it is easy to see that min{|Y |, 2i} represents a better upper bound on the
number of vertices that the i-th level can contain given Y . Therefore, in order to compute the
size of the padding for the sender’s input we use the function δ.

4.4.1 Formal description

Common input: security parameter s and λ.
S’s input: a set Y of size M , γ0 ∈ {0, 1}s and γ1 ∈ {0, 1}s.
R’s input: an element x ∈ {0, 1}λ.
First stage

1. For i=1, . . . , λ compute the sink key k?i ← Gen(1s).

2. S computes k0 ← Gen(1s), k1 ← Gen(1s). For b = 0, 1, if b /∈ Prefix(Y, 1) then set kb = k?1
10.

Set (c1
0, c

1
1) = (k0, k1).

3. S and R execute ΠOT , where S acts as the sender SOT using (c1
0, c

1
1) as input and R acts

as a receiver using xλ as input. When the execution of ΠOT ends R obtains k1 := c1
xλ
.

Second stage
For i = 2, . . . , λ:

1. S executes the following steps.

1.1. Define the empty list ci0 and for all t ∈ Prefix(Y, i− 1) execute the following steps.
If t||0 ∈ Prefix(Y, i) then compute kt||0 ← Gen(1s) and add Enc(kt, kt||0) to the
list ci0. Otherwise, if t||0 /∈ Prefix(Y, i) then compute and add Enc(kt, k

?
i) to the

list ci0.
1.2. If |ci0| < δ(i− 1) then execute the following steps.

• Compute and add Enc(k?i−1, k
?
i) to the list ci0.

• For i = 1, . . . , δ(i− 1)− |ci0| compute and add Enc(Gen(1s), 0) to ci0.11

1.3. Permute the elements inside ci0.
1.4. Define the empty list ci1 and for all t ∈ Prefix(Y, i− 1) execute the following step.

If t||1 ∈ Prefix(Y, i) then compute kt||1 ← Gen(1s) and add Enc(kt, kt||1) to the
list ci1. Otherwise, if t||1 /∈ Prefix(Y, i) compute and add Enc(kt, k

?
i) to the list ci1.

1.5. If |ci1| < δ(i− 1) then execute the following steps.
• Compute and add Enc(k?i−1, k

?
i) to the list ci1.

• For i = 1, . . . , δ(i− 1)− |ci1| compute and add Enc(Gen(1s), 0) to ci1.
1.6. Permute the elements inside ci1.

2. S and R execute ΠOT , where S acts as the sender SOT using (ci0, c
i
1) as input. and R acts

as a receiver using xλ−i+1 as input. When the execution of ΠOT ends, R obtains cixλ−i+1
.

10We observe that if Y is not empty (like in our case) then there exists at most one bit b s.t. b /∈ Prefix(Y, 1).
11In this step, as well as in the step 1.5 of this stage, the function δ is used to compute the right amount of

fake encryption to be added to the list that will we used as input of ROT . The fake encryptions encrypts the
value 0, but of course any other value could be used.

49

Third stage

1. S executes the following steps.

1.1. Define the empty list l.

1.2. For every t ∈ Prefix(Y, λ) compute and add Enc(kt, γ
1) to l.

1.3. If |l| < 2λ then compute and add Enc(k?λ, γ
0) to l.

1.4. Permute the elements inside l and send l to R.

2. R, upon receiving l execute the following steps.

2.1. For i = 2, . . . , λ execute the following step.

For every element t in the list cixλ−i+1
compute k ← Dec(ki−1, t). If k 6= ⊥ then

set ki = k.

2.2. For all e ∈ l compute out← Dec(kλ, e) and output out if and only if out 6= ⊥.

4.4.2 Complexity analysis

We focus our analysis on the described protocol without taking into account the many possible
optimisations that we will describe in Sec. 4.5. In Π∈, sender and receiver run λ executions
of a 1-out-of-2 OT; in addition, they perform some symmetric key operations. More precisely,
in order to compute the inputs for the i-th OT executions, with i ∈ {2, . . . , λ}, S computes
2 · min{2i−1, |Y |} encryptions using the private-key encryption scheme Sym. We now observe
that each encryption could contain a different key, and that this key needs to be generated by
running Gen(·).12 This means that 4M represents an upper bound on the number of symmetric
key operations performed by S in every OT execution. Moreover, in the last interaction with R,
S computesM encryptions. Therefore, an upper bound on the number symmetric key operation
performed by S is (λ− 1) · 4M +M + 2 ≈ λ · 4M , where 2 represents the cost of running Gen(·)
twice in order to compute the two keys required to feed the first OT execution13. In every OT
execution i, with i ∈ {2, . . . , λ}, R receives min{2i+1, |Y |} encryptions, and tries to decrypt all of
them. Moreover, in the last interaction with S, R receivesM encryptions and tries to decrypt all
of them as well. This means that the upper bound on the number of symmetric key operations
made by R is (λ − 1) ·M + M = λ ·M . Following [PSZ16] we assume that 3 symmetric key
operations are required for one OT execution. Therefore the total amount of symmetric key
operations is λ(4M + 3) for the sender and λ(M + 3) for the receiver. In order to compare the
efficiency of our protocol with the PSI protocols provided in [PSZ16] and to be consistent with
their complexity analysis, we consider only the computation complexity for the party with the
majority of the workload in the comparison.

Therefore we reach the conclusion that our protocol has better performance then all the
circuit-based PSI approaches (which can be combined with further postprocessing) proposed
in [PSZ16]. We note that, as described in Sec. 4.4 of [PSZ16], the approach based on evaluating
the OPRF inside circuit is faster then any other PSI protocols if one set is much smaller the
the other (like in the case of PSM), but in this case the output will necessarily leak to the
receiver, which prevents composition with further 2PC protocol. We refer the reader to Table
7 of [PSZ16] for a detailed efficiency comparison between different PSI protocols). Finally, we
observe that the complexities analysis proposed in [PSZ16] is related to PSI protocols, while in
this section we have only compared the efficiency of the PSM subprotocol.

12We recall that |Y | = M and that λ is the bit size of a set element.
13In this section, without loss of generality, we assume that λ is always greater than the security parameter s.

50

Communication complexity. The communication complexity of our protocol is dominated
by the communication complexity of the underlying OT protocol ΠOT = (SOT ,ROT). Let
sOT(D) be the amount of bit exchanged between SOT and ROT when SOT uses an input of size
D, and let sSYM(A) be the size of a ciphertext for the encryption scheme Sym when a plaintex
of size A is used. Then the communication complexity of our protocol is

λ · sOT(2 ·M · sSYM(λ)) +M · sSYM(λ)

where 2 ·M is the number of ciphertexts used as input of OT andM is the amount of ciphertexts
that are sent in the last interaction between S and R. If we assume that a chipertext for Sym
is roughly of size λ, and that ΠOT has a communication complexity that is approximately close
to the size of the input used14, we obtain that the overall communication complexity of our
protocol is well approximated by Mλ · (2λ+ 1).

Round complexity: parallelizability of our scheme In the description of our protocol in
Sec 4.4.1 we have the sender and the receiver engaging λ sequential OT executions. We now
show that this is not necessary since the OT executions can be easily parallelized, given that
each execution is independent from the other. That is, the output of a previous OT execution is
not used in a later execution. For simplicity, we assume that ΠOT consists of just two rounds,
where the first roun goes from the receiver to the sender, and the last goes in the opposite
direction. We modify the description of the protocol of Sec 4.4.1 as follows.

- The step 3 of the first stage and the step 2 of the second stage are moved to the beginning
of the third stage.

- When S sends the last round of ΠOT , he also performs the step 1 of the third stage.
Therefore the list l is sent together with the last rounds of the λ ΠOT executions.

Roughly, in this new protocol S first computes all the inputs (k0, k1, c
1
0, c

1
1, . . . , c

λ
0 , c

λ
1) for the

OTs. Then, upon receiving λ first rounds of ΠOT computed by R using as input the bits of x,
S sends λ second round of ΠOT together with the list l.

4.4.3 Security proof

Theorem 4. Suppose ΠOT securely computes the 1-out-of-2 OT functionality FOT and Sym is
a symmetric key encryption scheme with efficiently verifiable range and elusive range, then Π∈

securely computes the functionality F∈.
Proof. In order to prove the security of Π∈, according to Def. 14 we need show two probabilis-
tic polynomial-time algorithms SimS and SimR called simulators, such that the following two
conditions hold:

{(SimS(1s, Y, γ0, γ1,F∈S (Y, γ0, γ1, x)),F∈(Y, γ0, γ1, x))}{Y,x,s} ≈

{viewΠ∈
S (1s, Y, γ0, γ1, x), outputΠ∈(1s, Y, γ0, γ1, x)}{Y,x,s}

(4.1)

{(SimR(1s, x,F∈R (Y, γ0, γ1, x)),F∈(Y, γ0, γ1, x))}{Y,x,s} ≈

{viewΠ∈
R (1s, Y, γ0, γ1, x), outputΠ∈(1s, Y, γ0, γ1, x)}{Y,x,s}

(4.2)

where Y ∈ {{0, 1}?}?, x ∈ {0, 1}?, and s ∈ N.
Therefore we divide our proof in two parts. In the former we show a ppt algorithm SimS

that satisfies the property of the first point, and then a ppt algorithm SimR that satisfiy the
requirment of the second point.

14This is actually true for the most common implementations of OT (OT extension).

51

SimS description and proof of indistinguishability. SimS runs S with some randomness
r and the input Y . At this point SimS needs a strategy to acts as a receiver of OT in all the λ
OT executions (without the receiver’s input x). In order to do that, SimS runs the simulator of
ΠOT , that we call SimSOT (and that exists by assumption), in every OT execution. We observe
that in order to run SimSOT in the i-th OT execution the inputs ci0 and ci1 need to be known.
Clearly those values can be efficiently computed since the randomness r and the input Y used
to run S are known.

We now show more formally how SimS works. Let SimSOT be such that

{SimSOT (1s, (c0, c1),⊥), FOT ((c0, c1), b)}{c0,c1,b,s} ≈

{viewΠOT
SOT

(1s, (c0, c1), b), outputΠOT (1s, (c0, c1), b)}{c0,c1,b,s}

where c0, c1 ∈ {0, 1}?, b ∈ {0, 1}, and s ∈ N. SimS, on input Y and 1s executes the following
steps.

1. pick a r ← {0, 1}s and runs S on input 1s, Y using r as a randomness.

2. For every OT execution i, with i = 1, . . . , λ, run SimSOT on input 1s, ci0 and ci1, where ci0
and ci1 are computed using the same procedure that S uses.

3. Continue the execution against S as R would do.

In order to conclude this first part of the proof we just need to prove the following lemma.

Lemma 1.

{(SimS(1s, Y,F∈S (Y, γ0, γ1, x)),F∈(Y, γ0, γ1, x))} ≈

{viewΠ∈
S (1s, Y, γ0, γ1, x), outputΠ∈(1s, Y, γ0, γ1, x)}

where Y ∈ {{0, 1}?}?, x ∈ {0, 1}?, and s ∈ N.15

Proof. The proof goes trough hybrid arguments starting from the real execution of Π∈. We
gradually modify the execution until the input of R is not needed anymore in such a way that
the final hybrid represents the simulator SimS. We denote with OUTHiS (1s) the view of S in the
hybrid experiment Hi with i ∈ {0, . . . , λ}. The hybrid experiments that we consider are the
following.

1. H0 is identical to the real execution of Π∈. More precisely H0 runs S using fresh ran-
domness and interacts with him as R would do on input x.

2. Hi proceeds according to H0 with the difference that in the first i OT executions SimSOT

is used.
Since F∈ is a deterministic function we have that

{viewΠ∈
S (1s, Y, γ0, γ1, x),F∈(Y, γ0, γ1, x))} ≡

{viewΠ∈
S (1s, Y, γ0, γ1, x), outputΠ∈(1s, Y, γ0, γ1, x)} .

Moreover we observe that

{OUTH0(1s),F∈(Y, γ0, γ1, x)} =

{viewΠ∈
S (1s, Y, γ0, γ1, x),F∈(Y, γ0, γ1, x))}

15To avoid overburdening the notation, here and in the rest of this chapter, we omit to specify the inputs
domain when it is clear from the context.

52

and that

{OUTHλ(1s),F∈(Y, γ0, γ1, x)} =

{(SimS(1s, Y, γ0, γ1,F∈S (Y, γ0, γ1, x)),F∈(Y, γ0, γ1, x))} .

Therefore the only thing that remains to argue is that

{OUTHi−1(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTHi(1
s),F∈(Y, γ0, γ1, x)}

for i = 1, . . . , λ. We now show that if this statement does not hold then we can construct
an adversary ASOT that breaks the security of ΠOT against malicious sender. Let SenSOT be
the challenger for the security game w.r.t. the security of ΠOT against malicious sender; the
reduction works as follows.

1. ASOT runs S with randomness r and interacts with him according to Hi−1 (Hi) until the
i-th OT execution.

2. At this point ASOT computes (ci0, c
i
1) and sends ((ci0, c

i
1), xλ−i+1) to SenSOT .

3. ASOT then acts as a proxy between SenSOT and S.

4. When the interaction between SenSOT and S is over, A continues the execution with S
according to Hi−1 (Hi).

The security proof ends with the observation that if SenSOT has used the simulator SimSOT

then the joint distribution of the view of S and F∈(Y, γ0, γ1, x) corresponds to {OUTR
Hi(1

s),F∈(Y, γ0, γ1, x)},
to {OUTR

Hi−1
(1s),F∈(Y, γ0, γ1, x)} otherwise.

SimR description and proof of indistinguishability. At a very high level, SimR runs R
with some randomness r and the input x. SimR then needs a strategy to acts as a sender of
OT in all the λ OT executions (without sender’s input Y). In order to do that, SimR runs the
simulator of ΠOT , that we call SimROT in every OT execution16. Moreover we need to feed the
OT simulator with the correct input, depending on the value x. More precisely in the first OT
execution SimROT is run by using as input a key k1. In the i-th OT execution (for i = 2, . . . , λ)
the simulator will run using xλ−i+1 and ci. ci contains encryptions of a fixed value, let say 0,
computed using a fresh secret key (different for every ciphertext) and one encryption of the key
ki using the key ki−1. After the λ OT executions SimR sends to R M encryptions of 0 using a
randomly generated secret key (also in this case a different secret key is used for each encryption
of 0) and the encryption of the message out = F∈S (Y, γ0, γ1, x) using the key kλ. We now show
more formally how SimR works. Let SimROT be such that

{SimROT (1s, b, cb), FOT ((c0, c1), b)}{c0,c1,b,s} ≈

{viewΠOT
ROT

(1s, (c0, c1), b), outputΠOT (1s, (c0, c1), b)}{c0,c1,b,s}

where c0, c1 ∈ {0, 1}?, b ∈ {0, 1}, and s ∈ N.
SimR, on input x, out and 1s executes the following steps.

16We recall that SimROT exists by assumption.

53

1. Compute k1 ← Gen(1s) ad run SimROT on input (1s, xλ, k1).

2. For i = 2, . . . , λ execute the following steps.

2.1. Define the empty list ci. For j = 1, . . . ,min{2i, |Y |}−1 compute and add Enc(Gen(1s), 0))
to ci.

2.2. Compute ki ← Gen(1s), and add Enc(ki−1, ki) to the list ci.

2.3. Permute the elements inside ci.

2.4. Run SimROT on input (1s, xλ−i+1, c
i).

3. Define an empty list l.

4. For i = 1, . . .M − 1 compute and add Enc(Gen(1s), 0) to l.

5. Add Enc(kλ, out) to l.

6. Permute the element inside l and send it.

7. Continue the execution according to R’s description.

In order to conclude this latter part of the proof we need to prove the following lemma.

Lemma 2.

{(SimR(1s, x, out,F∈R (Y, γ0, γ1, x)),F∈(Y, γ0, γ1, x))}{Y,x,s} ≈

{viewΠ∈
R (1s, Y, γ0, γ1, x), outputΠ∈(1s, Y, γ0, γ1, x)}{Y,x,s}

where Y ∈ {{0, 1}?}?, x ∈ {0, 1}?, and s ∈ N.

Proof. The proof goes trough hybrid arguments starting from the real execution of Π∈. We
gradually modify the execution until the input of S (Y) is not needed anymore such that the
final hybrid would represent the simulator SimR. We denote with OUTR

Hi(1
s) the view of R in

the hybrid experiment Hi with i ∈ {0, . . . , λ}.

1. H0 is identical to the real execution of Π∈. More precisely H0 runs R using fresh random-
ness and interacts with him as S would do on input Y .

2. H1 proceeds according to H0 with the difference that in the first OT executions SimROT

is used on input (1s, xλ, k1 ← Gen(1s)).

3. Hi proceeds according to H1 with the difference that in the j-th OT executions, with
2 ≤ j ≤ i, SimROT is run on input (1s, xλ−j+1, c

j = cjxλ−j+1).

4. H? proceeds according to Hλ with the difference that in each OT execution i, with 2 ≤
i ≤ λ, the input ci for the simulator SimROT is computed as follows.

- For j = 1, . . . ,min{2i, |Y |} − 1 compute and add Enc(Gen(1s), 0) to ci.

- Compute ki ← Gen(1s), and add Enc(ki−1, ki) to the list ci.

- Permute the elements inside ci.

Moreover the first step of the third stage is performed as follows.

• Define an empty list l.

• For i = 1, . . .M − 1 compute and add Enc(Gen(1s), 0) to l.

54

• Add Enc(kλ, out) to l.

• Permute the element inside l and send it to R.

Since F∈ is deterministic we have that

{viewΠ∈
R (1s, Y, γ0, γ1, x),F∈(Y, γ0, γ1, x))} ≡

{viewΠ∈
R (1s, Y, γ0, γ1, x), outputΠ∈(1s, Y, γ0, γ1, x)} .

Moreover we observe that

{OUTR
H0

(1s),F∈(Y, γ0, γ1, x)} = {viewΠ∈
R (1s, Y, γ0, γ1, x),F∈(Y, γ0, γ1, x))}

and that

{OUTR
H?(1

s),F∈(Y, γ0, γ1, x)} = {(SimR(1s, x, out,F∈R (Y, γ0, γ1, x)),F∈(Y, γ0, γ1, x))} .

Therefore there are two things that remain to argue:

1. {OUTR
Hi−1

(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR
Hi(1

s),F∈(Y, γ0, γ1, x)} for i = 1, . . . , λ and

2. {OUTR
Hλ(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR

H?(1
s),F∈(Y, γ0, γ1, x)}.

We now start by showing that if the first statement does not hold for i = 1, then we can
construct a adversary ASOT that breaks the security of ΠOT against malicious receiver. Let
SenROT be the challenger for the security game w.r.t. the security of ΠOT against malicious
receiver. The reduction works as follows.

1. AROT runs R with randomness r, computes k0 ← Gen(1s), k1 ← Gen(1s) and sends
((k0, k1), xλ) to SenROT .

2. AROT then acts as a proxy between SenROT and R.

3. When the interaction between SenSOT and R is over, AROT continues the execution with
R according to H0 (H1).

This part of the security proof ends with the observation that if SenROT has used the sim-
ulator SimROT then the joint distribution of the view of R and F∈(Y, γ0, γ1, x) corresponds to
{OUTR

H0
(1s),F∈(Y, γ0, γ1, x)} , to {OUTR

H1
(1s),F∈(Y, γ0, γ1, x)} otherwise.

The proof that

{OUTR
Hi−1

(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR
Hi(1

s),F∈(Y, γ0, γ1, x)}

for i = 2, . . . , λ follows the same arguments.
In order to prove that

{OUTR
Hλ(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR

H?(1
s),F∈(Y, γ0, γ1, x)} ,

thus concluding the lemma’s security proof, we need to consider the following intermediate
hybrid experiment H?y with y ∈ {1, . . . , λ}. The description of the hybrid experiment follows.

55

1. Compute k1 ← Gen(1s) and run SimROT on input (1s, xλ, k1).

2. For i = 2, . . . , y execute the following steps.

2.1. Define the empty list ci. For j = 1, . . . ,min{2i, |Y |}−1 compute and add Enc(Gen(1s), 0))
to ci.

2.2. Compute ki ← Gen(1s), and add Enc(ki−1, ki) to the list ci.

2.3. Permute the elements inside ci.

2.4. Run SimROT on input (1s, xλ−i+1, c
i).

3. For each t ∈ Prefix(Y, y)− {xλ . . . xλ−y+1} compute kt ← Gen(1s).
If xλ . . . xλ−y+1 ∈ Prefix(Y, y) then set kxλ...xλ−y+1

= ky, otherwise k?y = ky.

4. For i = y + 1, . . . , λ execute the following steps.

4.1. Define the empty list ci and for each t ∈ Prefix(Y, i− 1) execute the following steps.

If t||xλ−i+1 ∈ Prefix(Y, i) then compute kt||xλ−i+1
← Gen(1s) and add Enc(kt, kt||xλ−i+1

)

to the list ci. Otherwise, if t||xλ−i+1 /∈ Prefix(Y, i) then compute and add
Enc(kt, k

?
i) to the list ci.

4.2. If |ci| < δ(i− 1) then execute the following steps.

• Compute and add Enc(k?i−1, k
?
i) to the list ci.

• For i = 1, . . . , δ(i− 1)− |ci| compute and add Enc(Gen(1s), 0) to ci.

4.3. Permute the elements inside ci.

4.4. Run SimROT on input (1s, xλ−i+1, c
i).

5. For every t ∈ Prefix(Y, λ) compute and add Enc(kt, γ
1) to l.

6. If |l| < 2λ then compute and add Enc(k?λ, γ
0) to l.

7. Permute the elements inside l and send l to R.

We now prove that

{OUTR
H?y−1

(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR
H?y(1

s),F∈(Y, γ0, γ1, x)}

for y = 2, . . . , λ. The proof proceeds by contradiction. Suppose that there exists some y ∈
{2, . . . , λ} such that

{OUTR
H?y−1

(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR
H?y(1

s),F∈(Y, γ0, γ1, x)}

then we can construct ad adversary ASym that breaks the security of the encryption scheme
Sym. Let SenSym be the challenger for the security game w.r.t to Sym. Our adversary runs R
with randomness r and executes the following steps.

1. Compute k1 ← Gen(1s) and run SimROT on input (1s, xλ, k1).

2. For i = 2, . . . , y − 1 execute the following steps.

2.1. Define the empty list ci. For j = 1, . . . ,min{2i, |Y |}−1 compute and add Enc(Gen(1s), 0))
to ci.

2.2. Compute ki ← Gen(1s), and add Enc(ki−1, ki) to the list ci.

56

2.3. Permute the elements inside ci.
2.4. Run SimROT on input (1s, xλ−i+1, c

i).

3. Define two empty lists m0 and m1 that will represent the challenge messages to be sent
to SenSym.

4. For each t ∈ Prefix(Y, y) − {xλ . . . xλ−y+1} compute kt ← Gen(1s) and add it to the list
m0.

5. For j = 1, . . . , |Prefix(Y, y)− {xλ . . . xλ−y+1}| compute and add 0 to m1.

6. Send the challenge messages to SenSym.

7. Upon receiving the challenge ciphertext cx, set cy = cx

8. For j = 1, . . . ,min{2i, |Y |} − |cx| − 1 compute and add Enc(Gen(1s), 0)) to ci.

9. Compute ky ← Gen(1s), and add Enc(ky−1, ky) to the list ci.

10. Permute the elements inside ci.

11. Run SimROT on input (1s, xλ−i+1, c
i).

12. If xλ . . . xλ−y+1 ∈ Prefix(Y, y) then set kxλ...xλ−y+1
= ky, otherwise set k?y = ky.

13. For i = y + 1, . . . , λ execute the following steps.

13.1. Define the empty list ci and for each t ∈ Prefix(Y, i− 1) execute the following steps.
If t||xλ−i+1 ∈ Prefix(Y, i) then compute kt||xλ−i+1

← Gen(1s) and add Enc(kt, kt||xλ−i+1
)

to the list ci. Otherwise, if t||xλ−i+1 /∈ Prefix(Y, i) then compute and add
Enc(kt, k

?
i) to the list ci.

13.2. If |ci| < δ(i− 1) then execute the following steps.
• Compute and add Enc(k?i−1, k

?
i) to the list ci.

• For i = 1, . . . , δ(i− 1)− |ci| compute and add Enc(Gen(1s), 0) to ci.
13.3. Permute the elements inside ci.
13.4. Run SimROT on input (1s, xλ−i+1, c

i).

14. For every t ∈ Prefix(Y, λ) compute and add Enc(kt, γ
1) to l.

15. If |l| < 2λ then compute and add Enc(k?λ, γ
0) to l.

16. Permute the elements inside l and send l to R.

This part of the security proof ends with the observation that if SenSym has used m0 then the
joint distribution of the view of R and F∈(Y, γ0, γ1, x) corresponds to {OUTR

H?y−1
(1s),F∈(Y, γ0, γ1, x)},

to {OUTR
H?y(1

s),F∈(Y, γ0, γ1, x)} otherwise.
Since the following two distributions coincide

{OUTR
Hλ(1s),F∈(Y, γ0, γ1, x)} = {OUTR

H?1(1s),F∈(Y, γ0, γ1, x)}

the to complete the entire security proof we just need to prove that {OUTR
H?λ

(1s),F∈(Y, γ0, γ1, x)} ≈
{OUTR

H?(1
s),F∈(Y, γ0, γ1, x)}. The indistinguishability between the two distributions can be

proved by using arguments similar to the one used lately. That is, by proceedings by contradic-
tion and constructing adversary that breaks the security of the encryption scheme Sym.

57

4.5 Optimisations and extension

Point and Permute. In our protocol the receiver must decrypt every ciphertext at every
layer to identify the correct one. This is suboptimal both because of the number of decryptions
and because encryptions that have efficiently verifiable range necessarily have longer ciphertexts.
This overhead can be removed using the standard point-and-permute technique [BMR90] which
was introduced in the context of garbled circuits. Using this technique we can add to each key
in each layer a pointer to the ciphertext in the next layer which can be decrypted using this key.
This has no impact on security.

One-time Pad. It is possible to reduce the communication complexity of our protocol by
using one-time pad encryption in the last log s layers of the graph, in the setting where the
output values γ0, γ1 are such that |γb| < s. For instance, if the output values are bits (in case we
combine our PSM with a GMW-style protocol), then the keys (and therefore the ciphertexts)
used in the last layer of the graph only need to be 1 bit long. Unfortunately, since the keys in
the second to last layer are used to mask up to two keys in the last layer, the keys in the second
to last layer must be of length 2 and so on, which is why this optimization only gives benefits
in the last log s layer of the graph.

PSM with Secret Shared Input. Our PSM protocol produces an output which can be
post-processed using other 2PC protocol. It is natural to ask whether it is possible to design
efficient PSM protocols that also work on encrypted or secret-shared inputs. We note here that
our protocol can also be used in the setting in which the input string x is bit-wise secret-shared
between the sender and the receiver i.e., the receiver knows a share r and the sender knows a
share s s.t., r⊕s = x. The protocol does not change for the receiver, who now inputs the bits of
r = rλ, . . . , r1 to the λ one-out-of-two OTs (instead of the bits of x as in the original protocol).
The sender, at each layer i, will follow the protocol as described above if si = 0 and instead
swap the inputs to the OT if si = 1. It can be easily verified that the protocol still produces the
correct result and does not leak any extra information.

Keyword Search. Our PSM protocol outputs an encryption of a bit indicating whether x ∈ Y
or not. The protocol can be easily modified to output a value dependent on x itself and therefore
implement “encrypted keyword search”. That is, instead of having only two output strings γ1, γ0

representing membership and non-membership respectively, we can have |Y |+1 different output
strings (one for each element y ∈ Y and one for non-membership). This can be used for instance
in the context where Y is a database containing id’s y and corresponding values v(y), and the
output of the protocol should be an encryption of the value v(x) if x ∈ Y or a standard value
v(⊥) if x 6∈ Y . The modification is straightforward: instead of using all the keys in the last layer
of the graph to encrypt the same value γ1, use each key ky to encrypt the corresponding value
v(y) and the sink key (which is use to encrypt γ0 in our protocol) to encrypt the value v(⊥).

PSI from PSM. We can follow the same approach of Phasing [PSSZ15, PSZ14] to turn our
PSM protocol into a protocol for PSI. Given a receiver with input X and a sender with input Y
the trivial way to construct PSI from PSM is to run |X| copies of PSM, where in each execution
the receiver inputs a different x from X and where the sender always inputs her entire set Y . As
described above, the complexity of our protocol (as the complexity of Phasing) is proportional in
the size of |Y |, so this naïve approach leads to quadratic complexity O(|X| · |Y |). Phasing deals
with this using hashing i.e., by letting the sender and the receiver locally preprocess their inputs
X,Y before engaging in the PSM protocols. The different hashing techniques are explained and

58

analysed in [PSZ16][Section 3]. We present the intuitive idea and refer to their paper for details:
in Phasing the receiver uses Cuckoo hashing to map X into a vector X ′ of size ` = O(|X|)
such that all elements of X are present in X ′ and such that every x′i ∈ X ′ is either an element
of X or a special ⊥ symbol. The sender instead maps her set Y into ` = |X ′| small buckets
Y ′1 , . . . , Y

′
` such that every element y ∈ Y is mapped into the “right bucket” i.e., the hashing

has the property that if y = x′i for some i then y will end up in bucket Y ′i (and potentially in
a few other buckets). Now Phasing uses the underlying PSM protocol to check whether x′i is a
member of Y ′i (for all i’s), thus producing the desired result. The overall protocol complexity is
now O(|X ′|·|Y ′i |) which (by careful choice of the hashing parameters) can be made linear in input
size i.e., the overall protocol has complexity O(|X| + |Y |). Since this technique is agnostic of
the underlying PSM protocol, we can apply the same technique to our PSM protocol to achieve
a PSI protocol that produces encrypted output.

4.6 Applications

In this section we provide two examples of how our protocol can be used to implement more
complex secure set operations. The examples show some guiding principles that can be used to
design other applications based on our protocol.

As we will see, the major advantage provided by Π∈ is that the output of the receiver can
be an arbitrary value chosen by the sender as a function of x for each value x ∈ Y ∪ {⊥}. This
is in contrast with most of the approaches for set membership, where the value obtained by the
receiver is a fixed value (e.g. 0) when x ∈ Y , or some random value otherwise.

Without loss of generality in the following applications only the receiver will learn the output
of the computation. Moreover we assume that the size ofX and Y is equal to the same valueM .17

Also for simplicity we will describe our application using the naïve PSI from PSM construction
with quadratic complexity, but using the Phasing approach, as described in Sec. 4.5, it is possible
to achieve linear complexity using hashing techniques. Finally, in both our applications we
exploit the fact that additions can be performed locally (and for free) using secret-sharing based
2PC. In applications in which round complexity is critical, the protocols can be redesigned using
garbled circuits computing the same functionality, since the garbled circuit can be sent from
the sender to the other messages of the protocol. However in this case additions have to be
performed inside the garbled circuit.

4.6.1 Computing statistics of the private intersection

Here we want to construct a protocol where sender and receiver have on input two sets, X and Y
respectively, and want to compute some statistics on the intersections of their sets. For instance
the receiver has a list of id’s X and that the sender has a list of of id’s Y and some corresponding
values v(Y) (thus we use the variant of our protocol for keyword search described in Section 4.5).
At the end of the protocol the receiver should learn the average of v(X ∩ Y) (and not |X ∩ Y |).

The main idea is the following: the sender and the receiver runM executions of our protocol
where the receiver inputs a different xi from X in each execution. The sender always inputs
the same set Y , and chooses the |Y | + 1 outputs γyi for all y ∈ Y ∪ {⊥} for all i = 1, . . . ,M
in the following way: γyi is going to contain two parts, namely an arithmetic secret sharing
of the bit indicating whether xi ∈ Y and an arithmetic secret sharing of the value v(y). The
arithmetic secret sharing will be performed using a modulo N large enough such that N > M
and N > M · V where V is some upper bound on v(y) so to be sure that no modular reduction

17We assume this only to simplify the protocol description, indeed our protocol can be easily instantiated when
the two sets have different size.

59

will happen when performing the addition of the resulting shares. Concretely the sender sets
γyi = (−u2

i+1 mod N,−v2
i +v(y) mod N) for all y ∈ Y and γ⊥i = (−u2

i mod N,−v2
i mod N).

After the protocol the receiver defines her shares u1
i , v

1
i to the the shares contained in her output

of the PSM protocol, and then both parties add their shares locally to obtain secret sharing of the
size of the intersection and of the sum of the values i.e., U1 =

∑
i u

1
i , V

1 =
∑

i v
1
i , U

2 =
∑

i u
2
i ,

and V 2 =
∑

i v
2
i . Now the parties check if (U1, U2) is a sharing of 0 and, if not, they compute

and reveal the result of the computation V 1+V 2

U1+U2 . Both these operations can be performed using
efficient two-party protocols for comparison and division such as the one in [T+07, DNT12].

4.6.2 Threshold PSI

In this example we design a protocol Πt = (P t1, P
t
2) that securely compute the functionality

F t = (F t
P t1
,F t

P t2
) where

F tP t1 : {{0, 1}λ}M × {{0, 1}λ}M −→ ⊥

and

F tP t2 : {{0, 1}λ}M × {{0, 1}λ}M −→ {{0, 1}λ}?

(S1, S2) 7−→

{
S1 ∩ S2 if |S1 ∩ S2| ≥ t
⊥ otherwise

That is, the sender and the receiver have on input two sets, S1 and S2 respectively, and the
receiver should only learn the intersection between these two sets if the size of the intersection
is greater or equal than a fixed (public) threshold value t. In the case that the size of the
intersection in smaller that t, then no information about S1 is leaked to P t2 and no information
about S2 is leaked to P t1. (This notion was recently considered in [HOS17] in the context of
privacy-preserving ride-sharing).

As in the previous example, the sender and the receiver run M executions of our protocol
where the receiver inputs a different xi from S2 in each execution. The sender always inputs the
same set S1, and chooses the two outputs γ0

i , γ
1
i in the following way: γbi is going to contain two

parts, namely an arithmetic secret sharing of 1 if xi ∈ Y or 0 otherwise, as well as encryption
of the same bit using a key k. The arithmetic secret sharing will be performed using a modulo
larger than M , so that the arithmetic secret sharings can be added to compute a secret-sharing
of the value |S1 ∩ S2| with the guarantee that no overflow will occur. Then, the sender and the
receiver engage in a secure-two party computation of a function that outputs the key k to the
receiver if and only if |S1∩S2| > t. Therefore, if the intersection is larger than the threshold now
the receiver can decrypt the ciphertext part of the γ values and learn which elements belong to
the intersection. The required 2PC is a simple comparison with a known value (the threshold is
public) which can be efficiently performed using protocols such as [GSV07, LT13].

60

Part II

Concurrent Non-Malleable
Commitments

61

Chapter 5

Four-Round Concurrent Non-Malleable
Commitments from One-Way Functions

5.1 Introduction

In this chapter we show how to construct a Four-Round Concurrent Non-Malleable Commitments
from One-Way Functions. In order to construct such a commitment scheme, we provide a novel
approach that allows to break the multiple-slot barrier for concurrent NM commitments, thus
showing a 4-round scheme based on the sole existence of OWFs. While previous work relied on
having either 1) stronger assumptions or 2) multiple rewind slots or 3) non-generic assumptions,
in this work we introduce new techniques that allow to have just one rewind slot, minimal
hardness assumptions and full concurrency.

We recall the contributions that will be provided in this chapter.

Non-malleable commitments w.r.t. non-aborting adversaries. We prove that a subpro-
tocol of [GRRV14] is a 4-round statistically binding concurrent NM commitment scheme
from OWFs (resp. a 3-round perfectly binding concurrent NM commitment scheme from
1-to-1 OWFs), if the adversary is restricted to playing well-formed commitments in the
right sessions when receiving well formed commitments from the left sessions. We refer to
this weaker security notion as concurrent weak non-malleability (wNM).

Simulation-Witness-Independence. We define a new security notion for argument systems
w.r.t. man-in-the-middle attacks that we refer to as simulation-witness-independence
(SimWI). This security notion seemingly is not implied by previous notions as simulation-
extractability/soundness and strong non-malleable witness indistinguishability.

4-Round One-Many SimWI from OWFs. We then construct a 4-round one-many SimWI
argument of knowledge for same specific languages by relying on OWFs only. This con-
struction circumvents the major problem caused by the need of rewinding on the left to
simulate and on the right to extract when there is only one available slot.

Concurrent wNM + One-Many SimWI ⇒ 4-Round Concurrent NM Commitments.
We present our new paradigm consisting in combining the above two notions in a protocol
that runs in parallel the concurrent wNM commitment scheme and the one-many SimWI
argument of knowledge. Therefore as main result of this work we upgrade concurrent
wNM to full-fledged concurrent non-malleability without any penalization in rounds and
assumptions.

We now discuss in more details each of the above 4 contributions.

63

Weak Non-Malleable Commitments

We define commitment schemes enjoying a limited form of non-malleability1.
Informally, we say that a commitment scheme is weak non-malleable (wNM) if it is non-

malleable w.r.t. adversaries that never commit to ⊥ when receiving honestly computed commit-
ments. This form of non-malleability is significantly weaker than full-fledged non-malleability.
Indeed, a full-fledged MiM A can for instance maul as follows: A creates a commitment of m0

making use of messages computed by the sender in the left session so that if the sender commits
to m0 then the commitment of A is a well formed commitment of m0, while instead if the sender
commits to m1 6= m0 then the commitment of A is not well formed and therefore corresponds
to ⊥. Such attacks can be explicitly instantiated as shown in [COSV16] where a generalization
of the above A is used to prove that a preliminary version of the scheme of [GPR16] is not
concurrent non-malleable.

While by itself the wNM guarantee is certainly unsatisfying as protection against MiM at-
tacks, the design of a wNM commitment scheme can be an easier task and schemes with such light
non-malleability flavor might exist with improved round complexity, efficiency and complexity
assumptions compared to schemes achieving full-fledged non-malleability.

Concurrent wNM commitments. We show that a protocol due to [GRRV14] is a 4-
round statistically binding concurrent wNM commitment scheme requiring OWFs only (resp., a
3-round perfectly binding concurrent wNM commitment scheme requiring 1-to-1 OWFs only).
Moreover their protocol can be instantiated to be public coin. The security proof consists of some
pretty straightforward observations on top of various useful lemmas already proven in [GRRV14].
Our contribution on wNM commitments therefore consists in 1) introducing and formalizing this
notion; 2) observing the existence of a secure construction in previous work; 3) using it as one
of the two main building blocks of our paradigm allowing to obtain 4-round concurrent (full-
fledged) NM commitments from OWFs. A formal definition of weak NM commitments can be
found in Sec. 5.2.1 (see Def. 20). The proof that a scheme proposed in [GRRV14] satisfies this
notion can be found in Sec. 5.5.

