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Abstract 
Le aziende di medie e grandi dimensioni devono ogni giorno competere in un contesto 

mondiale. Per raggiungere una maggiore efficienza nei loro prodotti/processi sono costrette 

a globalizzarsi aprendo più sedi in luoghi geograficamente distanti tra loro. In tale contesto, 

persone dello stesso team o afferenti a team diversi devono lavorare insieme 

indipendentemente dal fuso orario e dal luogo in cui si trovano. Pertanto un team “virtuale” 

è costituito da gruppi di persone geograficamente lontane che riescono a coordinarsi con 

l’ausilio delle nuove tecnologie.  

Gli strumenti e le metodologie a supporto del “Computer Supported Cooperative Work” 

(CSCW) possono agevolare la collaborazione riducendo problematiche legate alla distanza 

e al tempo. 

I principali obiettivi che il CSCW si prefigge di ottenere all’interno di una organizzazione 

complessa sono di seguito elencati: 

• Pianificare, monitorare, e visualizzare l’avanzamento delle varie fasi di progetto fino al suo 

completamento (Project Management) 

• Condividere, revisionare, approvare o respingere proposte di progetto provenienti da altri 

membri del gruppo di lavoro (Authoring Systems) 

• Gestione Collaborativa di attività e reportistica all’interno di un processo di business basato 

sulla conoscenza (Workflow Management) 

• Collezionare, organizzare, gestire e condividere l’informazione sotto varie forme (Knowledge 

Management) 

• Poter taggare, organizzare, condividere, e ricercare dati globali attraverso un engine di 

collaborazione (Enterprise Bookmarking) 

• Collezionare, organizzare, gestire e condividere informazioni legate alla delibera finale di un 

progetto (Extranet Systems) 

• Condividere informazioni di natura generale fra tutti i membri di una organizzazione (Intranet 

Systems)  

• Organizzare relazioni sociali di gruppo (Social Network) 

• Collaborare e condividere dati strutturati (Online SpreadSheet) 

Il presente lavoro prende spunto dagli obiettivi principali su esposti e attraverso una attività 

di ricerca con esperienza diretta sul campo ne verifica la rispondenza e ne garantisce la 

applicabilità. 

Il contesto reale è costituito da team virtuali di ingegneri e al modo in cui collaborano 

all'interno dell'industria automotive. L’iter della attività di ricerca si può riassumere nei 

seguenti passi: (1) sono stati identificati i principali requisiti collaborativi ed ingegneristici 

facendo riferimento ad un caso d'uso reale all'interno di Fiat Chrysler Automobiles; (2) ogni 

requisito è stato soddisfatto implementando un`architettura integrata, modulare ed 

estendibile; (3) è stata progettata, implementata e testata una piattaforma chiamata Floasys 

di raccolta, centralizzazione e condivisione di simulazioni; (4) è stato progettato un tool 

denominato ExploraTool per esplorare visivamente un repository di simulazioni all'interno 

di Floasys; (5) sono state identificate le possibili estensioni della piattaforma in termini di 

multidisciplinarietà e di multisettorialità; (6) a valle di tutto il processo, sono stati verificati 

tutti i requisiti che un CSCW si prefigge di soddisfare. 
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   La fase iniziale del lavoro si è concentrata sulla raccolta di requisiti collaborativi e delle 

relative esigenze che emergono nel momento in cui differenti team geograficamente lontani 

(virtual teams) si ritrovano a collaborare per perseguire un risultato comune.  

I requisiti collaborativi identificati per supportare la collaborazione tra team 

geograficamente lontani sono: centralizzare i dati delle simulazioni, fornire la possibilità di 

annotare ed aggiungere metadati ai file, fornire un motore di ricerca per ottenere 

simulazioni completate da altri analisti, fornire il versioning dei dati e supportare la loro 

condivisione. In linea con i requisiti individuati è stato sviluppato un prototipo di 

piattaforma collaborativa (CSCW) chiamato Floasys. 

I clienti finali di Floasys sono in prima istanza tutte le industrie che utilizzano le 

simulazioni CAE per progettare i loro prodotti, quindi, le industrie automotive, 

aeronautiche e navali, etc. 

Floasys colleziona i dati delle simulazioni, li memorizza in formato aperto XML e li 

centralizza in un repository condiviso; fornisce inoltre ulteriori servizi sui dati raccolti  

memorizzati in formato aperto, ad esempio la possibilità di annotare i file oppure di cercare 

all'interno del repository indipendentemente dal simulatore con cui sono stati generati.  

Risulta di estrema utilità il poter recuperare le simulazioni effettuate da altri membri dello 

stesso team o di team diversi al fine di poter confrontare le prestazioni di un progetto in 

corso.  Per poter fornire questi servizi vanno considerati vari aspetti: sicuramente i servizi 

appena elencati debbono essere immersi in un contesto aziendale già esistente con relative 

pratiche, workflow e sistemi software esistenti. Per portare un esempio concreto la sola 

centralizzazione dei dati delle simulazioni implica la comunicazione con i software di 

simulazione esistenti mitigando il problema del Vendor Lock-In ovvero la forte dipendenza 

dagli stessi simulatori. 

  Da un punto di vista architetturale, Floasys soddisfa i requisiti non funzionali di 

estendibilità e modularità. In questo modo il sistema può essere adattato alle necessità dei 

clienti, aperto a soddisfare necessità future ed essere usato in altri dipartimenti. 

L'architettura modulare ed estendibile di Floasys è stata ottenuta basandosi sul concetto di 

plug-in. Sebbene l'attività di ricerca riguarda direttamente il settore automotive, i requisiti 

raccolti e le difficoltà descritte sono comuni anche ad altri settori come descritto in 

letteratura. Per cui molte delle considerazioni fatte in questo lavoro e le soluzioni adottate 

possono essere riutilizzate per altri tipi di simulazione oltre che per i dati ottenuti da 

esperimenti. 

Infine, all'interno di Floasys è stato integrato un tool interattivo detto “ExploraTool” per la 

visualizzazione, l'esplorazione e l'interrogazione di repository di simulazioni. Sebbene 

l'idea di questo tool sia nata nel contesto della navigazione dei repository di simulazioni, 

esso è generico e può essere utilizzato con qualsiasi dataset. Il tool si basa sui diagrammi di 

Eulero-Venn. L'universo è l'insieme di tutte le simulazioni memorizzate in uno o più 

repository. I gruppi di simulazioni vengono rappresentati mediante ellissi innestate. Usando 

tale tool, gli analisti possono esplorare il repository attraverso operazioni di drill-down e 

roll-up per ottenere più o meno dettagli. Andando giù nella gerarchia l'utente filtra gli item 

all'interno del dataset effettuando a tutti gli effetti una query grafica. In questo modo 

l'utente esplora il repository ottenendo alla fine due o più simulazioni da comparare. Dopo 

la fase di ideazione, progettazione ed implementazione, il tool è stato testato con utenti reali 

allo scopo di ottenere dati sulla sua usabilità. 
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This section is a list of abbreviations and acronyms used through the thesis. 

They are listed in alphabetic order. 
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Chapter 1 

 

Introduction 

Contents 

 

 
 

This introductory chapter provides an overview of the thesis content. It introduces briefly the 

terminology used since the title page and through the entire work. It evolves around the concepts of 

virtual teams, Enterprise 2.0 and Trialogic learning discussed in a real industrial use case. The 

chapter aims to discuss the dissertation goals and contributions giving to the reader a link between 

them and the next chapters. 

 

 

1.1 Enterprise Collaboration 

 
Nowadays small and medium enterprises (SMEs) as well as large industries are world-wide and 

work in a global market. Their organisation is often dislocated over multiple nations and companies 

and faces time, space and cultural barriers. In a high competitive world market and economy, 

companies face the need for a fast time-to-market, low cost and rapid product development [1]. The 

introduction of Internet and new communication technologies can enable the collaboration among 

dispersed team members overcoming geographical, temporal, cultural and organisational 

boundaries. 

The term collaboration refers to the process of two or more parties who work jointly towards a 

common goal [2]. In according to it, we define the collaborative technology as computer tools that 

support communication, coordination, and/or information processing needs of two or more people 

working together on a common task [2]. 

Supported Cooperative Work (CSCW) and groupware are well-known computer technologies to 

collaborate together, and study how people use technology to work together.  

Enterprise collaboration refers to communication among the employees of a corporate that may 

encompass the use of collaborative technologies like collaboration platforms, enterprise social 

networks and corporate Internet. For instance, within the enterprise well-established communication 

tools are the e-mails and the video-conferencing systems. 
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In according to the collaborative technology there are two dimensions: space and time. Space means 

where the persons who collaborate together are located. For instance, persons could be in the same 

room discussing face-to-face or they can be geographically distant each other discussing through a 

video-conference system. Time concerns whether the persons collaborate at same time or can 

collaborate also in different moments, so the key terms are respectively synchronous and 

asynchronous collaboration. To further understand this distinction it is really useful to consider the 

CSCW Quadrants. The combination of the time and space dimensions generates four quadrants 

useful to classify the existing or future collaborative technologies. For instance, the e-mail is a tool 

that supports the asynchronous communication among distant people and people who work in the 

same room. The communication is asynchronous just because the sending and receiving events 

occur in different times. Instead a video conference system is mainly used by users that are far from 

each other and communicate together at same moment. 

 

 
 

In the context of Enterprise Collaboration, another very common keyword is virtual team that 

encompasses all the collaboration within the enterprise among teams that are geographically far 

from each other. 

 

 

1.1.1 Virtual Teams Collaboration 
 

In team-based organisations, participants are grouped into teams. A team is a group of people with 

a full set of complementary skills who work on the same activity or tasks towards a common goal 

[3,4]. The term teamwork highlights exactly the concept of people (a team) who work together 

toward the same goal. Their actions are interdependent, but they are fully committed to a single 

result. Teamwork means that people will try to cooperate, using their individual skills providing 

constructive feedback, despite any personal conflict between individuals. 

When the members of a team are geographically distributed over different places and use the 

modern communication technologies to coordinate their work we talk about virtual teams also 

known as dispersed teams. A team is virtual when all the following characteristics are true: 

 

� geographically dispersed teams sometimes over different time zones; 
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� driven by common purpose; 

� enabled by communication technologies [5], such as e-mail, video-conferencing, telephone, 

etc. 

 

Today complex products like automotive products are designed in collaboration with the Suppliers 

directly involved in the design process. Hence, also teams belong to different organisations can 

collaborate together. Therefore, additional characteristics for virtual teams could be: 

 

� they can belong to different companies; 

� the teams are not necessary permanent; 

� often the teams have small size; 

� the team members are knowledge workers. 

 

Summarising these characteristics, the definition of virtual team is: 

 

Virtual Team definition [1]: (small temporary) groups of geographically, organizationally and/or 

time dispersed knowledge workers who coordinate their work predominantly with electronic 

information and communication technologies in order to accomplish one or more organization 

tasks. 

 

An important keyword of the Virtual Team Definition is the coordination predominantly with 

electronic technologies so all interactions are virtual. Of course, it is important to highlight also the 

virtual teams disadvantages or their difficulties [1]. The lack of physical interactions, reduced face-

to-face synergies and the lack of social interactions are difficulties to take into account. The 

introduction of Virtual Teams within an enterprise is not easy and, as known in literature [7], 

requires a heavy change in the project management. Hence, difficulties are both technological and 

non-technological, and must be evaluated before to leverage on a virtual team. 

 

 

1.1.2 Enterprise 2.0 

 
The Enterprise 2.0 known also as E2.0 is the use of emergent social software platforms within an 

organisation to pursue its goals [8]. Social software supports the rendezvous, connection, and 

collaboration among users who form online communities. The term emergent, used in the previous 

paragraph, refers to the use of E2.0 software that is freeform, optional, without predefined 

workflows and indifferent to formal hierarchies. In contrast, enterprises usually use software that 

have standard workflows. For instance, Customer Relationship Management (CRM) and Enterprise 

Resource Planning (ERP) software are two type of system that every enterprise uses within and 

outside its organisation. They define exactly the workflows to follow, the roles and what does 

everyone.  

On the opposite side E2.0 are completely free without predefined structure. Of course, Enterprise 

2.0 technologies can be used with Virtual Teams to overcome their limitations. For instance, E2 

aims to introduce social interactions within the enterprise that is exactly a virtual team limitation. Of 

course, the introduction of E2.0 technology must be carefully evaluated and actually not all 

industries have it. 

 

 

 



�

��

�

1.1.3 Trialogic Learning 

 
In the Trialogic Learning [9] learners collaborate around shared objects developing, transforming, 

or creating other shared objects in a systematic fashion for some later use. 

The triad in the Trialogic Learning definition is made by: 

 

� The subjects or learners, 

� The collaboratively development, transformation or object creation 

� For later use or other users 

 

Figure 1.2: Trialogic Learning elements. 

Trialogic learning concentrates on the interactions among people through developing common 

shared objects. The community gets collaboratively insight into knowledge objects and also 

collaboratively works with knowledge artefacts to develop other knowledge objects or transform the 

previous ones. 

Specifically, shared objects [9] are knowledge artefacts, practices or processes developed 

collaboratively for later use. Artefacts can be conceptual or concrete. Examples of conceptual 

artefacts are ideas, plans and designs, whereas concrete artefacts are prototypes. These objects have 

a knowledge content and one can perform actions on them transforming objects and their 

knowledge content. The representative example of Trialogic Learning is Wikipedia. The shared 

objects are the wikipedia articles that are updated by the communities of users for communal use. 

In the context of this thesis the three elements of the Trialogic Learning exist. In the engineering 

context, multiple engineers collaborate together to simulate products (the shared objects) to use later 

to make the products. 

 

 

1.2  CSCW Research topics 
 

Collaborative software was originally designated as groupware and this term can be traced as far 

back as the late 1980s, when Richman and Slovak (1987) wrote: 
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"Like an electronic sinew that binds teams together, the new groupware aims to place the computer 

squarely in the middle of communications among managers, technicians, and anyone else who 

interacts in groups, revolutionizing the way they work." 

Even further back, in 1978 Peter and Trudy Johnson-Lenz coined the term groupware; their initial 

1978 definition of groupware was, “intentional group processes plus software to support them.” 

Later in their article they went on to explain groupware as “computer-mediated culture... an 

embodiment of social organization in hyperspace."  

Groupware integrates co-evolving human and tool systems, yet is simply a single system. 

In the early 1990s the first commercial groupware products were delivered, and big companies such 

as Boeing and IBM started using electronic meeting systems for key internal projects. Lotus 

Notes appeared as a major example of that product category, allowing remote group collaboration 

when the internet was still in its infancy. Kirkpatrick and Losee (1992) wrote then: 

"If GROUPWARE really makes a difference in productivity long term, the very definition of an 

office may change. You will be able to work efficiently as a member of a group wherever you have 

your computer. As computers become smaller and more powerful, that will mean anywhere." 

 

1.2.1 Design and implementation issues 
 

The complexity of groupware development is still an issue. One reason for this is the socio-

technical dimension of groupware. Groupware designers do not only have to address technical 

issues (as in traditional software development) but also consider the organizational aspects and the 

social group processes that should be supported with the groupware application. Some examples for 

issues in groupware development are: 

• Persistence is needed in some sessions. Chat and voice communications are routinely non-

persistent and evaporate at the end of the session. Virtual room and online file cabinets can 

persist for years. The designer of the collaborative space needs to consider the information 

duration needs and implement accordingly. 

• Authentication has always been a problem with groupware. When connections are made point-

to-point, or when log-in registration is enforced, it's clear who is engaged in the session. 

However, audio and unmoderated sessions carry the risk of unannounced 'lurkers' who observe 

but do not announce themselves or contribute.  

• Until recently, bandwidth issues at fixed location limited full use of the tools. These are 

exacerbated with mobile devices. 

• Multiple input and output streams bring concurrency issues into the groupware applications. 

• Motivational issues are important, especially in settings where no pre-defined group process 

was in place. 

• Closely related to the motivation aspect is the question of reciprocity. Ellis and others have 

shown that the distribution of efforts and benefits has to be carefully balanced in order to 

ensure that all required group members really participate. 

 

One approach for addressing these issues is the use of design patterns for groupware design. The 

patterns identify recurring groupware design issues and discuss design choices in a way that all 

stakeholders can participate in the groupware development process. 
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1.2.2 Groupware and levels of collaboration 
 

 

Groupware can be divided into three categories depending on the level of collaboration: 

 

1. Communication can be thought of as unstructured interchange of information. A phone 

call or an IM Chat discussion are examples of this. 

2. Conferencing (or collaboration level, as it is called in the academic papers that discuss 

these levels) refers to interactive work toward a shared goal. Brainstorming or voting are 

examples of this. 

3. Co-ordination refers to complex interdependent work toward a shared goal. A good 

metaphor for understanding this is to think about a sports team; everyone has to contribute 

the right play at the right time as well as adjust their play to the unfolding situation - but 

everyone is doing something different - in order for the team to win. That is complex 

interdependent work toward a shared goal: collaborative management. 

 

 

1.2.3  Collaborative management (coordination) tools 

 

Collaborative management tools facilitate and manage group activities. Examples include: 

 

• Electronic calendars (also called time management software) — schedule events and 

automatically notify and remind group members 

• Project management systems — schedule, track, and chart the steps in a project as it is 

being completed 

• Online proofing — share, review, approve, and reject web proofs, artwork, photos, or 

videos between designers, customers, and clients 

• Workflow systems — collaborative management of tasks and documents within a 

knowledge-based business process 

• Knowledge management systems — collect, organize, manage, and share various forms of 

information 

• Enterprise bookmarking — collaborative bookmarking engine to tag, organize, share, and 

search enterprise data 

• Prediction markets — let a group of people predict together the outcome of future events 

• Extranet systems (sometimes also known as 'project extranets') — collect, organize, 

manage and share information associated with the delivery of a project (e.g.: the 

construction of a building) 

• Intranet systems — quickly share company information to members within a company via 

Internet (e.g.: marketing and product info) 

• Social software systems — organize social relations of groups 

• Online spreadsheets — collaborate and share structured data and information 

• Client portals — interact and share with your clients in a private online environment 
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1.3  Dissertation Goals and contributions 

 
In large industries, such as automotive industries, the engineering teams are distributed over 

multiple locations. The geographically separation among workers introduces new requirements that 

are not covered by existing engineering software, and introduces new challenges for software 

engineers. This thesis is related to a real use case of two separated engineering teams of Fiat 

Chrysler Automobiles (FCA) that collaborate together with the aim to design automotive products. 

The first goal of this work is to get insight into the real use case understanding the engineering 

context and providing an overview of the actual collaboration among team members. In order to be 

compliant to a standard methodology, this step refers to the standard software engineering 

methodology for the requirements elicitation. Therefore, the main outcomes of this requirements 

elicitation activity is a list of collaborative and engineering requirements gathered within a real use 

case and compared with the existing literature. The availability of this real use case is a really 

valuable aspect of this work because the reporting of collaborative requirements within the 

simulation engineering context represents a significant distinction and novelty compared to the 

existing work published in literature. The interaction with end-users has potentially enormous 

advantages for the immediate feedback.  

The systematic collection, classification and analysis of both collaborative and engineering 

requirements has been performed through an agile methodology that involves directly, immediately 

and continuously the end-users and stakeholders from the beginning through short, repetitive and 

close steps directly on the field. Three approaches have been used: on-site observations working 

directly with simulation analysts in FCA, stakeholders interviews and a user survey between two 

dispersed teams. Of course, this requirements elicitation is not a one-shot activity but it has been 

performed continuously from the beginning until the end of the project. 

The collection, classification and analysis of gathered requirements is only the first step, the next 

step is to design, implement and test a platform to deploy in a real setting like FCA. This work 

contributes with Floasys a collaborative web-based platform useful to collect, centralise and share 

simulations among engineers of different dispersed teams. 

A collaborative platform is not an isolated island but it must be integrated with the industrial 

ecosystem. Therefore, the development of a new platform and its deployment within the industry 

implies the integration of the existing software, procedures, best practices and so on. In addition, 

different issues must be take into account like the integration of existing software, heterogeneities 

among software and already existing internal workflows and practices. 

To summarise, the main goals achieved through this work are: 

 

� Collection, identification and analysis of the key collaborative requirements of dispersed 

teams within a real industrial use case (FCA use case); 

� Design of an integrated, extensible and modular software architecture; 

� Design, implementation and testing of a real working prototype called Floasys with its 

collaborative and engineering functionalities; 

� Design, implement and test a generic tool called ExploraTool to visually explore large 

datasets in hierarchical way; 

� Extension to different disciplines (like Structure, Thermal, Fatigue) and different contexts 

(like Aeronautic, Rail and Naval sectors). 

� Final verification of CSCW research requirements in the developed prototype. 
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1.4 Dissertation Roadmap 

 
This thesis has been organised logically starting from the requirements elicitation activity and the 

gathered collaborative and engineering requirements. Then, it introduces Floasys, the Web-based 

platform designed to address the key stakeholders' requirements and able to collect, centralise and 

share simulations among engineers. A part of the thesis is allocated to describe the Floasys 

architecture and how it solves the data heterogeneity issue through a modular and extensible 

architecture. Another part discusses an interactive tool to visualise, explore and query repository of 

simulations and experiments. The last chapter covers the multi-context and multi-disciplinary 

issues. 

The overall dissertation has been organised as follows: 

 

� Chapter 2 introduces, describes and analyses the collaborative and engineering 

requirements gathered through on site observations, stakeholders interviews and an on-line 

survey. 

 

� Chapter  3 introduces Floasys, its features and its graphical user interface (GUI). Of course, 

the functionalities have been divided in two parts: collaborative and engineering features.  

In the 2
nd

 part it describes the Floasys integrated, extensible and modular architecture and 

maps the architecture features with the provided functionalities and the gathered 

requirements. 

In the final part it introduces the problem of large dataset navigation and exploration like 

simulation and experimental repositories and describes the general idea behind the 

ExploraTool. 

 

� Chapter  4 describes the platform extensions in terms of multi-context and multi-

disciplinary issues. 

 

� Chapter 5 concludes the thesis verifying the CSCW research topics satisfaction and 

reporting the possible future directions to investigate. 
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Chapter 2 

 

Collaborative Requirements 

 
Contents 
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Small and medium enterprises (SMEs) as well as large industries are organised in multiple 

geographically distributed teams that collaborate together. Fiat Chrysler Automobiles is a large 

industry. It has many engineering teams around the world that collaborate together to design vehicle 

products. The goal is to work closely with a team of professionals to get insight and gather the key 

collaborative requirements in the engineering field. It is a challenging goal due the different 

involved stakeholders but at same time represents a significant and relevant use case. This chapter 

reports, analyses and discusses the key collaborative Functional and Non-Function requirements to 

design a platform to foster the collaboration among industrial simulation practitioners and promote 

the sharing of models, results and know-how. These requirements come from a relevant literature 

study and an extensive requirements elicitation performed working closely with two engineering 

teams in Fiat Chrysler Automobiles (FCA) in Pomigliano D'Arco (Napoli) and Torino. The 

requirements are gathered through observations, stakeholders interviews and a user survey. 

This chapter is organised as following. It introduces synthetically the main collaborative 

requirements in the Section 2.1. The Section 2.3 describes the existing methodologies for the 

requirements elicitation activity describing how these have been conducted in the Fiat Chrysler 

Automobiles use case. Then, it deeply discusses every single requirement providing the survey 

results and user comments collected during the interviews and meetings. After introducing briefly 

the engineering context and the simulation workflow, the chapter provides an overview of both 

Functional and Non-Functional requirements with a detailed description for some of them. Finally, 

the chapter provides the possible future works especially in terms of a platform to automatically 

manage multiple simulation workflow iterations considering both Multi-Disciplinary and Multi-

Objective simulations. 

 

 

 

 

2.1 Introduction 

 
Fiat Chrysler Automobiles (FCA), as many other large industries, is organised in multiple 

geographically distributed teams that collaborate together. Through the survey analysis, we get that 

all analysts collaborate at least with another engineer in the same office and more than half analysts 

collaborate with at least one engineer who works in another location. They collaborate together 

sharing file geometries (CAD files), simulations and documents (e.g., slides, spreadsheets). 
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Figure 2.1: Collaboration among geographically distributed teams. 

 

Large industries have multiple locations around the world and are internally organized in multiple 

structures of different types. One type of structure is the functional area. Functional areas have 

technical know-how about a specific topic (i.e., engineering, cost engineering, marketing, 

commercial). Specifically, engineering functional areas perform tasks to design products and 

constantly invest in Research and Development (R&D) to improve their know-how and to be ready 

to provide innovative design solutions. The Computational Fluid Dynamics (CFD) unit is the 

engineering functional area with highly skilled engineers, called CFD analysts, who perform 

numerical computer simulations to analyse problems that involve fluid flow and other related 

physical phenomena, such as aerodynamic, aerothermal and aeroacoustic automotive product 

behaviour. CFD is widely adopted in many industrial sectors, such as automotive, aerospace, high-

tech and chemical sectors. CFD analysts perform simulations following the CFD Workflow [10] 

that is iterative and consists of three phases: (1) pre-processing to prepare simulation, (2) solving 

and (3) post-processing to analyse results. The CFD unit and the CFD Workflow are the use cases. 

In each CFD unit, there are analysts and a technical manager who is responsible for the internal 

team organisation, resources monitoring and their allocations. 

In a large industry, many CFD units collaborate together (Fig. 2.1). The collaboration is among 

geographically distributed CFD units and, among CFD units and other industrial teams, such as the 

product style designers and the performance engineers. In order to design an automotive product 

many engineers collaborate together. Especially, to perform aerodynamics/aerothermal analysis, 

CFD analysts, automotive designers, and performance engineers collaborate together. 

The prerequisite to enable the collaboration among analysts is the simulation data centralisation. 

Industries perform many simulations per year, therefore, in order to foster the model reuse and 

promote the data sharing, it is fundamental how easy it is to retrieve the needed data stored in 

multiple repositories with different formats (often in closed file format). In order to improve data 

retrieval, users aim to annotate simulation files with additional metadata over data, such as free 

tags or structured data, and to have a search tool able to get desired data. Search tools should 

support at least the search through files' names, annotated metadata and simulations' contents. 

Simulation data version control is another desired feature. The aim is to have a history of 

modifications made to simulations. It is a desired feature because the same simulation is often 

performed changing only some parameters (e.g., inlet velocity). 
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Table 2.1: Stakeholders' Collaborative Requirements. 

 

Through, the survey and interviews many requirements have gathered. All of them were filtered to 

get the list of key collaborative requirements shown in Table 2.1. These key collaborative 

requirements drive the design of a collaborative platform to foster collaboration among group of 

engineers who perform simulations. Nevertheless, the analysed context considers mainly 

simulations practitioners, many of these requirements could be valid also in other engineering 

contexts (i.e., aerospace, naval). 

 

 

2.2 Related Works 
 
Aberdeen Group conducts market research studies to help businesses worldwide to improve 

performance. They use a research methodology called P.A.C.E. to classify companies in three 

categories: best-in-class, average and laggard. Then they identify and compare companies using the 

internal and external pressures, their capabilities and the actions used to face the market challenges. 

The market research “Getting Product Design Right the First Time with CFD" [11] by Aberdeen 

Group studied the experience of 704 companies that perform simulations to design their products. 

Specifically, they use the Computational Fluid Dynamics (CFD) simulations to design the products. 

Their leading market research question is how the CFD simulations impact the product design and 

which are the key advantages of using them. The white paper includes a list of “actions" that are the 

steps to perform in order to increase the competitiveness of the companies on the market. Some of 

the actions are: capture and document best practices for conducting simulations, centrally manage 

the simulation results and the best practices, take advantage of predefined wizards or templates to 

guide less experienced users. 

The market research provides some starting points that must be further investigated, such as 

“promote the collaboration" among engineers, ensure the right people have access to the results 

and offer version control. The work further investigates the collaborative requirements of dispersed 

teams and co-located engineers gathered using interviews and a survey. 

Here, we analyse the survey requirements results enriching them with the stakeholders observations 

and feedback. The work contributes also with technical solutions to meet the reported requirements. 

In [12], authors conducted a survey to understand the needs and perception of practitioners about 

the Cloud-based simulation (CBS). In their survey results come to light the need to share, store and 

retrieve models in CBS. 
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2.3 Methodology 

 
This section aims to review the existing literature methods to gather stakeholders' requirements and 

summaries the used method along its advantages and drawbacks. In this way, the work can be 

replicated in the same field or another field following the same methodology. 

The used methodology involves the stakeholders since the beginning in the following activities: 

plan, design, and test. The used requirements elicitation methodology has the following main steps: 

 

� Stakeholders identification; 

� Domain understanding; 

� Tasks identification. 

 

The previous requirements elicitation activities are not one shot activities but I followed an agile 

methodology with short iterations of two weeks each. For each iteration, stakeholders, simulation 

analysts and technical managers have been immediately involved in the requirements elicitation 

process. The main tools that I have used are: 

 

� Open discussions and informal meetings with a small group of simulation analysts; 

� Requirements elicitation survey; 

� Discussions using mockups and system prototypes of the gathered requirements. 

 

In the following I focus on two steps: the stakeholders identification and the domain understanding. 

 

 

2.3.1 Stakeholders identification 

 
The stakeholders are the people affected introducing a new system in an organisation. System 

stakeholders are not limited to top management that pays for the system, but more important are the 

people (actors [3]) that will directly use the system. In addition, also people that do not directly 

use the system and are indirectly affected by it must be considered as stakeholders. For instance, 

customers that will place the phone orders will be affected and must be considered as stakeholders. 

The stakeholders identification and their classification are fundamental activities to perform before 

requirements elicitation. Of course, the list of stakeholders can change and be updated many times. 

The CUSTOM approach [13] as explained by Dix et al. [14] classifies the stakeholders in four 

groups: primary, secondary, tertiary and facilitating. One should be sure to meet the requirements of 

all stakeholders but often they can be complex and in conflict each other [14]. 