Simulation-Witness-Independence.

We introduce a new security notion against MiM attacks to argument systems. We call our
security notion simulation-witness-independence (SimWI) since it has similarities both with sim-
ulation extractability/soundness (see [PR05c, Sah99]) and with (strong) non-malleable witness
indistinguishability [LPV09, OPV08] (sNMWI,NMWI). For simplicity we will discuss now the
case of one prover and one verifier only, however our formal definition, construction and appli-
cation will focus on the one-many case (i.e., up to 1 prover and polynomially many verifiers).

The 1st security flavor that our notion tries to capture is the concept that the view of a MiM
in the real game should be simulatable. Therefore we will have an experiment corresponding
to the real game where the MiM plays with a honest prover and a honest verifier, and an
experiment corresponding to the simulated game that simply consists of the output of a stand-
alone simulator that emulates the prover and runs the code of honest verifiers when interacting
internally with the MiM2.

While the above 1st security flavor guarantees that the statements proven by the MiM in the
real-world experiment and in the simulated experiment are indistinguishable, there still is no

1We remark that Goyal in [Goy11] defined a weaker notion of non-malleable commitments (non-malleability
w.r.t. replacement) that also had the goal to deal with commitments of ⊥. While the goal is similar to our
definition, the actual formulation is quite different.

2There is nothing surprising so far, this is just the concept of zero knowledge naturally augmented by extending
the simulator with the behavior of honest verifiers to feed the MiM with messages belonging to the right sessions
too.

64

guarantee that the MiM is unable to prove in the two experiments statements that are associated
to witnesses belonging to distinguishable distributions. In other words, as 2nd flavor we want
to capture the independence of the witnesses associated to the statements proven by the MiM
with respect to the fact that the actual witness in the left session is used (this is the case of the
real game) or is not used (this is the case of the simulated game). To avoid any ambiguity on
which witness is associated to a statement, we associate to NP languages a non-negative integer
γ. More precisely, for any NP language L we consider the largest non-negative integer γ such
that for any x ∈ L all witnesses of x have the same first γ bits3. The reason why we assign such
a value γ to every NP language is that it fixes is some non-ambiguous way the input for the
distinguisher of SimWI (indeed the input will be the first γ bits of any witness) and at same
time the prefix of the witnesses of an instance can be recovered by extracting any witness.

The above 2nd flavor makes our security definition non-trivial. Indeed standard zero knowl-
edge is clearly insufficient and the definition has strong connections with the (hard to achieve)
concept of committed message in NM commitments4. One might think that some heavy ma-
chinery could already imply our new notion but instead, perhaps surprisingly, by taking into
account all subtleties of the definitions it turns out that SimWI is not implied by simulation
extractability, simulation soundness and sNMWI/NMWI. We stress that our goal is to get a
one-many 4-round construction under minimal assumptions.

Comparison with simulation extractability and simulation soundness. Simulation
extractability requires the simulator to output a transcript and witnesses for the statements
appearing in the right sessions of the transcript.

Simulation soundness requires the MiM to fail in proving false statements when receiving
simulated proofs of false statements.

SimWI requires the simulator to output a transcript that includes statements proven in
right sessions. The distribution of the instance/witness pairs associated to those statements is
required to be indistinguishable from the distribution of the instance/witness pairs associated
to the statements proved by the MiM in the real game. Instead, in simulation extractability
there is no requirement on the witness given in output by the simulator beyond being valid
witnesses. Simulation soundness does not have any requirement on the witnesses associated to
the statements proven by the MiM.

Comparison with sNMWI/NMWI. sNMWI considers two indistinguishable distribu-
tions of instance/witnesses pairs. Very informally, the requirement of sNMWI/NMWI is that
the instance/witness pairs associated to the arguments given by the MiM in the right sessions
be independent of the distribution from which the instance/witness pair of the argument given
to the MiM in the left session has been sampled.

SimWI requires the existence of a simulator while instead sNMWI/NMWI only considers
experiments where the actual prover plays.

One-Many SimWI From OWFs in 4 Rounds (i.e., in Just One Rewind Slot!). As
discussed above, SimWI is an interesting security notions w.r.t. MiM attacks and similarly to all
previous non-malleability notions is certainly non-trivial to achieve, especially when considering
1) the one-many case 2) only four rounds (i.e., one rewind slot) and 3) minimal assumptions. In
this work we show how to construct a 4-round one-many SimWI argument of knowledge (AoK)
from OWFs, therefore avoiding multiple rewind slots.

A common approach to construct 4-round zero-knowledge arguments (even without non-
malleability requirements) relies on the FLS/FS paradigm [FLS90, FS90]. First there is a

3Note that when γ = 0 the 2nd security flavor is cancelled and SimWI becomes equivalent to zero knowledge.
Furthermore when γ is equal to the largest witness size then the subclass of languages corresponds to UP.

4We stress that the main goal of this work is to construct 4-round concurrent NM commitments from OWFs,
and we will achieve it by making use of SimWI. As such, to avoid circularity, we can not use concurrent NM
commitments to construct SimWI.

65

subprotocol useful to extract a trapdoor from the adversarial verifier. Then there is a witness-
indistinguishable proof of knowledge (WIPoK) where the prover proves knowledge of either a
witness for the statement or of the trapdoor. In order to save rounds the two subprotocols are
parallelized.

The above common approach fails in presence of MiM attacks. The reason is that the
MiM adversary can attack the witness indistinguishability (WI) of the WIPoK received in the
left session in order to prove his statements (e.g., potentially false statement, statements with
specific witnesses) in the right sessions. Using such a MiM to contradict the WI of the WIPoK
is problematic since one should extract some useful information from the right session but this
would require also to rewind the challenger of the WI of the WIPoK on the left.

We bypass the above difficulty as follows. Instead of relying on the WI of the WIPoK
that requires two messages played by the challenger, we propose a construction where we es-
sentially break the interactive challenger of WI into two non-interactive challengers. We im-
plement this idea by relying on: 1) instance-dependent trapdoor commitments (IDTCom) and
2) special honest-verifier zero knowledge (special HVZK). More in details, let (π1, π2, π3, π4)
be the transcript of a delayed-input5 4-round special HVZK adaptive-input proof of knowl-
edge (PoK). We require the prover to send an IDTCom com of π2 that is opened, sending the
opening dec, only in the last round, when π4 is sent. The actual transcript therefore becomes
(π1, com, π3, (π2, dec, π4)).

Consider now an experiment where the trapdoor is known and π2 can be opened arbitrarily.
If the output of the experiment deviates from the original one, we will have a reduction to
the trapdoorness of the IDTCom. The reduction is not problematic since the challenger of
the trapdoorness is non-interactive, sending a pair (commitment, decommitment) that is either
computed using the regular procedure or through the use of the trapdoor. Next, in another
experiment we can replace the prover of the PoK with the special HVZK simulator that will
compute π2 and π4 after having as input π1 and π3. Again, the output of this experiment will
not deviate from the previous one otherwise we can show an adversary for the special HVZK
property. The reduction again is not problematic since the challenger of special HVZK is non-
interactive.

We implement the trapdoor-extraction subprotocol through OWFs by using as trapdoor
knowledge of two signatures under the same public key sent by the verifier in the 1st round.
The verifier will send a signature of one message (chosen by the prover) in the 3rd round. We
will use a delayed-input special HVZK adaptive-input PoK where the prover proves knowledge
of either a witness for the statement or of signatures of messages. The IDTCom will have the
public key of the signature scheme as instance, therefore the simulator after having extracted
the signatures will be able to equivocate the commitments. The security proof presents one
more caveat. Once the simulator rewinds on the left to obtain the trapdoor it is not clear
how to argue that the extraction from the right is meaningful since the extractor might simply
obtain the same trapdoor and this is useless. More specifically, the adversary might be able
to equivocate on the right, therefore the extractor of the PoK would fail, and the best we can
get from such a binding violation is the trapdoor of the IDTCom played in the right session.
This does not give any contradiction since the trapdoor of the right session had to be already
known in order to answer twice (before and after the rewind) in the right session to the MiM. We
resolve this problem by relying on a specific proof approach where while the initial transcript is
generated by the simulator, when the extractions are played in the right sessions, the transcript
of the left session is re-completed by running the prover of the special HVZK PoK. The reason
why in this case the extraction on the right will succeed is that if we extract the trapdoor from
the right session then this will also happen in the real game where the trapdoor is never used.

5By delayed-input we mean that the statement will be known only at the last round.

66

In turn it would break the security of the signature scheme.
Caveat: adaptive-input selection. We will give a formal definition that allows the MiM

to select the instance/witness pair for the left session only at the end, while the MiM must
fix the statement for a right session already when playing his first round in that session. Our
construction satisfies this notion and even a more important form of adaptiveness. We allow
the MiM to specify the statement in the last round of a right session, as long as the witness
is already fixed when playing his first round in that session. The reason why we prove such
more sophisticated form of adaptive-input selection is that it is required in our application for
concurrent NM commitments. Ideally one would like to satisfy the best possible adaptive-input
selection, in order to make this new primitive useful in a broader range of applications. However
we can not prove our construction secure with fully adaptive-input selection since we are not
able to extract the witness from a MiM selecting a new statement (with possibly a new witness)
in the last round of a right session. Indeed we would end up having a certain statement in the
transcript of the simulator and then a witness for another statement obtained through rewinds.
This would negatively affect our proof approach. We leave as a very interesting open question
the construction of a 4-round fully adaptive-input one-many SimWI AoK from OWFs.

4-Round Concurrent NM Commitments from OWFs.

We solve the problem left open by [GRRV14] by showing a 4-round concurrent NM commitment
scheme relying on OWFs only. The new paradigm that we propose to obtain concurrent non-
malleability consists in combining in parallel a 4-round public-coin concurrent wNM commitment
scheme from OWFs Π0, and a one-many 4-round SimWI argument of knowledge from OWFs Π1.

The new paradigm. Π0 is run in order to commit to the message m. Π1 is instead used to
prove knowledge of a valid message and randomness explaining the transcript of Π0. The power
of the new approach consists in using the above two tools that are in perfect synergy to defeat a
concurrent MiM attack. The idea of the security proof is now quite simple. Since any one-many
NM commitment is also many-many6 NM, we focus the following discussion on the one-many
case.

In the 1st experiment (the real game RG0) the sender commits to m0. Clearly there can not
be a commitment to ⊥ on the right otherwise the soundness of Π1 is contradicted. Symmetrically
there is an experiment RG1 where the sender commits to m1 and there is no commitment to ⊥
on the right. Then we consider an hybrid game H0 where the simulator of one-many SimWI of
Π1 is used. Observe that if (by contradiction) the distribution of the messages committed on
the right changes w.r.t. RG0 we have that also the distribution of the witnesses corresponding
to the statements proved in Π1 on the right changes. However this clearly violates SimWI.
Therefore it must still be the case that a commitment played on the right corresponds to ⊥ with
negligible probability only. Symmetrically, there is an experiment H1 that is indistinguishable
from RG1 and such that commitments played on the right are well formed (i.e., different from
⊥). Therefore we can conclude that RG0 is indistinguishable from RG1 by noticing that H0
is indistinguishable from H1. Indeed, both H0 and H1 guarantee that the messages committed
by the adversary on the right correspond to ⊥ with negligible probability only. Summing up, a
detectable deviation from H0 to H1 implies a contradiction of the concurrent wNM of Π0

7. This
observation concludes the high-level overview of the security proof. However, some remarks are
in order.

Remark 1: the required adaptive-input flavor. As specified in the previous section,
our 4-round one-many SimWI AoK Π1 is fully adaptive on the left but instead on the right

6A many-many NM commitment scheme can be also indicate as a concurrent NM commitment scheme. In
the rest of the thesis we use the term concurrent.

7This reduction needs extra help, see Remark 2 below.

67

requires the witness to be fixed already in the first round of the MiM. The statements instead
can be decided in the last round also in the right sessions. The flexibility with the statement is
important since Π0 is completed only in the last round and the entire transcript of Π0 is part
of the statement of Π1. The lack of flexibility on the witness in the right sessions forces us to
add one more requirement to Π0. We need that message and randomness are already fixed in
the 2nd round of Π0, since they will be the witness for Π1. This property is satisfied by the
construction of [GRRV14] that we prove in Sec. 5.5 to be concurrent wNM.

Remark 2: on the need of public coins in Π0. In a reduction we will have to simulate
the last round of the receiver of Π0 without knowing the randomness he used to compute the
previous round. Obviously public coins are easy to simulate.

5.2 Definitions and tools

Definition 16 (One-way function (OWF)). A function f : {0, 1}? → {0, 1}? is called one way
if the following two conditions hold:

• there exists a deterministic polynomial-time algorithm that on input y in the domain of f
outputs f(y);

• for every ppt algorithm A there exists a negligible function ν, such that for every auxiliary
input z ∈ {0, 1}poly(λ):

Prob
[
y←{0, 1}? : A(f(y), z) ∈ f−1(f(y))

]
< ν(λ).

We say that a OWF f is a 1-to-1 OWF if f(x) 6= f(y) ∀(x, y) ∈ {0, 1}?.
We say, also, that a OWF f is a one-way permutation (OWP) if f is a permutation.

Definition 17 (Following the notation of [CPS13]). A triple of ppt algorithms (Gen,Sign,V)
is called a signature scheme if it satisfies the following properties.

Validity: For every pair (s, v)← Gen(1λ), and every m ∈ {0, 1}λ, we have that

V(v,m,Sign(s,m)) = 1.

Security: For every ppt A, there exists a negligible function ν, such that for all auxiliary input
z ∈ {0, 1}? it holds that:

Pr[(s, v)← Gen(1λ); (m,σ)← ASign(s,·)(z, v) ∧ V(v,m, σ) = 1 ∧m /∈ Q] < ν(λ)

where Q denotes the set of messages whose signatures were requested by A to the oracle
Sign(s, ·).

Definition 18 (Special Honest-Verifier Zero Knowledge (Special HVZK)). Consider a public-
coin proof/argument system Π = (P,V) for an NP-language L where the verifier sends m
messages of length `1, . . . , `m. We say that Π is Special HVZK if there exists a PPT simulator
algorithm S that on input any x ∈ L, security parameter 1λ and any c1 ∈ {0, 1}`1 , . . . , cm ∈
{0, 1}`m , outputs a transcript for proving x ∈ L where c1, . . . , cm are the messages of the verifier,
such that the distribution of the output of S is computationally indistinguishable from the
distribution of a transcript obtained when V sends c1, . . . , cm as challenges and P runs on
common input x and any w such that (x,w) ∈ RelL.

68

In this chapter we consider the 3-round public-coin Special HVZK PoK proposed by Lapidot
and Shamir [LS90], that we denote by LS. LS enjoys delayed-input completeness since the inputs
for both P and V are needed only to play the last round, and only the length of the instance
is needed earlier. LS also enjoys adaptive-input PoK. In particular in our work we use use a
4-round delayed-input, special HVZK, adaptive-input AoK, that is a variant of LS [Fei90] that
relies on OWFs only. The additional round is indeed needed to instantiate the commitment
scheme used in LS under any OWF.

5.2.1 Non-Malleable Commitments

Here we follow [LPV08]. Let Π = (Sen,Rec) be a statistically binding commitment scheme and
let λ be the security parameter. Consider MiM adversaries that are participating in left and right
sessions in which poly(λ) commitments take place. We compare between a MiM and a simulated
execution. In the MiM execution the adversary A, with auxiliary information z, is simultane-
ously participating in poly(λ) left and right sessions. In the left sessions the MiM adversary A
interacts with Sen1, . . . ,Senpoly(λ) receiving commitments to values m1, . . . ,mpoly(λ) using iden-
tities id1, . . . , idpoly(λ) of its choice. In the right session A interacts with Rec1, . . . ,Recpoly(λ)

attempting to commit to a sequence of related values m̃1, . . . , m̃poly(λ) again using identities of
its choice ĩd1, . . . , ĩdpoly(λ). If any of the right commitments is invalid, or undefined, its value
is set to ⊥. For any i such that ĩdi = idj for some j, set m̃i =⊥ (i.e., any commitment where
the adversary uses the same identity of one of the honest senders is considered invalid). Let
mim

A,m1,...,mpoly(λ)

Π (z) denote a random variable that describes the values m̃1, . . . , m̃poly(λ) and
the view of A, in the above experiment. In the simulated execution, an efficient simulator S
directly interacts with Rec1, . . . ,Recpoly(λ). Let simS

Π(1λ, z) denote the random variable describ-
ing the values m̃1, . . . , m̃poly(λ) committed by S, and the output view of S; whenever the view
contains in the i-th right session the same identity of any of the identities of the left sessions,
then mi is set to ⊥.

In all the chapter we denote by δ̃ a value associated with the right session (where the
adversary A plays with a receiver) where δ is the corresponding value in the left session. For
example, the sender commits to v in the left session while A commits to ṽ in the right session.

Definition 19 (Concurrent NM commitment scheme [LPV08]). A commitment scheme is con-
current NM with respect to commitment (or a many-many NM commitment scheme) if, for
every ppt concurrent MiM adversary A, there exists a ppt simulator S such that for all
mi ∈ {0, 1}poly(λ) for i = 1, . . . , poly(λ) the following ensembles are computationally indistin-
guishable:
{mim

A,m1,...,mpoly(λ)

Π (z)}z∈{0,1}? ≈ {simS
Π(1λ, z)}z∈{0,1}? .

As in [LPV08] we also consider relaxed notions of concurrent non-malleability: one-many
and one-one NM commitment schemes. In a one-many NM commitment scheme, A participates
in one left and polynomially many right sessions. In a one-one (i.e., a stand-alone secure) NM
commitment scheme, we consider only adversaries A that participate in one left and one right
session. We will make use of the following proposition of [LPV08].

Proposition 1. Let (Sen,Rec) be a one-many NM commitment scheme. Then, (Sen,Rec) is
also a concurrent (i.e., many-many) NM commitment scheme.

We say that a commitment is valid or well formed if it can be decommitted to a message
m 6= ⊥. Following [LP11] we say that a MiM is synchronous if it “aligns" the left and the right
sessions; that is, whenever it receives message i on the left, it directly sends message i on the
right, and vice versa.

69

5.2.2 New Definitions: weak NM and SimWI

Definition 20 (weak NM commitment scheme). A commitment scheme is weak one-one (resp.,
one-many) non-malleable if it is a one-one (resp., one-many) NM commitment scheme with
respect to MiM adversary that when receiving a well formed commitment in the left session, except
with negligible probability computes well formed commitments (i.e., the computed commitments
can be opened to messages 6= ⊥) in the right sessions.

In the rest of the thesis, following [GRRV14], we assume that identities are known before
the protocol begins, though strictly speaking this is not necessary, as the identities do not
appear in the protocol until after the first committer message. The MiM can choose his identity
adversarially as long as it differs from the identities used by honest senders. As already observed
in previous work, when the identity is selected by the sender the id-based definitions guarantee
non-malleability as long as the MiM does not behave like a proxy (an unavoidable attack).
Indeed the sender can pick as id the public key of a signature scheme signing the transcript.
The MiM will have to use a different id or to break the signature scheme.

Simulation-witness-independence (SimWI) for Lγ. We define SimWI for an NP lan-
guage L associating to the language a non-negative integer γ. Roughly speaking all witnesses of
an instance have in common the first γ bits, and this property holds for all instances of L. More
formally we will consider γ as a non-negative integer such that for any x ∈ L it holds that any
witness w of x can be parsed as w = α|β, where |α| = γ, and α is the same for all witnesses of
x. In order to easy the notation, we will note denote by Lγ the NP language having the above
prefix γ. We will say that Lγ is γ-prefix language meaning that for any instance x of Lγ all
witnesses of x have the same first γ bits.

When defining SimWI we will consider the one-many case since this is what we will use in the
next part of this chapter. Adapting the definition to the one-one case and to the fully concurrent
case is straight-forward.

Discussion on adaptive-input selection and black-box simulation. Since our defi-
nition considers a real game where the MiM plays with at most one prover and polynomially
many verifiers, and a simulated game that consists of an execution of a stand-alone simulator,
a natural definition would require the indistinguishability of the two games for any x ∈ Lγ ,
giving to the prover as input also a witness. This definition however would be difficult to use
when the argument of knowledge is played as a subprotocol of a larger protocol, especially if
it is played in parallel with other subprotocols and the adversary contributes in selecting the
statement for the left session. More specifically applications require a security definition that
features a delayed-input property so that players start the protocol with the common input that
is still undefined, and that will be defined later potentially with the contribution of the adversary.
Therefore in our definition we will allow the adversary to explicitly select the statement, and as
such the adversary will provide also the witness for the prover. The simulated game however will
filter out the witness so that the simulator will receive only the instance. This approach strictly
follows the one of [SCO+01] where adaptive-input selection is explicitly allowed and managed in
a similar way. As final remark, our definition will require the existence of a black-box simulator
since a non-black-box simulator could retrieve from the code of the adversary the witness for the
adaptively generated statement. The non-black-box simulator could then run the honest prover
procedure, therefore canceling completely the security flavor of the simulation paradigm.

Definition. Let Π = (P,V) be an argument system for an γ-prefix language Lγ and let RelLγ

be the corresponding witness relation. Consider a ppt MiM adversary A that is simultaneously
participating in one left session and poly(λ) right sessions. When the execution starts, all parties
receive as a common input the security parameter 1λ then A chooses the statement x ∈ Lγ and

70

witness w s.t. (x,w) ∈ RelLγ and sends them to P, furthermore A receives as auxiliary input
z ∈ {0, 1}?.

In the left session an honest prover P interacting with A proves the membership of x in Lγ .
In the poly(λ) right sessions, A proves the membership in Lγ of instances x̃1, . . . , x̃poly(λ) of his
choice to the honest verifiers V1, . . . ,Vpoly(λ). For simplicity, in this definition we consider an
adversary A that chooses the statement to be proved in the 1st round that he plays in every
right sessions8.

Let {wimimΠ(1λ, z)}λ∈N,z∈{0,1}? be a random variable that describes the following 3 values:
1) the view of A in the above experiment, 2) the output of Vi for i = 1, . . . , poly(λ) and 3) the
first γ-bits w̃γ1 , . . . , w̃

γ
poly(λ) of the corresponding witnesses w̃1, . . . , w̃poly(λ) w.r.t. the instances

x̃1, . . . , x̃poly(λ) that are part of A’s view except that w̃γi = ⊥ if Vi did not output 1, with
i = 1, . . . , poly(λ).

Let {simSΠ(1λ, z)}λ∈N,z∈{0,1}? be a random variable that describes the following 3 values:
1) and 2) correspond to the output of S, 3) consists of the first γ-bits w̃γ1 , . . . , w̃

γ
poly(λ) of the

corresponding witnesses w̃1, . . . , w̃poly(λ) w.r.t. the instances x̃1, . . . , x̃poly(λ) that appear in the
MiM view of the output of S except that wγi = ⊥ if bi = 0. The output of S is composed by the
following two values: 1) a MiM view and 2) bits b1, . . . , bpoly(λ).
S has black-box access to A and has the goal to emulate the prover without having a

witness, while perfectly emulating the verifiers of the right sessions. Therefore S rewinds only
when playing as prover9 and every instance/witness pair (x,w) given in output by A is replaced
by (x,⊥) and then returned to S (i.e., the simulator runs without the witness w for the instance
x chosen by A).

Definition 21 (SimWI). An argument system Π = (P,V) for an γ-prefix language Lγ with
witness relation RelLγ is SimWI if there exists an expected polynomial-time simulator S such
that for every MiM adversary A that participates in one left session and poly(λ) right sessions
the ensembles {wimimΠ(1λ, z)}λ∈N,z∈{0,1}? and {simSΠ(1λ, z)}λ∈N,z∈{0,1}? are computationally in-
distinguishable over λ.

5.3 4-Round One-Many SimWI From OWFs

We now show our construction of a 4-round argument of knowledge SWI = (Pswi,Vswi) for the
γ-prefix language Lγ that is one-many SimWI and can be instantiated using any OWF. We will
need the following tools:

1. a signature scheme Σ = (Gen, Sign,V);
2. a 2-round IDTC scheme TCΣ = (SenΣ,RecΣ,TFakeΣ) for the following NP-language

LΣ =
{

vk : ∃ (msg1, msg2, σ1, σ2) s.t. V(vk, msg1, σ1) = 1

AND V(vk, msg2, σ2) = 1 AND msg1 6= msg2

}
;

8Our construction will satisfy a much stronger notion where in the left session A can choose statement and
witness in the last round, while in the right sessions A can choose the statement in the very last round, as long
as the witness is already fixed in the second round.

9The motivation behind this definitional choice is that S is supposed to be not more than an extended zero-
knowledge simulator that takes care also of the honest behavior of the verifiers since A expects to play with them.
Instead allowing S to have any behavior on the right would hurt the power of SimWI in composing in parallel
with other protocols. Indeed if S rewinds on the right as verifier, it would in turn rewind also the left player of
the external protocol that is played in parallel. This would hurt the security of the overall scheme whenever the
external protocol is not resettably secure. We will indeed compose a SimWI AoK with a weak NM commitment
scheme that is not resettably secure.

71

3. a 4-round delayed-input public-coin Special HVZK (Def. 18) proof system LS = (P,V) for
the γ-prefix language Lγ that is adaptive-input PoK for the corresponding relation RelLγ .

com(ls2), msg

ls
3, σ

dec, ls2, ls4

Pswi(x,w) Vswi(x)
ρ, ls1, vk sk

Upon receiving x and w
s.t. (x,w) ∈ RelLγ

– (sk, vk)← Gen(λ) and σ ← Sign(sk, msg);
– com(ls2) is the commitment computed by running SenΣ for the

language LΣ and instance vk on input ρ (i.e., the 1st round of the
commitment scheme), in order to commit to ls2 (dec represents
the decommitment information of com(ls2));

– (ls1, ls2, ls3, ls4) is the transcript of LS for proving that x ∈ Lγ .

Figure 5.1: Our SimWI AoK SWI from OWFs.

Let x ∈ Lγ be the statement that Pswi wants to prove, and w a witness s.t. (x,w) ∈ RelLγ .
The high-level idea of our protocol is depicted in Fig. 5.1. In the 1st round the verifier Vswi

computes and sends the 1st round ls1 of LS, computes a pair of signature and verification keys
(sk, vk), sends the verification key vk to Pswi and computes and sends the 1st round ρ of TCΣ by
running RecΣ on input 1λ and the instance vk ∈ LΣ. Then Pswi on input x,w and the received
1st round, computes the 2nd round ls2 of LS and runs SenΣ on input 1λ, vk, ρ and message ls2

thus obtaining a pair (com, dec). Pswi sends com and a random message msg to Vswi. In the 3rd
round Vswi sends the 3rd round ls3 of LS and a signature σ (computed using sk) of the message
msg. In the last round Pswi verifies whether or not σ is a valid signature for msg. If σ is a valid
signature, then Pswi, using x, w and ls3, computes the 4th round ls4 of LS and sends dec, ls2 and
ls4 to Vswi. At this point Vswi outputs 1 iff RecΣ on input vk, com, dec, ls2 accepts (ls2, dec) as a
decommitment of com and the transcript for LS is accepting for V with respect to the instance x.
We remark that to execute LS the instance is not needed until the last round but the instance
length is required from the onset of the protocol.

The Fig. 5.2 describes in details our SimWI AoK SWI.

Theorem 5. Assuming OWFs, SWI = (Pswi,Vswi) is a 4-round one-many SimWI AoK for
γ-prefix language.

We divide the security proof in three parts, proving that SWI enjoys delayed-input complete-
ness, adaptive-input AoK and SimWI. Before that, we recall that LS can be constructed from
OWFs (see Sec. 5) as well as Σ using [Rom90]. We also observe that if Σ relies on OWFs, then
also TCΣ can be constructed from OWFs (see Sec. 5).

Delayed-Input Completeness. The completeness follows directly from the completeness
of LS, the correctness of TCΣ and the validity of Σ. We observe that, due to the delayed-input
property of LS, the statement x (and the respective witness w) are used by Pswi only to compute
the last round. Therefore SWI enjoys delayed-input completeness.

Adaptive-Input Argument of Knowledge. In order to prove that SWI enjoys adaptive-
input AoK for RelLγ , we need to show an efficient extractor E that outputs the witnesses for
the statements proved by an adversarial prover Pswi?. E simply runs ExtLS, the adaptive-input
PoK extractor of LS, in every right session, and outputs what ExtLS outputs. More precisely E

72

Common input: security parameter λ, instance x ∈ Lγ , instance length `.
Input to Pswi: w s.t. (x,w) ∈ RelLγ , with x,w available only in the 4th round.
Commitment phase:

1. Vswi → Pswi

1. Run (sk, vk)← Gen(1λ).
2. Run V on input 1λ and ` thus obtaining the 1st round ls1 of LS.
3. Run RecΣ on input 1λ and vk thus obtaining ρ.
4. Send (vk, ls1, ρ) to Pswi.

2. Pswi → Vswi

1. Run P on input 1λ, ` and ls1 thus obtaining the 2nd round ls2 of LS.
2. Run SenΣ on input 1λ, vk, ρ and message ls2 to compute the pair

(com, dec).
3. Pick a message msg← {0, 1}λ.
4. Send (com, msg) to Vswi.

3. Vswi → Pswi

1. Run V thus obtaining the 3rd round ls3 of LS.
2. Run Sign(sk, msg) thus obtaining a signature σ of the message msg.
3. Send (ls3, σ) to Pswi.

4. Pswi → Vswi

1. If V(vk, msg, σ) 6= 1 then abort, continue as follows otherwise.
2. Run P on input x, w and ls3 thus obtaining the 4th round ls4 of LS.
3. Send ((dec, ls2), ls4) to Vswi.

5. Vswi: output 1 iff the following conditions are satisfied.

1. RecΣ on input vk, com, dec, ls2 accepts (ls2, dec) as a decommitment of
com.

2. (ls1, ls2, ls3, ls4) is accepting for V with respect to the instance x.

Figure 5.2: Our SimWI AoK SWI from OWFs.

internally runs and interacts with a SWI prover Pswi as Vswi
i does, but acting as a proxy between

Pswi? and ExtLS w.r.t. the messages of LS (for i = 1, . . . , poly(λ)). The important observation
is that E could fail if the following event NoExt happens with non-negligible probability: Pswi?

opens the commitment (ρ, com) to a different ls2 during the rewinds. Indeed, in this case ExtLS
could fail in obtaining a witness. We prove the following claim.

Claim 1. There exists a negligible function ν such that Prob [NoExt] < ν(λ).

Proof. The proof is by contradiction, more specifically we now show an adversary AΣ that
extracts two signatures for two different messages in order to break the signature scheme Σ
when Prob [NoExt] is non-negligible in λ.

If two decommitments of (com, ρ) w.r.t. two different messages (ls2′ and ls2) are shown by
Pswi? in the last round of SWI, AΣ can extract two different signatures for two different messages
by using the special binding of TCΣ. More precisely, let vk be the verification key given by the
challenger of the signature scheme, then our adversary AΣ works as follows.

73

For all i ∈ {1, . . . , poly(λ)}−{j}, AΣ interacts in the i-th session against Pswi? as Vswi
i would

do. Instead in the j-th session AΣ runs as E would do, using vk to compute the first round, and
the oracle Sign(sk, ·) to compute a signature σ of a message m sent by AΣ in the second round.
Since we are assuming (by contradiction) that during the rewinds from the 4th round to the
3rd round the commitment (ρ, com) (sent in the second round by Pswi?) is opened in more than
one way, then, by using the special binding of TCΣ, AΣ extracts and outputs two signatures for
two different messages. We conclude this proof with the following two observations. First, the
signature oracle Sign(sk, ·) is called only once since, by construction of E, the second round is
played by Pswi? only once. Second, the extractor E is an expected polynomial-time algorithm
while AΣ must be a strict polynomial-time algorithm. This mean that the execution E has to
be truncated. Obviously the running time of the extraction procedure can be truncated to a
sufficiently long value so that with non-negligible probability the truncated extraction procedure
will still yield the event NoExt to happened and this is sufficient for AΣ to break the signature
scheme10.

SimWI. In order to prove that SWI is SimWI (Definition 21) for the γ-prefix language Lγ

we prove the following lemma.

Lemma 3. {wimimSWI(1
λ, z)}λ∈N,z∈{0,1}? ≈ {simS

swi

SWI(1
λ, z)}λ∈N,z∈{0,1}? .

Proof. Here we actually prove something stronger. Indeed we prove the security of SWI consid-
ering a MiM adversary Aswi that has additional power both in the left and in the right sessions.
More precisely in the left session Aswi can choose the statement to be proved (and the related
witness) in the third round. That is, in the last round that goes from Aswi to Pswi.

Also, in all right sessions A chooses a family of statements Xw = {x : (x,w) ∈ RelLγ or x /∈
Lγ} in the second round, and then adaptively picks the statement to be proved from that family
in the last round. Roughly speaking Xw is the family of statements that either share the same
witness w, or do not belong to the γ-prefix language Lγ . In this way the MiM adversary has the
power to adaptively choosing the statement to be proved in the last round of every right session
conditioned on Xw, that has to be fixed in the second round. In the rest of the thesis we will
refer to a SimWI protocol that is secure also in this setting as adaptive-input SimWI.

We start by showing the simulator Sswi and giving an overview of the entire proof. The
simulator is described in Figure 5.3. Roughly, Sswi interacts against Aswi in both the left and
right sessions. In the left session Sswi runs TFakeΣ to compute and send a commitment com. Sswi

then rewinds Aswi from the 3rd to the 2nd round, in order to obtain two valid signatures σ1, σ2

for two different messages (msg1, msg2). This informations constitute the trapdoor tk for TCΣ.
After that tk is computed, Sswi comes back to the main thread execution. Upon receiving ls3

and x in the 3rd round from Aswi, Sswi computes an accepting transcript for LS (ls1, ls2, ls3, ls4)
running the Special HVZK simulator of LS on input ls1, received in the 1st round from Aswi, and
(x, ls3). In the last round computes, by using tk, the decommitment information (dec, ls2) for
com, and sends (dec, ls2, ls4) to Aswi. In the i-th right session, for i = 1, . . . , poly(λ), Sswi acts
as Vswi

i would do against Aswi. When the execution against Aswi ends, Sswi outputs the view of
Aswi.

In the security proof we denote by {wimimHi(1
λ, z)}λ∈N,z∈{0,1}? the random variable de-

scribing 1) the view of Aswi, 2) the output of Vswi
i for i = 1, . . . , poly(λ), 3) the first γ-bits

w̃γ1 , . . . , w̃
γ
poly(λ) of the corresponding witnesses w̃1, . . . , w̃poly(λ) w.r.t. the instances x̃1, . . . , x̃poly(λ)

that appear in Aswi’s view except that w̃γi = ⊥ if Vswi
i rejected, with i = 1, . . . , poly(λ) 11.

10The same arguments are used in [GK96b]. The same standard argument about truncating the execution
of an expected polynomial-time algorithm is used in another proofs but for simplicity we will not repeat this
discussion.

11To ease the notation sometimes we will refer to {wimimHi(1
λ, z)}λ∈N,z∈{0,1}? using just wimimHi(1

λ, z).

74

Common input: security parameters λ and instance length `.
Internal simulation of the left session:

1. Upon receiving (vk, ls1, ρ) from Aswi.

1.1. Run TFakeΣ on input 1λ, vk, ρ to compute the pair (com, aux).

1.2. Pick a message msg1 ← {0, 1}λ.
1.3. Send (com, msg1) to Aswi.

2. Upon receiving (ls3, σ1, x,⊥) from Aswi.

2.1. If V(vk, msg1, σ) 6= 1 then abort, continue as follows otherwise.

2.2. Repeat Step 1.3, 1.2 and follow-up right session message up to λ/p
timesa in order to obtain a signature σ2 of a random message msg2 6=
msg1. Abort in case of failure in obtaining σ2 in such λ/p attempts
otherwise return to the main thread.

2.3. Run the Special HVZK simulator of LS on input (x, ls1, ls3) in order
to obtain (ls2, ls4).

2.4. Run TFakeΣ on input tk = (msg1, msg2, σ1, σ2), vk, ρ, com, aux and
ls2 to compute dec.

2.5. Send ((dec, ls2), ls4) to Aswi.

Internal simulation of the right sessions:

1. For i = 1, . . . , poly(λ) acts as Vswi
i would do against Aswi.

Output: When the execution against Aswi ends, outputs the view of Aswi and
the bits b1, . . . , bpoly(λ) where, for i = 1, . . . , poly(λ), bi = 0 iff Vswi

i is rejecting,
bi = 1 otherwiseb.

aWe refer with p as the probability that Aswi sends in the Step 2 a valid signature for a
randomly chosen message.

bOf course, if Aswi ends during the step 2.2 the simulator continues to work until that step
is completed.

Figure 5.3: The SimWI Sswi for SWI.

The proof makes use of the following main hybrid experiments.

– The 1st hybrid experiment is H1(1λ, z). In this hybrid in the left session Pswi interacts
with Aswi in order to prove the validity of the instance x using the witness w, while in the
right sessions Vswi

i interacts with Aswi for i = 1, . . . , poly(λ). We want to prove that in the
i-th right session Aswi does not prove any false instance x̃i for any i = 1, . . . , poly(λ)12.
This property follows immediately from the adaptive-input AoK of SWI. We observe that
in this case it is crucial that SWI is adaptive-input AoK, because we are considering an
adversary Aswi that can choose the instance to be proved in the last round of every right
session.

12When we refer to a proved instance x̃i we implicitly assume that V swi
i is accepting, with i = 1, . . . , poly(λ).

75

– The 2nd hybrid experiment is H2(1λ, z) and differs from H1(1λ, z) in the way the com-
mitment com and the decommitment information dec are computed in the left session.
More precisely, Pswi runs TFakeΣ to compute a commitment (ρ, com), and subsequently
to compute a decommitment of (ρ, com) to the value ls2 (we remark that no trapdoor is
needed to run TFakeΣ in order to compute (ρ, com)). In more details, this experiment
rewinds the adversary Aswi from the 3rd to the 2nd round of the left session to extract
two signatures σ1, σ2 of two different messages (msg1, msg2) and uses them as trapdoor to
run TFakeΣ. The indistinguishability between wimimH1(1λ, z) and wimimH2(1λ, z) comes
from the hiding and the trapdoorness of TCΣ.

– The 3rd hybrid experiment is H3(1λ, z) and differs from H2(1λ, z) in the way the transcript
for LS is computed. In more details the Special HVZK simulator S of LS is used to compute
the messages ls2 and ls4 instead of using the honest procedure Pswi. The indistinguishability
between wimimH2(1λ, z) and wimimH3(1λ, z) comes from the Special HVZK of LS. We
observe that the security proof ends with this hybrid experiment because wimimH3(1λ, z) ≡
simS

swi

SWI(1
λ, z).