One could ask why it is important to identify all the stakeholders. In the book “Human-Computer 

Interaction" [14], the authors described an example of organization with different departments, each 

one with its computer system, and the decision of the top management to integrate them together to 

share sales, marketing and stock data. The introduction of the system without taking care of 

salesmen, responsible for marketing and storekeeper, leads to a paradoxical situation, in which, for 

instance, salesmen are unhappy to share their customers contacts with the marketing and keep them 

in personal files. The main concern is that all organisations have formal and informal 

communication structures that contribute to the overall organisation working. Identifying correctly 

the stakeholders uncovers hidden information transfers and highlights how the information flow 

across the structures. Introducing a new system, one must be really careful to not disrupt these 

communication schemes, like the hierarchy and mutual interactions. 
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2.3.2 Domain understanding 

 
The research study aims to report how engineers daily work, and identify collaborative 

requirements to improve their work. Therefore, it can be classified as a descriptive and improving 

study. In according to the existing literature, the following research methodologies exist: 

 

 

 
 

Case studies are by definition conducted in real world settings, and thus have a high degree of 

realism [15]. Of course, the high realism corresponds to a low level of variables control. In contrast, 

controlled experiments usually conducted in laboratory aims to fix all the parameters and change 

only one at time to measure qualitatively or quantitatively their effect. Conducting case studies 

usually researches get qualitative data. On the other side the using of a survey is very interesting 

because it can give quantitative data. As reported in [15], the research methodologies are depicted 

in Table 2.2. 

 

2.3.3 Impact of a new system in the organization 

 
One reason for which the introduction of new systems fails is due to the mismatch between 

information systems and organisational and social factors [14]. Another consideration is the impact 

of the technology introduction within the organisation. The impact should be assessed and evaluated 

before its introduction [14] as well as its acceptance. 

Aspects like free rider problem and critical mass must be evaluated. The free rider problem 

concerns persons that participate, for instance in a meeting, but they do not give any contribution. 

On the other side, the users will join a system only if they have a benefit. The critical mass is the 

number of users that join the system in which the benefits of using the system became equal or 

greater then costs. 

 

 

2.4 Collaborative Requirements Survey 

 
FCA has multiple geographically distributed teams, therefore in order to get the collaborative 

requirements directly from stakeholders, we issued an electronic survey created with Google Forms. 

The survey questions were divided in the following main sections: participants' experience, 

collaboration among engineers and data sharing, data centralization and data search, and 

simulation data versioning. The survey responders are seventeen FCA professionals half from 

Pomigliano D'Arco (Naples, Italy) and half from Orbassano (Turin, Italy). Both groups design 
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products using Computational Fluid Dynamics simulations. Through the paper we sometimes 

differentiate the technical managers and the analysts because they have different roles and 

requirements. Technical managers usually ask management features, such as the opportunity to 

monitor resources, projects timeline and performance goals. On the other hand, CFD analysts, who 

perform simulations, require engineering features (e.g., simulation monitoring, automatic document 

generation). Of course, both roles aim to collaborate over centralised data at different granularity. 

Floasys has been designed to also support engineering tasks, such as the simulation convergence 

monitoring, engineering wizards to automate repetitive tasks, simulation templates and so on. 

An important consideration is the impossibility to change how the employers actually work. Any 

architectural software solution to meet the requirements shown in Table 2.1 must rely on existing 

internal procedures and must not change them. During the requirement elicitation activity we also 

tried to understand the ways on how a collaborative platform could be introduced and deployed 

over existing practices without hardly change how the engineers work but at same time improving 

their work. 

 

 
Figure 2.2: Participants' roles and their working place (questions Q1 and Q2). 

 

 

The following section will analyse each requirement listed in Table 2.1. 

The survey participants are CFD analysts and technical managers (Figure 2.2a). One survey 

participant is an academic who works daily with CFD analysts. In order to get the participants 

experience in the simulation field, the survey asks the years of experience and the number of 

performed simulations per year. More than 50% of participants perform at least one hundred 

simulations per year. This gives an idea about the total number of simulations per year, about one 

thousand simulations per year considering only the survey participants. Technical managers have a 

high experience in the CFD field but they perform less simulations per year because their tasks 

concern mainly the team organization. 

 
Figure 2.3: Participants' experience. 
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All analysts collaborate with at least one other engineer in the same office (Fig. 2.4a). More than 

half analysts collaborate with at least one engineer who works in another location (Fig. 2.4b). 

Analysts collaborate together sharing file geometries (CAD), simulations and documents (e.g. 

slides, spreadsheets). 

 

 

2.5 Simulation data centralization 

 
In order to support the collaboration among engineers (Fig. 2.1) they must access to centrally 

available simulation data (Req. 1, Table 2.1). Data centralisation means to collect data from 

different sources over time (i.e., from different simulators) and store them in an open format. 

 

 
Figure 2.4: Co-located (question Q8) vs distributed workers (question Q9). 

 

Data centralisation and the open format give an additional advantage: data and results can be 

aggregated in different ways, possibly in real time through an interactive user interface. Data 

aggregation means that analysts could compare simulations results performed on the same project 

or about multiple projects. Performance engineers and technical managers need to work on 

aggregate data (e.g., statistical data, trends about performances) whereas CFD analysts access to 

fine grain simulation data (e.g., model, simulation case) and their results to perform comparison. 

Obviously, data aggregation is not feasible with classic shared network folders that store data in a 

closed file format. 

In according to Aberdeen Group's whitepaper “Getting Product Right the First Time with CFD" 

[11], in order to improve the company competitiveness, they should centralize simulations results. 

The aim is to centralise not only the results but all the related data such as the 3D geometries, 

simulation setup parameters and the documents allowing their easy retrieval. Based on the presented 

study, in order to centralise data and provide additional service over them, software designers 

should consider: the file size, the total number of performed simulations and eventually the closed 

file format. 
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Figure 2.5: Geometries and simulations file size (question Q10 and Q11). 

 

In the use case, both geometries and simulations are very large files. In according to the on-field 

observations and through the survey, we asked which are usually the geometries and the simulations 

file sizes. Figure 2.5a shows that the CAD file size is about one gigabyte in the fifty percent of 

answers. The file geometry can contain also the surface mesh and/or the volume mesh, explaining 

the differences of file size answers depicted in the chart in Fig. 2.5a. Instead, the simulation file size 

(Fig. 2.5b) is more than ten gigabyte in the 80% of answers. Simulations are so large because they 

contain the entire detailed vehicle geometry, the surface and the volume mesh as well as the 

physical/mathematical data to describe the model. The large file size and the huge number of 

performed simulations exclude the use of a relational database to store data and provide additional 

services such as data search (see the following section) or results aggregation. In order to perform a 

simulation, its file must be stored on the file system. The use of a database leads to continuous 

transfers of data from the database to the file system and vice versa, compromising performance and 

response time. 

 

 

2.6 Provide search facility 

 
The aim is to provide a search tool able to find data using simulation file names, simulation content 

(e.g., its model, parameters, etc.) and metadata (e.g., tags). Simulators software often store 

simulation data as binary files in a closed file format. In addition, the used CFD simulator does not 

have an export functionality to an open format. Therefore, classical search tools are not useful to 

find simulation files based on their content (files are in binary format). For instance, the search 

utility of the Windows OS cannot be used to search within the file content. To overcome this issue, 

users actually insert a lot of information in the simulation file name that will be useful the next time 

to find the data. 
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Figure 2.6: Information stored in the file names (question Q20). 

 

    As shown in Fig. 2.6, the main information inserted in the file name are: the project name, the 

release, the revision number, the engine model and the vehicle trimming. Users decide to put the 

most important information, regarding their personal opinion, in the file name with the drawback to 

have very long file names. 

In addition, not all information can be stored in the file name so a lot of data remains within the 

simulation closed file and cannot be used for next retrievals. 

 

 
Figure 2.7: Rules followed store files (questions Q19, Q21, Q22). 

 

 

    More than half analysts follow roughly some rules to store files in the shared file system trying to 

follow them over time. Here, the term “rules" mainly means how engineers give a name to a file and 

how they decide the directories structures to improve its future retrieval. Nevertheless these rules 

are mostly a personal choice (82%), engineers add essentially the same information to the file 

names because the analysed engineering field is very specific. The limitation of this approach 

emerges when an engineer must search a simulation performed by other employees, mostly because 

he cannot use the existing search tools (e.g., the Windows Search tool) to search simulations based 

on the file content. An example of query is: “search all simulations performed at inlet velocity X 

[km/h] that has the spoiler". Unfortunately these data are not inserted in the file name but are inside 

the closed file. This limits also the aggregation, based on specific keywords, of data at different 

levels, results comparison of multiple different simulations and generation of performance history 

charts about data of the entire simulation repository. 
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Figure 2.8: Search based on file content (questions Q27 and Q28). 

 

To further explore the search of files, we asked to stakeholders whether they have a tool to search 

simulation based on the simulation file content such as the parameters (e.g. inlet velocity, which 

parts compose the simulated model). About 60% of participants said that they do not have such tool 

(Fig. 2.8a). In addition we asked whether they desire a tool to support the searching based on 

simulation content; about 75% of participants assert that they desire it (Fig. 2.8b). 

An interesting consideration is about the technologies used to search files on the shared network 

folders. Analysts usually work on a specific project so they are confident with it and they try to 

remember where the files are stored. So, in order to find a file the most used approach are: try to 

remember where it is stored, navigate the file system seeing the file names and finally ask to a 

colleague. The most surprising (for the technical managers) survey result is that many analysts open 

the simulation file. The simulation file open requires a lot of seconds considering the heavy content. 

The less used techniques (in average) are the file history because the data are accessed from 

different workstations so the file history is not updated in the Unix and Windows find tools. 

 

 
Figure 2.9: Technologies to search simulations (question Q31). 

 

It is evident that an improvement can be done on the data search and retrieval. The most difficult 

and challenging part is that analysts use multiple simulators; each one stores files in different way, 

some of them in closed file format. The availability of a search tool enables the selection of multiple 

simulations based on the inserted criteria and the opportunity to extract statistics on the data. 
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2.7 Provide metadata over simulation data 

 
Engineers use multiple simulators software, some of them store data in closed file format. As stated 

in the previous section, the file content cannot be used to retrieve the files using the classical search 

tools such as using the Operating System find tool. Actually, to overcome this issue, engineers 

insert a lot of information in the simulation file name such as project name, revision and engine type 

(Fig. 2.6). Obviously, the file name cannot host too many data, so other useful data are not 

annotated with simulations (e.g., comments and feedback). These data are very important both to 

improve the next retrieval but even more important to give a description of what the analyst did, his 

considerations and comments. To get this requirement through interviews and the survey, we asked 

to engineers whether they desire to link other data to the files. All analysts (100%) desire a system 

to link other information to the files, such as the file tagging. 

 

 

2.8 Simulation data versioning 

 

 
Figure 2.10: Version control (question Q30). 

 

    As reported in the Aberdeen Group market research [11], an action to improve the company 

competitiveness is to provide the version control over data. The survey aims to investigate further 

this need to understand its value for stakeholders. Here, version control means that the user can 

track modifications made to a simulation over time. It is interesting because engineers usually do 

not start simulations from scratch but they copy an existing file changing some parameters. In 

addition, with the same simulation file, could be performed many simulations changing each time 

few model parameters (e.g., the inlet velocity). According to the survey, more than 60% of 

participants declared that they do not have a tool to track the simulations modifications. In addition 

more than 80% of participants said that this kind of tool could be useful. 

 

 

2.9 Support data sharing 

 
CFD analysts need a mechanism to exchange references about data. On Internet a common way to 

share resources is exchanging URLs. Hence, the idea is to univocally identify simulation data with 

URLs and use them to share data among engineers. An important aspect of this technique is “who 

can see what data". Multiple industrial roles exists (Fig. 2.1), so an access control is important to 

control the sharing of confidential data. 
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2.10 Simulator independence 

 
The previous requirements must work independently by specific used simulators to generate data. 

For instance, the tagging and search function must work on a repository of heterogeneous 

simulations coming from multiple simulators. This requirement is very important because in the 

analysed context, analysts use multiple CFD software and actually one single software cannot be 

used to perform all simulation types. In the FCA use case and large industries, there are different 

teams that use different software to perform tasks. For instance, a team is responsible for the CAD 

design whereas another team simulates the model using other software. Obviously, in other contexts 

both design and simulations can be done by the same team with an all-in-one CAD/CAE software. 

Through the survey, we asked to indicate which simulator software analysts use, to give an idea 

about their multiplicity. All analysts use STAR-CCM+  and more than half of them use OpenFoam. 

Other used software are: CFD++ (35%) and PowerFlow (18%). Analysts have used software over 

the years and they are confident with them. Moreover, industries are unwilling to invest in training 

engineers on other software products. Therefore, in order to meet the requirements is fundamental 

to support and collect data from multiple daily used CFD simulators. It is evident that any platform 

must consider the integration of multiple simulators. The integration of multiple simulators (Req. 6 

in Table 2.1) has some difficulties especially because CFD analysts use often proprietary software 

and actually a lack of simulator standardisation exists so that many software do not have function to 

export data in open format. The import/export in open format are functions to evaluate during the 

choose of a CAD/CAE [17] otherwise simulation data are locked in the vendor software. Vendor 

Lock-In is a well-known Anti-Pattern [18] [19] [20]: the phenomenon that causes customer 

dependency on given vendor about a specific good or service [21] with high switching costs [22]. 

Vendor Lock-In occurs both in terms of services and data. 

Vendor Lock-In Anti-Pattern in terms of services occurs when the architecture heavily relies on a 

closed vendor software and strictly depends by the vendor choices, so the architecture is product-

dependent [23]. Data Lock-In occurs when the only way to access to the data is by using the Vendor 

Software because data are stored in a proprietary file format or they are stored on the vendor server 

and it does not provide an export functionality to an open format or a public customer API. The 

exporting and importing of geometric data are well-established functionalities for the CFD 

software, simply because they must commercially support the interaction with other CAD software. 

Instead, it is not the same for the entire simulation data such as the case setup, the simulation results 

etc. Data Lock-In is very common in Cloud Environments [24] and is an obstacle to cloud 

computing [25]. Vendors lock users in to make harder for them to leave the product because they 

cannot get their data; despite, as reported in literature, giving the opportunity for the customers to 

get their data increases their trust in the product [26]. 

A design solution useful to mitigate the Vendor Lock-In is to design the system with an additional 

layer called isolation layer [18]. 

 

2.11 Extensibility and modularity 

 
The combination of modularity and extensibility [27, 28] system qualities allow final customers to 

compose a system with the only needed modules and to create their own modules to automatise 

specific tasks keeping them private to protect their know-how. In addition, an extensible and 

modular architecture allows the introduction of new functionalities tailored to the customer’s needs. 

Extensibility is the ability of a software system to allow and accept significant extension of its 

capabilities without major rewriting of code [27] [28]. Extensibility is a quality architecture 
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attribute useful during the development and especially in future when more and more simulators' 

features will be integrated in the architecture [29].  

Industries want deploy the same system with different features. Modularity “is the degree to which 

a system or computer program is composed by discrete components such that a change to one 

component has minimal impact on other components" [27]. The architecture must be modular 

enough to allow both the adding of new simulators and the removing of existent simulators. The 

modularity requirement has an interesting advantage for the architecture design: the engineering 

tools and simulators are loosely coupled. An important consideration concerns also the software 

license. Two opposite needs must be taken into account: on one hand, industries want protect their 

know-how, on the other hand, the architecture must be adopted also in other contexts. Based on the 

presented use case, modularity, extensibility and Eclipse Public License (EPL3 license) are the right 

mix because the architecture, the framework and some other modules are open source but at same 

time industries can protect their know-how developing their own private and closed modules. 

 

 

2.12 Social network 

 
Centralisation of data, metadata and easy retrieval are required to enable the sharing of data among 

multiple teams. An interesting idea is to enable the discussion around simulation data using a kind 

of private social network (e.g., elgg). So, through the survey we investigated also this opportunity 

trying to understand what the users think about it. Actually, in the analysed context do not use a 

private social network as shown in Figure 2.11a and as stated by 95% of survey participants. 

Furthermore, more then 65% of participants actually are not involved in discussions about industrial 

topics about their work as shown in Figure 2.11b. 

 

 
Figure 2.11: Actual use of private social networks (Questions Q31 and Q32). 

The previous survey questions investigated the existence of a private social network within the 

company, a further step is to evaluate how the users are prone to use a private social network to 

discuss around simulation data, issues and interesting topics. Of course, nowadays users are widely 

exposed to the Social Network platforms (e.g., Facebook), so the term Social Network is a well-

known. More than half of survey participants (65%) consider useful to involve other coworkers in 

discussions about interesting industrial topics. Moreover the 82% of participants consider this 

opportunity useful to improve their know-how (Figure 2.12b). 

 



�

���

�

 
Figure 2.12: Introduction of social networks (Questions Q33 and Q34). 

 

About the use of social networks to discuss on simulation data, through the survey and interviews 

we asked to the users what they think about their use. We get interesting considerations. A new 

employer declared that a social platform is useful to increase his know-how becoming immediately 

productive. Another useful comment is about the discussions traceability as the opportunity to find 

information about a previous faced issue. Therefore, traceability do not means to trace and use 

social as official place to make decisions or against employers (for it there are the official meeting 

memorandum) but to use it as a know-how repository. 

 

 

2.13 Introduction to the Simulation Workflow 

 
Briefly the Simulation Workflow is made by three steps (Figure 2.13): pre-processing, solving and 

post-processing phases. In the pre-processing phase engineers setup the simulation, in the solving 

phase engineers use the clusters to solve the simulation and in post-processing they collect, analyse 

and summarise results generating documents. 

 

 
Figure 2.13: CFD Workflow: software used by analysts. 
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   In order to perform simulations, engineers use different software, such as Computer-Aided Design 

and Simulator software. In addition, they use High Performance Computing Resources (e.g., 

Cluster) to run simulations. As known in large industries the Computational Fluid Dynamic 

workflow is not covered by only one software especially for large industries that design complex 

products, but multiple software are required. For instance, industries use at least a CAD software, a 

simulator and a post-processor software. In addition, large industries simulate different parts of the 

vehicle so they use multiple simulators, each one for the specific simulation type. 

   Typically CFD analysts start from the geometry that describes the vehicle shapes. This geometry 

is not suitable to be used in the simulators software. Therefore, it is imported in another CAE 

software called pre-processor. In the analysed use case, engineers use ANSA  developed by BETA 

CAE Systems. Another motivation to use a pre-processor is the need to clean up the geometry and 

create both the surface and volume mesh indispensable to simulate the vehicle physical properties. 

The volume mesh is then imported into the simulator software (e.g. OpenFoam or STAR-CCM+ ). 

The Fig. 3.1 shows the CFD Workflow with software tools used at each workflow step. At the end 

of the tree steps, the simulation results (e.g. contour-plots and tables) are used to build the 

documents. 

   Engineers use multiple CFD software in the solving phase. Therefore, through the survey we 

asked to the analysts which software they use. The answers have been depicted in Figure 2.14. All 

analysts use CD-Adapco STAR-CCM as main simulator software and more than half analysts use 

OpenFoam. Of course the described workflow is usually performed within a large industry like Fiat 

Chrysler Automobiles; for small enterprises the workflow essentially is the same but the number of 

software can be reduced in number as well as the product complexity. Of course, for simple 

products it is possible to use one integrated software environment to design the product, simulate it 

on a single computer and process the results. 

 

 
Figure 2.14: Simulation software used to simulate vehicles. 

 

 

   Another difference between small and large enterprises are the number of performed simulations. 

In the automotive sector as well as in the aerospace each engineer performs many simulations for 

year. As reported in Figure 2.15, more than half of survey participants in FCA perform at least one 

hundred of simulations per year. This is very normal because usually engineers perform multiple 

simulations on the same product changing only some parameters, such as the inlet velocity (the 

velocity of the air fluid in the wind tunnel) or the position of a component. The repetition of these 

operations (e.g., simulation running, generation of documentation, etc.) executed mainly manually 
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raise the need to have an automatic tool to perform them, and Figure 3.6 shows on top the main 

services to provide within the CFD Simulation Workflow. 

 

 
Figure 2.15: Participants' experience. 

 

 

2.14 Metrics used to evaluate an engineering software 

 
   It is very interesting to understand which criteria the engineers use to evaluate a CFD solver. This 

gives a rough idea on which should be the features important for end-users. Therefore, we asked to 

CFD analysts which are the criteria used to evaluate and choose a CFD solver. Engineers judge a 

CFD solver considering the commercial support, its reliability and the validation over many 

common industrial contexts. Another important criterion is the software product dissemination 

especially considering solutions used by the competitors. 

   CFD software are used in many industrial sectors such as automotive, aerospace, high tech, 

oil/gas and so on. The same CFD software usually is generic enough to be used in multiple sectors. 

So, end-users (40% of respondents) seek for standard templates and wizards for their specific 

configurations and simulation setup. In this way, instead to start a simulation from scratch every 

time, the wizards guide end-users to setup the simulation giving only the basic information. Wizards 

are useful also for less experienced users reducing the training costs. Moreover, both templates and 

wizards guarantee that everyone in the team works in the same manner. 

 

 
Figure 2.16: Criteria used to evaluate a CFD solver (Question Q32). 
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   The “Getting Product Design Right the First Time with CFD" [11] market research shows the 

same result and advises the use of templates and wizards as a way to increase the company 

competitiveness. In 2010 the 27% of Best-in-Class companies report plans to implement these 

facility. In the cited market research [11], Best-in-Class are the industries with a high performance 

index based on likely to release product on time, reduction of development time, meeting of quality 

and cost targets. 

   In addition, it is interesting to understand the criteria used by analysts to evaluate an engineer tool 

in general (not only the CFD solvers as in the previous question). The question outcome is shown in 

Fig. 2.16. Obviously, the most of analysts consider the solver accuracy the most important software 

feature. The accuracy value emerges also in the market research “Getting Product Design Right the 

First Time with CFD" [11], the Best-in-Class companies place high value on CFD simulation 

accuracy so that the 58% of responders aim to have simulations as accurate as possible and they are 

not willing to sacrifice accuracy. But more accuracy requires more running and solving time. So, in 

order to reduce the running time a way could be the model simplification but this generates less 

accurate results. 

   Other criteria to evaluate a software are the Easy to use and the GUI. Through the survey, half of 

analysts think that the system usability is important. In particular, the 76% of respondents consider 

the software easy to use as a criteria to choose or judge an engineering software. This shows an 

increase importance of the software usability than in the past. In contrast, the Aberdeen Group 

market research (2010) reports that only the 23% of their responders considered the easy to use of a 

CFD software important. Therefore, the usability is becoming important also in the engineering 

field where the end-users are usually very experts, and they daily use software with many options 

and are prone to accepts also complicated software to perform their tasks. 

 

 
Figure 2.17: Criteria used to evaluate an engineering software (Question Q33). 

 

 

   The last criteria is the software costs but obviously this not affect directly the analysts because 

usually the technical manager are involved in the software purchase. 

   An interesting survey outcome is that the set of software functionality seems to be less relevant of 

the accuracy. Finally, another respondent has proposed further criteria to evaluate an engineering 

software: the customer support and whether the software is used by the competitors. 
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2.15 Requirements Overview 

 
   Requirements have been divided in two main categories [3]: Functional and Non-Functional 

requirements. Functional requirements define the system functions so they concern mainly the 

system behavior and what kind of functionalities the system provides. Non-Functional requirements 

are criteria used to evaluate the system often from a quality point of view, therefore, they are often 

defined as Quality Requirements. 

   The table 2.3 lists briefly the main functional requirements gathered within the use case, instead 

the table 2.4 lists the Non-Functional requirements. 

   The table 2.4 of Non-Functional requirements, contains also additional constraints to follow that 

come to light during the discussions with engineers and stakeholders. Engineers use different 

simulator software so the platform must integrate multiple simulators (Req. 14) and multiple users 

that work with the platform in according to the available resources (e.g., computing resources). 

 

 
Table 2.3: Stakeholders' key engineering Functional Requirements. 

 

 

   The simulator must be replaceable because usually enterprises especially in the engineering sector 

change the used software to get more competitive products. Some simulators are open source so 

from technical point of view is easy to integrate them because one could change it, but one 

constraint is to avoid the change of the available source code (Req. 18). The motivation is simple, 

when one change the source code of a software than it is difficult to be updated with the latest 

software release because each time a merge operation is required. The integration of this simulators 

is feasible because engineering software run “headless" that means without user interface 

interacting with it directly through the command line. 

 

 

 
Table 2.4: Stakeholders' key engineering Non-Functional Requirements. 
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2.16 Functional Requirements 

 
   This section describes briefly the Functional requirements gathered in the Fiat Chrysler 

Automobiles use case. 

   In according to the Simulation Workflow, the first step is the selection of an existing simulation, 

and, in order to do this, Floasys has the Repository Tool to navigate the simulation repository and 

select the target simulation. It is important to remember that the creation of a simulation is made 

within a proper Simulation Software. After the selection of the simulation, usually engineers use the 

command line to run the simulations on the industrial High Performance resources. A need is to 

provide a wizard to run the simulations in an easy way. Therefore, Figure 2.18 shows above the pre-

processing phase, the Run simulation and the post-processing phase. The provided wizard is not 

only a direct replacement of the command line but provides additional settings that depend on the 

simulation to run. 

 

 
 

Figure 2.18: CFD Workflow and Floasys Tools 

 

   CFD simulations runs on HPC resources and they usually run for many hours, sometimes also an 

entire day. In addition, the tuning of simulations is a non-trivial task due the high number of 

parameters and specifically the geometry quality. For instance, the geometry quality is very 

important because if an engineer is simulating the external vehicle aerodynamic that has some 

invisible holes especially between two surfaces, the simulator tries to solve the fluid equations in 

that space and could diverge. 

   Therefore, as observed in this thesis use case and as noticed also in literature [30], it is very 

important and useful to have a tool that connects to the HPC cluster to monitor the running 

simulations convergences. Commercial simulator products already have a GUI made by real-time 

charts to monitor the simulation convergence. Other products, especially open source, that runs only 

from the Command Line Interface, do not have a monitor GUI but they write convergence data in 

appropriate files. 

   Finally, the last group of functionalities are: the collection of results, the results comparison and 

the automatic document generation. 
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2.17 Non-Functional Requirements 

 
This section introduces and describes the Non-Functional requirements. 

 

 

2.17.1 Support multiple simulators 

 
CFD analysts perform different types of simulations on the same vehicle product (i.e. external 

aerodynamics, aeroacoustics, air conditioning and engine thermal analysis). Therefore, they use 

different simulator software, each one suitable and validated internally for its own application. 

Briefly, in the FCA use case, at time of writing, the most used software are (Fig. 2.14): STAR-

CCM+ (commercial product) and OpenFoam (open source). In order to reduce costs or to have 

better features, industry can decide to change CFD simulator in future. So, the architecture must 

support and integrate multiple simulators software with the opportunity to remove each one and 

introduce other implementations. 

 

 

2.17.2 Simulator selection 

 
The support and the integration of multiple simulators (Req. 6) leads to the issue of selecting the 

right simulator to perform a specific simulation type. These selection can be done automatically by 

the system or manually by the user. Based on the performed tasks or the simulation type, the system 

must automatically select or recommend the appropriate available simulator software. Obviously, 

engineers must be aware about the selected simulator, so the system must show or give the easy 

access to feature (at least the name) of the used CFD software. 

 

 

2.17.3 Concurrent simulators use 

 
Analysts use many instances of the same simulator software opening multiple files and running 

many solving jobs. The platform must support two cases: the support of multiple different 

simulators concurrently and multiple instances for the same simulator. 

For instance, the Convergence Monitoring Tool (Monitoring Tool) shows the charts about the 

convergence of multiple running simulations. So, the tool is able to access and show the chart 

basing on the data generated by multiple running simulations. 

Another example is the Automatic Documentation Generation Tool that extracts and collects data 

from different simulations and merge them in spreadsheets and slides. So, it need to manage 

multiple simulations file and consequently multiple simulators, also of different types. 
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Figure 2.19: Simulation Model Mapping. 

 

Engineers use many instances of the same simulator software opening multiple files. For instance 

Floasys Automatic Document Generation Tool extracts and collects tabular data from different 

simulations, and merges them in Excel and Power Point documents. Data are shown in the front-end 

workbench GUI. Documentation tool needs to manage multiple simulation files and multiple 

instances of the same simulator software. 

The architecture must support multiple CFD simulators used concurrently. Same tools must access 

to multiple simulators concurrently. For instance the monitoring tool shows charts about the 

convergence of the running simulations. Engineers monitors the convergence of running 

simulations from different CFD software. 

 

2.17.4 Headless simulators integration 

 
CFD simulators can run “headless" without the Graphical User Interface (GUI). This is a built-in 

simulators feature because they must run on High Performance Computing (HPC) resources such as 

computer clusters. For instance, OpenFoam is an open source simulator made by a set of command 

line tools and text-based input/output files. OpenFoam does not have the GUI, so the aim of many 

projects both open and commercial is to design and provide a GUI [31] for OpenFoam.  

Another example is the simulator CD-adapco STAR-CCM+ , a commercial software to perform 

CFD simulations. It can run either with GUI or without it. In addition, it has a Java-based scripting 

language to provide additional custom features called Macro. 

Simulators often do not have public APIs to allow other applications to interact with them. 

Therefore, the only way for another application to exchange data with the simulator is to wrap it. 

Idea is to think about the simulator as a black box with its input and output. Fortunately, in the CFD 

field the software have been designed to run also on the command line. Third commercial products 

rely on this assumption to work and integrate simulators features. For instance, Esteco 
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modeFrontier, a commercial Design Of Experiments (DOE) software for optimization, has a 

graphic workflow made by nodes. Among the different node types, modeFrontier has a specific 

node to integrate external software trough calling to the executable software from command line. It 

relies on this mechanism providing input and getting the output trough files. 

 
Figure 2.20: Simulator black-box interaction. 

 

The integration among simulators and external applications could be a bit difficult nevertheless they 

run from the Command Line Interface (CLI). Not all functionalities are available through the CLI 

and what you can perform significantly varies. For instance, simulators sometimes give a less 

control on the simulation model changes. Therefore, the interaction with the simulators is more 

restrictive because they do not have public APIs and do not support sufficient interactions through 

the command line. Another limitations is the closed file format: it is impossible to access to 

simulation data without the vendor software and binary files are meaningless to an external 

application. Generated simulation files are binary files limiting the interactions with external 

software.

 
Figure 2.21: Interaction with a simulator through a macro 

 

 

In these cases, the interaction among simulators and external applications are limited so some 

workaround are needed. One possible workaround concerns the exploitation of the provided 

scripting language used in combination with command line options. 

 

 

 

Do not change simulators source code 

 
The aim is to integrate both open source and closed simulators. For open source software, we do not 

change the source code to be always up-to-date with the original software avoiding continuous 

changes of source code at each release or in the worst case to remain with and old simulator version 

because the upgrade is too expensive in term of changes. In addition, the overall platform must be 
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designed in a way that the upgrade of the simulator cannot heavy impact on the overall platform and 

tools. So, the aim is to reduce the coupling between the simulators and the platform. 

 

Support real-time and batch interactions 

 
Architecture must handle both real-time and batch interactions. Batch interactions are mainly the 

Job submissions to solve simulations. At same time, engineers monitors the running simulation 

using the Monitoring Tool that shows real-time data. 