The formal proof of the Theorem 5 can be found in the Sec. 5.6.1.

5.4 4-Round Concurrent NM Commitment Scheme

Our construction makes use of an adaptive-input SimWI AoK SWI = (Pswi,Vswi) combined with
a weak NM commitment scheme Πwom. For our propose we consider a weak NM commitment
scheme that with overwhelming probability for any accepting well formed commitment can be
opened to only one message. We recall that the weak NM commitment scheme of [GRRV14]
enjoys this property when instantiated with Naor’s commitment scheme [Nao91].

We now consider the following language L based on the weak NM commitment scheme
Πwom = (Senwom,Recwom):

L =
{(
τ, id

)
: ∃ (m, dec) s.t.Recwom on input

(m, dec, id) accepts m as decommitment of τ
}

and the corresponding relation RelL.
We now use SWI = (Pswi,Vswi) to upgrade a 4-round public-coin concurrent weak NM

commitment scheme Πwom with the property that after the second round there is at most one
valid message, to a concurrent NM commitment scheme. We will be able to invoke the security
of SWI, since the language L is a γ-prefix language with overwhelming probability with γ = |m|.
In fact, given an instance (τ, id) of L all the witnesses w1, . . . , wn of (τ, id) have the formm|deci
for i = 1, . . . , n (i.e. all witnesses have the same prefix m).

Consider a SimWI AoK for L. Let m be the message that NM4Sen wants to commit and id

be the id for this session. The high-level idea of our protocol is depicted in Fig. 5.4.
In the 1st round the receiver NM4Rec computes and sends the 1st round swi1 of SWI and the

1st round wom1 of Πwom using as input the id. Then NM4Sen on input id, the messagem and the
received 1st round, computes the 2nd round wom2 of Πwom in order to commit to the message
m, using id, furthermore he obtains decwom s.t. (m, decwom) constitutes the decommitment
information13. Moreover NM4Sen computes and sends the 2nd round swi2 of SWI. In the

13In order to match the adaptive-input selection satisfied by SWI, message and randomness explaining the
entire transcript are already fixed in this round.

76

swi
2

swi
3

swi
4(x)

NM4Sen(m, id)
swi

1

wom
2(m)

wom
3

wom
4

wom1

x = (wom1,wom2,wom3,wom4, id)

NM4Rec(id)

– t = (wom1,wom2(m),wom3,wom4) is the transcript generated
from the execution of the weak non-malleable commitment
Πwom in which Senwom wishes to commit to the message m
(using id id).

– (swi1, swi2, swi3, swi4(x)) in the transcript generated from an ex-
ecution of the SimWI AoK SWI in which Pswi proves that the
commitment (t, id) computed using Πwom is well formed (i.e,
it is a commitment of a message m 6= ⊥).

Figure 5.4: 4-Round Concurrent NM Commitment Scheme from OWFs.

3rd round NM4Rec sends the 3rd round wom3 of Πwom and the 3rd round swi3 of SWI. In
the last round NM4Sen computes the 4th round wom4 of Πwom. Furthermore, NM4Sen, using
(wom1,wom2,wom3,wom4, id) as instance and (m, decwom) as a witness, computes the 4th round
swi4 of SWI and sends wom4, swi4 to NM4Rec. At this point NM4Rec accepts the commitment
(i.e., the transcript of the protocol generated so far) iff the transcript for SWI is accepting for
Vswi with respect to the instance (wom1,wom2,wom3,wom4, id). The decommitment phase of
our scheme simply corresponds to the decommitment phase of Πwom.

As described before, SWI = (Pswi,Vswi) is used by NM4Sen to prove knowledge of a message
and randomness consistent with the transcript computed using Πwom. To execute SWI the
instance is not needed until the last round.

The Fig. 5.5 describes in details our 4-round concurrent NM commitment scheme ΠNM4Com.

Theorem 6. Assuming OWFs, ΠNM4Com = (NM4Sen,NM4Rec) is a 4-round concurrent NM
commitment scheme.

The 4-round concurrent NM commitment scheme ΠNM4Com = (NM4Sen,NM4Rec) relies on
OWFs, because the adaptive-input SimWI AoK SWI can be constructed using OWFs only (see
Theorem 5) and Πwom can be instantiated using the weak concurrent non-malleable commitment
scheme proposed in Section 5.5, that relies on OWFs. Note that the construction of Section 5.5
has also the additional property that we require (i.e. after the second round the only valid
message and the corresponding decommitment informations are fixed).

The security proof is divided in two parts. In the 1st part we prove that ΠNM4Com is indeed a
commitment scheme. In the second part we prove that ΠNM4Com is a one-many NM commitment
scheme, and then we go from one-many to concurrent non-malleability by using Proposition 1.

Lemma 4. ΠNM4Com = (NM4Sen,NM4Rec) is a statistically binding computationally hiding
commitment scheme.

Proof. Correctness. The correctness follows directly from the delayed-input completeness of
SWI and the correctness of Πwom.

77

Common input: security parameter λ, instance length `, NM4Sen’s identity
id ∈ {0, 1}λ.
Input to NM4Sen: m ∈ {0, 1}poly{λ}.
Commitment phase:

1. NM4Rec→ NM4Sen

1. Run Recwom on input 1λ, id thus obtaining the 1st round wom1 of
Πwom.

2. Run Vswi on input 1λ and ` thus obtaining the 1st round swi1 of SWI.
3. Send (swi1,wom1) to NM4Sen.

2. NM4Sen→ NM4Rec

1. Run Pswi on input 1λ, ` and swi1 thus obtaining the 2nd round swi2

of SWI.
2. Run Senwom on input 1λ, id,wom1 and the message m thus obtaining

the 2nd round wom2 of Πwom and decwom s.t. (m, decwom) constitutes
the decommitment information.

3. Send (swi2,wom2) to NM4Rec.

3. NM4Rec→ NM4Sen

1. Run Recwom on input wom2 thus obtaining the 3rd round wom3 of
Πwom.

2. Run Vswi on input swi2 thus obtaining the 3rd round swi3 of SWI.
3. Send (wom3, swi3) to NM4Sen.

4. NM4Sen→ NM4Rec

1. Run Senwom on input wom3 thus obtaining the 4th round wom4 of
Πwom.

2. Set x = (wom1,wom2,wom3,wom4, id) and w = (m, decwom) with
|x| = `. Run Pswi on input x, w and swi3 thus obtaining the 4th
round swi4 of SWI.

3. Send (wom4, swi4) to NM4Rec.

5. NM4Rec : Set x = (wom1,wom2,wom3,wom4, id) and accept the commit-
ment iff (swi1, swi2, swi3, swi4) is accepting for Vswi with respect to the in-
stance x.

Decommitment phase:

1. NM4Sen→ NM4Rec: Send (m, decwom) to NM4Rec.

2. NM4Rec: accept m as the committed message if and only if Recwom,
on input (m, decwom), accepts m as the committed message of
(wom1,wom2,wom3,wom4, id).

Figure 5.5: Our 4-round concurrent NM commitment scheme ΠNM4Com from OWFs.

78

Statistically Binding. Observe that the message given in output in the decommitment
phase of ΠNM4Com is the message committed using Πwom. Moreover the decommitment of
ΠNM4Com coincides with the decommitment of Πwom. Since Πwom is statistically binding then so
is ΠNM4Com.

Computationally Hiding. Computational hiding follows immediately from Lemma 5.

Lemma 5. For all m ∈ {0, 1}poly(λ) {mimANMCom,m
ΠNM4Com

(z)}z∈{0,1}? ≈ {simSimNM4Com

ΠNM4Com
(1λ, z)}z∈{0,1}? .

We denote by {mimA
NM4Com,m
Hmi

(z)}z∈{0,1}? the random variable describing the view of the MiM
ANM4Com combined with the values that it commits in the the poly(λ) right sessions in hybrid
Hmi (z).

As required by the definition, we want to show that the distribution of the real game ex-
periment (i.e., the view of the MiM ANM4Com when playing with NM4Sen committing m along
with the messages committed in the right sessions) and the one of the output of a simulator are
computationally indistinguishable. We start by showing the simulator SimNM4Com and giving an
overview of the entire proof. The simulator is described in Figure 5.6.

Common input: Security parameters: λ. NM4Sen’s identity: id ∈ {0, 1}λ.
Internal simulation of the left session:

1. Upon receiving (swi1,wom1) from ANM4Com.

1.1. Run Pswi on input 1λ, ` and swi1 thus obtaining the 2nd round swi2

of SWI.

1.2. Run Senwom on input 1λ, id,wom1 and the message 0λ thus obtaining
the 2nd round wom2 of Πwom and decwom s.t. (0λ, decwom) consti-
tutes the decommitment informations.

1.3. Send (swi2,wom2) to ANM4Com.

2. Upon receiving (wom3, swi3) from ANM4Com.

2.1. Run Senwom on input wom3 thus obtaining the 4th round wom4 of
Πwom.

2.2. Set x = (wom1,wom2,wom3,wom4, id) and w = (0λ, decwom) with
|x| = `. Run Pswi on input x, w and swi3 thus obtaining the 4th
round swi4 of SWI.

2.3. Send (wom4, swi4) to ANM4Com.

Stand-alone commitment:

1. SimNM4Com acts as a proxy between ANM4Com and NM4Reci, with i =
1, . . . , poly(λ).

Figure 5.6: The simulator SimNM4Com of ΠNM4Com.

– The 1st hybrid experiment is Hm1 (z). In this hybrid in the left session NM4Sen commits
to m, while in the right sessions NM4Reci interacts with ANM4Com for i = 1, . . . , poly(λ).

79

We prove that in the i-th right session ANM4Com does not commit to a message m̃i =⊥
for any i = 1, . . . , poly(λ). The proof follows immediately from the adaptive-input AoK of
SWI. We observe that in this case it is crucial that SWI is adaptive-input AoK, because
the theorem proved by ANM4Com are fully specified only in the last round of every right
session. Clearly we have that mimA

NM4Com,m
ΠNM4Com

(z) = mimA
NM4Com,m
Hm1

(z).

– The 2nd hybrid experiment is Hm2 (z) and differs from Hm1 (z) in the way the transcript
of SWI is computed. In this hybrid the simulator Sswi of SWI is used to compute the
transcript of SWI. The indistinguishability between mimA

NM4Com,m
Hm1

(z) and mimA
NM4Com,m
Hm2

(z)

comes from the adaptive-input SimWI property of SWI. It is important to observe that
we can properly rely on the adaptive-input SimWI property of SWI since the committed
message in Πwom is fixed in the second round. Therefore also the family of statement
Xw = {x : (x,w) ∈ RelL or x /∈ L} proved using SWI is implicitly fixed in the second
round. Moreover we can rely on the security of SWI because the language L is a γ-prefix
language for prefix = |m|. Indeed, all witnesses of any instance of L have the same prefix
(i.e., the committed message m). Therefore when using the simulator of SWI we are
guaranteed that the distribution of the first γ bits of the witnesses corresponding to the
statements proven by the adversary in the right sessions of SWI does not change. In turn,
this implies that the distribution of the committed messages in the right sessions does
not change since each message committed in a session is in the first γ bits of any witness
corresponding to the statement proven in SWI in that session.

We also consider the hybrid experiments H0
1(z), H0

2(z), that are the same hybrid experiments
described above with the difference that Πwom is used to commit to a message 0λ instead of m.
From the same arguments described above we have that mimA

NM4Com,m
H0

1
(z) ≈ mimA

NM4Com,m
H0

2
(z)

and that in the i-th right session of H0
1(z) ANM4Com commits to a message m̃i =⊥ with neg-

ligible probability (for any i ∈= 1, . . . , poly(λ)). We also observe that mimA
NM4Com,m
H0

1
(z) =

simSimNM4Com

ΠNM4Com
(1λ, z).

The only thing that remains to argue to complete the proof is that the view ofANM4Com, along
with messages committed in the right sessions of the execution of Hm2 (z), is indistinguishable
from the view of ANM4Com along with the messages committed in the right sessions of H0

2(z).
This is actually ensured by the weak concurrent non-malleability of Πwom. Indeed, from the
arguments given above, in both Hm2 (z) and H0

2(z) the adversary ANM4Com commits to a message
m̃i = ⊥ with negligible probability for i = 1, . . . , poly(λ). Therefore we can use this ANM4Com

to construct and adversary Awom that breaks the weak concurrent non-malleability of Πwom.
Roughly speaking, let m, 0λ be the challenge messages, then Awom works as following against
the challenger Cwom. In the left session acts as a proxy for all the messages of Πwom between Cwom

and ANM4Com and executes the simulator Sswi of SWI in parallel. In the i-th right session Awom

interacts as Recwom,i would do w.r.t. the messages of Πwom and as Vswi
i for the messages of SWI,

for all i = 1, . . . , poly(λ). The distinguisher that break the concurrent weak non-malleability
of Πwom runs DNM4Com (that exists by contradiction) that distinguishes mimA

NM4Com,m
H0

2
(z) from

mimA
NM4Com,m
Hm2

(z), and outputs what DNM4Com outputs.
A caveat that we have to address in this reduction is due to the rewinds made by Sswi in the

left session in order to compute the transcript of SWI. Indeed a rewind made in the left session
could affect the reduction rewinding also the receivers of Πwom involved in the reduction. More
precisely could happen that in a session j ∈ {1, . . . , poly(λ)} the third round of Πwom has to be
played multiple times because of the multiple values ˜wom2

j received in the j-th right session. We
can avoid this problem by sending a random string as a third round of Πwom. In this way for

80

the first value ˜wom2
j received from ANM4Com the reduction interacts with the receiver of Πwom

and for all the other values the reduction sends a random string. This is the reason why in
our construction we require Πwom to be public coin. One additional issue is the following. The
simulator of SWI could rewind the entire left session during the reduction, therefore requiring
to compute a new commitment of m for the protocol Πwom. Since we are assuming that Πwom

is concurrent, the reduction can request to receive multiple commitments for the same message.
The formal proof can be found in Sec. 5.6.2.

5.5 On the Weak Concurrent Property of [GRRV14]

In this section we consider the one-one 8-round NM commitment (from OWFs) Π1-1 of [GRRV14]
in order to show that one of the main tools used to construct Π1-1 is actually a weak concurrent
public-coin non-malleable commitment (see Def. 20). In this section we will refer to the full
version of [GRRV14].

Π1-1 is the result of the sequential execution of two protocols. The first one is a special
4-rounds public-coin commitment scheme Πwom. The second one is a 4-round zero-knowledge
AoK ZK that ensures that the commitment computed using Πwom is well formed, that is, is
not a commitment of a message m = ⊥. We now prove that Πwom is a weak concurrent NM
commitment.

First of all it is easy to prove that if Π1-1 is hiding then Πwom so is. We assume by contra-
diction that there exists an adversary Ah for the hiding of Πwom and use it to break the hiding
of Π1-1. The reduction simply acts as a proxy w.r.t. the messages of Πwom between Ah and the
challenge of the hiding of Π1-1, and acts a verifier w.r.t. the message of ZK. The output of the
reduction corresponds to the output of Ah.

Since the decommitment informations of Π1-1 correspond to the decommitment informations
of Πwom, and since Π1-1 is statistically binding, then Πwom is statistically binding as well. In
this section we consider the definition of adaptive hiding. The only differences with the classical
definition of hiding is the following. Let m0 and m1 be the challenge messages. The challenger
of adaptive hiding pick a random bit b and compute the commitment of mb. The adversary,
upon receiving the commitment, either outputs his guess b′ ∈ {0, 1}, or asks to receive another
commitment of mb (the latter step can be executed a polynomial number of times). The adver-
sary is successful if Prob [b = b′]− 1/2 is non-negligible in the security parameter. It is easy to
see that commitment scheme is hiding iff is adaptive hiding.

Now we are ready to prove the following lemma.

Lemma 6. If OWFs exists then Πwom is a 4-rounds public-coin concurrent weak NM commit-
ment scheme.

Proof. We start by proving that Πwom is a 4-rounds public-coin one-many and then we go though
one-many to concurrent by using similar arguments used in the proof of Proposition 1. Therefore
now we show that for every ppt one-many MiM adversary Awom that does not commit to ⊥ when
a well formed commitment is received in the left session, there exists a ppt simulator S such
that for every m ∈ {0, 1}poly(λ) the following ensembles are computationally indistinguishable:
{mimA,mΠwom

(z)}z∈{0,1}? ≈ {simS
Πwom

(1λ, z)}z∈{0,1}? .
For sake of contradiction we suppose that there exists a MiM adversary Awom and a distin-

guisher Dwom that distinguishes between the above two ensembles with probability at least 2p,
for some non-negligible p. We now use Awom and Dwom to break the adaptive hiding of Πwom.
More precisely we construct an extractor E that extracts the messages committed by Awom in
all the right sessions. Then we construct an adversary Ah that uses E in order to breaks the

81

adaptive hiding of Πwom. Before showing how exactly the reduction works, we formally describe
the extractor E.

We start by assuming that only one right session is computed during the execution of Πwom,
and that the probability that Awom completes the execution of Πwom is at least p. In this way we
show an extractor that extracts the message committed in that session with probability greater
than 1−p (that will be enough to break the hiding of Πwom). Then, by using standard arguments
(the same used in [Goy11]) we show that the extractor works properly also in the case of poly(λ)
right sessions. The extractor that we use is the same used in Figure 3 of [GRRV14], but our
purpose the only things to know about how E works are the following.

1. E takes as input a well formed transcript T of an execution of Πwom, and has oracle access
to the MiM adversary. A transcript T is well formed if both the commitment computed in
the left session and the commitment computed in the right session are correctly computed;
that is, they are commitments of messages different from ⊥.

2. The extraction procedure of E rewinds Awom, in the right session, from the 4th to the
2nd round poly(λ) times, feeding the MiM adversary with a random 3rd round every time.

3. If the rewinds made in the right session require the 4th message of the left session to be
played again, E answers by using a specific strategy.

Let’s now focus on the item 1. As we described before, in the non-malleable commitment
scheme Π1-1 of [GRRV14] a ZK argument is executed in order to ensure that the commitment
computed with Πwom is well formed. We observe that, by definition of weak non-malleable
commitment, we are considering now a MiM adversary that never commits to ⊥ in the right
session if the commitment that he receives in the left session is well formed. For that reason we
can properly use the extractor E (slightly modified as we will describe later) according to the
Theorem 2 of [GRRV14], that is the following.

Theorem 7 ([GRRV14, Theorem 2]). Let T be the well formed transcript that is given as input
to E. Let m̃ be MiM’s commitment in the right session of T . Then the probability that E outputs
a message different from m̃ is at most p.

Let’s now see more formally how we can use E to construct an adversary Ah for the adaptive
hiding of Πwom. Ah picks m and 0λ as challenge messages and sends them to the challenger
of the adaptive hiding of Πwom Ch. Then he acts as a proxy between Ch and Awom for all the
messages of Πwom of the left session. Instead, in the right session, Ah interacts against Awom

as the receiver of Πwom would do. When the execution ends, a transcript T for the execution
of Πwom is generated. At this point Ah runs the extractor E on input T in order to extract
the messages committed in the right sessions. Then he feeds the distinguisher Dwom with the
extracted messages and the view of Awom, and outputs what Dwom outputs.

It is important to observe that the extractor E could rewind the left session, that is, could
rewind the Ch. There are two messages scheduling that can cause this problem. The synchronized
scheduling, and the scheduling that require the entire left session to be played again (see Fig. 5.7
for an example of such scenario).

As described earlier in the item 2, E knows how to deal with the synchronized case. Indeed
in that scheduling, because of how E works, can only happen that 4th message of the left session
is required to be played again (in order to answer to a new 3rd message). For the second case the
behavior of E is not well defined, indeed in that case E has to compute another commitment of
mb without knowing mb. This is not a problem since we are making a reduction to the adaptive
hiding of Πwom. Therefore, when E has to play again the entire left session in order to commit
to mb, Ah can ask to Ch to start another execution of Πwom and acts as a proxy between Ch
and E. We recall that the adversary has the power to ask multiple commitments for the same
challenge message because Ch is the challenger of adaptive hiding. In this case the extractor is

82

still able to extract m̃ from the right session since, in every rewind, Awom receives well formed
commitment on the left. Therefore, by the definition of weak non-malleable commitment, Awom

is computing well formed commitment in the right session. This ensure that m̃ is extracted with
non-negligible probability (by construction of E).

Ch Ah

E

Awom

Figure 5.7: During the reduction to the adaptive hiding of Πwom could be required to play the
left session multiple times because of the rewinds made by E. In general this happen when it is
required to recompute the second round of the left session, due to a new first round received by
Awom (in the left session).

We now consider a MiM adversary that opens poly(λ) right sessions. First we point out that
the extractor we construct is able to extract m̃ from the right interaction with high probability,
without rewinding the left execution.

Therefore we can follow [Goy11], and run the extractor E one by one for all the right session.
More precisely, for every right session i = 1, . . . , poly(λ):
– define a machine Mi with emulates all the right sessions excepts session i on its own and

expose the i-th session to an outside receiver;
– run the extractor on the machineMi giving it as input the left view as in the main thread

and the right view of the i-th session in the main thread.
As for [Goy11], by the union bound our extractor will succeed in extracting from all of the right
interactions with high probability.

In order to conclude the proof we now prove the following claim.

Claim 2. Let Π1−n be a weak one-many non-malleable, then Π1−n is also weak concurrent
non-malleable commitment.

Proof. The security proof is similar to the security proof of Proposition 1 that is provided
in [LPV08], but for sake of completeness here we propose a full security proof of our claim.

Let A be a weak man-in-the-middle adversary that participates in at most v = poly(λ)
concurrent executions. We provide a concurrent simulator S for A. S proceeds as follows on
input 1λ and z. S incorporates A and internally emulates all the left interactions for A by
simply honestly committing to the string 0λ. Messages from the right interactions are instead
forwarded externally to the receivers of Π1−n. Finally S outputs the view of A. We show
that the values that S commits to are indistinguishable from the values that A commits to.
Suppose, for contradiction, that this is not the case. Then, there exists a polynomial-time
distinguisher D and a polynomial p(λ) such that for infinitely many λ, there exist messages
m0,m1, . . . ,mv and z ∈ {0, 1}? s.t. the distinguisher D distinguishes between mimA,m1,...,mv

Π1−n
(z)

and simS
Π1−n(1λ, z) with probability 1/p(λ). Fix a generic λ for which this happens. Consider

83

the hybrid simulator Si that on input 1λ, z′ = m1, . . . ,mv, z, proceeds just as S, with the
exception that in left interactions j ≤ i, it instead commits to mj . It directly follows that
mimA,m1,...,mv

Π1−n
(z) = simSv

Π1−n
(1λ, z′) and simS

Π1−n(1λ, z) = simS0
Π1−n

(1λ, z′). By a standard hybrid
argument there exists an i ∈ {1, . . . , v} such that

Prob
[
a← simSi−1

Π1−n
(1λ, z′) : D(1λ, z′, a) = 1

]
−

Prob
[
b← simSi

Π1−n
(1λ, z′) : D(1λ, z′, b) = 1

]
≥ 1/(p(λ)v).

Note that the only difference between the executions by Si−1(1λ, z′) and Si(1
λ, z′) is that

in the former A receives a commitment to 0λ in session i, whereas in the latter it receives a
commitment to mi. Consider the one-many adversary Ã that on input z̃ = z′, λ, i executes
Si−1(1λ, z′) with the exception that the i-th left interaction is forwarded externally. Consider,
the function reconstruct that on input mimÃ,0

λ

Π1−n
(z) i.e. values m̃′1, . . . , m̃′v and the view of Ã,

reconstructs the view view of A in the emulation by Ã, and outputs m̃′1, . . . , m̃′v, view. By
construction, it follows that

reconstruct(mimÃ,0
λ

Π1−n
(z)) = simSi−1

Π1−n
(1λ, z′)

reconstruct(mimÃ,miΠ1−n
(z)) = simSi

Π1−n
(1λ, z′)

Since reconstruct is polynomial-time computable, this contradicts the one-many non-malleability
of Π1−n.

A useful property enjoyed by Πwom, that is also used in this work, is that the decommitment
informations (dec,m) are fixed in the second round of the Πwom. We also observe that if the
underling commitment scheme (the one used in the construction of Πwom) is perfectly binding, so
is Πwom. We recall that the existence of 1-to-1 OWFs implies the existence of perfectly binding
commitment scheme. Therefore we can consider an instantiation of the underling commitment
of Πwom using 1-to-1 OWFs, obtaining a 3-rounds perfectly binding public-coin concurrent weak
NM commitment scheme. The number of rounds goes from 4 to 3 because in Πwom the first
round from receiver to sender is just related the underling commitment from OWFs (e.g. Naor’s
commitment).

5.6 Formal Proofs

5.6.1 Formal Proof of Th. 5

In this section we give more details about the security proof. In order to simplify the security
proof, here we actually consider the notion of adaptive Special HVZK and adaptive trapdoorness
instead of Special HVZK and trapdoorness. The only differences with the classical definition
of Special HVZK is the following. Let (ls1, ls3, x) be a challenge. The challenger of adaptive
Special HVZK picks a random bit b and compute an accepting transcript t = (ls1, ls2, ls3, ls4) for
x. If b = 0 then t has been computed by using P, with the Special HVZK simulator otherwise.
The adversary, upon receiving t, either outputs his guess b′ ∈ {0, 1}, or asks to receive another
transcript t according to a new challenge (ls1′ , ls3′, x′). Note that the adversary can require a
polynomial number of transcripts according to different challenges before he outputs b′. The
adversary is successful if Prob [b = b′] − 1/2 is non-negligible in the security parameter. It is
easy to see that a protocol is Special HVZK iff is adaptive Special HVZK.

84

Analogously, the only differences with the definition of trapdoorness given in Definition 6
is the following. Let (x, ρ,m) and tk s.t. (x, tk) ∈ RelLΣ

be the challenge messages used by
the adversary to interacts with the challenger. The challenger of adaptive trapdoorness picks
a random bit b and compute a commitment com and the respectful decommitment information
(m, dec). If b = 0 then both com and (m, dec) are computed using the trapdoor procedure
TFakeΣ, using the honest procedure SenΣ otherwise. The adversary, upon receiving com and
(m, dec), either outputs his guess b′ ∈ {0, 1}, or asks to start another interaction against the
challenger by using different (x′, ρ′,m′) and tk′. Note that the adversary can start (in a sequential
way) a polynomial number of other interactions using different (x′, ρ′,m′) before he outputs b′.
The adversary is successful if Prob [b = b′]− 1/2 is non-negligible in the security parameter. It
is easy to see that commitment scheme enjoys the adaptive trapdoorness property iff enjoys the
trapdoor property.

Below we formally describe both the hybrid experiments and the reductions involved in the
security proof.

– As described before, the 1st hybrid experiment isH1(1λ, z). In this hybrid in the left session
Pswi interacts with Aswi in order to prove the validity of the instance x (adaptively chosen
by Aswi) using the witness w, while in the right sessions Vswi

i interacts with Aswi for i =
1, . . . , poly(λ). Also, we have already observed that in every right session the probability
that Aswi proves a false instance is negligible because of the property of adaptive-input
AoK of SWI.

– We now consider an intermediate hybrid experiment Hrew
1 (1λ, z) that differs from H1(1λ, z)

as follows. In the left session, by rewinding the adversary Aswi from the 3rd to the 2nd
round, two signatures σ1, σ2 for two distinct messages (msg1, msg2) are extracted. First of
all we prove that inHrew

1 (1λ, z) two signatures are obtained with non-negligible probability.
Let p the probability that a valid signature σ for the message msg is provided by Aswi, that
is V(vk, msg, σ) = 1. If a valid signature is received, then the steps 2.3, 2.4, and follow-up
right session messages, are repeated up to λ/p times. This implies that for a non-negligible
p the probability that Aswi does not give a 2nd valid signature for two randomly chosen
messages after λ/p rewinds is negligible in λ. For that reason the above deviation increases
the abort probability of the experiment only by a negligible amount, therefore we can claim
that wimimH1(1λ, z) ≈ wimimHrew

1
(1λ, z).

– We now consider the 2nd hybrid experiment H2(1λ, z) that differs from Hrew
1 (1λ, z) as

follows. The value com is computed by running TFakeΣ instead of SenΣ. We recall that
by Definition 6 no trapdoor information is required in order to compute com using the
algorithm TFakeΣ. Then the hybrid experiment proceeds as Hrew

1 (1λ, z) until signatures
(σ1, σ2) for two different messages (msg1, msg2) are extracted. At this point the extracted
information is used as trapdoor to run TFakeΣ in order to compute a decommitment
(dec, ls2) w.r.t. the commitment (ρ, com). First, we prove that the probability of extracting
two valid signatures for two different messages in this hybrid experiment is greater (or
equal) than the probability that this event occurs in Hrew

1 (1λ, z), and then we prove that
wimimH2(1λ, z) ≈ wimimHrew

1
(1λ, z). The following claim is sufficient to prove the first part.

Claim 3. Let p1(λ) be the (non-negligible) probability that a valid signature for msg is sent
in the 3rd round of Hrew

1 (1λ, z) by Aswi, and let p2(λ) be the probability that event occurs
in H2(1λ, z) then, for every polynomial poly(·), p1(λ) ≤ p2(λ) + 1/poly(λ).

Proof. Suppose by contradiction that there exists polynomial poly(·) s.t., for a sufficiently
large security parameter λ, p1(λ) > p2(λ)+1/poly(λ), then we can construct an adversary

85

ATCΣ that has non-negligible advantage in breaking the hiding of TCΣ. Formally ATCΣ ,
interacting with the challenger for the hiding of TCΣ, works as following

1. Upon receiving the 1st round from Aswi in the left session, ATCΣ computes ls2 and
sends it as the challenge message together with vk and ρ.

2. ATCΣ , upon receiving com from the challenger, uses it to compute and send the 2nd
round of SWI to Aswi on the left session.

3. Let p(λ) be the probability that a valid signature w.r.t. to vk is received in the third
message of the left session by Aswi.

4. If p(λ) is negligible close to p1(λ) then outputs 0, outputs 1 otherwise14.

We conclude the security proof by observing that the probability of Aswi to send a pair
(x,w) ∈ RelL in the 3rd round of Hrew

1 (1λ, z) is negligibly close to the probability to the
probability of receiving a pair (x,w) ∈ RelL in the 3rd round of H2(1λ, z). If it is not the
case, then Aswi can be used to break the hiding of TCΣ.

We recall that the transcript of an execution of H2(1λ, z) differs from Hrew
1 (1λ, z) in the

way the commitment (ρ, com) of TCΣ and the corresponding decommitment information
are computed. To prove that wimimH2(1λ, z) ≈ wimimHrew

1
(1λ, z) we proceed by contra-

diction constructing an adversary ATCΣ for the adaptive trapdoorness property of the
2-round instance-dependent trapdoor commitment scheme TCΣ. Roughly speaking, we
are assuming by contradiction that there exists an adversary Aswi and a distinguisher Dswi

that distinguishes wimimH2(1λ, z) from wimimHrew
1

(1λ, z). Therefore, we can construct an
adversary ATCΣ that interacts with Aswi in the left and the right sessions according to
both Hrew

1 (1λ, z) and H2(1λ, z) for all messages except for the messages of TCΣ. For
these messages ATCΣ acts as a proxy between Aswi and the challenger (involved in the
adaptive-trapdoor security game) in the left session.

Let x̃1, . . . , x̃poly(λ) be the statements proved in the right sessions by Aswi. ATCΣ extracts
from all the right sessions the witnesses w̃1, . . . , w̃poly(λ) for x̃1, . . . , x̃poly(λ) relying on the
adaptive-input PoK property of LS. Then ATCΣ runs the distinguisher Dswi on input the
first γ-bits of each witnesses, namely w̃γ1 , . . . , w̃

γ
poly(λ), and outputs what Dswi outputs.

Formally, against the challenger of adaptive trapdoorness CTCΣ , ATCΣ works as following.

1. Upon receiving the 1st round from Aswi, ATCΣ computes ls2 and sends it as the
challenge message together with ρ and vk to CTCΣ .

2. ATCΣ , upon receiving com from CTCΣ , uses it to compute and send the 2nd round of
SWI to Aswi on the left.

3. ATCΣ extracts two valid signatures of two different messages from the left session
therefore obtaining the trapdoor tk for TCΣ. Then ATCΣ sends tk to CTCΣ .

4. Upon receiving dec from CTCΣ , ATCΣ uses dec to complete the left session against
Aswi.

5. ATCΣ uses the extractor of LS to extract from the poly(λ) right sessions the witnesses
used by Aswi to compute the LS PoKs (the witnesses correspond to statements x̃i
proved by Aswi in the i-th right session, for i = 1, . . . , poly(λ)). We recall that the
extractor of LS succeeds with non-negligible probability from the adaptive-input AoK
property of LS. Indeed, since we have proved in the previous hybrid experiment that

14The output values are computed according to Definition 6.

86

event NoExt happens with negligible probability, so is in this hybrid experiment. If
it is not the case then we can construct another adversary that breaks the adaptive
trapdoorness property of TCΣ.

6. From what we argue above we can assume that the extraction succeeds with non-
negligible probability, and thus ATCΣ can run the distinguisher Dswi on input the first
γ-bits of each extracted witnesses to distinguish wimimH2(1λ, z) from wimimHrew

1
(1λ, z),

thus breaking the trapdoorness property of TCΣ.

We now argue that rewinds made on the right sessions (during the step 5) do not affect
the reduction. We distinguish between three kinds of right sessions: 3Rewind, AllRewind
and NoRewind.

– A right session is 3Rewind if during the extraction procedure is required, in the left
session, to play again only the 4th round having received a different 3rd round (i.e.,
a different ls3).

– A right session is AllRewind if during the extraction procedure is required, in the left
session, to play again the entire left session due to a different first round (vk′, ls1′, ρ′)
received from Aswi.

– A right session is NoRewind if it is neither 3Rewind nor AllRewind.

It is easy to see that NoRewind right sessions do not interfere with the reduction, that is, the
left session is not actually rewound because both the first and the third round stay the same
during the extraction. It is less trivial to deal with the 3Rewind and AllRewind sessions but
still, that sessions do not cause issue during the reduction. When the rewinds occur in the
3Rewind right session, to compute the 4th round it is possible to reuse (dec, ls2) in order
to compute an accepting transcript for LS (ls1, ls2, ls3′, ls4′) w.r.t. ls3′ and a (potentially
different) statement x′ that is provided in the 3rd round by Aswi. This is possible because
of the delayed-input completeness property enjoyed by LS and because the witness for the
theorem x′ is provided by Aswi in the third round of the left session. For the AllRewind
right sessions, the adversary ATCΣ , upon receiving a new first round (vk′, ls1′, ρ′) from Aswi,
starts a new interaction against the challenger of adaptive trapdoorness executing all steps
described above starting starting from step 1 as summarized in Figure 5.8.

– The 3rd hybrid experiment is H3(1λ, z) and differs from H2(1λ, z) in the way the transcript
for LS is computed. More precisely, the Special HVZK simulator S of LS is used to compute
the messages ls2 and ls4 instead of using the honest prover procedure P. We observe that
this is possible because in this hybrid experiment the commitment (ρ, com) can be opened
to any value ls2 due to the trapdoor property of TCΣ. Therefore, after receiving ls1 in the
1st round, and (ls3, x, w) in the 3rd round from Aswi, (ls1, ls3, x) are given as input of S
that will output ls2, ls4. These values are then used to compute the 4th round of the left
session.

Before proving that wimimH2(1λ, z) ≈ wimimH3(1λ, z) we observe that the first three round
of the left interaction in H3(1λ, z) are identically distributed to the first three round of
H2(1λ, z). Therefore the probability of receiving a pair (x,w) ∈ RelL in the 3rd round
from Aswi is the same in both H2(1λ, z) and H3(1λ, z). For the same arguments also
the extraction of the signatures holds with the same probability in both H2(1λ, z) and
H3(1λ, z).

We now prove that wimimH2(1λ, z) ≈ wimimH3(1λ, z) by contradiction constructing an
adversary ASHVZK for the adaptive Special HVZK of LS. This adversary ASHVZK uses
the adversary Aswi and the distinguisher Dswi that distinguishes wimimH2(1λ, z) from

87

CTCΣ ATCΣ Aswi

vk, ρ, . . .

σ, . . .

ls
2, dec, . . .

vk, ρ, ls2

com com, msg

tk

ls
2, dec, . . .

Figure 5.8: During the reduction to the adaptive trapdoorness of TCΣ could be required to
play the left session multiple times because of the rewinds made in a AllRewind right session.
In general this happen when it is required to recompute the second round of the left session,
due to a new first round received by Aswi (in the left session). In the figure it is also showed
that, for every new interaction that ATCΣ starts against CTCΣ , a new extraction of the trapdoor
information tk is required in order to complete the reduction. We observe that the extraction
of tk does not disturb the extraction made on the right session.

wimimH3(1λ, z) that exist by contradiction. Let CSHVZK be the challenger of adaptive
Special HVZK. The reduction works as follows.

1. ASHVZK runs Aswi (both on the left and on the right sessions) according to both
H2(1λ, z) and H3(1λ, z) until the 3rd round of the left session is received from Aswi.

2. ASHVZK extracts from the left session two valid signatures for two different messages
(as described before), and then sends to the challenger of Special HVZK CSHVZK the
statement x the witness w (provided in the third round of the left session by Aswi)
and the pair (ls1, ls3) received in the 1st and 3rd round from Aswi.

3. ASHVZK, upon receiving the messages (ls2, ls4) from the CSHVZK uses them to compute
and send the last round of SWI.

4. ASHVZK extracts from the poly(λ) right sessions the witnesses for the statements
proved by Aswi as follows.
For the NoRewind and AllRewind right sessions the extractor procedure is the same
as described before. That is, we use the PoK extractor of LS to extract the witnesses
for the statements proved in these sessions. Note that the extractor of LS succeeds
with non-negligible probability due to the adaptive-input AoK property of LS and
the adaptive Special HVZK of LS. In more details if the extractor fails with non-
negligible probability then the event NoExt holds with non-negligible probability, and
it is possible to show an adversary ASHVZK that breaks the adaptive Special HVZK
of LS. Indeed, if NoExt holds with non-negligible probability, then ASHVZK has a
non-negligible advantage since we are proved earlier that NoExt holds with negligible
probability when the values ls2, ls4 are computed using the honest prover procedure
P.
In addition, for the AllRewind right sessions ASHVZK interacts against Aswi executing
the above steps, starting from step 1, every time that a first round is received in the

88

left session, as showed in Figure 5.9. We remark that this is possible because we are
considering a challenger for adaptive Special HVZK.
For the 3Rewind sessions we need to use a different approach, due to fact that we
cannot use reuse ls2 in order to compute an accepting transcript for LS (ls1, ls2, ls3′, ls4′)
with ls3 6= ls3′. Therefore the extraction procedure of the witness for the statement x̃j
proved by Aswi in the j-th right session (with j = 1, . . . , poly(λ)) works as following.
The 4th round of the left session is played again by decommitting (ρ, com) to a
different value ls2′ generated by running P on input 1λ, ` and ls1. We remark that
it is possible to open (ρ, com) to a different value because we are using TFakeΣ to
compute both commitment and decommitment informations. In order to ends up
in obtaining that session j is completed successfully, multiple rewinds trying with
different polynomial values for ls2′ could be required, until a successful ls2′ is found.
Let x̃∗j be the statement proved by Aswi in the j-th right session when a successful
ls2′ is found. ASHVZK runs the extractor of LS in the j-th right session in order to
extract the witness for the theorem x̃∗j (the same argument discussed above need to
be used here in order to ensure that the extractor of LS succeeds with non-negligible
probability). Observe that when it is required to recompute the 4th round during
the extraction procedure, now it is possible to reuse (dec, ls2′) in order to compute
an accepting transcript for LS (ls1, ls2′, ls3′, ls4′) by running P, for every ls3′ received
by Aswi. If the extraction is successful then ASHVZK has obtained a witness for x̃∗j .
The crucial observation is that x̃∗j has the same witness of x̃j . Indeed, in the security
proof of this lemma, we are assuming the Aswi can choose the statement to be proved
in the last round of every right session, but the the family of statements Xw has to
be fixed in the second round of every right sessions.

5. From what we argue above the extraction of the witnesses succeeds with non-negligible
probability, and thus ASHVZK runs the distinguisher Dswi on input the first γ-bits of
each extracted witnesses to distinguish wimimH2(1λ, z) from wimimH3(1λ, z) in order
to break the Special HVZK of LS.

The proof ends by observing that the following holds:

wimimSWI(1
λ, z) = wimimH1(1λ, z) ≈ wimimHrew

1
(1λ, z) ≈

wimimH2(1λ, z) ≈ wimimH3(1λ, z) = simS
swi

SWI(1
λ, z).

5.6.2 Formal Proof of Th. 6

In this section we give more details on the hybrid experiments and on the security proof.

– The 1st experiment that we consider is Hm1 (z). In this, in the left session NM4Sen com-
mits to m, while in the i-th right session, for i = 1, . . . , poly(λ), NM4Reci interacts
with ANM4Com. For ease of exposition we consider that the messages of SWI are orga-
nized as a query. That is, a MiM adversary of an execution of SWI expects to receive a
query query that contains both the queries of the left and the right sessions. Following
[GK96a, HRVW09], we make the following assumptions about the queries:

– the same query is never asked twice.
– a query is a partial transcript (b1, a1, . . . , bi) of the protocol. Moreover, whenever such

query is made, all proper prefixes of this query were previously queried, namely all
sequences of the form (b1, a1, . . . , bj) for j < i.

89

CSHVZK ASHVZK Aswi

ls
1, . . .

ls
3, . . .

ls
2, ls4, . . .

ls
1, ls3, x, w

Figure 5.9: During the reduction to the adaptive Special HVZK of LS could be required to play
the left session multiple times because of the rewinds made in the right session. In general this
happen when it is required to recompute the 4th round of the left session, due to a new first
round received by Aswi (in the left session). In the figure it is also showed that, for every new
interaction that ASHVZK starts against CSHVZK, a new extraction of the trapdoor information tk

is required in order to complete the reduction. We observe that the extraction of tk does not
disturb the extraction made on the right session.

Therefore we can assume that a query has the following form query = (prefix, q) where prefix
are the messages of query previously queried, and q is a new message. The first message
of a query is qs and is the message sent to initiate new execution of SWI. Therefore
when a query is composed only of the starting message query = (qs) the experiment starts
ANM4Com.

More formally the experiment Hm1 (z) is defined in the following way. The possible values
of q w.r.t. the messages of Pswi are the following.

– Messages qL
2 is the message sent at the 2nd round of SWI protocol in a left session.

– Messages qL
4 is the message sent at the 4th round of SWI protocol in a left session.

The possible values of q w.r.t. the messages of Vswi
i , with i = 1, . . . , poly(λ), are the

following.

– Messages qR,i
1 is the message sent at the 1st round of SWI protocol in a i-th right session.

– Messages qR,i
3 is the message sent at the 3rd round of SWI protocol in a i-th right session.

Let table be a lookup table, in which each row contains a query query and the messages
(and the randomness used to compute these messages) of Πwom computed when query
was processed. We refer to that messages as τwom. When a query query = (prefix, q) is
received the experiment looks up in table for the query prefix in order to recover τwom.
Then, the experiment reconstructs the partial transcript τNM4Com of ΠNM4Com computed
according to the messages of prefix. We assume without loss of generality that ANM4Com

is deterministic, therefore the experiment reconstructs τNM4Com interacting with ANM4Com

using the messages of τwom contained in prefix. After that, the new message q is processed
and depending on the value of q, the experiment acts in different way. More precisely, if
q is a message of Pswi, the experiment interacts with ANM4Com acting as NM4Sen would
do for the messages of Πwom forwarding the messages contained in query in order to act as
Pswi. Similarly, if q is a message of the right session, let us say, a message from Vswi

i , the

90

experiment interacts with ANM4Com acting as NM4Reci would do for the messages of Πwom

and forwarding to ANM4Com q. When the execution against ANM4Com finishes a new entry
in table is created in order to memorize the received query and τ ′wom, where τ ′wom contains
the messages (and the randomness used to compute these messages) of Πwom obtained
when query is processed. Then the experiment, collects the messages w.r.t. SWI received
by ANM4Com in an answer answer, that is the answer to the asked query. More formally,
the experiment works as following.

Upon receiving query = (prefix, q), If query = qs then start ANM4Com, otherwise execute
the following steps.

1. Look up in table for a query that correspond to prefix and recover τwom.

2. In the left session interact with ANM4Com forwarding the messages contained in prefix
w.r.t. SWI in order to act as Pswi would do. Use the messages of prefix of τwom in
order to act as NM4Sen would do.

3. In the i-th right session, for i = 1, . . . , poly(λ), forwarding the messages contained
in prefix w.r.t. SWI in order to act as Vswi

i would do. Furthermore, interact with
ANM4Com using the messages of prefix of τwom in order to act as NM4Reci.

4. Set τ ′wom = τwom and process q computing the following steps.
Left session.

– If q = qL
2 then computes the following steps. Upon receiving wom1, swi1 from

ANM4Com, run Senwom on input 1λ, id, wom1 and m thus obtaining the 2nd round
wom2 of Πwom and decwom s.t. (m, decwom) constitutes the decommitment infor-
mation. Add (wom2,m, decwom) (according to the randomness used to compute
it) to τ ′wom. Recover swi2 from qL

2 and send (wom2, swi2) to ANM4Com.
– if q = qL

4 then computes the following steps. Upon receiving wom3, swi3 from
ANM4Com run Senwom on input wom3 thus obtaining the 4th round wom4 of Πwom.
Add wom4 (according to the randomness used to compute it) to τ ′wom and send
(wom4, swi4) to ANM4Com.

i-th right session.
– if q = qR,i

1 computes the following steps. Run Recwom on input 1λ, ĩdi thus obtaining
the 1st round ˜wom1

i of Πwom. Update τ
′
wom with ˜wom1

i and the randomness used
to compute it. Recover ˜swi

1
i from qR,i

1 and send (˜wom1
i , ˜swi

1
i) to ANM4Com.

– If q = qR,i
3 computes the following steps. Upon receiving (˜wom2

i , ˜swi
2
i) from ANM4Com.

Run Recwom on input ˜wom2
i thus obtaining the 3rd round ˜wom3

i of Πwom. Update
τ
′
wom with ˜wom3

i and the randomness used to compute it. Recover ˜swi
3
i from qR,i

3

and send (˜wom3
i , ˜swi

3
i) to ANM4Com.

5. Construct the answer answer for the query query as following.

5.1. In the left session if (swi1,wom1) is received add swi1 to answer. Otherwise if
(swi3,wom3) is received recover wom1,wom2,m, decwom from τ ′wom,
set x = (wom1,wom2,wom3,wom4, id) and w = (m, decwom), and add (x,w, swi1, swi3)
to answer.

5.2. For the i-th right session add to answer the messages of SWI received from
ANM4Com in i-th right session, for i = 1, . . . , poly(λ).

6. Memorize query and τ ′wom in a new row of table and return answer.

Clearly we have that mimANMCom,m
ΠNM4Com

(z) = mimANMCom,m
Hm1

(z). We prove the following claim.

91

Claim 4. Let p̄i be the probability that for i = 1, . . . , poly(λ) in the i-th right sessions
of Hm1 (z) ANM4Com successfully commits to a message m̃i =⊥, then p̄i < ν(λ) for some
negligible function ν.

Proof. We prove this claim by contradiction: we assume that there exists a right session i
where ANM4Com commits to ⊥, then the statement proved by SWI in the i-th right session
is false, this contradict the adaptive-input AoK property of SWI. In more details, we can
use the extractor of SWI in order to extract the witness w̃i s.t. (x̃i, w̃i) ∈ RelL, where x̃i is
the statement proved by ANM4Com in i-th right session. Since the extractor of SWI succeeds
with non-negligible probability we can recover with non-negligible probability the witness
w̃i that correspond to the decommitment informations of the well-formed commitment
computed by ANM4Com in i-th right session. This implies that ANM4Com commits to a
message m̃i =⊥ in i-th right session with negligible probability.

– We consider the experiment H0
1(z) that corresponds to Hm1 (z) with the only difference that

the message committed using Πwom is 0λ instead ofm. We observe that mimA
NM4Com,m
H0

1
(z) =

simSimNM4Com

ΠNM4Com
(1λ, z) and we prove the following claim.

Claim 5. Let p̄i be the probability that for i = 1, . . . , poly(λ) in the i-th right sessions
of H0

1(z) ANM4Com successfully commits to a message m̃i =⊥, then p̄i < ν(λ) for some
negligible function ν.

The security proof of this claim follows strictly the one of Claim 4.

– We now consider the 2nd hybrid experiment Hm2 (z) that differs from Hm1 (z) in the way
the transcript for SWI is computed. More precisely, in this case the transcript for SWI
is computed by using the simulator Sswi15 of SWI. In the hybrid experiment Hm2 (z) we
process the queries query made by Sswi in the same way as we described in the hybrid
Hm1 (z). We prove the following claim.

Claim 6. For all m ∈ {0, 1}poly(λ) it holds that mimA
NM4Com,m
Hm1

(z) ≈ mimA
NM4Com,m
Hm2

(z).

Suppose by contradiction that there exist adversary ANM4Com and a distinguisher DNM4Com

that can tell apart such two distributions. We can use this adversary and the associated
distinguisher to construct a MiM adversary Aswi and a distinguisher Dswi that break the
adaptive-input SimWI property of SWI. Observe that this reduction is possible due to
the adaptiveness of SWI; indeed, in every right sessions the statement proved by ANM4Com

is fully defined only in the last round. We also recall that even if the statements to be
proved is specified in the last round, the family of theorems Xw has to be fixed at second
round. Since Πwom fixes the decommitment informations in the second round, then also
Xw is implicitly fixed at second round.

Let Cswi be the challenger of SimWI. Aswi interacts with ANM4Com forwarding the messages
of SWI that receive from Cswi and computing the messages of Πwom on his own. In more
details Aswi acts against Cswi processing his queries in the same way that is described in
both the experimentsHm1 (z) andHm2 (z). Let’s now describe how Dswi works. Dswi, takes as
input the view Aswi the first γ-bits of the witness w̃1, . . . , w̃poly(λ), namely w̃γ1 , . . . , w̃

γ
poly(λ),

15Following [GK96a, HRVW09] we assume that if (b1, a1, . . . , bm, am) is the transcript that appears in the final
output of Sswi, then Sswi has queried Aswi on (b1, a1, . . . , bm, am).

92

associated to the statement proved by Aswi and the bits b1, . . . , bpoly(λ) s.t. wγi = ⊥ iff
bi = 0 with i = 1, . . . , poly(λ).

Every w̃γi 6= ⊥ corresponds to the message m̃i of the commitment computed using Πwom in
i-th right session, for i = 1, . . . , poly(λ). Therefore, Aswi recovers the messages m̃1, . . . , m̃poly(λ)

committed in the right sessions setting m̃i = ⊥ if w̃γi = ⊥. Finally, Dswi reconstructs
the view of ANM4Com (by using the randomness of Aswi contained in Aswi’s view) and
gives it and the messages m̃1, . . . , m̃poly(λ) as inputs of DNM4Com giving in output what

DNM4Com outputs. Since by contradiction DNM4Com distinguishes between mimA
NM4Com,m
Hm1

(z)

and mimA
NM4Com,m
Hm2

(z) we have that Dswi tells apart whether Aswi interacts with the simula-
tor of SWI or not. The proof ends with the observation that if Cswi computes the transcript
of SWI as the simulator for SWI does, then ANM4Com acts as in Hm2 (z), otherwise he acts
as in Hm1 (z).

– We consider the experiment H0
2(z) that corresponds to Hm2 (z) with the only difference

that NM4Sen commits using Πwom to a message 0λ instead of m. We prove the following
claims.

Claim 7. For all m ∈ {0, 1}poly(λ) it holds that mimA
NM4Com,m
H0

1
(z) ≈ mimA

NM4Com,m
H0

2
(z).

The security proof of this claim follows strictly the one of Claim 6.

Claim 8. For all m ∈ {0, 1}poly(λ) it holds that mimA
NM4Com,m
Hm2

(z) ≈ mimA
NM4Com,m
H0

2
(z).

The proof follows from the weak concurrent non-malleability property of Πwom. Indeed
observe that here it suffices to rely on the weak concurrent NM commitment because
we are guaranteed (from the previous arguments) that whenever ANM4Com completes a
commitment in the i-th right session, with i = 1, . . . , poly(λ), the corresponding message
committed through Πwom is different from ⊥ with overwhelming probability in both Hm2 (z)
and H0

2(z). To prove the indistinguishability between those two hybrids experiments we
proceed by contradiction constructing an adversary Awom that breaks the weak concurrent
non-malleability property of Πwom.

Let Cwom be the challenger of the weak concurrent NM commitment and letm1, . . . ,mpoly(λ)
with m, 0λ be the challenge messages. Awom processes the queries sent by Sswi as described
in both Hm2 (z) and H0

2(z), with the following difference. In the left session, for the mes-
sages of Πwom, Awom acts as a proxy between Cwom and ANM4Com. The same happen in
the right sessions, where Awom acts as a proxy between ANM4Com ad the receiver Recwom,i

for i = 1, . . . , poly(λ). More precisely Awom manages the queries made by Sswi as describe
in both Hm2 (z) and H0

2(z), but instead of internally run Senwom and Recwom, in order to
compute the messages of Πwom, Cwom and the external receivers Recwom,1 . . . ,Recwom,poly(λ)

involved in the reduction are used. In this setting there are two caveats that Awom needs
to address in order to successfully complete the reduction.

The first one is that Sswi could rewind the entire left session during the reduction, therefore
requiring to compute a new commitment for the protocol Πwom. Since we are assuming
that Πwom is concurrent, Awom can request to receive multiple commitments for the same
message m during the reduction in order to interact against ANM4Com in such a scenario.
The second one is that the rewinds made by Sswi in the left session, could rewind the right
sessions. Without loss of generality we suppose that right session affected by the rewinds
made in the left session is the j-th, with j ∈ {1, . . . , poly(λ)}. If the entire right session is

93

rewound, then Awom simply asks to start another execution with a new receiver Recwom
′
,j

of Πwom. Could also happen that Recwom,j is rewound from the third to the second round,
that is, a new wom2′

j is sent by ANM4Com in the right session that we are considering. In
that case Awom does not forward wom2′

j to Recwom,j , but compute a random wom3′
j and use

it to reply to ANM4Com. We observe that it is possible to compute wom3′
j without knowing

the randomness used by Recwom,j so far because Πwom is public coin.

Now we are ready to show how Dwom works. Dwom, on input the messages m̃1, . . . , m̃poly(n)

committed by ANM4Com and the view of Awom, reconstructs the view that ANM4Com has
when he played in the execution that generated the transcript of SWI given in output
by Sswi. Then, Dwom uses the view of ANM4Com along with m, 0λ and the messages
m̃1, . . . , m̃poly(n) as inputs of DNM4Com giving in output what DNM4Com outputs. Since

by contradiction DNM4Com distinguishes between mimA
NM4Com,m
Hm2

(z) and mimA
NM4Com,m
H0

2
(z)

also Dwom can tell apart which messages was committed by Cwom. The proof ends with
the observation that if Cwom commits to m ANM4Com acts as in Hm2 (z), otherwise he acts
as in H0

2(z).

The proof ends by observing that for all m ∈ {0, 1}poly(λ) the following holds:

mimANMCom,m
ΠNM4Com

(z) = mimANMCom,m
Hm1

(z) ≈ mimA
NM4Com,m
Hm2

(z) ≈

≈ mimA
NM4Com,m
H0

2
(z) ≈ mimA

NM4Com,m
H0

1
(z) = simSimNM4Com

ΠNM4Com
(1λ, z).

94

Part III

Efficient Proof Systems

95

Chapter 6

Delayed-Input Witness
Indistinguishable Proofs of Knowledge

6.1 Introduction

Proofs of knowledge (PoKs) offer a very strong security guarantee to a verifier of an interactive
proof. When this property is coupled with an adequate security notion for the prover, such
as honest-verifier zero knowledge (HVZK), witness indistinguishability (WI) or zero knowledge
(ZK), the resulting proofs can be used as building blocks in essentially every protocol for secure
computation. As such, the degree of security and efficiency achieved by the underlying PoKs,
directly and dramatically, impacts on the security and efficiency of the larger protocol. For
instance, the existence of very efficient WI PoKs for specific languages such as Discrete Log and
DDH has been instrumental for constructing efficient maliciously secure two-party computation
(see [HL10] and reference within). Round-efficient protocols [Pas03b, KO04] require security
notions, both with respect to a malicious prover (soundness) and with respect to a malicious
verifier (WI), that hold even in presence of adaptive-input selection.

Proofs of partial knowledge. In [CDS94], Cramer et al. showed that one can use a specific
type of three-round public-coin PoK (called a Σ-protocol) to construct an efficient PoK for a
compound statement. More precisely, the compound statement consists of n instances, and the
goal is to prove knowledge of a witness for at least k of the n instances. As such, these proofs
are named “(k, n)-proofs of partial knowledge” in [CDS94]. The transform of [CDS94] cleverly
combines n parallel executions Σ-protocols in an efficient 3-round public-coin perfect WI (k, n)-
proof of partial knowledge. We stress that, even though the starting Σ-protocol only enjoyed
security with respect to passive verifiers (in the form of HVZK), the resulting proof of partial
knowledge offers some level of security even against active verifiers (in the form of perfect WI).
A similar result was given in [DSDCPY94] for perfect ZK.

Note that, if efficiency is not a concern, three-round public coin proofs of partial knowledge
were already possible (with computational WI, though) thanks to the general construction of
Lapidot and Shamir (LaSh) [LS90]1. Proving compound statements via LaSh however requires
expensive NP reductions. On the other hand, LaSh PoKs provide a stronger security guarantee:
honest players use the instances specified in the statements only in the last round, and security
holds even if the adversarial verifier (resp., prover) chooses the instances adaptively after having
seen the first (resp., second) round. Specifically, LaSh PoKs are adaptive-input WI proofs of
partial knowledge for all NP. When used as part of a larger protocol, the ability to start the

1See [OV12] for a detailed description of [LS90].

97

proof of partial knowledge before the input is actually produced by the larger protocol saves at
least one round of communication.

The construction shown in [CDS94], instead, although efficient, does not provide any form
of adaptivity, as all the n instances must be fully specified before the protocols starts. As
a consequence, the improved efficiency of [CDS94] must be paid for by the additional rounds
needed by the larger protocol that uses the PoK as a building block.

A first step. A very recent work by Ciampi et al. [CPS+16a] makes a first preliminary step
towards closing the gap between [LS90] and [CDS94]. Ciampi et al. propose a different transform
for WI proofs of partial knowledge that gives some adaptivity at the price of generality. Namely,
their technique yields to a (1, 2)-proof of partial knowledge where the knowledge of one of the two
instances can be postponed to the last round. In more details, they show a PoK for a statement
“x0 ∈ L0 ∨ x1 ∈ L1” in which x0 and x1 are not immediately needed (in contrast to [CDS94]).
The honest prover needs x0 to run the first round while x1 is needed only in the 3rd round along
with a witness for either one of x0 and x1. The verifier needs to see x0 and x1 only at the end,
in order to accept/reject the proof. These PoKs are called delayed input in [CPS+16a] as the
need of the input is delayed to the very last round for the honest prover. For clarity, we stress
that a delayed-input protocol is not necessarily secure against inputs that have been adaptively
chosen. Indeed, the technique of [CPS+16a] yields a proof of partial knowledge that is delayed
input for one of the two instances, is adaptive-input WI but it is not adaptively secure against
a malicious prover. The security achieved is sufficient for their target applications, though.

The open question and its importance. The above preliminary progress leaves open the
following fascinating question: can we design an efficient transform that yields an adaptive-input
WI (k, n)-proof of partial knowledge where all n instances are known only in the last round?

Previous efficient transforms require the a-priori knowledge of all instances or of one out
of two instances, even if the corresponding languages admit efficient delayed-input Σ-protocols.
For the sake of concreteness, consider the well known Σ-protocol Σdl, due to Schnorr [Sch89]
for proving knowledge of discrete log. Schnorr’s protocol is easily seen to be delayed-input as
the prover needs not to know the instance y = gx in order to compute the first round. Now
suppose one wants to prove knowledge of the discrete logarithm of at least one of y0 = gx0

and y1 = gx1 . When we apply known transforms, the resulting protocol loses the delayed-input
property. More specifically, both y0 and y1 are needed by [CDS94], and at least one of y0 and
y1 is needed by [CPS+16a].

6.1.1 Our Results

In this work we study the above open question and give various positive answers.

Σ-protocols and adaptive-input selection. We shed light on the relationship between
delayed-input Σ-protocols (in which honest parties need not to know the input statement at the
onset of the protocol) and adaptive-input Σ-protocols (that retain their security properties even
if the input statement is adaptively chosen after seeing the first messages of the protocol). Recall
that a Σ-protocol enjoys a special soundness property, which means that, given two accepting
transcripts2 for the same statement having the same first round, one can efficiently extract a
witness for that statement.

2In the literature special soundness is often generalized to ` > 2 accepting transcripts with the bound of `
being polynomial in the security parameter.

98

We show that delayed-input Σ-protocols are not necessarily adaptive-input sound; that is,
they are not sound if the malicious prover can choose the statements adaptively. Indeed, in
Section 6.3.1 we show how a malicious prover, based on the second round played by the veri-
fier, can craft a false statement that will make the verifier accept and the extractor of special
soundness fail. The extraction fails even when the statement is true. The attack applies to the
most commonly used Σ-protocols, such as Schnorr’s protocol for discrete logarithm, the protocol
for Diffie-Hellman (DH) tuples and the protocol of [MP03] for proving knowledge of committed
messages, and to all Σ-protocols in the well known class proposed by Cramer in [CD98] and
Maurer in [Mau15].

The loss of soundness with respect to provers that adaptively choose their inputs was already
noticed in [BPW12] for non-interactive zero-knowledge arguments obtained from Σ-protocols by
means of the Fiat-Shamir transform [FS86]. Indeed there are in the literature some incorrect
uses of the Fiat-Shamir transform in which an adversarial prover can first create a transcript
and then can try to find an instance not in the language such that the transcript is accepting.
In the random-oracle model the above issue can be addressed by using also the instance as input
to the random oracle to generate the challenge. This fix is meaningless in the standard model
that is the focus of our work.

We then analyze the transform of [CPS+16a] that is delayed-input with respect to one
instance only. We observe that when [CPS+16a] combines protocols belonging to the class
of [CD98, Mau15], it is not secure with respect to a malicious prover that is allowed to adap-
tively choose his input. Therefore the transform of [CPS+16a] is not adaptive-input sound.
We stress however, that in the applications targeted in [CPS+16a] the input that is specified
only in the last round is chosen by the verifier. As such, for their applications they do not
need any form of adaptive-input soundness, but only adaptive-input witness-indistinguishability
(which they achieve). Moreover, the special soundness of their transform preserves security w.r.t.
adaptive-input selection. Summing up, [CPS+16a] correctly defines and achieves delayed-input
Σ-protocols and adaptive-input WI and uses it in the applications. However adaptive-input
special soundness is not defined and not achieved in their work.

Adaptive-input special-sound Σ-protocols. In light of the above discussion, a natural
question is whether we can upgrade the security of the class of Σ-protocols that are delayed
input, but not adaptive-input sound.

Towards this, we first clarify the conceptual gap between adaptive-input selection and the
adaptivity considered in [CPS+16a] by formally defining adaptive-input special soundness. Then
we show a compiler that takes as input any delayed-input Σ-protocol belonging to the class
specified in [CD98, Mau15], and outputs a Σ-protocol that is adaptive-input sound; i.e., it is
sound even when the malicious prover adaptively chooses his input in the last round.

The main idea behind this compiler is to force the prover to correctly send the first round
of the Σ-protocol through another parallel run of the Σ-protocol. This allows for the extraction
of any witness in the proof of knowledge. The compiler is shown in Section 6.3.2.

We also show (in Section 6.3.3) that nevertheless, [CPS+16a]’s transform preserves the adap-
tivity of the Σ-protocols that are combined. Namely, when applied to Σ-protocols that are
already adaptive-input special sound and WI, [CPS+16a]’s transform outputs a (1, 2)-proof of
partial knowledge that is an adaptive-input proof of knowledge as well.

Adaptive-input (k, n)-proofs of partial knowledge. The main contribution of this chapter
is a new transform that yields the first efficient (k, n)-proofs of partial knowledge where all n
instances can be specified in the last round.

Our new transform takes as input a delayed-input Σ-protocol for a relation Rel, and outputs

99

a 3-round public-coin WI special-sound (k, n)-proof of partial knowledge for the relation (Rel ∨
· · · ∨ Rel) where no instance is known at the beginning. The security of our transform is based
on the DDH assumption. The WI property of the resulting protocol holds also with respect to
adaptive-input selection, while the PoK property holds also in case of adaptive-input selection
only if the underlying Σ-protocol is adaptive-input special sound.

We also show a transform that admits instances taken from different relations. Interestingly,
this construction makes use as subprotocol of the first construction where instances are taken
from the same relation.

6.1.2 Our Techniques

We provide a technique for composing a delayed-input Σ-protocol for a relation Rel in an delayed-
input Σ-protocol for the (k, n)-proof of partial knowledge for relation (Rel ∨ . . . ∨ Rel).

For better understanding our technique, it is instructive to see why the previous transfor-
mation [CDS94] (resp., [CPS+16a]) requires that all n (resp., 1 out of 2) instances are specified
before the protocol starts.

Limitations of previous transforms. Let ΣRel be a delayed-input Σ-protocol, and let (Rel∨
. . .∨Rel) be the relation for which we would like to have a (k, n)-proof of partial knowledge. The
technique of [CDS94] works as follows. The prover P , on input the instances (x1 ∈ Rel∨. . .∨xn ∈
Rel), runs protocols ΣRel, . . . ,ΣRel in parallel. P gets only k witnesses for k different instances
but it needs to somehow generate an accepting transcript for all instances. How to prove the
remaining n − k instances without having the witness? The idea of [CDS94] consists simply
in letting the prover generate the n − k transcripts (corresponding to the instances for which
he did not get the witnesses) using the HVZK simulator Sim associated to the Σ-protocol.
Additionally [CDS94] introduces a mechanism that allows the prover to control the value of
exactly (n − k) of the challenges played by V , so that the prover can force the transcripts
computed by the simulator in (n− k) positions.

So, why does the transform of [CDS94] need all instances to be known already in the 1st
round? The answer is that P needs to run Sim already in the 1st round, and Sim expects the
instance as input. Similar arguments apply for [CPS+16a] as it requires that 1 instance out of
2 is known already in the 1st round.

The core idea of our technique. Previous transforms fail because the prover runs the
HVZK simulator to compute the 1st round of some of the transcripts of ΣRel. Our core idea is
to provide mechanisms allowing P to postpone the use of the simulator to the 3rd round. The
main challenge is to implement mechanisms that are very efficient and preserve soundness and
WI of the composed Σ-protocol. We stress that we want to solve the open problems in full, and
thus none of the instances are known at the beginning of the protocol. To be more explicit, in
the 1st round, the prover starts with the following statement (? ∈ LRel ∨ . . .∨? ∈ LRel).

Assume we have a (k, n)-equivocal commitment scheme that allows the prover to compute
n commitments such that k of them are binding and the remaining n− k are equivocal, and the
verifier cannot distinguish between the two types of commitment, where the k positions that
are binding must be chosen already in the commitment phase (a similar tool was constructed
in [ORS15]). With this gadget in hand, we can construct a delayed-input (k, n)-proof of partial
knowledge ΣOR

k,n as follows. Let (a, c, z) denote generically the 3 messages exchanged during the
execution of a Σ-protocol ΣRel.

In the 1st round, P honestly computes ai for the i-th execution of ΣRel. Here we are using the
fact that ΣRel is delayed-input, and thus ai can be computed without using the instance. Then

100

he commits to a1, . . . , an using the (k, n)-equivocal commitment scheme discussed above, where
the k binding positions are randomly chosen. Thus, the 1st round of protocol ΣOR

k,n consists of n
commitments. In the 2nd round V simply sends a single challenge c according to ΣRel. In the
3rd round, P obtains the n instances x1, . . . , xn and k witnesses. At this point, for the instances
xi for which he did not receive the witness, he will use the HVZK simulator to compute an
accepting transcript (ãi, c, z̃i) and then equivocate the (n − k) equivocal commitments so that
they decommit to the new generated ãi. For the k remaining instances he will honestly compute
the 3rd round using the committed input ai. Intuitively, soundness follows from the fact that k
commitments are binding, and from the soundness of ΣRel. WI follows from the hiding of the
equivocal commitment scheme and the HVZK property of ΣRel.

Note that in this solution we are crucially using the fact that we are composing the same
Σ-protocol so that P can use any of the ai committed in the 1st round to compute an hon-
est transcript. This technique thus falls short as soon as we want to compose arbitrary Σ-
protocols together. Nevertheless, this transformation turns to be useful for the case of different
Σ-protocols.

(k, n)-equivocal commitment scheme. A (k, n)-equivocal commitment scheme allows a
sender to compute n commitments com1, . . . , comn such that k of them are binding and n−k are
equivocal. We will use the language DH of DH tuples and we will implement a (k, n)-equivocal
commitment scheme very efficiently under the DDH assumption as follows. In the commitment
phase, the sender computes n tuples T1 = (g1, A1, B1, X1), . . . , Tn = (gn, An, Bn, Xn) and proves
that k out of n tuples are not in DH. We show that this can be done using the classical [CDS94]
(k, n)-proof of partial knowledge that can be obtained starting with a Σ-protocol Σddh for DH.

We then use the well known [DG03, CV05, CV07, HL10] fact that Σ-protocols can be used to
construct an Instance-Dependent Binding Commitment scheme, where the sender can equivocate
if he knows the witness for the instance. Thus, each tuple Ti can be used to compute an instance-
dependent binding commitment comi using Σddh. comi will be equivocal if Ti was indeed a DH
tuple, it will be binding otherwise. Because the sender proves that k tuples are not in DH,
it holds that there are at least k binding commitment. Hiding follows from the WI property
of [CDS94] and the HVZK of Σddh. Commitment and decommitment can be completed in 3
rounds.

The case of different Σ-protocols. We now consider the case where we want to compose
Σ1, . . . ,Σn for possibly different relations. Our (k, n)-equivocal commitment does not help here
because each ai is specific to protocol Σi, and cannot be arbitrarily mixed and matched once
the k witnesses are known.

For this case we thus use a different trick. We ask the prover to commit to each ai twice,
once using a binding commitment and once using an equivocal commitment. This again can
be very efficiently implemented from the DDH assumption as follows. For each i, P generates
tuples T 0

i and T 1
i , that are such that at most one can be a DH tuple. It then commits to ai

twice using the instance-dependent binding commitment associated to tuple T 0
i and tuple T 1

i .
Because at most one of the two tuples is a DH tuple, at most one of the commitments of ai can
be later equivocated. Thus the 1st round of our transformation consists of 2 commitments of ai
for 1 ≤ i ≤ n.

In the 3rd round, when P receives instances x1, . . . , xn and k witnesses, he proceeds at
follows. For each i, if P knows the witness for xi, he will open the binding commitment for
position i, and compute zi using the honest prover procedure of Σi. Instead, if P does not
have a witness for xi, he will compute a new ãi, zi using the simulator on input xi, c and open
the equivocal commitment in position i. At the end, for each position i, one commitment has

101

remained unopened.
This mechanism allows an honest prover to complete the proof with the knowledge of only k

witnesses. However, what stops a malicious prover to always open the equivocal commitments
and thus complete the proof without knowing any of the witnesses?

We avoid this problem by requiring P to prove that, among the n tuples corresponding to
the unopened commitments, at least k out of n tuples are DH tuples. This directly means that
k of the opened commitments were constructed over non-DH tuples, and therefore are binding.

Now note that proving this theorem requires an (k, n)-proof of partial knowledge in order to
implement Σddh, where the instance to prove, i.e., the tuple that will be unopened, is known only
in the 3rd round when P knows for which instances he is able to open a binding commitment.
Here we crucially use the (k, n)-proof of partial knowledge for the same Σ-protocol developed
above making sure to first run our compiler that strengthen Σddh with respect to statements
adaptively selected by a malicious prover.

6.1.3 Comparison with the State of the Art

In Table 6.1 we compare our results with the relevant related work. We consider [LS90], a 3-
round public-coin WIPoK that is fully adaptive-input and that works for any NP language. We
also consider [CDS94] that proposed efficient 3-round public-coin WI proofs of partial knowledge
(though, without supporting any adaptivity). Finally, we consider [CPS+16a] since it was the
only work that faced the problem of combining together efficiency and some form of delayed-
input instances.

The last row refers to our main result that allows to postpone knowledge of all the instances
to the last round.

Assumption Adaptive WI Adaptive PoK NP Reduction

LaSh90 [LS90] OWP k out of n
(all adaptive)

k out of n
(all adaptive) Yes

CDS94 [CDS94] / / / No

CPSSV16 [CPS+16a] /
1 out of 2

(1 adaptive) / No

This Work
(main result) DDH k out of n

(all adaptive)
k out of n

(all adaptive) No

Table 6.1: Comparison with previous work.

The second column refers to the computational assumptions needed by [LS90] (i.e., one-way
permutations) and our main result (i.e., DDH assumption). The third column specifies the type
of WI depending on the adaptive selection of the instances from the adversarial verifier. The
fourth column specifies the soundness depending on the adaptive selection of the instances from
the adversarial prover.

6.1.4 Online/Offline Computation

The main feature of our constructions is the property of being delayed-input and thus the prover
can compute the first round without knowing instances in an offline phase. When interacting
with the verifier (the online phase), the prover sends the precomputed first round and computes
only the third round of the protocol thus greatly improving the efficient of the protocol. As
we have already pointed out, the LaSh construction enjoys a similar property and, instead, the
construction of [CDS94] requires knowledge of the instances from the start of the protocol and
so there is no offline phase.

102

In Table 6.2, we compare the computational effort of the prover in the online phase of our
constructions with the computational effort of [CDS94, LS90] and the of the online phase of
[CPS+16a] for proofs of partial knowledge of discrete logarithms. In the online phase of LaSh,
the prover computes an NP reduction. For the remaining constructions, we report the number
of modular3 exponentiations that are computed by the prover in the online phase.

As far as the construction of [CDS94] is concerned, it is easy to see that 2n−k exponentiations
are performed by the prover for the (n, k)-proof of partial knowledge.

(1, 2) DLogs (k, n) DLogs
LaSh NP-reduction NP-reduction
CDS94 3 exps 2n− k exps
CPSSV16 4 exps /

Our PoK and Adaptive-Input WI 2 exps 2(n− k) exps
Our Adaptive-Input PoK and Adaptive-Input WI 4 exps 4(n− k) exps

Table 6.2: Prover’s computational effort in proofs of partial knowledge of discrete logarithms.

For the construction of [CPS+16a], we remind the reader that one instance, called the origi-
nal instance, is known from the start of the protocol and the other, called the adaptive instance,
is made available to the prover only after the first round has been completed along with the
witness for one of the instances. In the (1, 2)-proof of partial knowledge of [CPS+16a], the first
round requires three exponentiations as the prover needs to run the simulator and the prover’s
algorithm of Schnorr’s Σ-protocol. If the witness for the original instance is received, the prover
needs to perform two extra exponentiations whereas if the witness received is for the adaptive
instance then the prover can compute the third round by performing only one exponentiation.
Of the five exponentiations required in the worst case, one can be precomputed (the one relative
to the prover’s algorithm of Schnorr’s Σ-protocol) and thus the prover of [CPS+16a] needs to
compute four exponentiations in the online phase. The last two rows of the table report on the
number of exponentiations performed by the prover in two instantiations of the general con-
struction of Section 6.4: the first is obtained by plugging in Schnorr’s protocol (this only gives
PoK) and the second is obtained by plugging in the adaptive-input 2-special sound protocol for
discrete logarithm resulting by applying the compiler of Section 6.3.2 to Schnorr’s protocol. For
a detailed analysis on the number of exponentiations required by our two instantiations we refer
the reader to Section 6.4.3.

6.2 Preliminaries

In this work we consider the notion of threshold relation. Let Rel1, . . . ,Reln be polynomial-time
relations. A threshold relation with threshold k is a polynomial-time relation as well, with the
following form

Relk = {(x1, . . . , xn), ((w1, b1) . . . , (wk, bk)) :

1 ≤ b1 < · · · < bk ≤ n and (xbi , wi) ∈ Reli, for i = 1, . . . , k} .

Roughly, a threshold relation with threshold k contains a set of n NP statements x1, . . . , xn,
and a set of witnesses w1, . . . , wk with k ≤ n, in which each wi represents a valid witness for
one and only one statement xdi ∈ L̂Reldi

with di ∈ {1, . . . , n}.

3We will omit the word modular from now on.

103

6.2.1 Three rounds and public coins

The main results of this chapter will concern pairs (P,V) of interactive machines that interact
for exactly three rounds with P sending the first message and with V’s only message consisting
solely of coin tosses. These pairs are called three-round public-coin protocols and have been
object of intensive studies. Unless otherwise specified, whenever we say protocol, we mean
three-round public-coin protocol. This class includes Σ-protocols [CDS94], that are widely used
in practice, have been designed for several useful languages and, moreover, they are easy to
work with as already shown in many transforms [DG03, MP03, Vis06, CDV06, BPSV08, YZ07,
OPV10, Lin15, CPSV16].