 

Avoid Vendor Lock-In 

 
This requirement is very important because CFD analysts use proprietary software. Vendor Lock-In 

is a well-known Anti-Pattern [18] [19] [20]: the phenomenon that causes customer dependency on 

given vendor about a specific good or service [21] with high switching costs [22]. Vendor Lock-In 

occurs both in terms of services and data. Vendor Lock-In Anti-Pattern in terms of services occurs 

when the architecture heavily relies on a closed vendor software and strictly depends on the vendor 

choices. So, the system architecture is product-dependent [23] because it wraps some or all the 

vendor software functionalities and there is not clear distinction between them. Data Lock-In occurs 

when the only way to access to the data is by using the Vendor Software because data are stored in 

a proprietary file format or they are stored on the vendor server and there is not an export 

functionality to an open format or a public customer API. CFD analysts use proprietary software 

that store data in closed file format. The exporting and importing of geometric data are well-

established functionality for the CFD software, simply because they must commercially support the 

interaction with other CAD software. Instead, it is not the same for the entire simulation data such 

as the case setup, the simulation results etc. Data Lock-In is very common in Cloud Environments 

[24] and is an obstacle to cloud computing [25]. Vendors lock users in to make harder for them to 

leave the product because they cannot get their data; despite, as reported in literature, giving the 

opportunity for the customers to get their data increase their trust in the product [26]. 

 

Extensibility & Modularity 

 
Architecture should be extensible to allow and simplify the introduction of new functionalities. 

Extensibility is the ability of a software system to allow and accept significant extension of its 

capabilities without major rewriting of code [27] [28]. Extensibility is an important Non-Functional 

requirement during the system development because systems are constantly under change and, 

adopting the Continuous Delivery [29], they need to wrap incrementally vendor software 

functionalities. Extensibility is a quality architecture attribute useful during the development and 

especially in future when more and more simulators' features will be integrated in architecture. 

Industries want deploy the same system with different features. The architecture must be modular 

enough to allow both the adding of new simulators and the removing of existent simulators. The 

modularity requirement has an interesting advantage for the architecture design: the application or 

custom engineering tools and simulators are loosely coupled. Modularity “is the degree to which a 

system or computer program is composed by discrete components such that a change to one 

component has minimal impact on other components" [27]. 

Industries have command line macros that are designed, developed and tested over the years that 

must be integrated in the architecture. But at same time the system architecture should be deployed 

in different contexts, so it is very important to identify exactly which system modules contain the 

industrial know-how and separate them. 
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2.18 Related Works 

 
This section introduces the process called New Product Development Process (NDP) to conceive a 

new product and bring it on the market. Within this process we will focus on the engineering 

activities, especially the simulation workflow to design vehicle products. 

 

2.18.1 New Product Development Process 

 
Manufacturers aim is to bring products on market quickly within the budget and performance 

constraints [11]. The New Product Development Process (PDP) describes the process adopted to 

design, develop and bring products on the market [32] and involves a continuous information 

exchange among many tasks. As shown in Figure 2.22 it is made by the following steps: concept, 

design, prototyping, manufacturing. 

 

 
Figure 2.22: Product Development Process (PDP) and CFD Workflow. 

 

Nowadays, in a worldwide and highly competitive market, enterprises face short time to market 

(TTM), continuous innovations, global collaborations and complex risk management [33]. 

Enterprises are global and have different organisations around the world. Therefore, intellectual 

assets, data and know-how must be accessible to anyone within the enterprise and sometimes also 

outside the enterprise. In order to design products, enterprises collaborate with other external 

enterprises. For instance, along the supply chain, enterprises get the raw materials to make products 

or they externalizes tasks performed by external consultants. In this context the use of software 

systems is very important. From historical point of view two main systems have been evolved 

separately: the Product Lifecycle Management systems and Product Data Management, although 

today the aim is to integrate them together to have a unique system. 

   The Product Lifecycle Management (PLM) is the process to manage the product life cycle from 

its inception, through the design and manufacturing, to customer service until the product disposal. 

PLM gained even more interest in the last years as a business approach to integrate people, 

processes, business systems and information to manage the product life cycle management.  

As stated in [33] the PLM has two roots: 

 

� enterprise management; 

� management of product information. 
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   The enterprise management concerns the material resource planning (MRP), enterprise resource 

planning (ERP), customer relationship management (CRM) and supply chain management (SCM). 

It is evident that across the years different management systems have been created so it’s essential 

to integrate them through a PLM system. 

   The management of product information concerns the product and its related information, 

know-how and so on. Therefore, the management of product information refers essentially to the 

Product Data Management systems. Enterprises design their products using different systems in 

different phases. Generically they use authoring tools called authorware to create new content. 

Authoring tools are not programming languages and do not require programming skills but they rely 

on the graphical user interface (GUI) to create content.  

   Industries design products through Computer-Aided Design (CAD) systems and simulate them 

through Computer-Aided Engineering (CAE). These Design, Manufacturing and Engineering 

(CAD, CAM and CAE) software are daily used and generate a lot of data. Therefore, during 1980s, 

Product Data Management (PDM) systems appeared to control and manage the product information 

created using engineering authoring tools [34]. PDM systems were born in the engineering field and 

they were used mainly to store information like geometric models, Bill of materials (BOM) and 

FEM models. Nevertheless, very similar needs arose also within non-engineering area, such as 

sales, marketing and supply chain management, PDM systems failed to address these similar needs, 

mainly because they were designed for engineers to manage engineering data. Later, in the 1990s, 

with the introduction of Internet and WWW, vendors adopted these new technologies to implement 

PDM systems. In this way, PDM became web-based and took advantage of universal, inexpensive 

and ubiquitous nature of Internet to provide their services throughout the enterprises. Nevertheless, 

PDM were web-enabled, their use were still about the engineering field and they essentially 

managed engineering documents. In the past, product were designed using pencil and papers; 

instead, nowadays product are mainly designed using CAD systems to create the geometric models. 

Pencil and papers are not completely replaced in the concept and more creative phases. Of course, 

during the years the volume of geometric models is very huge and can get out of control. Therefore, 

products data must be managed through a Product Data Management (PDM) that itself must be 

integrated with the CAD and other software. 

PDM mainly gained their success in the engineering field to manage geometric data, bill of 

materials (BOM) and finite element analysis models. Product Data Management systems are well-

integrated with CAD software, but it is not the same for simulation software that are actually almost 

isolated islands. A goal of this thesis is to explore how integrate simulator software especially 

because a lack of interoperability exist; so the idea is to reduce the gap between the simulator 

software and other software like Product Data Management systems. 
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Figure 2.23: Product Lifecycle Management Evolution 

 

   From historical point of view, the evolution of PLM and PDM is tracked roughly in the Figure 

2.23. It is evident the concurrent evolution of PDM to manage engineering data and other solutions 

to manage specific aspects of the enterprises, such as ERP, CRM, SCM systems that were 

integrated together within PLM systems. In the paper [34], the authors identified both internal and 

external enterprises forces that led the PLM evolution and adoption. The internal forces are: the 

need for innovation, customer intimacy and operations excellence. The external forces are: 

globalisation, product complexity, shrinkage in product lifecycle, push into supply chain and 

environmental issues. An example of Product Lifecycle Management is Aras an open source 

product, but many other product exist. 

 

2.18.2 Engineering Use Case 

 
   Large industries have multiple locations around the world and are internally organized in multiple 

structures of different types. One type of structure is the functional area. Functional areas have 

technical know-how about a specific sector (i.e. engineering, cost engineering, marketing, 

commercial). Specifically, engineering functional areas perform tasks to design products and 

constantly invest in R&D activities to improve their know-how and to be ready to provide 

innovative design solutions. Platform area is a transversal area that has a global view on the product 

and leads the product development from the concept to the final product to sell as well as customers 

feedback and satisfaction. 

   The CFD unit is the engineering functional area with highly skilled engineers called CFD analysts 

who perform simulations to analyse the aerodynamic and aerothermal/automotive product behavior. 

This functional area is this thesis use case. In a big industry, many CFD unit exists that collaborate 

together (Fig. 2.1). The collaboration happens among dispersed CFD units and among CFD units 

and the other industry teams such as the product style designers and the performance engineers. In 

order to design an automotive product many engineers collaborate together. Specifically, in the 

automotive sector and for the aerodynamics/aerothermal analyses, CFD analysts, automotive 

designers, and performance engineers collaborate together. Each CFD unit has a technical manager 

who is responsible for the internal team organization and needs. 



�

�
�

�

 

 
Figure 2.24: Product Lifecycle 

 

   Briefly, style designers design the product style concept that is used by other functional area. CFD 

analysts perform CFD simulations using the 3D vehicle model and finally the performance 

engineers are responsible for the meeting of performance targets. The thesis use case focuses on the 

CFD functional area and its relationships within the Product Development Process (PDP). CFD is a 

numerical computer simulation able to solve and analyse problems that involve the fluid flow and 

other related physical phenomena. CFD is widely adopted in many industrial sectors such as 

automotive, aerospace, high-tech and chemical sectors. CFD benefits are a “better insight into 

product behaviour" [11], product optimization in according to the performance goals, the 

simulation of extreme environmental conditions (i.e. low or high temperatures) and a cost reduction 

due less number of physical prototypes. Experimental tests, on the other hand, with real prototypes 

are very expensive (i.e. wind tunnel infrastructure). 

   Style designers create the exterior and interior product design with manual drawings that will 

become 3D models using CAD software. CFD engineers use the 3D model to simulate and analyse 

the product performances (e.g. aerodynamics, aerothermal, aeroacoustic, air conditioning and cabin 

climatisation) with CFD simulators. CFD analysts perform simulations and report data in 

documents. In order to meet the engineering targets, performance engineers use simulation results 

to decide the changes to make and constraints for the next style revisions (style constraints). At this 

stage, engineers decide which prototypes to build and test in the wind tunnel infrastructure. Finally, 

experimental data are correlated to numerical simulation data, and additional style constraints are 

defined in according to the performance goals. CFD Workflow is iterative and consists of three 

phases (Fig. 2.25): pre-processing, solving and post-processing. In the pre-processing phase, CFD 

analysts take the vehicle geometries from stylists, and perform clean-up and meshing (both surface 

and volume mesh) tasks. Vehicle geometry is inserted into a virtual wind tunnel. So, CFD analysts 

define the geometric and physical-mathematical models to simulate. The physical-mathematical 

model contains the solid materials and fluid flow characteristics as well as the boundary and initial 

conditions. Volume mesh is a spatial discrete representation of the geometric domain. At each simu- 

lation step, physical values (i.e. velocity and pressure) are computed for each mesh cell. The size, 

shape and number of volume cells determine how many time and how many computational 

resources (e.g. the number of processors) are required by the simulation. Solving phase consists in 

running model simulation using HPC resources. The tuning of CFD simulations is a time 

consuming task because geometries are complex and the number of parameters to set is high. The 

simulation running takes about several hours (currently up to 12 hours with at least 40 processors). 

It is very important to monitor the running simulation to check periodically the simulation 

convergence. CFD analysts monitor the residual and the physical quantities about the examined 

phenomena (i.e. the pressure forces under the vehicle body). In post-processing, CFD analysts use 

simulation results to create documents about the simulated product. Simulation results are tabular  
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data, contour-plots and streamline images. The document creation (e.g. spreadsheets and slides) 

requires manual copy-and-paste operations to obtain artifacts compliant to the industrial templates. 

 

2.18.3 CFD Simulation Workflow 

 
Figure 3.13 shows the classical simulation workflow mainly made by three steps: 

 

� Pre-Processing: usually concerns the creation of the model (e.g. geometric model) and the 

setup of the simulation (e.g. simulation parameters); 

� Solving: the simulation runs on HPC resources; 

� Post-Processing may include the calculation of additional quantities, the plotting of results, 

the visualization of simulations pictures, the analysis of results and the creation of 

documents. 

 

   The Simulation Workflow is a step-wise and iterative process. The same product has always 

multiple variants and during the design process multiple revisions are created. So, for the same 

product the Simulation Workflow is iterated many times. The final outcomes are documents that 

describe the product performances. These documents are used as a support to exchange results and 

to collaborate among analysts and performance engineers. 

 
Figure 2.25: CFD Simulation Workflow. 

 

One aim of this work is to improve the data management especially when many simulations exist 

and engineers perform a lot of simulations per year. 

   The Pre-Processing (Fig. 2.26) is essentially done manually. The most of time is spent cutting and 

cleaning the vehicle geometry using a CAD/CAE software (e.g. BETA CAE Systems ANSA). Also 

the Post-Processing requires a lot of manual work especially to create the documents compliant to 

the industrial templates. Many accomplished tasks both in the pre and post processing are repetitive 

and error prone tasks. One aim of this work is to automatise many of tasks. 

   The Pre-Processing and the Solving phases can be accomplished by one engineer who creates the 

model, setups and runs the simulation. Nowadays, products are becoming very complex integrating 

many components, so industries have a specific design team who is responsible to design the 

product concept and its style. So, more often the geometric model already exists as CAD file. The 

CFD analyst task is to cut the geometric shapes to remove the unnecessary part for the specific 
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simulation. This has also another goal: to simplify as much as possible the geometric model and 

reduce the later simulation time. For instance, to simulate the external vehicle aerodynamic, all the 

internal vehicle components are removed to have only the vehicle surface. Another important task is 

the geometry clean-up. For instance, some space in the front of vehicle that is negligible for the 

mere visualization can be destructive for a simulation solver that tries to simulate the fluid within 

the hole. 

   Nevertheless, here the main use case is about the CFD, the Simulation Workflow follows roughly 

the same steps also for other type of simulations. In addition, it is usual to use separate software 

applications for each step [35]. 

 

 
Figure 2.26: CFD Simulation Workflow detailed phases. 

 

2.18.4 Existing platforms for CFD simulations 

 
Many Web-based platforms have been created over the years to support Computational Fluid 

Dynamics. The “e-Science Aerospace Integrated Research System" (e-AIRS) [16] is an educational 

Web portal developed in Korea to help students to understand the aerodynamic simulation process 

[36]. EDISON CFD [37] is the e-AIRS improvement in terms of stability, faster data response time 

and waiting time [38, 39]. Such systems have remarkable differences with our use case 

requirements and with Floasys. The systems target is the first difference, both e-AIRS and EDISON 

CFD have an educational target, instead Floasys aims to industrial sectors (e.g., automotive sector). 

The e-AIRS target is educational and therefore it has been used in undergraduate and graduate 

classes. This have an impact on the integrated tools, that is the other difference. e-AIRS integrates 

custom in-house meshing tools and solvers. It operates with its own Fortran-based in-house CFD 

solvers [16]. Industries use widely adopted and validated CFD software, so Floasys platform aim is 

to integrate existing both commercial and open source solvers (Req. 6). In addition, the meshing is 

very important because it impacts on simulation quality results and running times. e-AIRS adopts a 

custom software called e-AIRSmesh to mesh the geometry storing the mesh in a specific custom 

file format. Each CFD simulator works with a specific mesh topology. A Floasys requirement is to 

integrate multiple industrial adopted and validated CFD solvers (Req. 6). Industries have assistance 
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contracts with CFD software vendors, so industrial platforms cannot ignore their integration. In 

addition the aim is to avoid Vendor Lock-In adopting open format data.  