We usually denote the transcript of an execution of a protocol (P,V) by a triple of messages
(a, c, z), where a and z are sent by P and c, the challenge, is V’s only message. We say that a
transcript is accepting if V outputs 1. Two accepting transcripts (a, c, z) and (a′, c′, z′) with the
same common input x constitute a collision for x if a = a′ and c 6= c′.

We next present a generalization of the classical notion of a Σ-protocol.

Definition 22. A protocol (P,V) is a t-Σ-protocol for polynomial-time relation Rel if it enjoys
the following properties:

• Completeness. For every (x,w) ∈ Rel, it holds that

Prob [〈P(w),V〉(x) = 1] = 1.

• t-Special Soundness. There exists a PPT algorithm Extract that, on input x and t tran-
scripts such that any two of them constitute a collision for x, outputs a witness w for
x.

• Special Honest Verifier Zero Knowledge (SHVZK). There exists a PPT simulator algorithm
Sim that, on input an instance x ∈ L and a challenge c, outputs (a, z) such that (a, c, z)
has the same distribution of transcripts obtained when V sends c as challenge and P runs
on common input x and any private input w such that (x,w) ∈ Rel.

It is easy to observe that the notion of a 2-Σ-protocol coincides with the notion of a Σ-protocol
as introduced by [CDS94]. Indeed, we will refer to 2-special soundness as special soundness,
thus conforming with the terminology of [CDS94]. We also stress that SHVZK as defined above
corresponds to the notion of Perfect SHVZK as distinct from Computational SHVZK. This latter
notion has also been studied in the literature in the context of Σ-protocols [GMY06a] but it will
not be considered in this chapter.

SHVZK is a weaker requirement than Zero Knowledge; nonetheless, it implies non-trivial
security against adversarial verifiers.

Theorem 8 ([CDS94]). Let Π be a protocol that enjoys completeness and SHVZK for relation
Rel. Then Π is Perfect WI.

In a t-Σ-protocol security for P is unconditional. The following result implies instead that
the challenge length acts as a security parameter for V.

Theorem 9. Let Π be a protocol for polynomial-time relation Rel that is t-special sound for
some polynomially bounded t. Then Π is a proof of knowledge with knowledge error negligible in
the challenge length.

Proof. The proof of this theorem strictly follows the proof of Theorem 1 of [Dam10] in which
t-special sound protocols are considered instead of 2-special sound protocols.

104

The following theorem says that the challenge length can be increased by simple parallel
repetition.

Theorem 10. [CDS94, Dam10] Let Π be a t-Σ-protocol for polynomial-time relation Rel with
challenge length l. The k-wise parallel composition of Π is a Σ-protocol for Rel with challenge
length k · l.

6.2.2 Delayed-input protocols

In this section, we present the notion of a delayed-input three-round public-coin protocol and
give security notions both for the prover and the verifier.

Definition 23 (Delayed-input [CPS+16a]). A delayed-input protocol for polynomial-time rela-
tion Rel is a protocol (P,V) in which the first message of P can be computed on input only the
length, `, of the common input in unary notation.

For simplicity in the rest of the chapter, we will drop input 1` when describing the prover of
a delayed-input protocol.

Since in a delayed-input protocol the input is not fixed at the onset of the protocol, it could
be adversarially chosen by the prover or by the verifier based on the messages exchanged. For
example, the special soundness of a Σ-protocol guarantees extraction from collisions only if the
transcripts are for the same input and this might not be the case if the statement to be proved
is chosen adaptively by the prover depending on the challenge received. We thus introduce a
stronger notion that we call adaptive-input t-special soundness. Roughly speaking, we require
that it is possible to extract witnesses from a collision even if the t accepting transcripts are for
different inputs.

Definition 24. A delayed-input protocol Π for relation Rel enjoys adaptive-input t-special
soundness if there exists an efficient algorithm that, on input accepting transcripts ((a, c1, z1), . . . , (a, ct, zt))
for inputs x1, . . . , xt, respectively, with ci 6= cj for 1 ≤ i < j ≤ t, outputs witnesses (w1, . . . , wt)
such that (xi, wi) ∈ Rel for i = 1, . . . , t.

Adaptive-input 2-special soundness is closely related to the notion of an adaptive-input proof
of knowledge. A protocol Π = (P,V) is an adaptive-input proof of knowledge if the proof of
knowledge property holds even if the adversarial prover P? can choose the statement adap-
tively. To formally define the concept, we introduce, for every adversarial prover P?, the family
aPoKP

?
= {aPoKP

?

λ }λ of probability distributions over {0, 1}? ∪ {⊥}. Distribution aPoKP
?

λ as-
signs to x ∈ {0, 1}? the probability that P? concludes an accepting interaction with challenge
length λ with the honest verifier V for input x; the symbol ⊥ is instead assigned the probability
that V rejects an interaction with challenge length λ with P?.

Definition 25. A delayed-input protocol Π = (P,V) is an adaptive-input proof of knowledge
with knowledge error κ(·) for Rel if there exists an oracle machine AExtract such that, for all
adversarial provers P? with Prob

[
〈P?,V〉(1λ) = 1

]
= p(λ) > κ(λ), AExtractP

?
(1λ) outputs

pairs (x,w) with x ∈ {0, 1}? ∪ {⊥} and

• whenever x 6=⊥, it holds that (x,w) ∈ Rel;

• the family of probability distributions of the first output of AExtractP
?
is statistically close

to aPoKP
?
;

• there exists constant c such that AExtractP
?
stops within expected number of steps λc

p(λ)−κ(λ) .

We have the following theorem.

105

Theorem 11. Let Π be a delayed-input protocol. If Π is an adaptive-input t-special sound
protocol for relation Rel, for some polynomially bounded t, then Π is an adaptive-input proof of
knowledge with knowledge error κ(λ) = (t− 1)2−λ.

Proof. We give the proof for t = 2. Extension to t > 2 is straightforward.
In order to prove that Π is an adaptive-input PoK for Rel, we consider the following

AExtractP
?
. AExtractP

?
, upon receiving a from P?, picks and sends a random challenge c ←

{0, 1}λ to P?. Upon receiving z and the theorem x, AExtract checks if (a, c, z) is accepting for
x. If V rejects, AExtract outputs ⊥ and stops, otherwise it continues as follows. The extractor
AExtractP

?
now rewinds P? by sending a new challenge c′ ← {0, 1}λ, with c 6= c′, until another

accepting transcript (a, c′, z′), with respect to a potentially different input x′, is provided by
P?. We now observe that the two accepting transcripts share the same first round and have
different challenges, therefore by the adaptive-input 2-special soundness of Π the witness for x
and x′ can be computed in time poly(λ). At this point AExtractP

?
just outputs x and w such

that (x,w) ∈ Rel.
We now analyze the running time of AExtract. Let p?(λ) > 2−λ be the probability that P?

provides an accepting transcript for a challenge of length λ. Then the probability that, for a
randomly selected challenge c′ 6= c, P? provides an accepting transcript conditioned on the fact
that c is accepting is p?(λ)− 2−λ. Therefore the expected number of rewinds is 1

p?(λ)−2−λ
.

The notion of an adaptive-input WI formalizes security of the prover with respect to an
adversarial verifier A that adaptively chooses the input instance to the protocol; that is, after
seeing the first message of the prover. We consider the computational version of this notion
and therefore protocols will have a security parameter λ for the prover. More specifically, for a
delayed-input protocol Π, we consider game ExpAWIΠ,A between a challenger C and an adversary
A in which the instance x and two witnesses w0 and w1 for x are chosen by A after seeing the first
message of the protocol played by the challenger. The challenger then continues the game by
randomly selecting one of the two witnesses, wb, and by computing the third message by running
the prover’s algorithm on input the instance x, the selected witness wb and the challenge received
from the adversary. The adversary wins the game if she can guess which of the two witnesses
was used by the challenger.

We now define the adaptive-input WI experiment ExpAWIΠ,A(λ, aux). This experiment is
parameterized by a delayed-input protocol Π = (P,V) for a relation Rel and by PPT adversary
A. The experiment has as input the security parameter λ and auxiliary information aux for A.

ExpAWIΠ,A(λ, aux):

1. C randomly selects coin tosses r and runs P on input (1λ; r) to obtain a;

2. A, on input a and aux, outputs instance x, witnesses w0 and w1 such that
(x,w0), (x,w1) ∈ Rel, challenge c and internal state state;

3. C randomly selects b← {0, 1} and runs P on input (x,wb, c) and the randomness used
at the first round thus obtaining z;

4. b′ ← A((a, c, z), aux, state);

5. if b = b′ then output 1 else output 0.

We set AdvAWIΠ,A(λ, aux) =
∣∣Prob [ExpAWIΠ,A(λ, aux) = 1

]
− 1

2

∣∣ .
106

Definition 26 (Adaptive-Input Witness Indistinguishability). A delayed-input protocol Π is
adaptive-input WI if for every PPT adversary A there exists a negligible function ν such that
for any aux ∈ {0, 1}∗ it holds that AdvAWIΠ,A(λ, aux) ≤ ν(λ).

6.2.3 The DDH assumption

Let G be a cyclic group, g generator of G and let A,B and X be elements of G. We say that
(g,A,B,X) is a Diffie-Hellman tuple (a DH tuple, in short) if A = gα, B = gβ for some integers
0 ≤ α, β ≤ |G| − 1 and X = gαβ . If this is not the case, the tuple is called non-DH. To verify
that a tuple is DH, it is sufficient to have the discrete log α of A to the base g and then to
check that X = Bα. We thus define the polynomial-time relation DH = {((g,A,B,X), α) : A =
gα and X = Bα} of the DH tuples.

The Decisional Diffie-Hellman assumption (the DDH assumption) posits the hardness of
distinguishing a randomly selected DH tuple from a randomly selected non-DH tuple with respect
to a group generator algorithm. For sake of concreteness, we consider the specific group generator
GG that, on input 1λ, randomly selects a λ-bit prime p such that q = (p − 1)/2 is also prime
and outputs the (description of the) order q group G of the quadratic residues modulo p along
with a random generator g of G.

Assumption 1 (DDH Assumption). For every probabilistic polynomial-time algorithm A there
exists a negligible function ν s.t.∣∣∣Prob [(G, q, g)← GG(1λ);α, β, γ ← Zq : A((G, q, g), gα, gβ, gγ) = 1

]
−

Prob
[

(G, q, g)← GG(1λ);α, β, γ ← Zq : A((G, q, g), gα, gβ, gαβ) = 1
] ∣∣∣ ≤ ν(λ).

1-non-DDH. We define polynomial time relation 1nDH as 1nDH = {((g,A,B,X), α) : A =
gα and X = g · Bα}. Thus a 1-non-DH tuple is a tuple T = (g,A,B,X) such that A = gα,
B = gβ and

X = g ·Bα = gα·β+1

Under the DDH assumption random 1-non-DH tuples are indistinguishable from random non-
DH tuple. Indeed, let T = (g,A,B,X) be any tuple and consider tuple T ′ = (g,A,B, g · X).
Then we have that if T is a randomly selected DH tuple, then T ′ is a randomly selected 1-non-
DH tuple; whereas, if T is a randomly selected non-DH tuple then T ′ is statistically close to a
randomly selected non-DH tuple. By transitivity, we have that, under the DDH assumption,
randomly selected 1-non-DH tuples are indistinguishable from randomly selected DH tuples We
can thus state the following lemma (first proved as Lemma 3.1 in [HKR+14]).

Lemma 7. [HKR+14] Under the DDH assumption, for every probabilistic polynomial-time al-
gorithm A there exists a negligible function ν s.t.∣∣∣Prob [(G, q, g)← GG(1λ);α, β ← Zq : A((G, q, g), gα, gβ, gαβ+1) = 1

]
−

Prob
[

(G, q, g)← GG(1λ);α, β ← Zq : A((G, q, g), gα, gβ, gαβ) = 1
] ∣∣∣ ≤ ν(λ).

A Σ-protocol Π1nDH
k for the threshold relation of 1nDH can be constructed based on the Σ-

protocol Πddh of [CDS94] to prove that k out of n tuples are DDH tuples as follows. Specifically,
let 1nDHk be the threshold relation for 1nDH defined as follows:

1nDHk =
{((

(g1, A1, B1, X1), . . . , (gn, An, Bn, Xn)
)
, ((α1, b1) . . . , (αk, bk))

)
:

1 ≤ b1 < · · · < bk ≤ n and Abi = gαibi and Xbi = gbi ·B
αi
bi
, for i = 1, . . . , k

}
.

107

We construct Σ-protocol Π1nDH
k = (P1nDH

k ,V1nDH
k) as follows. On input tuples (g1, A1, B1, X1),

. . . , (gn, An, Bn, Xn), P1nDH
k and V1nDH

k construct tuples (g1, A1, B1, Y1), . . . , (gn, An, Bn, Yn) by
setting Yi = Xi/gi, for i = 1, . . . , n. Then, P1nDH

k and V1nDH
k simply run Σ-protocol Πddh on

input the theorem (g1, A1, B1, Y1), . . . , (gn, An, Bn, Yn).

Theorem 12. Protocol Π1nDH
k is a Σ-protocol for the threshold relation,1nDHk, of 1nDH.

Proof. The completeness follows from the completeness of Πddh and from the fact that G is a
cyclic group with generator g. The special-soundness of Π1nDH follows from the special soundness
of Πddh. Indeed, a collision for Π1nDH represents a collision for Πddh as well. Thus, the witnesses
for k of the constructed tuples can be extracted. This part of the proof ends with the observation
that k witnesses for the constructed tuples correspond to k witnesses for the input tuples.

If at least k of the input tuples are 1-non-DH then at least k of the constructed tuples
(gi, Ai, Bi, Yi) are DH and the prover has a witness for it. On the other hand, if fewer than k of
the input tuples are 1-non-DH then the constructed tuples contain fewer than k DH tuples.

The SHVZK property follows directly from the same property of Πddh.

6.2.4 Instance-Dependent Binding Commitment

We define the notion of an Instance-Dependent Binding Commitment scheme associated with a
polynomial-time relation Rel and describe a construction for all Rel admitting a Σ-protocol.

Definition 27 (Instance-Dependent Binding Commitment scheme). An Instance-Dependent
Binding Commitment scheme (an IDBC, in short) for polynomial-time relation Rel with message
space M is a quadruple of PPT algorithms (Com,Dec,Fake1,Fake2) where:

• Com is the randomized commitment algorithm that takes as input an instance x ∈ L̂Rel

and a message m ∈M and outputs commitment com and decommitment dec;

• Dec is the verification algorithm that takes as input x ∈ L̂Rel, com, dec and m ∈ M and
decides whether m is the decommitment of com;

• Fake1 takes as input (x,w) ∈ Rel and outputs commitment com, and equivocation infor-
mation rand;

• Fake2 takes as input (x,w) ∈ Rel, message m ∈M , and pair (com, rand) and outputs dec;

that enjoy the following properties:

• Correctness: for all x ∈ L̂Rel, all m ∈M , it holds that

Prob [(com, dec)← Com(x,m) : Dec(x, com, dec,m) = 1] = 1.

• Binding: for all x /∈ LRel and for every commitment com there exists at most one message
m ∈M for which there exists a valid decommitment dec; that is, such that Dec(x, com, dec,m) =
1.

• Hiding: for every receiver A, for every auxiliary information aux, for all x ∈ LRel and all
for m0,m1 ∈M , it holds that

Prob
[
b← {0, 1}; (com, dec)← Com(1λ, x,mb) : b = A(aux, x, com,m0,m1)

]
≤ 1

2
.

108

• Trapdoorness: for all (x,w) ∈ Rel and m ∈M the following two distributions coincide

{(com, rand)← Fake1(x,w); dec← Fake2(x,w,m, com, rand) : (com, dec)}

{(com, dec)← Com(x,m) : (com, dec)}.

IDBC from Σ-protocol. Our construction follows similar constructions of [Dam10, HL10,
DN02]. Let Π = (P,V) be a Σ-protocol for the polynomial-time relation Rel challenge length
λ, and simulator S. We define IDBC CSΠ = (ComΠ,DecΠ,FakeΠ

1 ,FakeΠ
2) with message space

{0, 1}λ as follows.

• ComΠ takes as input x and m ∈ {0, 1}λ and computes (com, dec) by running S on input
(x,m).

• DecΠ takes as input x, com, dec,m, runs V on instance x and transcript (com,m, dec) and
outputs V’s output.

• FakeΠ
1 takes as input (x,w) ∈ Rel, samples a random string ρ and runs P on input (x,w)

and randomness ρ to get the 1st message a of Π. FakeΠ
1 sets com = a and rand = ρ and

outputs (com, rand).

• FakeΠ
2 takes as input (x,w) ∈ Rel, messagem ∈M , and commitment com and equivocation

information rand and runs P to get third-round message z of Π corresponding to first
message a = com produced with randomness ρ = rand and challenge c = m. FakeΠ

1 sets
dec = z and outputs dec.

Theorem 13. CSΠ is an IDBC for the polynomial-time relation Rel.

Proof. The security proof relies only on the properties of Π. Correctness follows from the
completeness of Π. Binding follows from the special soundness of Π. Hiding and Trapdoorness
follow from the SHVZK and the completeness of Π.

6.3 Adaptive-Input Special-Soundness of Σ-protocols

In this section we start by describing classical Σ-protocols that are not secure when the adver-
sarial prover can choose the statement adaptively after seeing the verifier’s challenge. We then
give an efficient compiler that, on input a Σ-protocol belonging to the general class considered
in [Mau15, CD98] and that includes our examples, outputs a Σ-protocol that is adaptive-input
sound.

6.3.1 Adaptive-Input Insecure Delayed-input Σ-protocols

We start with the following well-known Σ-protocol ΠDH = (P,V) for relation DH. On common
input T = (g,A,B,X) and private input α such that A = gα and X = Bα, the prover P sends
a = gr and x = Br for randomly chosen r ∈ Zq (q denotes the size of the group G). Upon
receiving challenge c, P replies by sending z = r+α · c to V. V accepts if and only if gz = a ·Ac
and Bz = x ·Xc.

We construct two accepting transcripts for ΠDH, one for each of two non-DH tuples. The two
transcripts have the same first-round message and two different challenges (thus they constitute
a collision) but, obviously, no witness can be extracted. Specifically, consider tuples T1 =
(g,A = gα, B,X1 = Bγ1) and T2 = (g,A = gα, B,X2 = Bγ2) with γ1, γ2 6= α (this guarantees

109

that neither tuple is DH). We constructs the two transcripts by setting the common first-round
message to (a = gr, x = Bs), for arbitrary r 6= s. Then we compute challenges c1 and c2 by
setting ci = r−s

γi−α , for i = 1, 2; clearly, the two transcripts have different challenges. We complete
the transcripts by computing the third-round messages z1 and z2 as zi = r + α · ci, for i = 1, 2.
It is then easily see that both transcripts are accepting.

We remark that essentially the same reasoning can be used to prove that also adaptive-input
soundness can be violated by a prover that is allowed to pick T after seeing c. Specifically,
consider a malicious prover that first sends (a = gr, x = Bs), with r 6= s, and then it completes
the protocol for adaptively chosen tuple T = (g,A = gα, B,X = Bγ) with γ = α + r−s

c by
sending z = r + α · c. Tuple T is non-DH (as γ 6= α by the choice of r and s) and the verifier
is easily seen to accept. Similar arguments apply for the Σ-protocol of [MP03] for relation
Com = {((g, h,G,H,m), r) : G = gr and H = hr+m}.

We next consider Schnorr’s Σ-protocol [Sch89] for relation DLog = {((G, g, Y), y) : gy = Y }.
In Schnorr’s protocol, the prover on input (Y, y) ∈ DLog starts by sending a = gr, for a randomly
chosen r ∈ Zq (q denotes the size of the group G). Upon receiving challenge c, P replies by
computing z = r+yc. V accepts (a, c, z) if and only if gz = a·Y c. We show an efficient procedure
that on input Y1 ∈ G and challenges c1 6= c2, outputs Y2 ∈ G and accepting transcripts (a, c1, z1)
and (a, c2, z2) for Y1 and Y2, respectively. This implies that, unless computing discrete log is
easy, it is not possible to extract the discrete log of Y1 from the two transcripts.

The first transcript (a, c1, z1) is constructed by running the SHVZK simulator of Schnorr’s
protocol. Then we set Y2 = Y β

1 · gγ , where β = c1/c2 and γ is arbitrary in Zq, and complete the
second transcript by setting z2 = z1 + c2 · γ. We have that

gz2 = gz1 · gc2·γ

= a · Y c1
1 · g

c2·γ

= a · Y c2·β
1 · gc2·γ

= a · [Y β
1 · g

γ]c2

= a · Y c2
2

and thus the second transcript is also accepting for Y2.

6.3.2 A Compiler for Adaptive-Input Special Soundness

In this section we construct an adaptive-input special sound Σ-protocol Πa
f for proving knowledge

of the pre-image of a homomorphic function f . Our construction is based on the Σ-protocol
Πf = (Pf ,Vf) given in [CD98, Mau15] that generalizes and subsumes several Σ-protocols,
including the ones by Schnorr [Sch89] and Guillou-Quisquater [GQ88], and the Σ-protocol for DH
tuples [DH76]. Our construction works for the same class of canonical homomorphic functions
f used in [CD98, Mau15].

More precisely, let (G, ?) and (H,⊗) be two groups with efficient operations and let f :
G → H be a one-way homomorphism from G to H; that is, for all x, y ∈ G, we have that
f(x ? y) = f(x) ⊗ f(y) and, on input x = f(w) for a randomly chosen w, it is infeasible to
compute w′ such that f(w′) = x. We next describe Σ-protocol Πf = (Pf ,Vf) for relation
Relf = {(x,w) : x = f(w)}. Here prover Pf and verifier Vf receive as input the descriptions of
groups G and H along with x ∈ H. In addition, Pf receives w such that x = f(w) as a private
input. The first-round message a is computed by Pf by randomly picking r ∈ G and by setting
a = f(r). The verifier’s challenge is randomly selected from a subset Cf of {0, . . . , |G| − 1}.
The last message z is computed by Pf by setting z = r ? wc. Finally, Vf accepts if and only if
f(z) = a⊗ xc.

110

Completeness is easily seen to hold and it is also easy to see that Schnorr’s [Sch89] and
Guillou-Quisquater [GQ88] Σ-protocols as well as the one for DH tuples are special cases of Πf .
Therefore, since Schnorr’s protocol is a special case, protocol Πf does not enjoy adaptive-input
2-special soundness. For special soundness, Theorem 3 of [Mau15] gives necessary conditions
for witness w such that x = f(w) to be extracted from a a collision (a, c1, z1) and (a, c2, z2)
for common input x. Specifically, this is possible provided that integer y and u ∈ G such that
gcd(c1− c2, y) = 1 and f(u) = xy can be efficiently computed. We call a homomorphic function
with the above property canonical.

From Πf to Πa
f . By looking back at the proof that the Σ-protocol for DH does not enjoy

adaptive-input 2-special soundness, we notice that it was crucial for the malicious prover to be
able to pick the first message (a, x) so that (g, a,B, x) was a non-DH tuple. Indeed, if the prover
was forced to pick a DH-tuple then it could not have made the honest verifier accept. We next
show that this holds in general: if we force the prover to correctly compute the first message
then Πf is adaptive-input 2-special soundness; for Πf this means to prove knowledge of r such
that a = f(r). This is easily achieved by having a second parallel instance of Πf run on input
a. We observe that the second instance of Πf is not subject to an adaptive-input attack since
in a collision the two transcripts share the first message a of the first instance of Πf thus fixing
the input of the second instance. Thus, in sums, protocol Πa

f on common input x consists of
the parallel execution of two instances of Πf : the first with common input x and the second
with common input the first-round message a of the first instance. The verifier of Πa

f sends
the same challenge to both instances and accepts if and only if, in both instances, the verifier
of Πf accepts. For reasons that will be clear in the proof, we set the challenge space of Πa

f to
Ca
f = Cf \ {0}. The following observations are straightforward.

1. If the challenge space Cf consists of only one challenges then Πf is vacuously adaptive-
input 2-special sound and thus we consider Πa

f = Πf .

2. If the challenge space Cf consists of two challenges and one of them is 0 then we have
Πa
f = Πf and Ca

f = Cf − {0}. We observe that, by definition, Πa
f enjoys the property of

adaptive-input 2-special soundness.

3. In general, if Cf contains 0, then the output protocol of the compiler has challenge space
smaller than Cf , and therefore has also worst knowledge error than the starting protocol.
This can be easily avoided by using Theorem 10 in order to amplify the challenge space
of Πf before using our compiler. We recall that it is important to preserve the knowledge
error to preserve the PoK property of the input protocol4.

Let us now prove that Πa
f enjoys adaptive-input 2-special soundness whenever Πf enjoys

special soundness (and we are not in Case 1 or 2 described before). Suppose we have two
accepting transcripts (a, c1, z1) and (a, c2, z2) of Πa

f for inputs x1 and x2 with c1 6= c2. By special
soundness of the second instance of Πf , we can extract the randomness r used to compute the first
message a of the first instance of Πf from the two sub-transcripts of the second instance of Πf .
We conclude the proof by showing that it is possible to compute w such that for x = f(w) from
one accepting transcript (a, c, z) of Πf for x, provided that r such that f(r) = a is available. We
also assume that, y and u such that f(u) = xy and gcd(y, c) = 1 are available (we use the same
hypothesis of Theorem 3 of [Mau15]). Note that this is the main reason why we require c 6= 0.
By using the extended GCD algorithm, we can compute α and β such that y · α + c · β = 1.

4We observe that the Theorem 9 cannot be directly applied to the Σ-protocol described in this section because
of the different notation used to describe the challenge space of a Σ-protocol.

111

Finally, we set w = uα ? (r−1 ? z)β . Now observe that f(z) = a ⊗ xc and this implies that
f(r−1 ? z) = xc. Therefore, f(w) = f(uα ? (r−1 ? z)β) = f(u)α ⊗ f(z ? r−1)β = xyα ⊗ xβc = x
that proves that f(w) = x.

We have thus proved the following theorem.

Theorem 14. Let f be a canonical one-way homomorphism. Then there exists a Σ-protocol Πa
f

for Relf that enjoys adaptive-input 2-special soundness.

6.3.3 On the Adaptive-Input Soundness of [CPS+16a]’s Transform

Ciampi et al. in [CPS+16a] give a compiler that takes as input two Σ-protocols, Π0 and Π1 for
languages L0 and L1, and constructs a new Σ-protocol ΠOR for L0 ∨ L1 in which the instance
for language L1 is needed by the prover only in the 3rd round. The compiler requires Π1 to
be delayed input. In this section we show that if Π1 enjoys adaptive-input 2-special soundness,
then so does ΠOR. We start by giving a succinct description of the main building block used
by [CPS+16a].

t-Instance-Dependent Binding Commitment. In a t-Instance-Dependent Binding Com-
mitment (a t-IDBC) scheme for polynomial-time relation Rel, one party can commit a message m
from a predefined message space M with respect to an instance x. The commitment produced
is hiding and binding unless a witness w such that (x,w) ∈ Rel; in this case, the commitment
can be equivocated.

More precisely, a t-IDBC scheme consists of a triple of PPT algorithms (TCom,TDec,TFake)
with the following syntax. The commitment algorithm TCom takes as input an instance x and a
message m and returns a commitment com of m with respect to x along with a decommitment
dec. The decommitment algorithm TDec takes as input com, dec and m and x and verifies
whether dec is an opening of com as m with respect to x. TFake is the equivocation procedure
that, given a witness for an instance x, a commitment com of message m with respect to x
along with the random coin tosses used to produce it and message m′ outputs a decommitment
dec′ of com as m′. It is required that a t-IDBC is correct (honestly computed commitments are
correctly decommitted), hiding (honestly computed commitments hide the message), trapdoor
(a fake commitment is indistinguishable from an honestly computed commitment) and t-Special
Extractable. The property of t-Special Extractability informally says that if the sender opens
the same commitment in t different ways, then it is possible to efficiently extract the witness
w. A construction of a 2-IBTC scheme that is perfect hiding, perfect trapdoor and 2-Special
Extractable from a special type of Σ-protocols is given in [CPS+16a].

The Construction of [CPS+16a]

Let Rel0 be a relation admitting a t-IDBC scheme with t = 2 and let Rel1 be a relation admitting
an delayed-input Σ-protocol Π1; we denote by S1 the associated simulator for the honest verifier
zero knowledge. We next describe the Σ-protocol ΠOR = (POR,VOR) of [CPS+16a] for the OR
relation:

RelOR =
{

((x0, x1), w) : ((x0, w) ∈ Rel0 ∧ x1 ∈ L̂Rel1) OR ((x1, w) ∈ Rel1 ∧ x0 ∈ L̂Rel0)
}
.

We assume that x0 and the length of x1 in unary are available from the onset of the protocol
whereas x1 and the witness w such that ((x0, x1), w) ∈ RelOR are given before the 3rd round.
Obviously, the verifier does not get to learn w.

1. POR executes the following steps:

112

1.1. pick random r1 and compute the 1st round a1 of the delayed-input Σ-protocol Π1

using r1 as random coin tosses;

1.2. compute a pair (com, dec1) of commitment and decommitment of a1 with respect to
x0.

1.3. send com to VOR.

2. VOR sends a random challenge c.

3. POR on input ((x0, x1), c, (w, b)) s.t. (xb, w) ∈ Relb executes the following steps:

3.1. If b = 1,
compute the 3rd round of Π1, z1, using as input (x1, w, c);

3.2. send (dec1, a1, z1) to VOR;

3.3. If b = 0,
run simulator S1 on input x1 and c obtaining (a2, z2);
use trapdoor to compute decommitment dec2 of com as a2;

3.4. send (dec2, a2, z2) to VOR.

4. VOR receives (a, z) and dec from POR and accepts if and only if the following conditions
are satisfied:

4.1. (a, c, z) is an accepting conversation for x1;

4.2. dec is a valid decommitment of com for a message a.

Adaptive-Input Soundness of ΠOR

We now show that ΠOR preserves the adaptive-input special soundness of the underlying Σ-
protocol.

Theorem 15. If Rel0 admits a 2-IBTC and Rel1 admits a delayed-input adaptive-input special-
sound Σ-protocol, then ΠOR is an adaptive-input special-sound Σ-protocol.

Proof. The claim follows from the adaptive-input special soundness of the underlying Σ-protocol
Π1 and from the 2-Special Extractability property of the 2-IBTC scheme. More formally, con-
sider an accepting transcript (com, c, (a, z, dec)) for input (x0, x1) and an accepting transcript
(com, c′, (a′, z′, dec′)) for input (x0, x

′
1), where c′ 6= c and x1 is potentially different from x′1. We

observe that:

• if a = a′ then, by adaptive-input 2-special soundness of Π1, there exists an efficient ex-
tractor AExtract that, given as input ((a, c, z), x1) and ((a′, c′, z′), x′1), outputs w1 and w′1
s.t. (x1, w1) ∈ Rel1 and (x′1, w

′
1) ∈ Rel1;

• if a 6= a′, then dec and dec′ are two openings of com with respect to x0 for messages
a 6= a′; then we can obtain a witness w0 for x0 by the 2-Special Extractability of the
2-IBTC scheme.

A similar arguments can be used to show that if Rel0 admits a 3-IBTC and Rel1 admits a
delayed-input Σ-protocol with adaptive-input special soundness, then ΠOR enjoys the adaptive-
input proof of knowledge property.

113

6.4 Delayed-input three-round protocols for the threshold rela-
tion

In this section we show that if a relation Rel has a delayed-input Σ-protocol Π, then we can
construct a delayed-input 3-round public-coin PoK Πk for the k-threshold relation. Also, under
the DDH assumption, Πk is adaptive-input WI. If, in addition, Π is adaptive-input 2-special
sound, then Πk is an adaptive-input proof of knowledge. Let us now proceed more formally.

For a polynomial-time relation Rel, we define the k-threshold relation Relk as follows

Relk =
{((

x1, . . . , xn
)
,
(
(w1, d1), . . . , (wk, dk)

))
: 1 ≤ d1 < · · · < dk ≤ n

and (xdi , wi) ∈ Rel, for i = 1, . . . , k
}
.

Let us give the intuition behind our construction of protocol Πk for Relk. The prover of Πk

starts by randomly selecting k 1-non-DH tuples and n − k DH tuples. Each tuple is used to
commit to a random and independently selected first message of protocol Π by using the IBTC
CS = (Com,Dec, (Fake1,Fake2)) for the polynomial time relation 1nDH (defined in Sec. 6.2.3).
More specifically, algorithm Com is used to compute the commitments w.r.t. the DH tuples
and algorithm Fake1 to compute the commitments w.r.t. the 1-non-DH tuples. Note that Π
is a delayed-input Σ-protocol and thus the inputs are not needed to complete this step. All
commitments and tuples are sent to the verifier.

The verifier’s challenge c and n inputs along with the witnesses for k of them are then made
available to the prover that executes the following for each input, distinguishing between inputs
for which a witness is available and inputs for which no witness has been provided. For each of
the former, the prover associates one the commitments computed with respect to a 1-non-DH
tuple and opens it by using Dec thus revealing a first-round message. The corresponding third-
round message is computed by the prover by using the witness. Instead, for each input for which
no witness is available, the prover runs the SHVZK simulator of Π on input the challenge c and
obtains an accepting transcript (a, c, z). The prover then associates to the input a commitment
computed with respect to a DH tuple and computes, by using the algorithm Fake2, an opening
of it as a. The opening and z are then sent to the verifier.

In sums, for each input, the verifier receives an accepting transcript whose first message is
shown to have been committed to in the first round. To ensure that the prover cannot cheat and
choose n DH tuples (that will allow him to open all commitments produced at the first round
at his will) the prover and the verifier engage in parallel into an execution of Σ-protocol Π1nDH

k

described in Section 6.2.

1st round. Pk ⇒ Vk:

1. Set (G, p, g)← GG(1λ).

2. Randomly select tuples T1 = (g1, A1, B1, X1), . . . , Tn = (gn, An, Bn, Xn) of elements
of G under the constraint that exactly k are 1-non-DH and n− k are DH, along with
α1, . . . , αn such that Ai = gαii , for i = 1, . . . , n.

3. Let b1 < . . . < bk denote the indices of the k 1-non-DH tuples and b̃1, . . . , b̃n−k denote
the indices of the n− k DH tuples.

4. Randomly select coin tosses ρ and run the prover of Π1nDH
k on input T = (T1, . . . , Tn),

witness ((αb1 , b1), . . . , (αbk , bk)) and randomness ρ thus obtaining message a1nDH.
Send a1nDH to Vk.

114

5. For i = 1, . . . , n:
Randomly select coin tosses ri and compute first-round message ai of Π

by running P on input ri.
Compute pair (comi, deci)← Com(ai, Ti).
Send (Ti, comi) to Vk.

2nd round. Vk ⇒ Pk: randomly select a challenge c and send it to Pk.

3rd round. Pk ⇒ Vk:

1. Receive inputs (x1, . . . , xn) and witnesses (wd1 , . . . , wdk) for inputs xd1 , . . . , xdk (we
denote by d̃1, . . . , d̃n−k the indices of the inputs for which no witness has been pro-
vided).

2. Compute the third round of Π1nDH using c as challenge to get z1nDH and send it to
Vk.

3. Randomly select permutation σ of {1, . . . , k} and, for i = 1, . . . , k, associate 1-non-DH
tuple Tbi with input xdσ(i)

.

4. For i = 1, . . . , k:
Use j as a shorthand for dσ(i).
Compute zj by running P on input (xj , wj), abi , randomness rbi and challenge

c.
Set Mj = (j, bi, decbi , abi , zj).

5. Randomly select permutation τ of {1, . . . , n− k} and, for i = 1, . . . , n− k, associate
DH tuple T

b̃i
with input x

d̃τ(i)
.

6. For i = 1, . . . , n− k:
Use j as a shorthand for d̃τ(i).
Run simulator S on input xj and c obtaining (aj , zj).
Use trapdoor α

b̃i
to compute decommitment dec

b̃i
of com

b̃i
as aj .

Set Mj = (j, b̃i, decb̃i , aj , zj).

7. For j = 1, . . . , n: send Mj to Vk.

Vk accepts if and only if all the following conditions are satisfied:

1. (a1nDH, c, z1nDH) is an accepting transcript for V1nDH with input T ;

2. all tj ’s are distinct;

3. for j = 1, . . . , n: dectj is a valid decommitment of comtj with respect to Ttj ;

4. for j = 1, . . . , n: (aj , c, zj) is an accepting transcript for V with input xj ;

We observe that, clearly, Πk is a delayed-input 3-round public coin and that Πk has the same
challenge length as Π. In the next sections we prove its security properties.

115

6.4.1 Proof of Knowledge

In this section we start by proving that Πk is a proof of knowledge with knowledge error negligible
in the length of the challenge. Then we prove that enjoys Π is adaptive-input 2-special soundness
then Πk is an adaptive-input proof of knowledge.

Theorem 16. Protocol Πk is a proof of knowledge for Relk with knowledge error negligible in
the length of the challenge.

Proof. The completeness property is straightforward from the completeness of Π1nDH
k and Π and

from the correctness and trapdoor properties of the Instance-Dependent Binding Commitment
scheme used.

Now we proceed to prove that Πk is N -special sound with N = k(n− k+ 1) + 1. Therefore,
since n = poly(λ) and k ≤ n, we can invoke Theorem 9 to conclude the security proof. Specif-
ically, we show that there exists an efficient extractor that, for any sequence (x1, . . . , xn) of n
inputs and for any set of N accepting transcripts of Πk that share the same first message and
have different challenges, outputs the witnesses of k of the n inputs. The extractor is based on
the following observations.

From any two (out of the N) accepting transcripts of Πk, we can extract a collision for
Π1nDH
k . By the special soundness of Π1nDH

k , the collision gives us the witnesses that k of the
tuples used in the N transcripts are 1-non-DH. Without loss of generality, we assume that we
obtain witnesses for T1, . . . , Tk and we call them the good tuples. This implies that commitments
com1, . . . , comk that appear in the shared first round of the N transcripts are opened to the same
strings a1, . . . , ak in all the N transcripts. The k good tuples can be associated in each of the
N transcripts to different inputs; however, if the same good tuple is associated with the same
input xi in two different transcripts then we obtain a collision for Π with input xi and thus, by
the special soundness of Π, it is possible to extract a witness for xi. We call such inputs good as
well. Notice that we have N transcripts and k good tuples and thus we have k ·N associations
of good tuple to inputs.