   Many other platforms proposed to manage simulations on HPC resources but they do not focus on 

collaboration among engineers. For example, a Web-based system for Management of CFD 

simulations for Civil Engineering was proposed with the goal to develop tools for civil engineers 

who are not CFD experts but need to perform CFD analysis [40]. It allows the “dispatching and 

controlling of long-running simulations" [40]. The system targets are civil engineers and CFD 

beginner users. The system was tested with a group of students in civil engineering class. The main 

differences concern the system end-user target and the correlated requirements to achieve. The 

system target is automotive industry where CFD analysts need to collaborate, share data, result and 

knowledge, simulation data and result centralisation with the aim to promote collaboration. An 

interesting emerged common requirement is the need to use templates both for expert and beginner 

users. The nature of CFD simulations with high number of parameters to consider forces the 

creation of standard templates both to support beginner and expert users. Another research avenue 

comes from the Semantic Web field. Many works in literature proposed software platforms for 

modelling and simulation. Simantics [41] is ontology based modelling; it uses ontologies to 

semantically describe the simulation model and the data. The two mainly applications that have 

built on Simantics platform are: the proprietary Apros6 for power plant M&S and an open source 

Simantics System Dynamics Tool based on Melodica language and the OpenMelodica environment. 

The Simantics's [41] developers are working on the integration of OpenFoam, an open source CFD 

software package. 

 

2.19 Future works 

 
This section describes the future works that can be further investigated starting from the previous 

described engineering requirements. These future works have been systematically gathered through 

the interviews with the stakeholders. 

   Simulation Workflow is usually made by three main steps (Figure 2.25): pre-processing, solving 

and post-processing. In the pre-processing phase, engineers setup simulation (e.g., geometries, 

mathematical model) to be solved in the next Solving phase using HPC resources. Finally, in the 

post-processing phase, the data in different format are collected and analysed to understand the 

product behavior.  

   The Simulation Workflow is iterative. Actually, each iteration takes hours to be completed 

(sometimes 24 hours) and requires the engineers manual actions. Therefore, analysts perform few 

workflow iterations about the same vehicle product. At each iteration, the vehicle geometry is the 

same but placed in different positions. For instance, analysts simulate the same vehicle with 

different ground clearance also called ride height (the amount of space between the base of an 

automobile tire and the underside of chassis) or, for example, with different spoiler positions. In 

addition, at each iteration also the simulation parameters can be changed. For instance, the inlet 

velocity usually is one parameter to change (i.e., common values are 20 km/h, 30 km/h, 50 km/h). 

For aerodynamic analysis, considering all the vehicle configurations, the number of simulations to 

perform is very high. Actually the simulation setup is performed manually. For instance, engineers 

manually move the spoiler along the vehicle solving a simulation for each discrete spoiler position. 

One interesting idea is to use the parametric geometry morphing supported by many CAD software 

(e.g., BETACAE ANSA) to automatically change the spoiler position and perform all simulations 

without the engineers actions.  

   The geometric and simulation parameter is only one of parameters to control. In addition, analysts 

perform different types of simulations. For instance, in the automotive context, engineers perform 
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aerodynamic, aeroacoustic, underhood cooling, internal air conditioning and other aerothermal 

simulations. These use of different types of simulation is called Multi-Disciplinary simulations. 

To perform these analysis, engineers use different simulator software because each one is suitable, 

validated and adapt to simulate a specific physical phenomena. Another example is Multi-Scale 

simulations where the analysed system is simulated at different scales with different simulators. 

Finally, another important aspect is the Muti-objective optimisation. 

   Therefore, analysts firstly demand for the integration of existing tools to get features not covered 

by one single product. The most well-known integration requirement in literature is the integration 

between CAD and CAE/CFD software, but also other integration requirements are becoming even 

more important. For instance, the integration between a Design Of Experiment (DOE) system and 

simulators to change the input parameters or the opportunity to use more than one software to 

perform the simulations. 

   Industries aim to integrate existing simulators, repositories as well as hardware and infrastructures 

together to have a unique platform to manage multiple simulation workflow automatically. Idea is 

to integrate existing industrial facilities (e.g., repositories, simulators, DOE, HPC resources, etc.) 

and automatically manage multiple simulation workflow through a unique, Multi-Disciplinary, 

Muti-objective and easy to use platform. Product Lifecycle Management (PLM) and Product Data 

Management (PDM) systems aim to collect data and aggregate them within the company and do not 

focus on the simulation management. 

   Looking at the big picture made by many CFD workflow iterations, stakeholders aim to have a 

platform to cover requirements that raise when analysts perform multiple simulation iterations 

(Figure 2.27). 

Some requirements that are not currently covered by the existing software are: the data management 

with tools to automate the data analysis, the automatic execution of multiple multidisciplinary 

simulations (e.g. underhood cooling, aerodynamics, cabin climatisation etc.) on different simulators, 

the monitoring of multiple simulations from different simulators. For instance, an interesting feature 

to provide is the results comparison of multiple simulations. Idea is to provide an interactive 

visualization tool that collects results from multiple simulations and compare them using a chart. In 

addition, the aggregation of simulations results gives useful feedback about the overall projects 

performances, especially to understand the targets achievement. 

   Unfortunately, a lack of interoperability among CFD software exists. Actually they do not provide 

export functionality in open format. For instance, the export of geometry data in open format is a 

well-established functionality (e.g. in STL format) but is not available for the entire simulation case, 

setup and parameters. Nevertheless the existence of technologies to guarantee interoperability (i.e., 

SOA architectures, restful and so on), commercial CAD and CAE software often do not provide 

open access to their services and data. Therefore, in order to provide new functionality (e.g. 

collaboration among engineers) over existing engineering software the only way is to wrap the 

software. The main drawback of the software wrapping is the possibility to run into the Vendor and 

Data Lock-ins AntiPatterns [18]. 

   The integration of CFD software, engineering tools and existing infrastructures as well as the 

collection of data from different sources provide the base to build new value-added service that 

cannot exist without such integration. For instance, the collaboration around simulation data and 

results make sense only within an integrated environment.  

   In order to successfully integrate software in one end-user environment it is important to integrate 

software and hardware both syntactically and semantically. We experienced that the main 

difficulties concern the semantic aspect of the software and the data representation. 
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Figure 2.27: Multiple Workflows Management.  

 

2.19.1 Automatic Simulation Workflows Management 
 

The idea is to automatically manage a set of Multi-Disciplinary and Multi-Objective simulations. Of 

course, some tasks are manual and actually they are difficult to automatise. For instance, the vehicle 

geometries CAD manipulations are mainly manual activities. 

   The aim is to semi-automatise the workflow performing automatically some iterations. 

Considering the simulation workflow phases, the first step is to prepare the mesh (e.g., mesh clean-

up), essentially a manual activity that requires the engineer actions. Therefore, it cannot be 

automatised and must be done manually. The geometry CAD can be parametrised so the geometry 

parts can be modified passing a numeric value such as the absolute position or numeric value that 

identify the geometry part translation and rotation. For instance, the spoiler can change the position 

in according to the specific parameters. Then, engineers decide which simulations must be executed 

and the parameters to use. In this way, the platform is able to setup the case to simulate, run the 

simulations on the cluster with different parameters both geometric and simulation parameters. 

Platform must be able to monitor the simulation jobs over time providing statistical information. At 

the end, the platform collects data and makes the documentation (e.g. spreadsheet and slides). 

 

 
Figure 2.28: Multidisciplinar, mutliobjects and automatic CFD workflows. 

 

   An engineering challenge is the time required to perform and complete all the simulations. It is 

mainly a CFD task to optimise the different simulations and complete them within a useful period in 
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according to the industrial targets. For instance, the industry could decide to get all results within 

two weeks. From the information technology point of view the aim is to integrate all these software 

and be able to communicate with them exchanging the data especially because a lack of 

interoperability exist. For instance, it is important to be able to set simulation parameters and submit 

the jobs on the cluster. At same time, the simulation control and monitoring is another important 

feature. For instance, a CFD simulation can diverge so the platform must be able to monitor the 

simulation and block the execution of the next jobs. Of course, as described previously, CAD 

software interaction is important mainly to manipulate the geometry mesh leveraging on the 

morphing changes of the geometry shape within a continuous range. 

   Figure 3.16 shows an example of the use case compared with the simulation workflow phases on 

the top. The platform submits different jobs over the time changing the simulation input parameters 

in according to the values provided by a Design Of Experiments (DOE) system (e.g., modeFrontier, 

Dakota). The platform is able to monitor and control the simulation jobs. The platform is integrated 

with the other internal systems such as the CAD software, the simulators and HPC resources. 

 

2.19.2 Experiment Data Management 

 
   Engineers perform experiments in real settings. For instance, in the automotive field, experiments 

are extremely important. Vehicle engines are constantly tested in controlled environments. A single 

engine run generates a huge amount of data stored usually in text format (e.g., Comma-separated 

values - CSV file format). Engineers usually run multiple experiments with different conditions 

(e.g., experimenting different paths) for many hours. Actually, it does not exist a unique common 

format to store the experiment data: any test-bed engine system generates data in different format. 

Later, engineers analyse these experimental data through comparisons. 

   Sometimes unexpected events can occur. For a real engine, a unexpected event is a high pressure 

value inside combustion cylinder for particular setting conditions. In this context, engineers face the 

problem to understand in which conditions the event occurs and why. Therefore, they needs to 

explore experiments dataset and compare thousands of experiments together. Automatic features as 

well as exploring and query features to get insight into the experiments will be really useful for 

engineers. For instance, experiments data aggregation by pressure values gives the opportunity to 

cluster experiments and identify outliers. 

   This use case conceptually is very similar to the simulation use case. Instead to have simulation 

data, engineers deal with experimental data. In both cases, users assert that they deal with big data 

and they require to explore datasets and compare data. The requirement to explore datasets has 

pushed the design and development of the Exploration and Visualisation tool further described in 

the next Chapters. 

 

2.20 Conclusions 

 
This Chapter provides a deep analysis of collaborative requirements to design a platform to 

collaborate around simulation data and promote the share of models. Through observations, 

interviews and a user survey we collected many requirements, so through further screening we were 

able to identify the key and essential collaborative requirements.  

The 2
nd

 section has described the main engineering Functional and Non-Functional requirements 

gathered in the Fiat Chrysler Automobiles use case. The integration of existing software is a 

relevant topic for the practitioners especially because for simulator software a lack of 

interoperability exist. In addition, the interaction with the engineering software allows the potential 

automatic management of the simulation Workflow.  
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Chapter 3 

 

 

Floasys Platform Architecture 
 

 

 

 

Contents 

 

 
 

 

 

 

 

 



�

���

�

3.1 Introduction 

 
This chapter describes the Floasys functionalities and shows its graphical user interface (GUI). 

Floasys functions have been divided in two groups: collaborative and engineering functionalities. 

From collaboration point of view, Floasys provides a simulator independent repository tool to 

navigate simulation repositories and annotate selected files through free and structured tags (Req. 

2). Floasys has a structured and assisted Search tool to get simulations performed by different 

engineers (Req. 3) and share them (Req. 5). Floasys's screenshots contain CFD related data but its 

GUI and its ideas are general to be reused in other engineering areas (e.g., ergonomics). 

   From the engineering point of view, Floasys provides the following services to support the CFD 

Workflow. It provides a service to run, solve and monitor simulation as well as automatic document 

generation like slides and spreadsheet documents. 

   In the 2
nd

 part the chapter describes the Floasys architectural solution [44] to meet both 

collaborative and engineering functional requirements described in the previous chapters as well as 

Non-Functional requirements (NFRs). The architecture collects simulation data from already 

existing simulation repositories (e.g., network shared folders), transforms, indexes (to provide high 

data retrieval performance) and store them in open format (e.g., XML). Therefore, the architecture 

supports the centralisation, annotation, tagging, search and sharing of simulation data to meet the 

collaborative requirements. At same time it supports the creation of engineering services over 

simulation data, such as the find of simulation with highest pressure. 

   The chapter is organised using a top-down approach as follows. The Section 5.1 introduces the 

general ideas behind the Floasys's architecture that is described further in the next sections of the 

chapter. The Section 3.5 gives an overview of the architecture in terms of patterns, architectures and 

protocols to guarantee its reproducibility. The chapter tracks and maps the collaborative 

requirements with the solution ideas and the specific implementation technologies (i.e., libraries) 

used to develop architecture. 

In the final part, the chapter introduces and describes a tool called ExploraTool to visualise, explore 

and graphically query large repositories of simulations. Instead of starting with the empty list, 

ExploraTool provides an initial overview of the repository content, progressively grouping the 

simulations by their main attributes, such as brand, vehicle model, power source, engine type and so 

on. Users can interactively navigate the repository view through drill-down, roll-up and 

rearrangement operations. In this way, using the ExploraTool, simulation analysts can visualise, 

explore and filter large repository of simulations as well as select groups of simulations to compare 

their performances. Large industries like FCA have large repository of simulation data and they 

must be sure that analysts have access to previous generated data. ExploraTool provides an 

overview of the repository content fostering its exploration selecting the key attributes to limit the 

space of results to find previous simulations. In addition, ExploraTool is immediately useful to 

answer questions like how many simulations we performed for the vehicle X?, and why for the 

vehicle Y with the engine type Z there are few simulations? ExploraTool gives a further advantage 

for the technical managers who can periodically check the working in progress on a specific vehicle 

model. The idea behind the ExploraTool is generic and can be easily used with the repository of 

experiments as well as other type of big data sets. In order to do this, it is necessary to identify the 

common and interesting data categories, and build the relative hierarchy that ExploraTool will 

render. 

 

 

 

 



�

�	�

�

3.2 Floasys Graphical User Interface 

 
Figure 3.1: Floasys Graphical User Interface. 

 

Floasys provides a re-configurable GUI based on Perspectives and Views concepts provided by 

Eclipse Remote Application Platform (RAP) [42]. The idea is that the virtual workbench changes 

according to the engineering tasks. In this way, the system is able to show only relevant 

functionalities to perform the actual task. A perspective is a specific configuration of the workbench 

and contains many views to show information. A perspective provides well-organized software 

functionalities access because it divides them in semantically homogeneous sections. In each 

perspective the content is organized in multiple views. Each view effectively contains the data using 

the available widgets. For instance Figure 3.1 shows the “Simulation Controller Perspective" with 

four views: Simulation Tree Explorer, Property, Outcome View and Console. 

 

 

3.3 Collaborative Features 

 
Floasys is a Web-based platform to support both engineering tasks (e.g., run simulation, monitor 

simulations, generate documentation automatically etc.) and data sharing among dispersed 

engineers. Floasys centralises simulation data in open format and provides a search tool able to 

browse and query the simulation database using tags identifying versions, interesting features and 

open comments. The Figure 3.2 depicts a real-world Floasys workflow that is difficult or time-

consuming without the designed Floasys platform. It is composed by six tasks executed in 

sequence. In Task 1, user finds a simulation using keywords like project name, revision, velocity 

and so on. The velocity is an internal simulation parameter. It is embedded in the closed file format, 

so the task to search by velocity cannot be accomplished without Floasys or at least, as come to 

light in Section 2, the user can remember where he stored the simulation file and open it to check 

the velocity value. In addition, Operating System find tool cannot be used to get the simulation 
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because velocity is not included in the simulation file name (Fig. 3.2). With Tasks 2 and 3, the user 

selects a simulation from the list of results to get the original simulation file and open it with the 

proprietary software. Unfortunately, the original simulation file is not in the repository. 

 

 
Figure 3.2: Example of a typical workflow supported by Floasys. 

 

Using Floasys, nevertheless the original file was deleted, the user can get the simulation data, setup 

and results. Of course, these data cannot be used directly to simulate it again. Anyway, an expert 

engineer can recreate the simulation starting from the provided surface mesh and simulation setup 

(boundary conditions, physical model, used parameters, previous reports and so on). The Task 6 

concerns the sharing of a simulation URL to another user via a preferred medium (e.g., e-mail, 

chat). Of course, the shared URL is available only within the industry's Intranet. 

 

 

3.3.1 Repository Tool and Simulations Tagging 

 
The Repository tool supports the navigation of central simulation repositories. Floasys integrates 

multiple simulators, so data heterogeneity is one of the issues to face. For instance, OpenFoam 

stores data in a well-defined directories structure of three folders (e.g., system, constant and 

iteration directories) and data are stored in multiple files. Instead, STAR-CCM+ stores all 

simulation data in one single-vendor format file. 
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Figure 3.3: Repository tool to navigate and tag a simulation repository. 

 

OpenFoam files are plain-text readable without the software, instead STAR-CCM+ files are in 

closed format and they can be read only using the vendor software. The Repository tool, relaying on 

Floasys framework services, is simulator independent and is able to manage data from different 

simulators. The Repository tool inherits the user file system access permissions, so logged user can 

access only to files he/she has authorised. Floasys can access to network folder through a server 

using a SSH connection with logged user credentials.  

   The Repository tool provides file annotation and tagging features. The idea is to enrich 

simulations files with metadata: a user can annotate a simulation file and provide additional 

information useful to retrieve and share it in future. Examples of free tag categories are: brand, 

project name, revision and engine type; all information that cannot be stored directly within 

simulation files, whereas Floasys allows it. Analysts are free to add any tag to files. In order to 

uniform the provided tags, during typing, Floasys suggests the tags to use (Fig. 3.3). Tags are both 

unstructured with free tags and structured inserted filling out standard forms like in Figure 3.4. 

 
Figure 3.4: Example of structured data. 
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3.3.2 Search tool and Data sharing 

 
   The Search tool (Fig. 3.5) is a Floasys perspective developed to provide the search of simulation 

data stored in central repositories. The tool supports the search by file name, simulation content, 

free tags and structured data (Req. 3 in Table 2.1). When a user types the search keywords, Floasys 

recommends further keywords to refine the search (Fig. 3.5). In this way, the tool supports the 

search activity suggesting further search keys to reduce the total number of potential results. The 

system performs search using only indexed data without accessing (e.g., open) to original closed 

format files. The results are displayed in a list. In order to display the revisions history, the user can 

select a simulation from the list of results. 

   In order to avoid data Lock-In and to manage the search over closed file format, we decide to 

extract some other important simulation data (e.g., the names of components, simulation 

parameters) and to store them in XML files. In this way, the search operation is faster because it 

does not need the direct access to the closed files format and it does not require to open the 

simulation file using the proprietary software. Every time the analyst opens a simulation through 

Floasys, the platform automatically extracts the simulation data storing them in open format. The 

data extraction is already required to support the engineering tasks. 

   Each simulation file has a unique ID within Floasys and all relevant data (e.g., documents, 

simplified 3D geometry, surface mesh and so on) are linked to this ID. Both repository and search 

tools provide a unique URL for each selected simulation. The idea is to share data by simply 

exchanging unique reference to the specific simulation data. URLs identify simulation data and 

inherits file system permissions. The URL is private and is accessible only within the industry 

boundaries. Considering the Computer Supported Cooperative Work (CSCW) space-time quadrants 

[43], Floasys supports the asynchronous data sharing for both co-located and distributed teams. 

 

 
 

Figure 3.5: Search Tool 
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Figure 3.6: CSCW Quadrants. 

 

 

3.3.3 Web-based 3D Model Visualisation 

 

 
Figure 3.7: Floasys 3D model visualisation. 

 
   Floasys shows a reduced 3D geometry of the simulated vehicle. Through this tool, engineers can 

quickly discover which components have been used to simulate the product without opening the 

CAD software. The tool shows a list of components with their Property IDs (PID) on the left (Fig. 

3.7). The user can activate or deactivate some parts and can perform the basic zoom and pan 

operations. Figure 3.7 shows the simplified 3D surface geometry of a FCA production vehicle. The 

3D vehicle geometries usually are very complex. To give an idea, each geometric model takes up 

ten gigabytes and engineers use very performing hardware to open and manipulate them. 
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   An important requirement for any engineering platform is the visualisation of 3D geometric data. 

As many other platforms, Floasys is a Web-based platform. The vehicle geometries are impossible 

to render in the browsers using WebGL because they are very detailed and heavy; also the quantity 

of data to transfer from the server to the clients is very huge. To overcome this common issue and 

considering that the geometric representation is useful to give an immediate feedback on which 

components are included in the simulation, Floasys generates a simplified geometry representation 

to be rendered in the browser. Engineers need to have numerical tabular data, contour-plots and the 

3D geometric model in the same view. Floasys provides a reduced geometry visualization allowing 

engineers to quickly check which are the vehicle components at a glance. For instance, an engineer 

can visually check if the vehicle is simulated with the spoiler. 

 

 

3.4 Engineering Features 

 
This section describes the Floasys engineering functionalities to support the engineering activities. 

The CFD workflow is made by three parts: pre-processing, solving and post-processing. Floasys has 

at least one function in any of the CFD workflow phase. The Figure 3.8 shows the CFD Workflow 

and for each step shows the functionality supported by Floasys. 

 

 
Figure 3.8: CFD Workflow and tools provided by Floasys. 

 

In order to understand how the users interact with the system, the Figure 3.9 shows a typical CFD 

workflow with the tasks and, for each of them the used Floasys Tools. For instance, after the log-in 

and at beginning of the pre-processing phase, engineers use the “Repository Tool" to navigate the 

simulation repository and select a simulation file (Task B, Fig. 3.9). Then, the “Simulation 

Controller Tool" opens the simulation and shows its content and details (Task C, Fig. 3.9). 

   In order to solve a simulation, Floasys has multiple “Run simulation" wizards. In the engineering 

field, the simulation running takes long time (hours) so it is important to monitor them during the 

solving phase. CFD simulations are numerical simulations so engineers look to convergence charts 

(Task E, Fig. 3.9) to understand whether the simulation is converging or not. 

   Finally, the tools available in the last Post-Processing step are the “Simulation Results Compare 

tool" (Task F, Fig. 3.9) and the tool to generate the documentation automatically (Task E, Fig. 3.9). 
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3.4.1 Simulation Controller Tool 

 
The Simulation Controller Tool shows data of a simulation and provides functionality to interact 

with it. Obviously, previously the user has selected the simulation using the “Repository Tool ". The 

screenshot in Figure 3.10 shows data about a simulation example provided by CD-adapco STAR-

CCM+ : AHMED-25. The Controller Tool shows on the left an overview of the simulation data. 

The data structure is tree-based and has rendered through a tree widget. For instance, the picture 

shows on the left the geometric boundaries: the wind tunnel boundaries such as the Floor, Inlet, 

Outlet and the Side as well as the AhmedBody placed in the middle of the wind tunnel. The same 

picture shows on the right the Cx value that is the simulation running result and the value in which 

the engineers are interested. 

 

 
Figure 3.9: A typical engineering workflow. 

 

   The tool is based on the Simulation Model concept that contains all the data about the selected 

simulation in a tree-data structure. Simulation data have a tree hierarchy structure made by nodes 

that represent the single data. Simulation data are the regions, the boundaries, the interfaces 

between regions, the physical properties, the outcomes and so on. The tool shows this data in the 

Simulation Tree Explorer on the left side. 

   For each simulation model node that is selected in Simulation Tree Explorer (left), the Property 

view shows all information about the node for example the node name. On the right side the system 

shows other detailed information on the selected node. In the simulation tool the focus is on the 

selected simulation. The toolbar provides the functionalities related to the selected simulation. The 

toolbar shows on the left the simulation name, so the engineer is aware about which simulation he 

has chosen. 
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Figure 3.10: Simulation Controller Tool. 

 

 

 
Figure 3.11: Simulation Tool Toolbar 

 

   Figure 3.11 shows the Simulation Controller Tool toolbar: the main entry to other functionality of 

the Selected Simulation. This toolbar continuously evolves providing new features, currently it 

contains the following functionalities: 

 

� Selected Sim: it shows the selected simulation name, if the simulation is stored in a file 

than the selected simulation is the file name; 

� Refresh model: to refresh data shown, it extracts the simulation data and shows them in the 

simulation tree under the toolbar; 

� Run simulation: it solves the simulation; usually it uses HPC resources to run the 

simulation. 

 

   In particular, Floasys has a wizard of three pages to run a simulation (Fig. 3.12 shows two of 

them). In the first page the user can choose among multiple standard running types (e.g., Cx 

simulation running, MassFlow run and so on). The Wizard's pages and input parameters change in 

according to the selected simulation type and for each choice, Floasys configures the simulation. 

For instance, the Figure 3.12 shows the parameters to solve a simulation that calculates the Drag 

Coefficient (Cx value). The running of a simulation requires the access to High Performance 

Computing resources, so the last Wizard page always asks the cluster name or IP address (industries 

usually have multiple clusters), the number of processors to use and the user credentials. 
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Figure 3.12: Screenshots from the Run Simulation Wizard. 

3.4.2 Monitoring Tool 

 
   The Monitoring Tool is used to monitor the running simulations. It is generally used when the 

simulations run on a computer cluster. In order to use the Monitoring Tool the user must connect to 

the HPC resource by clicking on the Connect button. To login the user must insert the IP address or 

the DNS, and the password. The available usually hosts are fixed at configuration time so the user 

can select it from the list of available hosts. After the authentication, the monitoring tool shows the 

jobs submitted on the cluster. The monitoring perspective is divided into two columns. On the left 

side there is the job list. The list contains both the running and waiting jobs. When the user clicks 

on a job in the list, Floasys shows on the right the convergence chart. For example, the list shown in 

the Figure 3.13 contains three jobs. The user can select a job from the list to show the chart on the 

right. Of course, everything is configurable simply clicking on the Change Graph button. Floasys 

reads for each simulation, its log file and extracts the quantities to show in the chart.  

 

 
Figure 3.13: MonitoringTool to check the simulation convergence. 
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Figure 3.14: Generation of documents from simulation data. 

 

3.4.3 Documentation Tool 

 
   In order to generate documents the first approach is to write a specific procedure for each 

document to get the simulation data and make the document. This approach has the drawback that 

the document structure is stored within the generator program so to change it, the generator source 

code must be changed; an activity that cannot perform the system end-user. Therefore, this 

approach is not flexible. Another approach uses a template document with marker elements inside. 

These markers will be replaced by data during the document generation process. Figure 3.14 shows 

the document generator, a black box from the design point of view, with the template and 

simulation data as input and the generated document as output. This approach is flexible compared 

to the first one because it is possible to change the document template to change the format of the 

generated document, but still, for complex documents, it needs to write some code, an operation 

that end-users cannot perform. 

 
Figure 3.15: Example of a template and a generated document. 
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   The idea behind the Documentation Tool is to generate automatically the documents from the 

document template and the simulation data. The template has the same original format with special 

tags or keywords within the document template. The tags within the template use a specific 

language, like Velocity or Freemarker that are two Java template engines. Figure 3.15 shows two 

screenshots, the first one on top shows the Excel document with the tags and the second one shows 

another document generated by the Documentation Tool with simulation data. 

   The same idea has been used also for the Power Point presentations. The template has on each 

slide a keyword or tag formatted properly that will be replaced by the content during the generation 

phase. Also for pictures on slides there is a tag that will be replaced by images. 

 

3.4.4 Parametric Exploration Tool 

 
   Engineers perform multiple simulations for the same product with different parameters. In 

literature already exist Design Of Experiments software, two examples are modeFrontier and 

Dakota. Formally, in a design of experiment we have X that is the set of input variables to explore. 

Of course, for each variable only a set of values is valid. The set Vx is the set of values for the 

variable x. The set of experiments is E. The number of experiment usually is very high and it is 

impossible to perform all of them within the budget and time constraints. Therefore, engineers need 

to choose a subset of experiment to perform. For instance, Figure 3.16 shows a pipe with two inlet 

fluids and one outlet fluid. 

 

 
Figure 3.16: An example of Parametric Study. 

 

   In order to design this pipe, multiple experiments must be performed changing for instance the 

inlet velocity. The table shown in Figure 3.16 shows four experiments with the relative inlet 

velocities. 
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   The Parametric Study Tool (Fig. 3.17) allows the design of experiments. It shows the simulation 

data with its parameters on the left and the experiments on the right. The user can choose and drag a 

parameter from the simulation tree on the left and drop it on the right and set the values. In this way 

the tool knows which parameters must have each simulation. Floasys runs all the simulations on the 

High Performance Computing resources and collects the results that can be stored within 

documents. 

 

 
Figure 3.17: Parametric Exploration Tool 

 

 

3.5 Floasys Architecture Overview 

 
   The idea is to collect both simulation and experimental data, and store them in central repositories 

as shown in Figure 3.18. Then, the architecture provides additional services over collected data. 

Example of services are the collaborative features to share the data among distributed teams of 

analysts and the engineering services to manage the simulation life-cycle on the High Performance 

Computing resources like clusters. 

   Figure 3.18 shows the Floasys abstract architecture design to introduce its ideas, components, and 

features. In this way its idea can be potentially adopted in other sectors, fields and contexts like 

aeronautic, rail and naval), and it can be replicated with different technologies. 

   Generally speaking, the architecture is based on three layers. In the bottom layer there are the data 

sources; in the use case the experimental and simulation data. The data management layer is 

responsible for the data source management. To get simulation data, the architecture can read the 

data directly from a source file or through the simulator software that generates the data. For 
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experimental data, the architecture usually for security reason does not connect to the test-beds to 

get data but the test-bed itself generates textual data (e.g., Common Separated Values, CSV files) 

that are read by the data management layer. From technological point of view, a data source can be 

a web services [45] to query the data, a restful service [46] or a piece of software to integrate within 

Floasys. The data management layer must handle heterogeneities among data sources. Therefore, it 

has a common open model to represent data.  

   Floasys provides services over collected data. For instance the opportunity to share simulation 

data exchanging a Uniform Resource Locator (URL). Another examples are the tools to get insight 

into data like data exploration, filtering and querying. Engineers often ask for the experiment with 

the highest pressure value or the ones for which a particular event occurs. On the top layer there is 

the Graphical User Interface (GUI) can be divided in three main layers as depicted in Figure 3.18. 

The central layer called data management is the core. In order to meet the extensibility and 

modularity Non-Functional requirements the system relies on the concept of pluggable software 

modules. Each electrical device has a power cable with a plug at its end that can be plugged in a 

socket of the same shape, type and size. This analogy has been used in software engineering for 

long time. A module A provides a socket with specific characteristics that can be used by a module 

B to extend the module A functionalities. Over years the pluggable modules have been 

implemented with different software technologies, such as OSGi [47]. The Figure 5.1 uses multiple 

times the pluggable modules concept depicted as a power plug. In order to meet extensibility, it 

provides two types of extension point. One supports the extension to introduce new data sources 

(bottom layer) and another type of extension point to provide additional services over the data (top 

layer). 