We next prove that the N transcripts contain collisions of protocol Π with good tuples for
at least k inputs and thus at least k witnesses can be extracted. For the sake of contradiction,
suppose that there are only m ≤ k − 1 good inputs and let us count the good-tuple-to-input
association (which we know to be k ·N) by counting the contributions of the good inputs and of
the non-good inputs, separately. Clearly, each of the m good inputs is associated with at most
one good tuple for each of the N transcripts thus contributing m ·N associations. Each of the
remaining n −m inputs is associated with each of the k good tuples in at most one of the N
transcripts thus contributing an extra (n−m) · k associations. We have thus counted a total of
m ·N + (n −m) · k associations. Since the number of associations is an increasing function of
m and since m ≤ k − 1, we have

m ·N + (n−m) · k = m · (N − k) + n · k
≤ (k − 1) · (N − k) + n · k
≤ k ·N −N + k · (n− k + 1)

= k ·N − 1

Contradiction.

Next we prove that if that adaptive-input security of Π is preserved by our construction.
More precisely,

Theorem 17. If Π is adaptive-input 2-special sound for Rel then Πk is an adaptive-input proof
of knowledge for Relk with knowledge error negligible in the length of the challenge.

116

Proof. The delayed-input completeness of Πk follows from the delayed-input completeness of
protocol Π, the correctness and trapdoor property of the Instance-Dependent Binding Commit-
ment scheme used and from the completeness of Π1nDH

k . In order to conclude the security proof
we just need to show that Πk is adaptive-input 2-special sound which, by Theorem 11, is suffi-
cient to prove that Πk is an adaptive-input PoK with knowledge error κ(λ) = 2−λ. The proof
ends with the observation that 2−λ represents a negligible function in the challenge length.

Lemma 8. If Π is adaptive-input 2-special sound for Rel, then Πk is adaptive-input 2-special
sound for Relk.

Proof. Let T1 = (a, c1, z1) and T2 = (a, c2, z2) with c1 6= c2 be two accepting transcripts for input
(x1

1, . . . , x
1
n) and (x2

1, . . . , x
2
n), respectively. First of all, observe that, by the special soundness

of protocol Π1nDH
k , it is possible to extract the witness certifying that k of the tuple T1, . . . , Tn

appearing in the first message are 1-non-DH. Let us denote by b1, . . . , bk the indices of the 1-non-
DH tuples. This implies that commitments comb1 , . . . , combk that appear in the common first
round of the two transcripts are binding and are thus opened to the same strings ab1 , . . . , abk in
the two transcripts. Therefore, for i = 1, . . . , k, we can extract from T1 and T2 two transcripts
of Π: (abi , c1, zbi) for input x1

bi
and (abi , c2, z

′
bi

) for input x2
bi
. Each pair of transcripts gives, by

the adaptive-input special soundness of Π, a witness for x1
bi

and one for x2
bi
.

6.4.2 Adaptive-Input Witness Indistinguishability

Here we prove that Πk is WI with respect to a PPT adversary A that is allowed to select the
instance and the witnesses after receiving the first round. We have the following theorem.

Theorem 18. Under the DDH assumption, if Π is SHVZK for Rel then Πk is adaptive-input
WI for relation Relk.

Proof. For sake of contradiction, let A be a PPT adversary and aux an auxiliary information
for which AdvAWIΠk,A(λ, aux) is a non-negligible function of λ. We let X = (x1, . . . , xn) denote
the instance output by A at Step 2 of ExpAWIΠk,A and we let W 0 = ((w0

1, d
0
1), . . . (w0

k, d
0
k)) and

W 1 = ((w1
1, d

1
1), . . . (w1

k, d
1
k)) denote the witnesses output. We remark that (xdbi

, wbi) ∈ Rel for
i = 1, . . . , k and b = 0, 1 and that i 6= j implies that d0

i 6= d0
j and d1

i 6= d1
j . Let m ≤ k be the

number of instances of Π in X for which W 1 contains a witness but W 0 does not. Obviously,
since W 0 and W 1 contain witnesses for the same number k of instances of Π in X, it must be
the case that m is also the number of instances of Π in X for which W 0 contains a witness and
W 1 does not. We call m the number of unique instances (these are instances for which a witness
appears in exactly one of W 0 and W 1).

For integer 0 ≤ m ≤ k for which A has a positive probability of outputting X,W 0,W 1 with
m unique instances, we define AdvAWI(λ, aux|m) to be the advantage of A conditioned on the
event that there are m unique instances. Notice that we dropped the indices A and Πk not to
overburden the notation. Since AdvAWI(λ, aux) is non-negligible in λ there must exist integer
0 ≤ m ≤ k such that AdvAWI(λ, aux|m) is defined and non-negligible and the probability of
having m unique instances is also non-negligible. Notice that the value of m depends solely on
the adversary A and we consider it fixed throughout the proof. In designing the reductions to
the problem of distinguishing DH tuples from 1-non-DH tuples (which, by Lemma 7, is hard
under the DDH assumption), we shall assume that A would output X,W 0 and W 1 with m
unique instances. When this is actually the case, which by our choice of m has a non-negligible
probability of occurring, we will have a non-negligible advantage in solving the problem; when

117

instead the number of unique instances is other than m, we will output a random guess. This is
sufficient to prove that a non-negligible advantage in distinguishing DH tuples from 1-non-DH
tuples is obtained.

We rename the instances of X output by A, so that W 0 and W 1 can be written as

W 0 =
(
(w0

1,m+ 1), . . . , (w0
m, 2m), (w0

m+1, 2m+ 1), (w0
k,m+ k)

)
and

W 1 =
(
(w1

1, 1), . . . , (w1
m,m), (w1

m+1, 2m+ 1), . . . , (w1
k,m+ k)

)
;

that is, we sort the instances of X so that the first m instances, x1, . . . , xm, have a witness only
in W 1; the next m instances, xm+1, . . . , x2m, have a witness only in W 0; and the last k − m
instances, x2m+1, . . . , xm+k, have witnesses in the both. For any two suchW 0 andW 1, we define
the following intermediate sequences of witnesses W1, . . . ,Wk:

1. For i = 0, . . . ,m: Wi consists of witnesses

Wi =
((
w1

1, 1
)
, . . . ,

(
w1
i , i
)
,
(
w0
i+1,m+ i+ 1

)
, . . . ,

(
w0
m, 2m

)
,
(
w0
m+1, 2m+ 1

)
, . . . ,

(
w0
m+k,m+ k

))
.

Note that Wi contains witnesses for (x1, . . . , xi, xm+1+i, . . . , x2m). Moreover, W0 coincides
with W 0 and in Wm the first m witnesses are from W 1 and the remaining are from W 0.

2. For i = m+ 1, . . . , k: Wi consists of witnesses

Wi =
(
(w1

1, 1), . . . , (w1
m,m), (w1

m+1, 2m+ 1), . . .

. . . , (w1
m+i,m+ i), (w0

m+i+1,m+ i+ 1), . . . , (w0
m+k,m+ k)

)
.

It is easy to see that Wk coincides with W 1.

For i = 0, . . . , k, we define hybrid experiment Hi as the experiment in which the challenger C
uses sequence of witnessesWi to complete the third step of the experiment ExpAWIΠk,A. Clearly,
H0 is the experiment ExpAWIΠk,A when C picks b = 0 and Hk is the same experiment when C
picks b = 1.

We start by proving indistinguishability of Hi and Hi+1 for i = 0, . . . ,m − 1. We will then
argue about the indistinguishability of Hm+i and Hm+i+1 for i = 0, . . . , k −m− 1. We assume
inductively that in Hi the probability that there will be m unique instances is non-negligible
and prove that this is still the case in Hi+1. We remind the reader that, in Hi and Hi+1, the
challenger C uses witnesses for the following k instances:

Hi x1 · · · xi xm+i+1 xm+i+2 · · ·x2m x2m+1 · · · xm+k

Hi+1 x1 · · · xi xi+1 xm+i+2 · · ·x2m x2m+1 · · · xm+k

The differences between the two hybrid experiments are relative to instances xi+1 and xm+i+1

and to the witness used by the prover to complete the proof that at least k tuples are 1−non−
DH. Specifically,

1. the transcript of Π for xi+1 is produced by the simulator in Hi and by the prover in
Hi+1;

2. the first messages of the transcript of Π for xi+1 is committed to with a DH tuple in Hi
and with a 1-non-DH tuple in Hi+1;

3. the transcript of Π for xm+i+1 is produced by the prover in Hi and by the simulator in
Hi+1;

4. the first messages of the transcript of Π for xm+i+1 is committed to with a 1-non-DH
tuple in Hi and with a NDH tuple in Hi+1;

118

5. protocol Π1nDH is completed by using the witnesses for the 1-non-DH tuples associated
with x1, · · · , xi, xm+i+2, · · · , x2m, x2m+1, · · · , xm+k. In addition, the witness for the 1-non-
DH tuple associated with xm+i+1 is used by Hi and the witness for the 1-non-DH tuple
associated with xi+1 is used by Hi+1.

6. in addition, in both hybrid experiments exactly k of the tuples are 1-non-DH and exactly
n− k are DH.

To prove indistinguishability of Hi and Hi+1 we consider four intermediate hybrids: H1
i , . . . ,H4

i .

H1
i differs from Hi in the way the transcript of Π instance xi+1 is computed. Specifically, instead

of using the SHVZK simulator of Π, H1
i uses the algorithm of the prover of Π run with wi+1 as

input. Indistinguishability of H1
i and Hi follows directly from the following two observations.

First, observe that xi+1 is associated in both Hi and H1
i with a DH tuple and therefore the

commitment is perfectly hiding. Moreover, Π’s simulator is perfect.

H2
i differs from H1

i in the way the tuples used to compute the commitments are chosen. Specif-
ically, H2

i chooses k+ 1 1-non-DH tuples, n−k−1 DH tuples (as opposed to k 1-non-DH tuples
and n − k DH tuples). The extra 1-non-DH tuple is used by H2

i to compute the commitment
of the first message of Π that will be associated to xi+1 in the third round. As a sanity check,
notice that in this case the commitment associated with xi+1 is binding but this is not a problem
as an accepting transcript of Π for xi+1 can be computed by using witness wi+1.

We observe that Lemma 7 implies that the probability that, inH2
i , A produces two sequences

W 0 and W 1 of witnesses with m unique instances is still non-negligible5.
Indistinguishability of H1

i and H2
i follows by Lemma 7. Let T = (g,A,B,X) be either a

random 1-non-DH tuple or a random DH tuple and consider the following simulator algorithm S
that on input T produces the view of A inH1

i or inH2
i depending on whether T is DH or non-DH.

The n tuples selected by S consist in k randomly selected 1-non-DH tuples, n− k− 1 randomly
selected DH tuples and T . Then, S executes the same steps as in H1

i and will associate tuple
T with xi+1. Notice that S does not need a witness for T being DH to complete the execution
as the accepting transcript of Π for xi+1 is computed using the witness wi+1 and the prover’s
algorithm and thus there is no need of a trapdoor to change the first message committed in the
1st round.

H3
i differs from H2

i as protocol Π1nDH is completed by using the witness of the tuple associated
with xi+1 and not the tuple associated with xm+i+1 (along, obviously, the tuples associated
with x1, . . . , xi and with xm+i+2, . . . , xm+k). Indistinguishability of H3

i and H2
i follows from

the perfect WI of Π1nDH. Notice also that the only change intervenes after A has output the
instances and the witnesses and therefore the probability of having m unique instances does not
change.

H4
i differs from H3

i in the way the tuples used to compute the commitments are chosen. Specif-
ically, H4

i chooses k 1-non-DH tuples, n − k DH tuples (as opposed to k + 1 1-non-DH tuples
and n − k − 1 DH tuples). The extra DH tuple is used by H4

i to compute the commitment of
the first message of Π that will be associated to xm+i+1 in the third round. Indistinguishability
of H3

i and H4
i follows by the same argument used for the indistinguishability of H2

i and H1
i and

also by the same argument the probability of having m unique instances stays non-negligible.

Finally, we observe that H4
i differs from Hi+1 in the way the transcript of Π instance xm+i+1 is

computed. Specifically, instead of using the prover of Π, H4
i uses the simulator of Π. Indistin-

guishability of H4
i and Hi+1 follows by the same argument used for the indistinguishability of

5Actually, the probability is, up to a negligible additive factor, the same as in H1
i which in turn is exactly the

same as in Hi

119

Hi and H1
i . Notice also that the only change intervenes after A has output the instances and

the witnesses and therefore the probability of having m unique instances does not change.
We have thus proved that H0 is indistinguishable from Hm. To complete the proof, we need

to prove that Hm+i and Hm+i+1 are indistinguishable for i = 0, . . . , k − m − 1. This follows
directly from the observation that Hm+i and Hm+i+1 only differ in the witness used for x2m+i+1:
Hm+i uses the witness fromW 0 whereas Hm+i+1 uses the witness fromW 1. Indistinguishability
then follows directly from the Perfect WI of Π.

6.4.3 Online performances

In Table 6.2 of Section 6.1.4 we have compared the number of exponentiations made by the
prover in the online phase of [LS90, CDS94, CPS+16a], with the exponentiations require by the
prover of Πk. More precisely, the third row of Table 6.2 refers to the case where Πk is compiled
by using a Σ-protocol for the logarithm discrete relation, and the last row refers to the case
where an adaptive-input 2-special sound6 protocol is used instead. Let us now show why we
obtain 2(n− k) for the forme case, and 4(n− k) for the latter.

In the first case our construction involves 10n− k exponentiations in total, considering both
the offline and the online phases. In our construction in the 1st round we sample n − k DH
tuples and k non-DH, sampling a DH/non-DH tuple costs 3 exponentiations, so this operation
costs 3n. Given that a commitment computed according to the commitment scheme described
previously based on DH tuples costs 4 exponentiations and that in the 1st round we compute
n − k equivocal commitments and k binding commitments, this sums up to 2n + 2k modular
exponentiations. Furthermore the prover computes the 1st round of Schnorr’s Σ-protocol n
times and this costs n exponentiations. Moreover it has to run [CDS94] to prove knowledge
of witnesses for k instances out of n instances, and this costs 2n − k exponentiations. The
only operations that involve exponentiations at the third round are the n− k executions of the
simulator of Schnorr’s Σ-protocol. Therefore the online phase costs 2(n− k).

The Adaptive Proof of Knowledge version of our construction costs 13n−3k exponentiations
in total. We first observe that in the adaptive-input 2-special sound version of Schnorr’s Σ-
protocol an execution of the simulator costs 4 exponentiations and that computing the 1st
round using just the honest prover procedure involves 2 exponentiations. Hence the first round
of our Adaptive Proof of Knowledge construction involves 6n+k exponentiations and the online
phase costs 4(n−k) exponentiations. The analysis for the case of 1 out of 2 is similar with k = 1
and n = 2 but in this case, in the offline phase, we do not consider the cost of [CDS94] since the
correctness of the pair of tuples can be self-verified.

6.5 Extension to Multiple Relations

In this section, we generalize the result of Section 6.4 to the case of different relations. More
specifically, given delayed-input Σ-protocols Σ1, . . . ,Σn for polynomial-time relations Rel1, . . . ,Reln,
we construct an Adaptive-Input Proof of Partial Knowledge ΓRel1,...,Reln

k = (PΓk
Rel1,...,Reln ,VRel1,...,Reln

Γk
)

6We recall that by Theorem 17, when an adaptive-input 2-special sound protocol is used as input of our
compiler we obtain that Πk is Adaptive Proof of Knowledge.

120

for the k-threshold polynomial-time relation

Relk(Rel1, . . . ,Reln) =

{((
x1, . . . , xn

)
,
(
(w1, d1) . . . , (wk, dk)

))
: 1 ≤ d1 < · · · < dk ≤ n

and (xdi , wi) ∈ Reldi for i = 1, . . . , k

}
.

Not to overburden our notation, we will just write Relk,Γk,PΓk , and VΓk , whenever Rel1, . . . ,Reln
are clear from the context.

Let us start by providing some intuition on Γk. For j = 1, . . . , n, the prover of Γk computes
two first-round messages for Σj and commits to each one using a different tuple. Note that Σj is
delayed-input so this step can be performed without knowing the instances (nor the witnesses).
The two tuples, T 0

j and T 1
j , used to compute the commitments for j are chosen so that they

share the first three components and T 1
j is DH and, consequently, T 0

j is non-DH. Therefore, the
verifier is guaranteed that, for each j, at most one of the commitments of the tuple is DH (and
thus at most one commitment can be equivocated). For each j, the tuples T 0

j and T 1
j and the

relative commitments com0
j and com1

j are sent in random order to the verifier. The prover then
receives the n instances, witnesses for k of them and the verifier’s challenge. Then, for each
instance xj for which a witness is available, the prover decommits the commitment computed
using T 0

j (the non-DH tuple) and computes the third round message by running the prover of
Σj . On the other hand, for each instance xj for which no witness is provided, the prover runs the
simulator of Σj and produces an accepting transcript; then the commitment computed using T 1

j

(the DH tuple) is opened as the first message of the simulated transcript, by using equivocation.
In both cases, the decommitment and the accepting transcript are sent to the verifier.

The verifier expects to receive an accepting transcript for each instance with the first mes-
sage coming (through equivocation for n − k of them) from a commitment sent as part of the
first round. Moreover, to ensure that the prover has not cheated by equivocating too many
commitments, the prover and the verifier engage in parallel in a protocol by which the prover
proves that from among the n unopened commitments at least k are associated with DH tu-
ples; this implies, by the way the pairs of tuples have been constructed, that at least k of the
opened commitments are associated with non-DH tuples. We denote the resulting protocol by
ThresDDH = (PTDDH,VTDDH). Notice that when ThresDDH starts, the prover does not know
which commitment will be opened (since this depends on the witnesses received after the chal-
lenge); this can be handled by our protocol described in Sec. 6.4, since it only needs the instances
and witnesses before the third round starts.

More formally, we use the following tools to construct Γk.

1. We use as a commitment scheme an IBTC for the polynomial time relation DH = {((g,A,B,X), α) :
A = gα and X = Bα}.

2. A delayed-input, adaptive-input 2-special sound, adaptive-input WI protocol for the rela-
tion

RelTDDH =
{((

T1, . . . , Tn
)
,
(
(α1, d1), . . . , (αk, dk)

))
: 1 ≤ d1 < · · · < dk ≤ n

and (Tdi , αi) ∈ DH, for i = 1, . . . , k
}
.

We observe that this protocol can be obtained relying on Theorem 18, and by combining
the fact that the well known Σ-protocol for DH tuple [DH76] can be converted into one
that enjoys adaptive-input 2-special soundness (see. Sec. 6.3.2) with Lemma 6.4.1.

121

1st round. PΓk ⇒ VΓk :

PΓk receives as unary inputs the security parameter λ, the number n of theorems that will
be given as input at the beginning of the third round, and the number k of witnesses that
will be provided.

1. Set (G, p, g)← GG(1λ).

2. For j = 1, . . . , n

2.1. Randomly sample a non-DH tuple T 0
j = (gj , Aj , Bj , Xj) over G, along with αj

such that Aj = g
αj
j .

2.2. Set Yj = B
αj
j and T 1

j = (gj , Aj , Bj , Yj)

(note that, by construction, T 1
j is a DH tuple).

3. Select random string R and use it to compute the first round message aThresDDH of
ThresDDH by running prover PTDDH.
Send aThresDDH to VΓk .

4. For j = 1, . . . , n

4.1. Select random strings R0
j and R1

j and use them to compute the first-round mes-
sages a0

j and a1
j of Σj by running the prover of Σj .

4.2. Compute the pair (com0
j , dec

0
j) of commitment and decommitment of the message

a0
j using non-DH tuple T 0

j .
4.3. Compute the commitment com1

j (of the message a1
j) using the DH tuple T 1

j .
4.4. Send pairs (T 0

j , com
0
j) and (T 1

j , com
1
j) in random order to VΓk .

2nd round. VΓk ⇒ PΓk : VΓk randomly selects a challenge c and sends it to PΓk .

3rd round. PΓk ⇒ VΓk :

PΓk receives theorems x1, . . . , xn and, for d1 < . . . < dk, witnesses w1, . . . , wk for theorems
xd1 , . . . , xdk , respectively. We let d̃1 < . . . < d̃n−k denote the indices of the theorems for
which no witness has been provided.

1. For l = 1, . . . , k

1.1. Use j as a shorthand for dl.
1.2. Set Uj = T 1

j and Ûj = T 0
j .

1.3. Compute zj by running prover of Σj on input (xj , wl), randomness R0
j used to

compute the first round a0
j , and challenge c.

1.4. Set Mj = (a0
j , zj , dec

0
j , Ûj).

2. For l = 1, . . . , n− k
2.1. Use j as a shorthand for d̃l.
2.2. Set Uj = T 0

j and Ûj = T 1
j .

2.3. Run the simulator of Σj on input xj and c therefore obtaining (ã1
j , zj).

2.4. Use the trapdoor αj to compute the decommitment dec1
j of com1

j as ã1
j .

2.5. Set Mj = (ã1
j , zj , dec

1
j , Ûj).

3. For l = 1, . . . , n send Ml to VΓk .

122

4. Compute the third round zThresDDH of ThresDDH by running PTDDH on input tuples
(U1, . . . , Un), witnesses αd1 , . . . , αdk and randomness R used to compute the first
round aThresDDH.

VΓk accepts if and only if the following conditions are satisfied.

1. For j = 1, . . . , n

Check that the two tuples sent for j in the first round share the first three components.
Write Mj as Mj = (aj , zj , decj , Ûj).
Check that (aj , c, zj) is an accepting conversation of Σj for instance xj .
Check that decj is a decommitment as aj with respect to tuple Ûj of one of com0

j and
com1

j and that tuple Ûj was associated with j in the first round. Denote by Uj the
other tuple associated with j.

2. Check that (aThresDDH, c, zThresDDH) is an accepting conversation of VTDDH for in-
stances U1, . . . , Un.

6.5.1 (Adaptive-Input) Proof of Knowledge

In this section, we study the PoK properties of Γk. We start by proving in Theorem 19 that Γk
is a PoK. Then, in Theorem 20, we prove that, under the additional assumption that Σ1, . . . ,Σn

are adaptive-input 2-special sound, Γk is an adaptive-input PoK.

Theorem 19. Γk is a proof of knowledge for Relk(Rel1, . . . ,Reln) with knowledge error negligible
in the length of the challenge.

Proof. The completeness property follows from the completeness of protocols ThresDDH and
Σ1, . . . ,Σn, and from the correctness and the trapdoor property of the Instance-Dependent
Binding Commitment scheme used. We next prove that Γk is t-special sound, with t = n−k+2.
The theorem then follows by Theorem 9.

To prove that Γk is t-special sound we describe an algorithm that takes t accepting transcripts
of Γk for the same input (x1, . . . , xn) that share the first message and outputs a witness for
(x1, . . . , xn). We remind the reader that the first message contains n binding commitments to
the first message of each of protocols Σ1, . . . ,Σn. The last message of each transcript instead
contains the openings of k of the binding commitments7.

The algorithm examines the t transcripts τ1, . . . , τ t one at the time looking for a revealing
transcript. We say that transcript τ j is revealing if each of the k binding commitments opened
in the last message of τ j has been opened at least once in one of the preceding j− 1 transcripts.
Once the algorithm has found a revealing transcript, it can obtain a collision for k of the n Σ-
protocols Σ1, . . . ,Σn from which, by special soundness, it obtains the witness for k of the inputs
of transcript τ j . We observe that the special soundness of Σ1, . . . ,Σn is sufficient to extract k
witness since in τ j every accepting transcript for Σi is with respect to the same theorem xi for
all i ∈ {1, . . . , n}.

We conclude the proof by showing that any set of t = n − k + 2 transcripts contains at
least one revealing transcript. Clearly, the k binding commitments opened in the last message
of the first transcript are all opened for the first time. In each subsequent transcript that is
not revealing there exists at least one binding commitment that is opened for the first time.
Therefore, if, after n−k+ 1 = t− 1 transcripts have been examined, no revealing transcript has
been found then the t-th transcript must be a revealing transcript.

7Since t > 1 and ThresDDH is adaptive-input 2-special sound, then we can claim that at least k of the opened
commitments in the last round are binding.

123

We now look at adaptive-input PoK.

Theorem 20. If Σ1, . . . ,Σn enjoy adaptive-input 2-special soundness then Γk is an adaptive-
input proof of knowledge for Relk(Rel1, . . . ,Reln) with knowledge error negligible in the length of
the challenge.

Proof. The delayed-input completeness of Γk follows from the delayed-input completeness of
protocol ThresDDH, the correctness and trapdoor property of the Instance-Dependent Binding
Commitment scheme used and from the delayed-input completeness of Σi for i = 1, . . . , n. In
order to prove that Γk enjoys the property of adaptive-input PoK we need to show an extractor
AExtract that, given oracle access to PΓk

?, outputs a couple (x,w) according to Definition 25.
Before that, we prove the following lemma.

Lemma 9. There exists an algorithm that, on input m = n − k + 2 accepting transcripts of
protocol Γk with the same first message and distinct challenges, outputs in time polynomial in λ
a witness for the input of one of the m transcripts.

Proof. This proof follows the same approach used in the proof of Theorem 19. The main
difference is that in this case we rely on the adaptive-input 2-special soundness instead of the
special-soundness of Σ1, . . . ,Σn to extract the witnesses. The reason why special-soundness is
not sufficient in this case is due to the additional power given to the malicious prover to choose
different inputs for different transcripts.

We remind the reader that the m accepting transcripts share the first message that contains
n binding commitments to the first messages of protocols Σ1, . . . ,Σn. The last message of
each transcript instead contains the openings of k of the binding commitments. The algorithm
examines the m transcripts τ1, . . . , τm one at the time looking for a revealing transcript. Once
the algorithm has found a revealing transcript, it can obtain a collision for k of the n Σ-protocol
Σ1, . . . ,Σn from which, by adaptive-input 2-special soundness, it obtains the witness for k of
the inputs of transcript τ j . We conclude the proof by showing that any set of m transcripts
contains at least one revealing transcript. Clearly, the k binding commitments opened in the last
message of the first transcript are all opened for the first time. In each subsequent transcript
that is not revealing there exists at least one binding commitment that is opened for the first
time. Therefore, if, after n − k + 1 = m − 1 transcripts have been examined, no revealing
transcript has been found then the m-th transcript must be a revealing transcript.

Now we are ready to show how our extractor AExtract works when given access to malicious
prover P?.

1. Upon receiving a from P?, AExtract randomly selects challenge c1 ← {0, 1}λ and sends it
to P?.

2. Upon receiving z1 and the theorem x1, AExtract runs VΓk to check if (a, c1, z1) is accepting
with respect to x1. If VΓk rejects, AExtract outputs ⊥ and stops, otherwise it continues as
follows.

3. For i = 2, . . . , t

P? rewinds P? by sending a new randomly selected challenge ci ← {0, 1}λ different
from all previous challenges. We denote by (a, ci, zi) the transcript obtained and by
xi the relative input.

124

4. If t accepting transcripts have been computed then AExtract continues; otherwise, it stops
and outputs ⊥.

5. Relying on Lemma 9, AExtract uses the t accepting conversations to compute and output
a witness for one of the inputs x1, . . . , xt.

We now analyze the running time of AExtract. Let p?(λ) be the probability that P? provides
an accepting transcript for a challenge of length λ. We next show that if p? > (n − k + 1)2−λ

then AExtract is an extractor for Γk. The probability that in the step 3, for a randomly selected
challenge ci, with c1 6= · · · 6= ci−1 6= ci, P? provides an accepting transcript is p?(λ)− (i−1)2−λ.
Therefore the expected number of rewinds that have to be made in step 3, for some i ∈ {2, . . . , t}
is 1

p?(λ)−(i−1)2−λ
. This means that the expected number of steps made by AExtractP

?
is

t∑
i=2

1

p?(λ)− (i− 1)2−λ
<

t− 1

p?(λ)− (t− 1)2−λ
.

6.5.2 Adaptive-Input Witness Indistinguishability

Theorem 21. If relations Rel1, . . . ,Reln admit a SHVZK Σ-protocol then, under the DDH as-
sumption, Γk is adaptive-input WI for Relk(Rel1, . . . ,Reln).

Proof. We adopt the same framework of the proof for the case of one relation. Specifically,
we have the same definition of hybrid witness sequence Wi and of hybrid experiment Hi, for
i = 0, . . . , k. We start by proving indistinguishability of Hi and Hi+1 for i = 0, . . . ,m− 1. The
differences between the two hybrids are relative to inputs xi+1 and xm+i+1 and the witness used
to complete protocol ThresDDH. We consider the following intermediate hybrids.
H1

i differs from Hi in the way the transcript of Σi+1 for instance xi+1 is computed. Specifically,
instead of using the SHVZK simulator of Σi+1, H1

i uses the algorithm of the prover of Σi+1 run
with wi+1 as input. Notice that in both hybrids the tuple Ûi+1 used to commit the first-round
message of Σi+1 is a DH tuple whereas Ui+1 is a non-DH tuple. In H1

i however the equivocability
of the commitment is not used and the transcript is completed using the witness and the prover’s
algorithm for Σi+1. Indistinguishability of H1

i and Hi follows directly from the perfect SHVZK.

H2
i differs from H1

i in the fact that tuple Ûi+1 is a non-DH tuple and Ui+1 is a DH tuple. In
other words, in H2

i the first-round message of the transcript relative to xi+1 shown at the third
round has been committed to by a non-DH tuple.

Suppose now, for sake of contradiction, that there exists a PPT distinguisher D and a
polynomial poly(·) such that, for sufficiently large security parameters λ,

p1(λ) ≥ p2(λ) + 1/poly(λ),

where p1(λ) and p2(λ) are, respectively, the probabilities thatD outputs 1 on input the view of A
in H1

i and in H2
i . We use D and A to design an algorithm B that has a non-negligible advantage

in the DDH game. Algorithm B receives as input a challenge tuple T = (g,A,B,X), randomly
selects Y and constructs the tuple T̂ = (g,A,B, Y) that shares the first three components with
T . Then B simulates the view of A in Hi1 with the following two modifications: T and T̂ are
the tuples associated with i+ 1; in the third round, B selects one of the two at random and the
commitment computed at the first round with respect to the selected tuple is opened. B feeds
D with the view generated by interacting with A and records D’s output. Finally, B outputs 1
if and only if it had selected T and D has output 1 or it had selected T̂ and D has output 0.

125

Now, let us compute the probability that B outputs 1 when T is DH tuple. Notice that if
T is selected (and this happens with probability 1/2) then B has produced the view of H1

i and
thus the probability that D outputs 1 is p1. On the other hand, if T̂ is selected then B has
produce the view of H2

i and thus the probability that D outputs 0 is 1− p2. Therefore, it T is
DDH, B outputs 1 with probability 1/2 · (1 + p1 − p2).

Consider now the case in which T is non-DH. In this case, both T and T̂ are non-DH and
thus the view received by D is independent from which one of the two is selected by B. We thus
denote by p the probability that D outputs 1 when the view contains two non-DH tuples. As
in the previous case, B outputs 1 if T is selected and D outputs 1 (this event has probability
1/2p) and T̂ is selected and D outputs 0 (this event has probability 1/2 · (1− p)). Therefore B
has probability 1/2 of outputting 1 when it receives a non-DH tuple in output.

We thus conclude that B breaks the DDH assumption. Contradiction.
H3

i differs from H2
i in the witness used to compute an accepting transcript for ThresDDH. More

specifically αi+1 is used instead of αm+i+1 in the tuple that define the witness for ThresDDH.
Observe that this is possible because Ui+1 is a DH tuple. Suppose now, for sake of contradiction,
that there exists a PPT distinguisher D and a polynomial poly(·) such that, for sufficiently large
security parameters λ,

p1(λ) ≥ p2(λ) + 1/poly(λ),

where p1(λ) and p2(λ) are, respectively, the probabilities that D outputs 1 on input the view
of A in H2

i and in H3
i . We use D and A to design an algorithm B that has a non-negligible

advantage in break the adaptive WI property of ThresDDH. Algorithm B receives as input the
first round challenge aThresDDH and computes all the other informations needed to compute the
first round of the protocol of Γk. B, upon receiving the challenge c computes the challenge
theorem and witnesses as following:

XThresDDH = (U1, . . . , Un);

W 0
ThresDDH = (α1, . . . , αi, αm+i+1, αm+i+2, . . . , α2m, α2m+1, . . . αm+k);

W 1
ThresDDH = (α1, . . . , αi+1, αm+i+2, . . . , α2m, α2m+1, . . . αm+k).

Then sends them, with the challenge c, to the challenger. B, upon receiving zThresDDH, completes
the third round protocol using zThresDDH, and sends it to A. B feeds D with the view generated
by interacting with A and records D’s output. Finally, B outputs 1 if and only if the witness
W 0

ThresDDH has been used by the challenger and D has output 1 or has been used W 1
ThresDDH and

D has output 0.
H4

i differs from H3
i in the fact that tuple Ûm+i+1 is a DH tuple and Um+i+1 is a non-DH tuple.

In other words, in H4
i the first-round message of the transcript relative to xm+i+1 shown at the

third round has been committed to by a DH tuple. The indistinguishability between H3
i and

H4
i follows the same arguments of the indistinguishability between H2

i and H1
i

Finally, we observe that H4
i differs from Hi+1 in the way the transcript of Πm+i+1 for the

instance xm+i+1 is computed. Specifically, instead of using the prover of Π, H4
i uses the sim-

ulator of Π. Indistinguishability of H4
i and Hi+1 follows by the same argument used for the

indistinguishability of Hi and H1
i .

We have thus proved that H0 is indistinguishable from Hm. To complete the proof, we need
to prove that Hm+i and Hm+i+1 are indistinguishable for i = 0, . . . , k − m − 1. This follows
directly from the observation that Hm+i and Hm+i+1 only differ in the witness used for x2m+i+1:
Hm+i uses the witness fromW 0 whereas Hm+i+1 uses the witness fromW 1. Indistinguishability
then follows directly from the Perfect WI of Π.

126

Chapter 7

Non-Interactive Zero-Knowledge
Without Programmable Random
Oracles

7.1 Introduction

Non-interactive zero-knowledge (NIZK) proofs introduced in [DMP87, BFM88, BDMP91] are
widely used in Cryptography. Such proofs allow a prover to convince a verifier with just one
message about the membership of an instance x in a language L without leaking any additional
information. NIZK proofs are not possible without a setup assumption and the one proposed
initially in [BDMP91] is the existence of a Common Reference String (CRS) received as input
both by the prover and the verifier. The CRS model has been so far the standard setup for
NIZK. Another setup that has been proposed in literature is the existence of registered public
keys in [BCNP04, DFN06, VV09, CG15].

Starting with the breakthrough of [FLS90, FLS99] we know that NIZK proofs in the CRS
model exist for any NP language with the additional appealing feature of using just one CRS for
any polynomial number of proofs. Moreover NIZK proofs and their stronger variations [Sah99,
SCO+01, GOS06] have been shown to be not only interesting for their original goal of being
a non-interactive version of classic zero-knowledge (ZK) proofs [GMR85, GMR89], but also
because they are powerful building blocks in many applications (e.g., for CCA encryption [NY90],
ZAPs [DN00, DN07]).

Efficient NIZK. Generic constructions of NIZK proofs are rather inefficient since they require
to first compute an NP reduction and then to apply the NIZK proof for a given NP-complete
language to the instance given in output by the reduction. A significant progress in efficiency
has been proposed in [GS08] where several techniques have been proposed to obtain efficient
NIZK proofs that can be used in bilinear groups.

The most popular use of NIZK proofs in real-world scenarios consists in taking an efficient
interactive constant-round public-coin honest-verifier zero-knowledge (HVZK) proof system and
in making it a NIZK argument through the so called Fiat-Shamir (FS) transform [FS86]. The
FS transform replaces the verifier by calls to a hash function on input the transcript so far.
In the random oracle [BR93] (RO) model the hash function can only be evaluated through
calls to an oracle that answers as a random function. The security proof allows the simulator
for HVZK to program the RO (i.e., the simulator decides how to answer to a query) and this
allows to convert the entire transcript of a public-coin HVZK proof into a single message that is

127

indistinguishable from the single message computed by a honest NIZK prover. The efficiency of
the FS transform led to many practical applications. The transform is also a method to obtain
signatures of knowledge, as discussed in [CL06].

In [Gro04] Groth showed an efficient transform for NIZK where soundness is proved requiring
a programmable RO while no random oracle is needed to prove zero knowledge.

The risks of the FS transform. The main disadvantage of the FS transform is the fact
that the random oracle methodology has been proved to be unsound both in general [CGH98]
and for the specific case [GK03, BDSG+13] of turning identification schemes into signatures as
considered in [FS86]. Nevertheless, the examples of constructions proved secure in the RO model
and insecure for any concrete hash function are seemingly artificial. Interestingly in [GOSV14]
it is shown that the FS transform can be used to obtain (non-artificial) information-theoretic
NIZK arguments that are not sound when knowledge of the description of the hash functions is
used by the adversarial prover.

A slight modification of the FS transform gives as input to the hash function only the first
round of a three-round protocol, without the instance to be proved. Despite the fact that this
approach, called weak FS transform, has been used is literature, [BPW12] showed the insecurity
of the transform when the some HVZK protocols are used (similar issues have been discussed
in [CPS+16b, CPS+16a] in the standard model). Other weaknesses about the non-malleability
of the FS transform are discussed in [FKMV12]. In contrast, there are some recent positive
results [KRR17, MV16] based on obfuscation.

The FS transform applied to 3-round HVZK proofs is still one of the major uses of the RO
model for real-world protocols, therefore any progress in this research direction (either on the
security of the transform, or on its efficiency, or on its generality) is of extreme interest.

Efficient NIZK with designated/registered verifiers. A first attempt to get efficient
NIZK arguments from some restricted class of 3-round public-coin HVZK proofs without ROs
was done by [DFN06] (the proof of soundness required complexity leveraging) and later on
by [VV09, CG15] that achieved a weaker form of soundness in the registered public-key model.
The limitation of this model is that a NIZK proof can be verified only by a designated verifier
(i.e., the proof requires a secret known to the verifier). Moreover there is an inconvenient
preliminary registration phase where the verifier has to register her public key.

Lindell’s transform. Very recently, in [Lin15], Lindell proposed a very interesting transform
that can be seen as an attempt towards obtaining efficient constructions without random oracles.
Starting from a Σ-protocol for a language L (i.e., a special type of 3-round public-coin HVZK
proof used already in several efficient constructions of zero knowledge [Dam00, MP03, DCV05,
Vis06, CDV06, YZ07, ABB+10, OPV10, SV12]), Lindell shows how to construct an efficient
NIZK1 argument system for L in the CRS model. Two are the major advantages of Lindell’s
transform with respect to the FS transform. First, in Lindell’s transform the proof of ZK does
not need the existence of a random oracle and this allows to avoid some issues due to protocol
composition [Wee09]. We remark that the proof of ZK for Lindell’s transform needs a CRS but
this is unavoidable as one-round ZK in the plain model is possible only for trivial languages.
Second, the soundness of Lindell’s transform can be proved by relying on a non-programmable
random oracle (NPRO). An NPRO is a RO that in the protocol and in the security proofs can
be used only as a black box and can not be programmed by a simulator or by the adversary
of a reduction. This is a considerable advantage compared to the FS transform since replacing

1Lindell’s NIZK argument is a not an argument of knowledge in contrast to the NIZK argument obtained
through an FS transform.

128

a RO by an NPRO is a step towards removing completely the need of ROs in a cryptographic
construction. Indeed the work of Lindell goes precisely in the direction of solving a major open
problem in Cryptography: obtaining an efficient RO-free transform for NIZK arguments to be
used in place of the FS transform.

The main drawback of Lindell’s transform is that it requires extra computation on top of the
one needed to run the Σ-protocol for the language L. In contrast, the FS transform does not
incur into any overhead on top of a 3-round public-coin HVZK proof for L. In addition, since
3-round public-coin HVZK proofs are potentially less demanding than Σ-protocols, we have that
requiring a Σ-protocol as starting protocol for a transform instead of a public-coin HVZK proof
may already result in an efficiency loss.

Lindell’s transform is based on a primitive named dual-mode (DM) commitment scheme
(DMCS). A DMCS is based on a membership-hard language Λ and each specific commitment
takes as input an instance ρ of Λ and has the following property: if ρ 6∈ Λ, the DM commitment
is perfectly binding; on the other hand, if ρ ∈ Λ, the DM commitment can be arbitrarily
equivocated if a witness for ρ ∈ Λ is known. Moreover, the two modes are indistinguishable2.
Lindell showed that DMCSs can be constructed efficiently from Σ-protocols for membership-hard
languages and also provided a concrete example based on the language of Diffie-Hellman tuples
(DH). Then, Lindell’s transform shows how to combine DM commitments and Σ-protocols
along with a hash function3 to obtain an efficient NIZK argument.

7.1.1 Our Results

In this work, we continue the study of generic and efficient transforms from 3-round public-coin
HVZK proofs to NIZK arguments.

We start by studying the generality and efficiency of Lindell’s transform in terms of the Σ-
protocol used for instantiating the DMCS (and in turn instantiating the CRS) and the Σ-protocol
to which the transform is applied. As a result, we point out a significant gap in generality and
efficiency of Lindell’s transform compared to the FS transform.

Then we show an improved transform that is based on weaker requirements. Specifically, our
transform only requires computational HVZK and optimal soundness instead of perfect special
HVZK and special soundness. More interestingly and surprisingly despite being based on weaker
requirements, our transform is also significantly more efficient than Lindell’s transform and very
close to the efficiency of the FS transform. We next discuss our contributions in more details.

The classes of Σ-protocols needed in [Lin15]. Lindell defines Σ-protocols as 3-round
public-coin proofs that enjoy perfect special HVZK and special soundness. The former property
means that the simulator on input any valid statement x and challenge e can compute (a, z)
such that the triple (a, e, z) is perfectly indistinguishable from an accepting transcript where
the verifier sends e as challenge. Special soundness instead means that from any two accepting
transcripts (a, e, z) and (a, e′, z′) for the same statement x that share the first message but have
different challenges e 6= e′, one can efficiently compute a witness w for x ∈ L. Lindell in [Lin14]
shows a construction of a DMCS from any (defined as above) Σ-protocol for a membership-hard
language.

The efficiency of Lindell’s transform. Lindell’s transform uses a DMCS derived from a
Σ-protocol ΠΛ = (PΛ,VΛ) for language Λ whose commitment algorithm com works by running
the simulator of ΠΛ. The CRS contains an instance ρ of Λ along with the description of a

2A similar notion was introduced in [CV05, CV07] and a scheme with similar features was proposed in [DG03].
3In the proof of soundness this function will be modeled as an NPRO.

129

hash function h. The argument produced by the NIZK Π = (P,V) for x ∈ L starting from
a Σ-protocol ΠL = (PL,VL) for L is computed as a tuple (a′, e, z, r) where a′ = com(a, r),
e = h(x|a′), and z is the 3rd round of ΠL answering to the challenge e and having a as first
round. The verifier checks that a′ is a commitment of a with randomness r, that e is the output
of h(x|a′) and that (a, e, z) is accepted by VL.

As an example, in [Lin15] Lindell discussed the use of the Σ-protocol for the language DH
for which the transform produces a very efficient NIZK proof; indeed the additional cost is of
only 8 modular exponentiations: 4 to be executed by the prover and 4 by the verifier.

In this work we notice however that there is a caveat when analyzing the efficiency of Lindell’s
transform. The caveat is due to the message space of the DMCS. Indeed, once the CRS is fixed
the max length of a message that can be committed to with only one execution of com is limited
to the challenge length lΛ of ΠΛ. Therefore in case the first round a of ΠL is much longer than
lΛ, the transform of Lindell requires multiple executions of com therefore suffering of a clear
efficiency loss4.

We show indeed in Tables 7.2 and 7.3 that Lindell’s transform can generate in the resulting
NIZK argument a blow up of the computations compared to what PL and VL actually do, and
therefore compared to the FS transform.

Our Transform

In this chapter, we present a different transform that is closer to the FS transform both on
generality and on efficiency.

Our transform can be used to obtain a NIZK for any language L with a 3-round HVZK
proofs enjoying optimal soundness (i.e., a weaker soundness requirement compared to special
soundness). The CRS can be instantiated based on any membership-hard language Λ with a
3-round HVZK proofs enjoying optimal soundness. More specifically, we do not require perfect
HVZK nor special HVZK for the involved Σ-protocols. Moreover, instead of special soundness,
we will just require that, for any false statement and any first round message a, there is at most
one challenge c that can be answered correctly. This is clearly a weaker requirement than special
soundness and was already used by [MP03].

Essentially we just need that both protocols ΠL and ΠΛ are 3-round public-coin HVZK proofs
with optimal soundness. Our transform produces a NIZK argument Π = (P,V) that does not
require multiple executions of ΠL and ΠΛ and, therefore, it remains efficient under any scenario
without suffering of the previously discussed issue about challenge spaces in Lindell’s transform.

Techniques. We start by considering the FS transform in the NPRO model and by noticing
that, as already claimed and proved in [YZ06], if the original 3-round public-coin HVZK proof
is witness indistinguishable (WI)5, then the transformed protocol is still WI, and of course the
proof of WI is RO free.

Notice that as in [Lin15], P and V need a common hash function (modeled as an NPRO in
the soundness proof) to run the protocol and this can be enforced through a setup (i.e., a non-
programmable CRS [Pas03a], or a global hash function [CLP13]). The use of the FS transform
in the NPRO model is not sufficient for our purposes. Indeed we want generality and the HVZK
proof might not be witness indistinguishable. Moreover we should make a witness available to
the simulator. We solve this problem by using the OR composition of 3-round perfect HVZK
proofs proposed in [CDS94]. We will let the prover P for NIZK to prove that either x ∈ L∨ρ ∈ Λ.

4As suggested by an anonymous reviewer of TCC 2016-A, to reduce the overhead of the Lindell’s construction
one could use the approach proposed in Groth’s PhD thesis [Gro04], thus committing to a secret share of the
challenge instead of the first round of the Σ-protocol.

5We use WI both to mean witness indistinguishable and witness indistinguishability.

130

We notice that in [CDS94] the proposed OR composition is proved to guarantee WI only when
applied to two instances of the same language having a public-coin perfect HVZK proof. We
can avoid this limitation using a generalization discussed already in [GMY06b, GMY06a] that
allows the OR composition of different protocols for different languages relying on computational
HVZK only.

7.1.2 Comparison

Here we compare the computational effort, both for the prover and the verifier, required to
execute Lindell’s NIZK argument, our NIZK argument and the FS one. The properties of the
three transforms are summarized in Table 7.1. The cost for the prover can be found in Table 7.2,
while the one for the verifier can be found in Table 7.3. The comparison of the computational
effort is performed with respect to three Σ-protocols6. Roughly speaking, in the comparisons, we
consider the CRS to contain an instance of the the language DH of Diffie-Hellman triples with
respect to 1024-bit prime pcrs and consider two Σ-protocols: the one to prove that a triples is
Diffie-Hellman7 with respect to a prime p, for which we consider the cases in which p is 1024-bit
and 2048-bit long8, and the Σ-protocol for graph isomorphism (GI). For the Σ-protocol for graph
isomorphism, we count only the modular exponentiations and do not count other operations (e.g.,
random selection of a permutation and generation of the adjacency matrix of permuted graphs)
since they are extremely efficient and clearly dominated by the cost of modular exponentiations.
A detailed description of the Σ-protocols and of the way we measure the computational effort
is found in Section 7.6.

The tables give evidence of the fact that while Lindell’s transform on some specific cases
can replace the FS transform by paying a small overhead, in other cases there is a significant
loss in performance. Our transform instead remains very close to the FS transform both when
considering the amount of computation and when considering the generality of the protocols
that can be given as input to the transform.

Transform HV ZK for Λ HV ZK for L Soundness Model
Lindell [Lin14] special + perfect special + perfect special NPRO+CRS
This work computational computational optimal NPRO+CRS

FS / computational classic PRO

Table 7.1: Requirements for the proofs in input to the three transforms.

DH GI
Transform |p| = 1024 |p| = 2048 n vertices

Lindell [Lin14] 2 mod p+ 12 mod pcrs 2 mod p+ 20 mod pcrs 4n2 mod pcrs

This work 2 mod p+ 4 mod pcrs 2 mod p+ 4 mod pcrs 4 mod pcrs

FS 2 mod p 2 mod p /

Table 7.2: Efficiency of the three transforms: modular exponentiations for the prover.

6We consider the same Σ-protocol discussed in [Lin15] and in addition we consider the one for Graph Isomor-
phism since it has the special property of having a very long first round that can be computed very efficiently.

7See Section 7.6 for a formal definition of the polynomial relation and the respective Σ-protocols.
8Clearly, in case p is such that |p| < |pcrs|, then Lindell’s transform has a slightly smaller number of exponen-

tiations with respect to the number of exponentiations that we count in the tables.

131

DH GI
Transform |p| = 1024 |p| = 2048 n vertices

Lindell [Lin14] 4 mod p+ 12 mod pcrs 4 mod p+ 20 mod pcrs 4n2 mod pcrs

This work 4 mod p+ 4 mod pcrs 4 mod p+ 4 mod pcrs 4 mod pcrs

FS 4 mod p 4 mod p /

Table 7.3: Efficiency of the three transforms: modular exponentiations for the verifier.

Which protocols can be given in input to the transform? We stress that our transform
allows for additional proof systems to be used for instantiating the CRS and for obtaining
a NIZK argument system. This is not only a theoretical progress. Indeed there exist efficient
constructions such as the one of [Vis06] that is a variation of the one of [MP03]. The construction
of [Vis06] is an efficient 3-round HVZK proof system with optimal soundness for a language L
and is not a Σ-protocol for the corresponding relation RelL. For further details, see Sec. 7.7.

7.2 HVZK Proof Systems and Σ-Protocols

We will model a random oracle as a random function O : {0, 1}∗ → {0, 1}n. For simplicity, we
will omit the modulus in modular arithmetic calculations.

Definition 28. A 3-round proof or argument system ΠL = (PL,VL) for NP-language L is
Honest-Verifier Zero Knowledge (HVZK) if there exists a PPT simulator algorithm Sim that
takes as input security parameter 1n and instance x ∈ L and outputs an accepting transcript
for x. Moreover, the distribution of the output of the simulator on input x is computationally
indistinguishable from the distribution of the honest transcript obtained when VL and PL run ΠL

on common input x and any private input w such that (x,w) ∈ RelL.
If the transcripts are identically distributed we say that ΠL is perfect HVZK.

Definition 29. A 3-round public-coin proof system ΠL = (PL,VL) for language L with challenge
length l enjoys optimal soundness if for every x 6∈ L and for every first-round message a there
is at most one challenge e ∈ {0, 1}l for which there exists a third-round message z such that
(a, e, z) is accepting for x.

Note that any 3-round public-coin optimally sound proof system with challenge length l has
soundness error 2−l [MP03].

Definition 30. A 3-round public-coin protocol ΠL = (PL,VL) with challenge length l is a Σ-
protocol for an NP-language L if it enjoys the following properties:

• Completeness.

• Special Soundness.

• Special Honest Verifier Zero Knowledge (special HVZK).

It is easy to see that Σ-protocols enjoy optimal soundness. The converse, however, is not
true. See Section 7.7 for an example of an optimal-sound 3-round public-coin proof system that
does not enjoy special soundness (and is special perfect HVZK).

132

7.2.1 Challenge Lengths of 3-Round HVZK Proofs

Challenge-length amplification. The challenge of a 3-round public-coin proof system with
HVZK and optimal soundness can be extended through parallel repetition.

Lemma 10. Let ΠL be a 3-round public-coin proof system with optimal soundness for NP-
language L that enjoys perfect HVZK and has challenge length l. The protocol Πk

L consisting of
k parallel instances of ΠL is a 3-round public-coin proof system for relation L that enjoys perfect
HVZK, has optimal soundness and has challenge length k · l.

Proof. The HVZK it is preserved by Πk
L for the same arguments of [CDS94]. About the optimal

soundness of Πk
L, it is simple to see that if the protocol Πk

L in not optimal sound then also ΠL

is not optimal sound.

A similar lemma can be proved for a Σ-protocol (as in [GMY06a, CPS+16a]) for which HVZK
is not perfect.

Challenge-length reduction. We now show that starting from any 3-round public-coin proof
system that enjoys HVZK and has optimal soundness with challenge length l, one can construct
a 3-round public-coin proof system that still enjoys HVZK, has optimal soundness but works
with a shorter challenge. Moreover perfect HVZK is preserved. A similar transformation was
shown in [Dam10] for the case of Σ-protocol that are special perfect HVZK.

Lemma 11. Let ΠL be a HVZK 3-round public-coin proof system for L with optimal soundness
and challenge length l. Then for every l′ < l, there exists a 3-round public-coin proof system
Π′L for L with HVZK and optimal soundness and challenge length l′. Protocol Π′L has the same
efficiency as ΠL and, moreover, if ΠL is perfect HVZK so is Π′L.

Proof. We now give a description of Π′L.

Common input: instance x for an NP-language L.
Private input of P ′L: w s.t. (x,w) ∈ RelL.

The protocol Π′L:

1. P ′L computes a← PL(x,w) and sends it to V ′L; 9

2. V ′L randomly chooses challenge e← {0, 1}l′ and sends it to P ′L;

3. P ′L randomly chooses pad← {0, 1}(l−l′), sets e′ = e|pad, computes z ← PL(x,w, a, e′) and
sends z′ = (z, pad) to V ′L;

4. V ′L outputs the output of VL(x, a, e|pad, z).

Completeness follows directly from the completeness of Π.
To prove the HVZK we can consider the simulator Sim′, that on input x runs as follows:

1. run (a, e′, z)← Sim(x);

2. set pad equal to the last l − l′ bits of e′, and set e equal to the fist l′ bits of e′;

3. output (a, e, (z, pad)).

9Because all the protocols of this chapter are public coin, we do not make a distinction between the verifier
algorithm and the algorithm that decides whether to accept or not at the end of the interaction with the prover.

133

To conclude the proof we only observe that the optimal soundness follows directly from the
optimal soundness of Π.

The following theorem follows from Lemma 10 and 11,

Theorem 22. Suppose NP-language L admits a HVZK 3-round public-coin proof system ΠL

that has optimal soundness and challenge length l. Then for any l′ > 0 there exists HVZK 3-
round public-coin proof system Π′L that has optimal soundness and challenge length l′. If l′ ≤ l
then Π

′
L is as efficient as ΠL. Otherwise the communication and computation complexities of

Π
′
L are at most dl′/le times the ones of ΠL. Moreover, perfect HVZK is preserved.

7.2.2 3-Round Public-Coin HVZK Proofs for OR Composition of Statements

In this section we recall the construction of [CDS94] that starts from a HVZK 3-round public-
coin proof system ΠL for an NP-language L and constructs a HVZK 3-round public-coin proof
system ΠL∨L for the “OR” language of L; that is the NP-language

L ∨ L = {(x0, x1) : x0 ∈ L ∨ x1 ∈ L}.

Below we give the descriptions of the prover PL∨L and of the verifier VL∨L of ΠL∨L. In the
description, we let Sim denote the simulator for ΠL and l denote the challenge length of ΠL. We
also let b ∈ {0, 1} be such that w is a witness for xb ∈ L; that is, (xb, w) ∈ RelL.

Common input: instances x0, x1 for an NP-language L.

Private input of PL∨L: w s.t (x0, x1, w) ∈ R̂elL∨L. where

R̂elL∨L =
{

((x0, x1), w) :
(
(x0, w) ∈ RelL ∧ x1 ∈ L̂

)
∨
(
(x1, w) ∈ RelL ∧ x0 ∈ L̂

)}
.

The protocol ΠL∨L:

1. PL∨L computes ab ← PL(xb, w), (a1−b, e1−b, z1−b)← Sim(x1−b) and sends (a0, a1) to VL∨L.

2. VL∨L chooses at random challenge e← {0, 1}l and sends e to PL∨L.

3. PL∨L sets eb = e⊕ e1−b, computes zb ← PL(xb, w, ab, eb) and outputs
(
(e0, e1), (z0, z1)

)
.

4. VL∨L
(
(x0, x1), (a0, a1), e, ((e0, e1), (z0, z1))

)
. VL∨L accepts if and only if e = e0 ⊕ e1 and

VL(x0, a0, e0, z0) = 1 and VL(x1, a1, e1, z1) = 1.

Theorem 23 ([CDS94, GMY06b]). If ΠL is a HVZK 3-round public-coin proof system with
optimal soundness for NP-language L then ΠL∨L is a HVZK 3-round public-coin proof system
with optimal soundness for NP-language L ∨ L and is WI for polynomial-time relation

RelL∨L =
{

((x0, x1), w) :
(
(x0, w) ∈ RelL ∧ x1 ∈ L

)
∨
(
(x1, w) ∈ RelL ∧ x0 ∈ L

)}
.

Moreover if ΠL is perfect HVZK then ΠL∨L is perfect WI for polynomial-time relation R̂elL∨L

We remark that results of [CDS94, GMY06b] are known to hold for Σ-protocols, but in the
proof of WI they use only HVZK. Therefore their results also hold starting from a HVZK 3-
round public-coin proof system with optimal soundness (and not necessarily special soundness)
that we consider in the above theorem. Indeed we observe that ΠL∨L has optimal soundness for

134

the following reason. Suppose that ΠL∨L does not enjoy optimal soundness. This means that for
a false instance and the same first round (a0, a1) there are two accepting conversation, namely:(

(a0, a1), e, ((e0, e1), (z0, z1))
)
,
(

(a0, a1), e′, ((e′0, e
′
1), (z′0, z

′
1))
)

with e 6= e′. Then it must be the case that for some b = 0 or b = 1, eb 6= e′b and then (ab, eb, zb)
(ab, e

′
b, z
′
b) are two accepting transcripts with the same first round for the protocol ΠL, and thus

the optimal soundness of ΠL is violated.
It is possible to extend the above construction to handle two different NP-languages L0,

L1 that admit HVZK 3-round public-coin proof system with optimal soundness. Indeed by
Theorem 22, we can assume, without loss of generality, that L0 and L1 have 3-round public-coin
proof systems ΠL0 and ΠL1 with the same challenge length.

Assuming that L0 and L1 have 3-round public-coin proof systems ΠL0 and ΠL1 that are
HVZK and have optimal soundness with the same challenge length. We can apply the same
construction outlined above to obtain a 3-round public-coin proof system ΠL0∨L1 that enjoys
HVZK and has optimal soundness for relation

R̂elL0∨L1 =
{(

(x0, x1), w
)

:
(
(x0, w) ∈ RelL0 ∧ x1 ∈ L̂1

)
∨
(
(x1, w) ∈ RelL1 ∧ x0 ∈ L̂0

)}
.

We have the following theorem.

Theorem 24. If ΠL0 and ΠL1 are HVZK 3-round public-coin proof systems with optimal sound-
ness for NP-languages L0 and L1 then ΠL0∨L1 is a HVZK 3-round public-coin proof system with
optimal soundness for the for NP-language

L0 ∨ L1 = {(x0, x1) : x0 ∈ L0 ∨ x1 ∈ L1}

and is WI for polynomial-time relation

RelL0∨L1 =
{

((x0, x1), w) :
(
(x0, w) ∈ RelL0 ∧ x1 ∈ L1

)
∨
(
(x1, w) ∈ RelL1 ∧ x0 ∈ L0

)}
.

Moreover, if ΠL0 and ΠL1 are perfect then ΠL0∨L1 is perfect WI for polynomial-time relation
R̂elL∨L.

7.3 Non-Interactive Argument Systems

Some definitions presented in this section are taken from [Lin15].

Definition 31. A non-interactive argument system for an NP-language L consists of three
PPT machines (CRS,P,V), that have the following properties:

• Completeness: for all (x,w) ∈ RelL, it holds that:

Prob [σ ← CRS(1n);V(σ, x,P(σ, x, w)) = 1] = 1.

• Adaptive Soundness: for every PPT function f : {0, 1}poly(n) → {0, 1}n \ L for all PPT
prover P?, there exists a negligible function ν, such that for all n:

Prob
[
σ ← CRS(1n);VO(σ, f(σ),P?O(σ)) = 1

]
≤ ν(n)

where O : {0, 1}∗ → {0, 1}n is a random function.

135

Definition 32. A non-interactive argument system is adaptive unbounded zero knowledge
(NIZK) for an NP-language L if there exists a probabilistic PPT simulator S such that for
every PPT function

f : {0, 1}poly(n) →
(
{0, 1}n × {0, 1}poly(n)

)
∩ RelL,

and for every PPT malicious verifier V?, there exists a negligible function ν such that,∣∣∣Prob [V? (Rf (Pf (n, p))
)

= 1
]
− Prob [V? (Sf (n, p)) = 1]

∣∣∣ ≤ ν(n)

where f1 and f2 denote the first and second output of f , respectively, and Rf (Pf (n, p)) and
Sf (n, p) denote the output from the following experiments:

Real proofs Rf (Pf (n, p)):

• σ ← CRS(1n) a common reference string is sampled.

• For i = 1, . . . , p(n) (initially ~x and ~π are empty):

– xi ← f1(σ, ~x, ~π): the next statement xi to be proven is chosen.
– πi ← P(σ, f1(σ, ~x, ~π), f2(σ, ~x, ~π)): the ith proof is generated.
– set ~x = x1 . . . xi and ~π = π1 . . . πi.

• output (σ, ~x, ~π).

Simulation Sf (n, p):

• σ ← S(1n) a common reference string is sampled.

• For i = 1, . . . , p(n) (initially ~x and ~π are empty):

– xi ← f1(σ, ~x, ~π): the next statement xi to be proven is chosen.
– πi ← S(xi): simulator S generates a simulated proof πi that xi ∈ L.
– set ~x = x1 . . . xi and ~π = π1 . . . πi.

• output (σ, ~x, ~π).

Definition 33. A non-interactive argument system is adaptive unbounded witness indistinguish-
able (NIWI) for an NP-language L if for every PPT adversary V?, for every PPT function

f : {0, 1}poly(n) →
(
{0, 1}n × {0, 1}poly(n) × {0, 1}poly(n)

)
∩ Rel∧L,

and for every polynomial p(·), there exists a negligible function ν such that∣∣∣Prob [V?(RP,f0 (n, p)) = 1
]
− Prob

[
V?(RP,f1 (n, p)) = 1

]∣∣∣ ≤ ν(n),

where Rel∧L = {(x,w0, w1) : (x,w0) ∈ RelL∧(x,w1) ∈ RelL} and RP,fb is the following experiment.
RP,fb (n, p):

• σ ← CRS(1n).

• For i = 1, . . . , p(n) (initially ~x and ~π are empty):

– (xi, w
0
i , w

1
i)← f(σ, ~x, ~π):

statement xi to be proven and witnesses w0
i , w

1
i for xi are generated.

– πi ← P(σ, xi, w
b
i): the ith proof is generated.

– set ~x = x1 . . . xi and ~π = π1 . . . πi.

• output (σ, ~x, ~π).

136

7.4 NIWI Argument Systems from 3-Round HVZK Proofs

In this section we discuss the FS transform in the NPRO model in order to obtain a NIWI
argument system Π = (P,V) for a polynomial relation RelL. We start from a 3-round public-
coin WI HVZK proof system with optimal soundness ΠL = (PL,VL) for the NP language L.
P and V have access to an NPRO H : {0, 1}∗ → {0, 1}n. We describe Π below and we assume
that the challenge length of ΠL is the security parameter n.

Common input: instance x for NP-language L.

Private input to P: w s.t. (x,w) ∈ RelL.

Common reference string: CRS samples a key s for a hash function family H and sets
σ = s.

1. P → V: The prover P executes the following steps:

1.1. a← PL(x,w);

1.2. e← Hs(x, a);

1.3. z ← PL(x,w, a, e);

1.4. send π = (a, e, z) to V.

2. V ′s output: V outputs 1 if and only if VL(x, a, e, z) = 1 and e = Hs(x, a).

The following theorem was proved by Yung and Zhao in [YZ06] (see Claim 1, page 4). For
sake of completeness, we provide a proof of the claim below.

Theorem 25 ([YZ06]). Let ΠL be a 3-round public-coin WI proof system for the polynomial
relation RelL. Then Π is adaptive WI for RelL in the CRS model.

Proof. We show that Π is adaptive WI for RelL through the following hybrids.

1. H1 is the experiment RP,f0 (n, p) (Definition 33), where P for j = 1, . . . , p(n) executes Π
and outputs πj using the first of the two witnesses given in output by f .

2. Hi (with i > 0) differs from H1 in the first i interactions, where P executes Π using the
second witness given in output by f . Namely: P on input (xj , w

1
j) executes Π and outputs

πj using w1
j for all j : 1 ≤ j < i. Instead, for the interactions i ≤ j < p(n) + 1, P on input

(xj , w
0
j) executes Π using w0

j as a witness and outputs πj .

3. Hp(n)+1 is the experiment RP,f1 (n, p) (Definition 33), where P for j = 1, . . . , p(n) executes
Π and outputs πj using the second witness given in output by f .

Hi ≈ Hi+1: Suppose there exists a malicious adversary V? that distinguishes between the
experiments Hi and Hi+1 with 1 ≤ i ≤ p(n), then we can show that there exists an adversary
A that breaks the WI property of ΠL. The reduction works as follows.

1. For j = 1, . . . , i− 1, A on input (xj , w
1
j) executes Π using w1

j to obtain πj .

2. For j = i, A interacts with the WI challenger of ΠL as follows:

2.1. A has on input (xj , w
0
j , w

1
j) and sends it to the challenger of WI;

2.2. the challenger computes and sends the first message aj to A;

137

2.3. A computes ej = Hs(aj) and sends it to the challenger of WI;

2.4. the challenger computes and sends zj to A;
2.5. A sends πj = (aj , ej , zj) to V?;
2.6. A adds to ~x the theorem xj and to ~π the proof πj .

3. ∀j = i+ 1, . . . , p(n) A on input (xj , w
0
j) executes Π using w0

j to obtain πj .

4. Set ~x = x1, . . . , xp(n) and ~π = π1, . . . , πp(n).

A sends ~x and ~π to V? and outputs what V? outputs.
We now observe that if the challenger of WI has used the first witness we are in Hi otherwise

we are in Hi+i. The security proof ends with the observation that RP,f0 (n, p) ≡ H1 ≈ · · · ≈
Hp(n) ≈ Hp(n)+1 ≡ R

P,f
1 (n, p).

Adaptive soundness. To prove soundness, we follow [Lin15] and use the fact that, for every
function g, with a sufficiently large co-domain, relation Rel = {(x, g(x))} is evasive [CGH04] in
the NPRO model. A relation Rel is evasive if, given access to a random oracle O, it is infeasible
to find a string x so that the pair (x,O(x)) ∈ Rel.

Theorem 26. Let ΠL be a 3-round public-coin proof system with optimal soundness for the
NP-language L, and let H be a non programmable random oracle. Then, Π is a non-interactive
argument system with (adaptive) soundness for L in the NPRO model.

Proof. Completeness of Π follows from the completeness of ΠL. Let O be an NPRO. In order to
prove the soundness of Π we use the fact that for any function g, the relation Rel = {(x, g(x))}
is evasive. We define the function g s.t. g(x, a) = e, where there exists z such that the transcript
(a, e, z) is accepting for the instance x. If x /∈ L by the optimal soundness property we have that
for every a there is a single e for which there is some z so that (a, e, z) is accepting. Therefore
g is a function, as required and it follows that the relation Rel = {((x, a), g(x, a))} is evasive.

Suppose that there exists a polynomial function f and a malicious prover P? such that
P? proves a false statement (i.e., VO(σ, f(σ),P?O(σ)) = 1, where σ ← CRS(1n)) with non-
negligible probability, then there is an adversary A that finds (x, a) s.t. O(x, a) = g(x, a) with
non-negligible probability. The adversary A works as follows. First, it runs σ ← CRS(1n). Then
it runs (x, a, e, z)← P?(σ). Finally it outputs (x,O(x, a)). From the contradicting assumption
we know that VO(σ, f(σ), (a, e, z)) = 1 with non-negligible probability. This implies that the
transcript (a,O(x, a), z) is accepting with non-negligible probability. Since x /∈ L there exists
only one e for which (a,O(x, a), z) is accepting. Therefore we have that with non-negligible
probability it holds that O(x, a) = e (i.e., O(x, a) = g(x, a)) and this contradicts the fact that
any function g is evasive for an NPRO.

7.5 Our Transform: Non-Interactive Zero Knowledge from HVZK

From the previous section we know that if we have a 3-round HVZK proof system with optimal
soundness ΠL∨Λ = (PL∨Λ,VL∨Λ) for polynomial relation

R̂elL∨Λ = {((x, ρ), w) : ((x,w) ∈ RelL ∧ ρ ∈ Λ̂) ∨ ((ρ, ω) ∈ RelΛ ∧ x ∈ L̂)}

that is also WI for polynomial relation

RelL∨Λ = {((x, ρ), w) : ((x,w) ∈ RelL ∧ ρ ∈ Λ) ∨ ((ρ, w) ∈ RelΛ ∧ x ∈ L)} ,

138

then we can apply the FS transform to make it non-interactive while preserving WI and sound-
ness10.

Here we make use of the above result in order to transform a 3-round HVZK proof system
with optimal soundness for an NP-language L into a NIZK argument for L in the CRS model
using an NPRO in the proof of soundness. First, we recall the notion of Membership-hard
languages with efficient sampling that will be used in our final construction.

Membership-hard languages with efficient sampling. Lindell defines a membership-hard
language Λ as a language such that one can efficiently sample both instances that belong to the
language and instances that do not belong to the language. Still distinguishing among these two
types of instances is hard. This is formalized through a sampling algorithm SΛ that on input
a bit b outputs an instance ρ ∈ Λ along with a witness ω when b = 0, and outputs an instance
ρ 6∈ Λ otherwise. No polynomial-time distinguisher on input ρ can guess b with probability
non-negligibly better than 1/2. Let SρΛ denote the instance part of the output (i.e., without the
witness when b is 0).

Definition 34 ([Lin15]). Let Λ be a language. We say that Λ is membership-hard with efficient
sampling if there exists a PPT sampler SΛ such that for every PPT distinguisher D there exists a
negligible function µ such that: |Prob

[
D(SρΛ(0, 1n), 1n) = 1

]
−Prob [D(SΛ(1, 1n), 1n) = 1] | ≤

µ(n).

Now we are ready to show our NIZK argument Π = (P,V).

Common input: instance x for an NP-language L.

Private input of P: w s.t (x,w) ∈ RelL.

Common reference string: CRS on input 1n runs ρ← SΛ(1, 1n) where Λ is an membership-
hard language and samples a key s for a hash function family H. Then it sets σ = (ρ, s).

P → V: P executes the following steps:

1. a← PL∨Λ((x, ρ), w);

2. e← Hs(x, a);

3. z ← PL∨Λ((x, ρ), w, a, e);

4. send π = (a, e, z) to V.

V ′s output: V accepts if and only if VL∨Λ((x, ρ), a, e, z) = 1 and e = Hs(x, a).

In our construction we suppose that the challenge length of ΠΛ is n, where n denotes the
security parameter. Therefore to use the OR composition of [CDS94] we need to consider a
3-round public-coin proof system with HVZK and optimal soundness ΠL for RelL that has
challenge length n (and therefore soundness error 2−n). This is not a problem because we can
use Theorem 22 to transform every 3-round public-coin proof system with HVZK and optimal
soundness with challenge n′ (where n′ 6= n) to another one with challenge length n. More
precisely, if n′ > n we can use Lemma 11 to reduce n′ to n almost for free. If n′ < n we need to
use Lemma 10, therefore we have to run multiple executions of ΠL to apply the OR composition
of [CDS94]. Notice that this potential computational effort is implicit also for the FS transform
and for Lindell’s transform. Indeed if the original 3-round public-coin proof system with HVZK
and optimal soundness has just a one-bit (or in general a short) challenge then clearly the

10We recall that the common hash function is modelled as a NPRO only in the proof of soundness.

139

resulting NIZK is not sound. Therefore the parallel repetition of the 3-round public-coin proof
system with HVZK and optimal soundness is required before applying the transform in order to
reduce the soundness error (see Section 7.2.1).

Theorem 27. Let ΠL∨Λ be a 3-round public-coin proof system for polynomial relation R̂elL∨Λ

that is WI for polynomial relation RelL∨Λ. Then Π is zero knowledge for RelL in the CRS model.

Proof. The simulator S works as follows:

1. S on input 1n, runs (ρ, ω) ← SΛ(0, 1n); samples a key s for a hash function and sets
σ = {ρ, s} and outputs σ.

2. S on input σ, ω and xi (for every i = 1, . . . , p(n)) computes a ← PL∨Λ((xi, ρ), ω), e ←
Hs(xi, a) and z ← PL∨Λ((xi, ρ), ω, a, e). It outputs πi = (a, e, z).

We show that the output of S is computationally indistinguishable from a real transcript
given in output by P in a real execution of Π through the following hybrids games.

1. H0 is the experiment Rf (Pf (n, p)) (Definition 32).

2. H1 differs fromH0 in the way that ρ is generated. Indeed inH1 we have that σ is computed
by running SΛ(0, 1n). The second output ω of SΛ is not used. Clearly H0 and H1 are
indistinguishable otherwise the membership-hard property of Λ would be contradicted.
More details on this reduction will be given below.

3. H2 differs from H1 just on the witness used by PL∨Λ. Indeed now ω is used as witness. The
WI property of ΠL∨Λ guarantees that H2 can not be distinguished from H1. More details
on this reduction will be given below. Notice that H2 corresponds to the simulation.

H0 ≈ H1: If there exists a malicious verifier V? that distinguishes between H0 and H1, then
there exists an adversary A that breaks the membership-hard property of Λ. The reduction
works as follows.

1. A queries the challenger of SΛ that sends back ρ.

2. A samples a key s for a hash function family H and sets σ = {ρ, s}.

3. A on input (xi, wi) ∈ RelL for i = 1, . . . , p(n) computes the following steps:
3.1. compute ai ← PL∨Λ((xi, ρ), wi);
3.2. compute ei ← Hs(xi, ai);
3.3. compute zi ← PL∨Λ((xi, ρ), wi, ai, ei);
3.4. set πi = (ai, ei, zi);
3.5. set ~x = x1, . . . , xi and ~π = π1, . . . , πi.

4. A sends σ, ~x, ~π to V?.

5. A outputs the output of V?.

We now observe that if the challenger of a sampling algorithm SΛ sends ρ /∈ Λ we are in H0

otherwise we are in H1. This implies that H0 ≈ H1.

140

H1 ≈ H2: If there exists a distinguisher V? that distinguishes between H1 and H2, then there
exists an adversary A against the adaptive NIWI property of ΠL∨Λ, therefore contradicting
Theorem 25. The reduction works as follows.

1. A runs (ρ, ω)← SΛ(0, 1n), samples a key s for a hash function and sets σ = {ρ, s}.

2. A has on input a PPT function f = (f1, f2) and defines f ′ = (f ′1, f
′
2) as follows:

f ′(σ,~t, ~π) on input a CRS σ, a vector of theorems ~t = (x1, ρ), . . . , (xp(n), ρ) and a vector
of proofs ~π = π1, . . . , πp(n) returns (f1(σ, ~x, ~π), ρ), (f2(σ, ~x, ~π), ω).

3. A interacts with the challenger of adaptive NIWI, using f ′, in order to obtain xi, πi =
{ai, ei, zi}, for i = 1, . . . , p(n).

4. A sets ~x = x1, . . . , xp(n) and ~π = π1, . . . , πp(n).

5. A sends σ, ~x, ~π to V? and outputs the output of V?.

We now observe that if the challenger of NIWI uses the first witness wi we are inH1 otherwise
we are in H2. This implies that H1 ≈ H2.

We can thus conclude that H0 ≈ H1 ≈ H2 and therefore the output of S is computational
indistinguishable from a real transcript.

Theorem 28. Let ΠL∨Λ be a 3-round public-coin HVZK proof system with optimal soundness
for relation RelL∨Λ, and WI for relation R̂elL∨Λ, and let H be an NPRO. Then, Π is a non-
interactive argument system with adaptive soundness for the relation RelL in the CRS model
using the NPRO model for soundness.

Proof. The completeness of Π follows from the completeness of ΠL∨Λ. In order to prove adaptive
soundness we notice that an adversarial prover proving a false statement x /∈ L can be directly
reduced to an adversarial prover proving a false statement for ΠL∨Λ in the NPRO model. This
contradicts Theorem 26. Indeed the only subtlety that is worthy to note is that when the
adversarial prover runs the protocol, we have that the statement “ρ ∈ Λ” stored in the CRS is
false, therefore if also the instance “x /∈ L” proved by the prover is false then the OR composition
of the two statements is also false.

7.6 Efficiency Comparison

In this section we illustrate in details Tables, 7.2 and 7.3 of Section 7.1.2 has been counted.
First of all we need to briefly introduce two Σ-protocols, one to prove that a tuple is DH(ΠDH
[HL10]), and the other one to prove that two graphs are isomorphic (ΠGH [GMW86]). Our
comparison assumes that the CRS is a DH tuple ((Gcrs, qcrs, pcrs, gcrs), Acrs, Bcrs, Ccrs) with
pcrs and qcrs primes such that pcrs = 2qcrs + 1 and |pcrs| = 1024. We distinguish two cases. In
the first one the prover wants to prove that a tuple ((G, q, p, g), A,B,C) is a DH tuple, and in
the other one the prover tries to convince the verifier that two graphs G0 and G1 with n vertices
each are isomorphic.

A Σ-protocol for Diffie-Hellman tuples. We consider the following polynomial-time rela-
tion

RelDH =
{(

((G, q, g), A = gr, B = h,C = hr), r
)

: Br = C
}

over cyclic groups G of prime-order q. Typically, G is the subgroup of quadratic residues of Zp
for prime p = 2q + 1. We next briefly describe Σ-protocol ΠDH = (PDH,VDH) for RelDH.

141

Common input: instance x and language DH.

Private input of PDH: r.

The protocol ΠDH:

1. PDH picks t ∈ Zq at random, computes and sends a = gt , b = ht to VDH;

2. VDH chooses a random challenge e ∈ Zq and sends it to PDH;

3. PDH computes and sends z = t+ er to VDH;

4. VDH accepts iff:

gz = a ·Ae AND hz = b · Ce.

We show the special HVZK simulator Sim for ΠDH. Sim, on input x and a challenge e of
length |q| − 1 executes the following steps:

1. randomly chooses z ∈ Zq;

2. computes a = gz ·A−e;

3. computes b = hz · C−e.

Graph isomorphism. We show a Σ-protocol ΠGH = (PGH,VGH) to prove that two graphs
are isomorphic. Given two graphs G0 and G1, prover PGH wants to convince verifier VGH that
he knows a permutation φ such that φ(G0) = G1.

Common input: theorem x = (G0, G1).

Private input of PGH: φ.

The protocol ΠGH:

1. PGH randomly chooses a permutation ψ and a bit b ∈ {0, 1}, computes and sends P =
ψ(Gb);

2. VGH chooses and sends a random bit b′ ∈ {0, 1} PGH;

3. PGH sends the permutation τ to VGH, where

τ =


ψ if b = b′

ψφ−1 if b = 0, b′ = 1

ψφ if b = 1, b′ = 0

4. VGH accepts if and only if P = τ(Gb′).

142

Computational effort: two cases. We show a summary of the comparison among our
transform and Lindell’s transform in Tables 7.2 and 7.3. The cost is measured by considering the
computations in terms of number of exponentiations made by P and of V. In our comparison we
consider that a CRS contains a DH tuple ((Gcrs, qcrs, pcrs, gcrs), Acrs, Bcrs, Ccrs) with |pcrs| =
n = 1024, with security parameter n (therefore |qcrs| = 1023). We consider two cases. In the
first one we use the NIZK argument to prove that a tuple ((G, q, p, g), A,B,C) is a DH tuple;
in particular we take in account two sub-cases: when p = 1024 and when p = 2048. In the
second case we use the NIZK argument to prove the isomorphism between two graphs G0 and
G1, and we assume that k = n2 bits are needed to represent a graph with n vertices. We stress
that Lindell’s transform needs to commit the first round of a Σ-protocol (plus the instance to
be proved, but for our comparison we ignore that the instance has to be committed) associated
to the language that we take into account (the language of the DH tuples or the language of
the isomorphic graphs). Therefore, using the described CRS, to commit to a string of 1023 bit,
4 exponentiations are required. This is a consequence of the fact that the commitment is made
by executing the simulator associated with ΠDH (with |qcrs| = 1023).

Case 1: proving that a tuple is a DH tuple.

• [Lin15]. When the instance to be proved is ((G, q, p, g), A,B,C) with p = 1024, the prover
P needs to compute a = gt, b = ht (as describe before) and needs to commit to them. The
total size of a and b is 2048 bits, therefore to commit to 2048 bits we need to execute the DM
commitment 3 times. This implies that the prover needs to compute 3 · 4 exponentiations
mod pcrs and 2 exponentiations mod p. The verifier V needs to checks if open of the DM
commitments was correct, and also needs to compute gz = a ·Aep and hz = b ·Ce. For this
reason the verifier needs to compute 3 · 4 exponentiations mod pcrs plus 4 exponentiations
mod p. With the same arguments we can count the amount of exponentiations needed to
prove that the instance is a DH tuple with p = 2048.

• Our transform. When |p| = 1024 (resp., |p| = 2048) the prover need to run the simu-
lator Sim of ΠDH with the instance ((Gcrs, qcrs, pcrs, gcrs), Acrs, Bcrs, Ccrs) (this costs
4 exponentiations), also we need to compute a = gt , b = ht. The total number of
exponentiations is 6 (2 exponentiations mod p, and 4 exponentiations mod pcrs). The
verifier needs to perform two times the verifier’s algorithm for ΠDH, one with the instance
((Gcrs, qcrs, pcrs, gcrs), Acrs, Bcrs, Ccrs), the other one with the instance ((G, q, p, g), A,B,C),
for a total amount of 4 exponentiations mod pcrs, and 4 exponentiations mod p.

Case 2: Graph isomorphism.

• [Lin15]. We consider that the instance to be proved is composed by two graphs (G0, G1).
Also we assume that to represent one graph with n vertices k = n2 bits are necessary. In
this case we remark that because the security parameter is n = 1024 we need to execute
n times the protocol ΠGH described before. For the described assumptions we have that
the first round of ΠGH is P = σ(Gb) and |P | = n2. Therefore the prover needs to run n
executions of the DM commitment function to commit to P , where each of them costs 4
exponentiations. Also we need to execute n iteration of this process, for a total amount of
4n2 exponentiations mod pcrs. Even in this case the verifier needs to checks if all opens
with respect to the n commitments are correctly computed for a total amount of 4n2

exponentiations mod pcrs.

• Our transform. In this case the prover P computes only 4 exponentiations mod p to
compute the first round of ΠDH. The verifier runs the verifier’s algorithm of ΠDH and this

143

requires 4 exponentiations mod p.

7.7 An Optimal-Sound (and Not Special Sound) 3-Round Perfect
Special HVZK Proof

In this section we show a 3-round public-coin perfect special HVZK proof system that is optimal
sound and not special sound. First of all we briefly describe the Σ-protocol of [MP03] to prove
that, given a commitment com and a message m, m is committed in com. Then we show the
protocol of [Vis06], that is a modification of [MP03], where given a commitment com and a value
Ψ, allows to prove that the discrete logarithm of Ψ is committed in com.

In order to describe the protocol of [MP03] and [Vis06] we consider two prime p and q s.t.
p = 2q + 1, a group of order G of order q such that the DDH assumption is hard. Also we
consider two random elements, g and h, taken from G.

We next describe Σ-protocol ΠCom = (PCom,VCom) of [MP03] for relation

RelCom =
{((

(G, q, g, h), v, com = (ĝ, ĥ)
)
, w
)

: ĝ = gw, ĥ = hw+v
}
.

Common Input: (G, g, v, h, com = (ĝ, ĥ), q) and relation RelCom.

Input of PCom: w s.t. ((G, v, g, h, com = (ĝ, ĥ), q), w) ∈ RelCom.

The protocol ΠCom:

1. The prover PCom chooses r from Zq and sends (g̃ = gr, h̃ = hr) to VCom;

2. The verifier VCom chooses a random challenge e← Zq and sends e to PCom;

3. PCom sends z = ew + r to VCom;

4. VCom checks that ĝeg̃ = gz and
(
ĥ
hv

)e
h̃ = hz accepts if and only if the checks are successful.

In [Vis06] a similar protocol was used to prove that com is a commitment of the discrete
logarithm of a value Ψ ∈ G with hψ = Ψ. Formally the protocol is for the NP language

L =
{(

Ψ = hψ, com = (ĝ = gw, ĥ = hw+ψ)
)

: g, h← G, ψ ∈ Zq, w ∈ Zq
}

and for the corresponding relation

RelL =
{(

(Ψ = hψ, com = (ĝ = gw, ĥ = hw+ψ)), (w,ψ)
)

: g, h← G, ψ ∈ Zq, w ∈ Zq
}

The protocol follows ΠCom with the differences that the common input is (G, q, g,Ψ =
hψ, h, com = (ĝ, ĥ)) and that the verifier decide whether to accept or not checking if it holds that
ĝeg̃ = gz and

(
ĥ
Ψ

)e
h̃ = hz. While this protocol preserves the perfect special HVZK property,

it is not a proof of knowledge for RelL neither special sound even though it still enjoys optimal
soundness. We now proceed more formally.

144

Optimal soundness. We now consider an instance that is not in the NP language L, and
show that, once the first round of the protocol is fixed, there exists only one challenge e s.t.
the prover can answer successfully computing the third round z of the protocol. Consider the
instance

(
Ψ = hψ, com = (ĝ = gw, ĥ = hw+ψ′)

)
/∈ L (with ψ 6= ψ′). Assume by contradiction

that given the fist round of the protocol (g̃, h̃) there exist two distinct challenges e0 and e1 for
which the prover can make the verifier accept with answers z0, z1 respectively. In the end we
prove that ψ = ψ′.

Proof. Since the verifier accepts, it must be that for all i ∈ {0, 1}, the following checks are
successful:

• ĝei g̃ = gzi ;

•
(
ĥ
Ψ

)ei
h̃ = hzi .

It follows that ĝe0−e1 = gz0−z1 and
(
ĥ
Ψ

)e0−e1
= hz0−z1 . Suppose that h = gω, we get

gwω(e0−e1) = ĝ(e0−e1)ω = g(z0−z1)ω = h(z0−z1) =

(
ĥ

Ψ

)e0−e1
= hz0−z1 = gω(w+ψ′−ψ)(e0−e1).

Therefore, if e0 6= e1 we get the contradiction that ψ = ψ′.

ΠCom is not special sound for RelL. To argue that the protocol of [Vis06] is not special sound,
we note that in order to compute a commitment com of the discrete logarithm of Ψ, knowledge
of this discrete logarithm is not necessary since it is possible to compute com = (ĝ, hw ·Ψ) with
w ∈ Zq. Indeed, notice that the discrete logarithm ψ of Ψ is never used in the proof. Formally,
we suppose that the protocol is special sound for the polynomial relation RelL and then construct
an adversary A that, given Y = gy ∈ G, returns the discrete logarithm y of Y .

We have shown that there exist 3-round public-coin proof systems that are optimal sound
and not special sound. It also easy to observe that special soundness implies optimal soundness.

Indeed, consider an NP-Language L. All Σ-protocols for RelL must also be 3-round HVZK
proofs for L with optimal soundness. If not, than the violation of optimal soundness (P? for a
false statement can generate (a, c, z) and (a, c′, z′) with c′ different from c and both accepting)
implies directly also a violation of special soundness.

145

146

Bibliography

[ABB+10] José Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn,
Ahmad-Reza Sadeghi, and Thomas Schneider. A certifying compiler for zero-
knowledge proofs of knowledge based on sigma-protocols. In Computer Security
- ESORICS 2010, 15th European Symposium on Research in Computer Security,
Athens, Greece, September 20-22, 2010. Proceedings, volume 6345 of Lecture Notes
in Computer Science, pages 151–167. Springer, 2010.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes
from additive combinatorics. In David B. Shmoys, editor, Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
774–783. ACM, 2014.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More
efficient oblivious transfer and extensions for faster secure computation. In 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages 535–548, 2013.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More
efficient oblivious transfer extensions with security for malicious adversaries. In
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, pages 673–701, 2015.

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing
the shared random string model. In 43rd Symposium on Foundations of Computer
Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceed-
ings, pages 345–355, 2002.

[BBC+11] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene
Tsudik. Countering GATTACA: efficient and secure testing of fully-sequenced hu-
man genomes. In Proceedings of the 18th ACM Conference on Computer and Com-
munications Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011,
pages 691–702, 2011.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally
composable protocols with relaxed set-up assumptions. In 45th Symposium on
Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy,
Proceedings, pages 186–195, 2004.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Nonin-
teractive zero-knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

147

[BDSG+13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman
Kalai, Adriana López-Alt, and Daniel Wichs. Why “Fiat-Shamir for Proofs” Lacks
a Proof, pages 182 – 201. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013/01/01/ 2013.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA,
pages 103–112, 1988.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai,
Dakshita Khurana, and Amit Sahai. Promise zero knowledge and its applica-
tions to round optimal mpc. Cryptology ePrint Archive, Report 2017/1088, 2017.
https://eprint.iacr.org/2017/1088.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland,
USA, pages 503–513, 1990.

[BPSV08] Carlo Blundo, Giuseppe Persiano, Ahmad-Reza Sadeghi, and Ivan Visconti. Im-
proved security notions and protocols for non-transferable identification. In Com-
puter Security - ESORICS 2008, 13th European Symposium on Research in Com-
puter Security, Málaga, Spain, October 6-8, 2008. Proceedings, pages 364–378,
2008.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove your-
self: Pitfalls of the fiat-shamir heuristic and applications to helios. In Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing, China, Decem-
ber 2-6, 2012. Proceedings, pages 626–643, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS ’93, Proceedings of the 1st ACM Conference
on Computer and Communications Security, Fairfax, Virginia, USA, November
3-5, 1993., pages 62–73, 1993.

[CD98] Ronald Cramer and Ivan Damgård. Zero-knowledge proofs for finite field arith-
metic; or: Can zero-knowledge be for free? In Hugo Krawczyk, editor, Advances
in Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 23-27, 1998, Proceedings, volume 1462
of Lecture Notes in Computer Science, pages 424–441. Springer, 1998.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In YvoG. Desmedt, editor,
Advances in Cryptology — CRYPTO ’94, volume 839 of Lecture Notes in Com-
puter Science, pages 174–187. Springer Berlin Heidelberg, 1994.

[CDV06] Dario Catalano, Yevgeniy Dodis, and Ivan Visconti. Mercurial commitments:
Minimal assumptions and efficient constructions. In Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, pages 120–144, 2006.

148

https://eprint.iacr.org/2017/1088

[CG15] Pyrros Chaidos and Jens Groth. Making sigma-protocols non-interactive without
random oracles. In Public-Key Cryptography - PKC 2015 - 18th IACR Interna-
tional Conference on Practice and Theory in Public-Key Cryptography, Gaithers-
burg, MD, USA, March 30 - April 1, 2015, Proceedings, pages 650–670, 2015.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-
ogy, revisited (preliminary version). In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
pages 209–218, 1998.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, July 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia
Dwork, editor, Advances in Cryptology - CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 78–96. Springer Berlin Heidelberg, 2006.

[CLP13] Ran Canetti, Huijia Lin, and Omer Paneth. Public-coin concurrent zero-
knowledge in the global hash model. In TCC, pages 80–99, 2013.

[CO18] Michele Ciampi and Claudio Orlandi. Combining private set-intersection with se-
cure two-party computation. Cryptology ePrint Archive, Report 2018/105, 2018.
https://eprint.iacr.org/2018/105.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concur-
rent non-malleable commitments (and more) in 3 rounds. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III, volume 9816 of Lecture Notes in Computer
Science, pages 270–299. Springer, 2016. Full version http://eprint.iacr.org/
2016/566.

[COSV17a] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Delayed-
input non-malleable zero knowledge and multi-party coin tossing in four rounds.
In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography - 15th Inter-
national Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part I, volume 10677 of Lecture Notes in Computer Science, pages
711–742. Springer, 2017. Full version http://eprint.iacr.org/2017/931.

[COSV17b] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Four-
round concurrent non-malleable commitments from one-way functions. In Ad-
vances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II,
pages 127–157, 2017. Full version http://eprint.iacr.org/2016/621.

[COSV17c] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Round-
optimal secure two-party computation from trapdoor permutations. In Yael Kalai
and Leonid Reyzin, editors, Theory of Cryptography - 15th International Confer-
ence, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part
I, volume 10677 of Lecture Notes in Computer Science, pages 678–710. Springer,
2017.

149

https://eprint.iacr.org/2018/105
http://eprint.iacr.org/2016/566
http://eprint.iacr.org/2016/566
http://eprint.iacr.org/2017/931
http://eprint.iacr.org/2016/621

[CPS13] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation from
one-way functions and applications to resettable security. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Comput-
ing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 231–240.
ACM, 2013.

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and
Ivan Visconti. Improved or-composition of sigma-protocols. In Eyal Kushilevitz
and Tal Malkin, editors, Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, volume
9563 of Lecture Notes in Computer Science, pages 112–141. Springer, 2016. Full
version http://eprint.iacr.org/2015/810.

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and
Ivan Visconti. Online/offline OR composition of sigma protocols. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II, volume 9666 of Lecture Notes in Computer Science, pages 63–92. Springer,
2016. Full version http://eprint.iacr.org/2016/175.

[CPSV16] Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi, and Ivan Visconti. A trans-
form for NIZK almost as efficient and general as the fiat-shamir transform with-
out programmable random oracles. In Eyal Kushilevitz and Tal Malkin, editors,
Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv,
Israel, January 10-13, 2016, Proceedings, Part II, volume 9563 of Lecture Notes
in Computer Science, pages 83–111. Springer, 2016.

[CT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection pro-
tocols with linear complexity. In Financial Cryptography and Data Security, 14th
International Conference, FC 2010, Tenerife, Canary Islands, January 25-28,
2010, Revised Selected Papers, pages 143–159, 2010.

[CT12] Emiliano De Cristofaro and Gene Tsudik. Experimenting with fast private set
intersection. In Trust and Trustworthy Computing - 5th International Conference,
TRUST 2012, Vienna, Austria, June 13-15, 2012. Proceedings, pages 55–73, 2012.

[CV05] Dario Catalano and Ivan Visconti. Hybrid trapdoor commitments and their ap-
plications. In Automata, Languages and Programming, 32nd International Col-
loquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, pages
298–310, 2005.

[CV07] Dario Catalano and Ivan Visconti. Hybrid commitments and their applications
to zero-knowledge proof systems. Theor. Comput. Sci., 374(1-3):229–260, 2007.

[Dam00] Ivan Damgård. Efficient concurrent zero-knowledge in the auxiliary string model.
In Advances in Cryptology - EUROCRYPT 2000, International Conference on the
Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-
18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer Science, pages
418–430. Springer, 2000.

[Dam10] Ivan Damgård. On Σ-protocol. http://www.cs.au.dk/~ivan/Sigma.pdf, 2010.

150

http://eprint.iacr.org/2015/810
http://eprint.iacr.org/2016/175
http://www.cs.au.dk/~ivan/Sigma.pdf

[DCV05] Giovanni Di Crescenzo and Ivan Visconti. Concurrent zero knowledge in the
public-key model. In Automata, Languages and Programming, 32nd International
Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, vol-
ume 3580 of Lecture Notes in Computer Science, pages 816–827. Springer, 2005.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (ex-
tended abstract). In Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 542–552,
1991.

[DFN06] Ivan Damgård, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge
from homomorphic encryption. In Theory of Cryptography, Third Theory of Cryp-
tography Conference, TCC, 2006, New York, NY, USA, March 4-7, 2006, Pro-
ceedings, pages 41–59, 2006.

[DG03] Ivan Damgård and Jens Groth. Non-interactive and reusable non-malleable com-
mitment schemes. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, June 9-11, 2003, San Diego, CA, USA, pages 426–437, 2003.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22, 1976.

[DMP87] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-
knowledge proof systems. In Advances in Cryptology - CRYPTO ’87, A Confer-
ence on the Theory and Applications of Cryptographic Techniques, Santa Barbara,
California, USA, August 16-20, 1987, Proceedings, pages 52–72, 1987.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st Annual
Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 283–293, 2000.

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding uni-
versally composable commitment schemes with constant expansion factor. In
Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings,
pages 581–596, 2002.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput.,
36(6):1513–1543, 2007.

[DNT12] Morten Dahl, Chao Ning, and Tomas Toft. On secure two-party integer division.
In Financial Cryptography and Data Security - 16th International Conference, FC
2012, Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers,
pages 164–178, 2012.

[DSDCPY94] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung.
On monotone formula closure of SZK. In 35th Annual Symposium on Foundations
of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages
454–465, 1994.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol
for signing contracts. In Advances in Cryptology: Proceedings of CRYPTO ’82,
Santa Barbara, California, USA, August 23-25, 1982., pages 205–210. Plenum
Press, New York, 1982.

151

[Fei90] Uriel Feige. Alternative models for zero knowledge interactive proofs. Master’s
thesis, Weizmann Institute of Science, Rehovot, Israel, 1990. Ph.D. thesis.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword
search and oblivious pseudorandom functions. In Theory of Cryptography, Second
Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings, pages 303–324, 2005.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Ven-
turi. On the non-malleability of the fiat-shamir transform. In Progress in Cryptol-
ogy - INDOCRYPT 2012, 13th International Conference on Cryptology in India,
Kolkata, India, December 9-12, 2012. Proceedings, pages 60–79, 2012.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In 31st Annual
Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, Oc-
tober 22-24, 1990, Volume I, pages 308–317. IEEE Computer Society, 1990.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowl-
edge proofs under general assumptions. SIAM J. on Computing, 29(1):1–28, 1999.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Advances in Cryptology - EUROCRYPT 2004, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 1–19, 2004.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings, pages 186–194, 1986.

[FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds.
In Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
pages 526–544, 1989.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding proto-
cols. In Proceedings of the Twenty-second Annual ACM Symposium on Theory of
Computing, STOC ’90, pages 416–426, New York, NY, USA, 1990. ACM.

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. J. Cryptology, 9(3):167–190, 1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169–192, 1996.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. In 44th Symposium on Foundations of Computer Science (FOCS 2003),
11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 102–113, 2003.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious trans-
fer. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
12-14 November 2000, Redondo Beach, California, USA, pages 325–335, 2000.

152

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 25–32, 1989.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing
non-malleable commitments: A black-box approach. In 53rd Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pages 51–60, 2012.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou.
The exact round complexity of secure computation. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666
of Lecture Notes in Computer Science, pages 448–476. Springer, 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode
Island, USA, pages 291–304, 1985.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design (extended ab-
stract). In 27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27-29 October 1986, pages 174–187, 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred V. Aho,
editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 218–229. ACM, 1987.

[GMY06a] Juan A. Garay, Philip MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. Journal of Cryptology, 19(2):169–209, 2006.

[GMY06b] Juan A. Garay, Philip MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. Journal of Cryptology, 19(2):169–209, 2006.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applica-
tions. Cambridge University Press, 2004.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Pro-
ceedings, volume 4004 of Lecture Notes in Computer Science, pages 339–358.
Springer, 2006.

[GOSV14] Vipul Goyal, Rafail Ostrovsky, Alessandra Scafuro, and Ivan Visconti. Black-box
non-black-box zero knowledge. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 515–524. ACM, 2014.

153

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6-8 June 2011, pages 695–704, 2011.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable com-
mitments. In Proceedings of the 48th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
1128–1141, 2016. Full version: Cryptology ePrint Archive, Report 2015/1178.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge proto-
col fitted to security microprocessor minimizing both transmission and memory.
In Christoph G. Günther, editor, Advances in Cryptology - EUROCRYPT ’88,
Workshop on the Theory and Application of of Cryptographic Techniques, Davos,
Switzerland, May 25-27, 1988, Proceedings, volume 330 of Lecture Notes in Com-
puter Science, pages 123–128. Springer, 1988.

[Gro04] Jens Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series
DS-04-3, BRICS. PhD thesis. xii+119 pp, 2004.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic
approach to non-malleability. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,
pages 41–50, 2014.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Advances in Cryptology - EUROCRYPT 2008, 27th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, pages 415–432, 2008.

[GSV07] Juan A. Garay, Berry Schoenmakers, and José Villegas. Practical and secure
solutions for integer comparison. In Public Key Cryptography - PKC 2007, 10th
International Conference on Practice and Theory in Public-Key Cryptography,
Beijing, China, April 16-20, 2007, Proceedings, pages 330–342, 2007.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are
garbled circuits better than custom protocols? In 19th Annual Network and
Distributed System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5-8, 2012, 2012.

[HHPV17] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Round-optimal secure multi-party computation. Cryptol-
ogy ePrint Archive, Report 2017/1056, 2017. https://eprint.iacr.org/2017/
1056.

[HKR+14] Feng Hao, Matthew Nicolas Kreeger, Brian Randell, Dylan Clarke, Siamak Fayyaz
Shahandashti, and Peter Hyun-Jeen Lee. Every vote counts: Ensuring integrity
in large-scale electronic voting. USENIX Journal of Election Technology and
Systems, 2(3), July 2014.

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and
pattern matching with security against malicious and covert adversaries. In The-
ory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New
York, USA, March 19-21, 2008., pages 155–175, 2008.

154

https://eprint.iacr.org/2017/1056
https://eprint.iacr.org/2017/1056

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Tech-
niques and Constructions. Information Security and Cryptography. Springer,
2010.

[HOS17] Per Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-
preserving ridesharing. In IEEE 30th Computer Security Foundations Symposium,
CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017, pages 276–291, 2017.

[HRVW09] Iftach Haitner, Omer Reingold, Salil P. Vadhan, and Hoeteck Wee. Inaccessible
entropy. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31
- June 2, 2009, pages 611–620. ACM, 2009.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-
party private set-intersection. In Public-Key Cryptography - PKC 2017 - 20th
IACR International Conference on Practice and Theory in Public-Key Cryptogra-
phy, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part I, pages
175–203, 2017.

[IKN+17] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, David Shanahan, and Moti Yung. Private intersection-sum protocol with
applications to attributing aggregate ad conversions. Cryptology ePrint Archive,
Report 2017/738, 2017. http://eprint.iacr.org/2017/738.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003, Proceedings, pages 145–161, 2003.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data.
In Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, pages 575–594,
2007.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection.
In Security and Cryptography for Networks, 7th International Conference, SCN
2010, Amalfi, Italy, September 13-15, 2010. Proceedings, pages 418–435, 2010.

[Khu17] Dakshita Khurana. Round optimal concurrent non-malleability from polynomial
hardness. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography
- 15th International Conference, TCC 2017, Baltimore, MD, USA, November
12-15, 2017, Proceedings, Part II, volume 10678 of Lecture Notes in Computer
Science, pages 139–171. Springer, 2017.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for trans-
ferring short secrets. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceed-
ings, Part II, pages 54–70, 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 818–829, 2016.

155

http://eprint.iacr.org/2017/738

[KMRS14] Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed Sadeghian.
Scaling private set intersection to billion-element sets. In Financial Cryptogra-
phy and Data Security - 18th International Conference, FC 2014, Christ Church,
Barbados, March 3-7, 2014, Revised Selected Papers, pages 195–215, 2014.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party compu-
tation. In Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Pro-
ceedings, pages 335–354, 2004.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT exten-
sion with optimal overhead. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, pages 724–741, 2015.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation
to the security of fiat-shamir for proofs. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceed-
ings, Part II, volume 10402 of Lecture Notes in Computer Science, pages 224–251.
Springer, 2017.

[Lin10] Yehuda Lindell. Foundations of cryptography 89-856. http://u.cs.biu.ac.il/
~lindell/89-856/complete-89-856.pdf, 2010.

[Lin14] Yehuda Lindell. An efficient transform from Sigma Protocols to NIZK with a
CRS and non-programmable random oracle. Cryptology ePrint Archive, Report
2014/710, 2014. http://eprint.iacr.org/2014/710/20150906:203011.

[Lin15] Yehuda Lindell. An efficient transform from Sigma protocols to NIZK with a CRS
and non-programmable random oracle. In Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part I, pages 93–109, 2015.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-
party computation. J. Cryptology, 22(2):161–188, 2009.

[LP11] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any
one-way function. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of
the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA,
USA, 6-8 June 2011, pages 705–714. ACM, 2011.

[LP15] Huijia Lin and Rafael Pass. Constant-round nonmalleable commitments from any
one-way function. J. ACM, 62(1):5:1–5:30, 2015.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concur-
rent non-malleable commitments from any one-way function. In Ran Canetti,
editor, Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC
2008, New York, USA, March 19-21, 2008., volume 4948 of Lecture Notes in
Computer Science, pages 571–588. Springer, 2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified
framework for concurrent security: universal composability from stand-alone non-
malleability. In Proceedings of the 41st Annual ACM Symposium on Theory of

156

http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://eprint.iacr.org/2014/710/20150906:203011

Computing,STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 179–
188, 2009.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In Advances in Cryptology - CRYPTO, 1990.

[LT13] Helger Lipmaa and Tomas Toft. Secure equality and greater-than tests with sub-
linear online complexity. In Automata, Languages, and Programming - 40th In-
ternational Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,
Part II, pages 645–656, 2013.

[M13] Djekic M. Cryptography of the ancient sparta. 2013. www.australianscience.
com.au/technology/a-scytale-cryptography-of-the-ancient-sparta/ A
Scytale.

[Mau15] Ueli Maurer. Zero-knowledge proofs of knowledge for group homomorphisms.
Designs, Codes and Cryptography, pages 1–14, 2015.

[Mea86] Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party. In Proceedings of the
1986 IEEE Symposium on Security and Privacy, Oakland, California, USA, April
7-9, 1986, pages 134–137, 1986.

[MN12] Payman Mohassel and Salman Niksefat. Oblivious decision programs from obliv-
ious transfer: Efficient reductions. In Financial Cryptography and Data Security -
16th International Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March
2, 2012, Revised Selected Papers, pages 269–284, 2012.

[MP03] Daniele Micciancio and Erez Petrank. Simulatable commitments and efficient
concurrent zero-knowledge. In Advances in Cryptology - EUROCRYPT 2003,
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Warsaw, Poland, May 4-8, 2003, Proceedings, pages 140–159, 2003.

[MP12] Mohammad Mahmoody and Rafael Pass. The curious case of non-interactive
commitments - on the power of black-box vs. non-black-box use of primitives.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Sci-
ence, pages 701–718. Springer, 2012.

[MV16] Arno Mittelbach and Daniele Venturi. Fiat-shamir for highly sound protocols
is instantiable. In Vassilis Zikas and Roberto De Prisco, editors, Security and
Cryptography for Networks - 10th International Conference, SCN 2016, Amalfi,
Italy, August 31 - September 2, 2016, Proceedings, volume 9841 of Lecture Notes
in Computer Science, pages 198–215. Springer, 2016.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–
158, 1991.

[NMH+10] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita
Borisov. Botgrep: Finding P2P bots with structured graph analysis. In 19th
USENIX Security Symposium, Washington, DC, USA, August 11-13, 2010, Pro-
ceedings, pages 95–110, 2010.

157

www.australianscience.com.au/technology/a-scytale-cryptography-of-the-ancient-sparta/
www.australianscience.com.au/technology/a-scytale-cryptography-of-the-ancient-sparta/

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages
427–437, 1990.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n
OT extension with application to private set intersection. In Topics in Cryptology
- CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference 2017, San
Francisco, CA, USA, February 14-17, 2017, Proceedings, pages 381–396, 2017.

[OPV08] Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti. Constant-round concur-
rent non-malleable zero knowledge in the bare public-key model. In Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reyk-
javik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Foundations,
pages 548–559, 2008.

[OPV10] Rafail Ostrovsky, Omkant Pandey, and Ivan Visconti. Efficiency preserving trans-
formations for concurrent non-malleable zero knowledge. In Daniele Micciancio,
editor, Theory of Cryptography, 7th Theory of Cryptography Conference, TCC
2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, volume 5978 of Lec-
ture Notes in Computer Science, pages 535–552. Springer, 2010.

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-
box two-party computation. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216
of Lecture Notes in Computer Science, pages 339–358. Springer, 2015.

[ORSV13] Rafail Ostrovsky, Vanishree Rao, Alessandra Scafuro, and Ivan Visconti. Revisit-
ing lower and upper bounds for selective decommitments. In TCC, pages 559–578,
2013.

[OV12] Rafail Ostrovsky and Ivan Visconti. Simultaneous resettability from collision
resistance. Electronic Colloquium on Computational Complexity (ECCC), 19:164,
2012.

[Pas03a] Rafael Pass. On deniability in the common reference string and random ora-
cle model. In Advances in Cryptology - CRYPTO 2003, 23rd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, pages 316–337, 2003.

[Pas03b] Rafael Pass. Simulation in quasi-polynomial time, and its application to proto-
col composition. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture
Notes in Computer Science, pages 160–176. Springer, 2003.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 232–241.
ACM, 2004.

158

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-
malleable commitments. In TCC, pages 334–354, 2013.

[Pol16] Antigoni Polychroniadou. On the Communication and Round Complexity of Se-
cure Computation. PhD thesis, Aarhus University, December 2016.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way
functions and applications. In Advances in Cryptology - CRYPTO 2008, 28th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2008. Proceedings, pages 57–74, 2008.

[PR03] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation
in a constant number of rounds. In 44th Symposium on Foundations of Computer
Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings,
pages 404–413. IEEE Computer Society, 2003.

[PR05a] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005),
23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 563–572, 2005.

[PR05b] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable
cryptographic protocols. In Harold N. Gabow and Ronald Fagin, editors, Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 533–542. ACM, 2005.

[PR05c] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable
cryptographic protocols. In Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 533–542,
2005.

[PR08a] Rafael Pass and Alon Rosen. Concurrent nonmalleable commitments. SIAM J.
Comput., 37(6):1891–1925, 2008.

[PR08b] Rafael Pass and Alon Rosen. New and improved constructions of nonmalleable
cryptographic protocols. SIAM J. Comput., 38(2):702–752, 2008.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Pri-
vate set intersection using permutation-based hashing. In 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015.,
pages 515–530, 2015.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set in-
tersection based on OT extension. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014., pages 797–812, 2014.

[PSZ16] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set in-
tersection based on ot extension. Cryptology ePrint Archive, Report 2016/930,
2016. http://eprint.iacr.org/2016/930.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from
sub-exponential one-way functions. In Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings,
pages 638–655, 2010.

159

http://eprint.iacr.org/2016/930

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
May 13-17, 1990, Baltimore, Maryland, USA, pages 387–394, 1990.

[RR17] Peter Rindal and Mike Rosulek. Improved private set intersection against mali-
cious adversaries. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages 235–259,
2017.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 543–553.
IEEE Computer Society, 1999.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 239–252. Springer New
York, 1989.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor,
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings,
volume 2139 of Lecture Notes in Computer Science, pages 566–598. Springer,
2001.

[Sha80] Adi Shamir. On the power of commutativity in cryptography. In Automata,
Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherland,
July 14-18, 1980, Proceedings, pages 582–595, 1980.

[SV12] Alessandra Scafuro and Ivan Visconti. On round-optimal zero knowledge in the
bare public-key model. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer
Science, pages 153–171. Springer, 2012.

[T+07] Tomas Toft et al. Primitives and applications for multi-party computation. PhD
Thesis, University of Aarhus, Denmark, 2007.

[TLP+17] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas,
and N. Asokan. The circle game: Scalable private membership test using trusted
hardware. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates,
April 2-6, 2017, pages 31–44, 2017.

[Vis06] Ivan Visconti. Efficient zero knowledge on the internet. In Automata, Languages
and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II, pages 22–33, 2006.

[VV09] Carmine Ventre and Ivan Visconti. Co-sound zero-knowledge with public keys. In
Progress in Cryptology - AFRICACRYPT 2009, Second International Conference

160

on Cryptology in Africa, Gammarth, Tunisia, June 21-25, 2009. Proceedings, vol-
ume 5580 of Lecture Notes in Computer Science, pages 287–304. Springer, 2009.

[Wee09] Hoeteck Wee. Zero knowledge in the random oracle model, revisited. In Advances
in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory
and Application of Cryptology and Information Security, Tokyo, Japan, December
6-10, 2009. Proceedings, pages 417–434, 2009.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability
amplification. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 531–
540. IEEE Computer Society, 2010.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982, pages 160–164. IEEE Computer Society, 1982.

[YZ06] Moti Yung and Yunlei Zhao. Interactive zero-knowledge with restricted random
oracles. In Theory of Cryptography, Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, pages 21–40,
2006.

[YZ07] Moti Yung and Yunlei Zhao. Generic and practical resettable zero-knowledge
in the bare public-key model. In Moni Naor, editor, Advances in Cryptology -
EUROCRYPT 2007, 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007,
Proceedings, volume 4515 of Lecture Notes in Computer Science, pages 129–147.
Springer, 2007.

161

	Introduction
	Secure Two-Party Computation.
	4-Round Concurrent Non-Malleable Commitment from OWFs
	Efficient and Delayed-Input Proof System

	Preliminaries
	Standard Definitions
	Commitment Schemes

	I Secure Two-Party Computation
	Round Optimal 2-Party Computation
	Introduction
	Special One-Sided Simulatable OT
	Definitions and Tools
	Delayed-Input Non-Malleable Zero Knowledge
	Two-party Computation with a Simultaneous Message Exchange Channel
	Oblivious Transfer

	Our OT Protocol OT=(SOT, ROT)
	Secure 2PC in the Simultaneous Message Exchange Model
	Formal Description of Our 2PC=(P1, P2)

	Private Set-Membership in the Semi-Honest Setting
	Introduction
	Technical overview
	Why phasing and 2PC do not mix
	Our protocol

	Definitions and tools
	Two party computation
	Special private-key encryption

	Our Protocol
	Formal description
	Complexity analysis
	Security proof

	Optimisations and extension
	Applications
	Computing statistics of the private intersection
	Threshold PSI

	II Concurrent Non-Malleable Commitments
	Four-Round Concurrent Non-Malleable Commitments from One-Way Functions
	Introduction
	Definitions and tools
	Non-Malleable Commitments
	New Definitions: weak NM and SimWI

	4-Round One-Many SimWI From OWFs
	4-Round Concurrent NM Commitment Scheme
	On the Weak Concurrent Property of GRRV14
	Formal Proofs
	Formal Proof of Th. 5
	Formal Proof of Th. 6

	III Efficient Proof Systems
	Delayed-Input Witness Indistinguishable Proofs of Knowledge
	Introduction
	Our Results
	Our Techniques
	Comparison with the State of the Art
	Online/Offline Computation

	Preliminaries
	Three rounds and public coins
	Delayed-input protocols
	The DDH assumption
	Instance-Dependent Binding Commitment

	Adaptive-Input Special-Soundness of -protocols
	Adaptive-Input Insecure Delayed-input -protocols
	A Compiler for Adaptive-Input Special Soundness
	On the Adaptive-Input Soundness of CPSSV15's Transform

	Delayed-input three-round protocols for the threshold relation
	Proof of Knowledge
	Adaptive-Input Witness Indistinguishability
	Online performances

	Extension to Multiple Relations
	(Adaptive-Input) Proof of Knowledge
	Adaptive-Input Witness Indistinguishability

	Non-Interactive Zero-Knowledge Without Programmable Random Oracles
	Introduction
	Our Results
	Comparison

	HVZK Proof Systems and -Protocols
	Challenge Lengths of 3-Round HVZK Proofs
	3-Round Public-Coin HVZK Proofs for OR Composition of Statements

	Non-Interactive Argument Systems
	NIWI Argument Systems from 3-Round HVZK Proofs
	Our Transform: Non-Interactive Zero Knowledge from HVZK
	Efficiency Comparison
	An Optimal-Sound (and Not Special Sound) 3-Round Perfect Special HVZK Proof