 
Figure 3.18: Floasys Architectural Solution General Idea 

 
Floasys is based on a Client/Server architecture (Fig. 3.19) developed using Eclipse Remote 

Application Platform (RAP) [42]. Clients are Web-based components. Therefore, Floasys is 

accessible through any browser installed on the company workstations. The Web-Based RAP 

clients communicate with the server exchanging commands and messages in JSON text format [48] 

over the HTTP protocol. Servers tend to interact with user browsers using the JSON exchange 

format [49] because it is easily parsed in client-side JavaScript language [48]. The Floasys's server 
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can access to a set of already existing repositories (mainly shared network folders) that store the 

simulation files in their original format. It is an important asset for the industry, so every solution 

cannot change it to not change drastically how engineers work every day. In according to the 

internal policies, Floasys accesses to these existing FCA repositories in a read-only mode through 

the SSH protocol with the logged user credentials. Floasys server accesses to these existing 

repository through SSH connections to an existing industrial server. Floasys opens a SSH 

connection towards the network folder for each connected client. In this way, the SSH connection is 

initiated with the end-user credentials and he can access only to his authorized files and directories. 

Therefore, Floasys implicitly inherits the existing files authorizations that have been decided by the 

central ICT administration. 

   Obviously, the architecture needs an additional repository to store simulations in open format 

(e.g., XML) with annotations, tags and additional metadata (Req. 2). Floasys supports two types of 

repository: an internal Subversion server or a shared network folder (without the version control 

support). In order to improve retrieval performances, Floasys indexes open format XML documents 

relaying on a well-established search engine technology like Apache Solr [50, 52]. The server can 

access also to simulator software and High Performance Computing (HPC) resources as well as 

other internal services like the authentication service. Floasys is Intranet-based for security reasons. 

In addition, any kind of control access to data must be compliant with the industries internal 

policies and cannot be override. 

 

 

 
Figure 3.19: Floasys Client/Server Architecture. 

 

To provide authentication and to manage both users and groups, Floasys can rely on existing 

industrial internal Lightweight Directory Access Protocol (LDAP) servers [53, 54] or use existing 

Secure Shell (SSH) accounts comply with existing file and directories access permissions. Floasys 

could be exposed also on Internet, but limitations exist such as the huge amount of simulation data 

(gigabytes) to transfer. Trusting and security issues must be taken into account (e.g., to avoid 

espionage activities). Floasys is designed, developed and tested following an Agile methodology 

based on short iterations of two weeks each in average, delivering small functionalities every time. 
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During the development, especially for server-side features, we wrote black box unit tests using 

JUnit [55]. From functionalities testing point of view, for each planned release we had a test plan 

with the test cases to execute and check on a controlled environment software installation. In 

addition, during the Floasys development, we worked closely to analysts in Fiat Chrysler 

Automobiles to get the user feedback as soon as possible that were recorded in an issue tracking 

system (e.g., Edgewall Software Trac) and scheduled for the next plans in according to the 

issue/enhancement priority. Of course, we received the user feedback during the development of the 

current planned release. Sometimes we received blocking issues that unfortunately did not have 

been discovered during the planned functionalities testing phase. The blocking issues were planned 

in according to the Figure 3.20 in a way to react immediately to the incoming high priority request. 

 

 
Figure 3.20: Floasys Agile Development and blocking bugs. 

 

 

3.6 Server-side software architecture 

 
   The Floasys server-side component interacts with the simulator software to collect closed format 

data and transform them in open format. The architecture is a three layers approach (Fig. 3.24). It 

integrates multiple simulators in the bottom layer wrapping the vendor software. The top layer is the 

front-end that contains the Web-based GUI tools (or applications). The middle layer has the follows 

characteristics: 

 

� it provides a common APIs to the front-end tools; 

� it provides a common unified data representation called Simulation Model for data coming 

from different vendor systems; 

� it is an isolation layer [18] to decouple the front-end from vendor-specific simulator 

wrappers; 

� it allows the vendor-product switching at run-time to choose which ones are able to provide 

the needed services and data. 

 

   The middle isolation layer contains the common APIs exposed to the upper applications layer. In 

order to keep its use easy, it mainly contains interfaces (or abstract classes) which are implemented 



�


��

�

by vendor-specific wrappers. The use of a common isolation layer does not exclude that each 

wrapper itself is designed with an isolation layer using a proxy pattern. The architecture is able to 

provide the middle layer services also with other technologies such as Restful and Web Services to 

support the interaction and data exchange among other devices (i.e., mobile devices) and/or 

industrial systems. In this way, another third application (i.e., mobile application) can access to the 

central simulation repositories and provide other service over open format data. Actually Floasys 

Meeting Mobile is under development to provide statistical information about projects during the 

meetings. 

 

 
Figure 3.21: Alternative architectural solution comparison. 

 

   An alternative solution to the previously described architecture could be the introduction of a 

separate isolation layer for each vendor software. Figure 3.21 compares the Floasys's architecture 

on the left with the alternative solution on the right that use an independent isolation layer for each 

simulator wrapper. The support of multiple replaceable vendor products and the simulators 

selection process requirements impose the introduction of a common isolation layer. The alternative 

solution has the following drawbacks: 

 

� the selection process is performed in the application layer; 

� separate isolation layers means also different APIs, differences that must be handled in the 

application layer. 

 

   The extraction of data from closed file format generally is a tricky task and the solution depends 

on the specific proprietary software and it is strictly coupled with it. The reverse engineering of the 

binary file content is an extreme solution and we definitively tried to avoid it during Floasys 

development. The idea is to interact with the simulator taking advantage of its specific features. 

Specifically, CFD simulators have an interesting bult-in feature: the opportunity to write (or record) 

a macro to automate tasks within the software. In addition, CFD simulators run “headless" without 

the graphical user interface (GUI) and can execute macros from the command line. It is a built-in 

feature because every CFD simulation requires and runs on High Performance Computing (HPC) 

resources. For instance OpenFoam, an open source CFD software package, is a set of command line 

tools without GUI so that the aim of many projects [31] both open and commercial is to design a 

GUI for OpenFoam. Another CFD simulator is CD-Adapco STAR-CCM+, it has a Java-based 

macro language to automate repetitive tasks. Therefore, Floasys takes advantage of this built-in 

CFD software feature. In order to extract the data from a closed file format, the specific Floasys 

Wrapper runs the original simulator and execute a macro within the simulator. Figure 3.22 shows an 
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example on how to run the extraction macro from the command line. The macro reads the 

simulation content and stores everything in a plain intermediate file that after it is managed by 

Floasys platform. Floasys reads this plain intermediate file, transforms it to a common open format 

creating a XML document stored in the central open repository. 

 

 
Figure 3.22: Execution of the Macro to extract data from a simulation file. 

 

Figure 3.23 shows the sequence of events and actions performed to extract simulation data from 

closed file format. The components of the system are: the CD-adapco STAR-CCM+ Simulator 

(right side of Fig. 3.23), the simulator wrapper and the shared folder (top side of Fig. 3.23). The 

wrapper interacts with the simulator through the command line. As previously described, the central 

work to extract simulation data is performed by a Java Macro. The Simulator executes this macro. 

All the parameter to execute the macro and the data response are serialised and deserialised in files 

within the shared folder. 

 

 
 

Figure 3.23: How the STAR-CCM+ wrapper extracts simulation data. 

 

 

 

The sequence of steps is the following: 

 

1. Request Serialisation the wrapper serialises all the parameters to make the request in a file 

on file system (file with extension *.sim.request), one of the parameter describes the task to 

perform, for instance the extraction of all simulation data; 
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2. Simulator Running the wrapper runs the simulator and its macro as shown in Figure 3.22, 

in addition, the wrapper blocks until the simulator execution is completed; 

 

3. Request Deserialization the macro deserialises the request file and gets the parameters; 

 

4. Task Execution the macro based on the input parameters executes the task; 

 

5. Response Serialisation the macro serialises the simulation data and the task results within 

a file on file system (file with extension *.sim.response); 

 

6. Simulator Running terminated the wrapper that was waiting until the simulator running 

completion and it recognises that the task has finished; 

 

7. Response Deserialisation the wrapper deserialises the file response and gets all the data. 

 

 
 

Figure 3.24: Floasys Server-side architecture. 

 

 

In order to meet extensibility and modularity requirements (Req. 7), the server is based on a pure 

plug-in architecture [56]. A plug-in can provide well-defined hook points called extension points to 

define and describe the way to extend its functionality. Other plug-ins (or modules) can add new 

functionalities implementing an extension point. In addition, a module can be replaced with another 

equivalent implementation also at runtime. The Floasys core provides two extensions points to 

extend its functionalities: 

 

 

� one hook point to introduce new tools in the upper layer; 

� another hook point for new wrappers. 

 

In this way, the following opportunities exist for the final customers: 

 

� multiple Floasys instances can be deployed choosing which modules will compose the 

overall architecture in according to the industrial needs; 

� the industry can identify exactly which modules contain their specific know-how; 
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� each company can decide to invest money for the development of its own internal modules 

to customise Floasys and meet specific internal requirements; 

� in according to Eclipse Public License [57] (EPL), each plug-in can be released open 

sources or with a closed license. 

 

   Floasys has two kind of modules: wrappers on bottom to collect data and tools on top to provide 

engineering features (Fig. 3.24). An interesting Floasys extension planned for the future is to 

develop a wrapper that collects experimental data (e.g., wind tunnel experimental data, engine 

testbed). This is a challenging goal but the advantage would be a central repository that contains 

both simulation and experimental in open format supporting the comparison among them. An 

important task is the validation of simulation results and the comparison among the computer 

results and experimental data is very important. 

 

 
Figure 3.25: Floasys projects within the Eclipse IDE. 

 

   Figure 3.24 shows the Floasys architecture with different layers. This software architecture 

reflects also in the source code organisation. In the Floasys Eclipse IDE there are the following 

group of projects as depicted in Figure 3.25: 

 

� Core API is the Floasys Framework and contains the simulation model and the interfaces to 

abstract wrappers and tools concepts; 

� Wrappers are the simulator wrappers that know how to interact with the simulator software, 

for example Floasys has a wrapper for the OpenFoam simulator; 

� Tools contain the implementation of the front-end and the user functionalities, for instance 

the document generator; 

� RAP dependencies are the Eclipse Remote Application Platform used to develop Floasys. 

 

   Floasys relies on mainstream technologies. The server-side components are Java servlet-based. 

Floasys is developed upon Eclipse Remote Application Platform (RAP) that “uses standard servlet 
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technology and runs on any JEE servlet container" [42]. Therefore, the outcome of the deployment 

phase is a Web application ARchieve (WAR) file that is deployed on a JEE servlet container (e.g., 

JBoss or Tomcat). This software stack can be installed upon any operating system (e.g., Mac, 

Windows or Linux). Actually in according to the industrial internal policies, the server is a Red Hat 

Linux distribution with JBoss but any other Linux distribution can be used. 

 

 

3.7 Simulation Model 

 
   Floasys aims to collect data from multiple different simulators that often use closed file formats. 

A lack of interoperability among CFD software exists so Floasys must directly handle these 

heterogeneities. Heterogeneities among vendor products are both syntactic and semantic. The 

syntactic heterogeneity concerns the vendor product APIs differences or the way to interact with 

them through command line. The architecture has an isolation layer (Floasys Framework in Fig. 

3.24) to face these syntactic differences that remain within the simulator wrappers and one common 

API has provided to upper layers. Semantics and data heterogeneities deal with data differences: 

software are often similar but they use different concepts. This issue becomes evident when 

architectures try to “support the concurrent use of multiple infrastructures, transparently" [18]. 

Floasys introduces an intermediate common representation for simulation data called Simulation 

Data-Model. It is based on a tree-like data structure as CGNS [58] format. In order to be reusable, 

it consists mainly of interfaces and abstract classes. In addition, Floasys provides a basic 

implementation based on the composite design pattern [59]. Figure 3.26 shows part (for simplicity) 

of Simulation Model Class Diagram. The interface IComponent is the abstraction of all components 

within the model. IContainer is a set of components, they represent an intermediate node within the 

tree-data structure like a folder in the file system. Each component has its specialisation to store 

specific data types. For instance, there is a node to store the outcome or a physical value. The 

adding of metadata to this structure is very easy, it is just the adding of a new node to the 

Simulation Model structure. 

   In Floasys, each wrapper (architecture bottom layer Fig. 3.24) knows how to interact with a 

specific simulator and can extract data from a closed file format. The same wrapper is responsible 

to create the Simulation Data-Model instancing the basic implementation and translating simulation 

content in nodes of Data-Model. The Simulation Data-Model is serialisable. Floasys serialises the 

Simulation Data-Models in XML documents that are indexed using Solr and stored in a Subversion 

repository. Floasys uses Java XStream [60] Library to serialize Simulation Data-Model in XML. 

This Data-Model is very powerful because Floasys can enrich the original data adding meta-data as 

a new node of the tree structure. Both Floasys Framework and wrappers can add metadata over data 

inserting additional nodes in the tree (i.e., documents, automatic extracted information) during 

extraction phase. Also users can enrich the Data-Model providing tags and comments through 

repository tool that become nodes in Data-Model. All the information stored in Simulation Data-

Model can be used during within the Search Tool to find simulations. 
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Figure 3.26: Simulation Model Class Diagram 

 

The advantages of the intermediate Simulation Data-Model representation are: 

 

� metadata over data adding custom nodes; 

� serialisation in open format such as XML; 

� decoupling of wrappers from tools so it is possible to replace a wrapper limiting changes to 

upper layers; 

� opportunity to compare results that came from simulators with the results that came from 

the experiments with real prototypes in future. 

 

Finally, we experienced a great advantage of using a Data-Model during Floasys development. 

Using the Data-Model has the advantage to use the Floasys front-end without simulators. The idea 

is to have a dummy simulator that reads data from the XML file and provides them through the 

described architecture as a real simulator. This is a cost-saving in terms of HPC resources and 

available simulator licenses for closed software. Considering the 3D geometry complexity, to open 

a simulation file, engineers access to a computer cluster using a software license that are fixed by 

the project budget. Therefore, the requirement to avoid data lock-in leads to a cost-saving feature. 

 

3.8 Simulation Data Management: Centralisation, Version Control and 

Data Indexing 

 
   The architecture integrates multiple simulators, collects and centralises simulation data. Each 

simulation contains textual, numerical (e.g., results), images and geometrical data. Floasys extracts 

all simulation data embedded in closed file format and stores them in open format files. The textual 

and numerical data are stored in XML files in according to the Simulation Data-Model and are 
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committed to the Subversion repository. These XML files are relatively small (MB) so they are 

easily managed by the Subversion repository. Obviously, most Subversion operations are recursive 

but Subversion 1.5 introduced the sparse directories [61] (or shallow checkout) to checkout a 

portion of the working directory with the freedom to get more files and directories later [61].         

Therefore, Floasys relies on the shallow checkout to get a partial group of XML files. Floasys can 

use multiple Subversion servers to accommodate future needs. Version control granularity concerns 

the specific simulation file. In this way, simulation XML files can be distributed among multiple 

Subversion servers. Floasys architecture has designed to store the SVN URL within the Solr search 

engine during the indexing phase. Hence, when the user search a simulation and gets the search 

results, for each result there is the SVN URL to a specific Subversion repository. Hence, every time 

Floasys exactly knows the Subversion server used to store the open format XML document. In 

addition, in order to provide high search performance, the generated simulation XML files are 

indexed using Apache Solr [62]. Apache Solr provides extensions, configuration, infrastructure and 

programming languages bindings around Apache Lucene. In according to the official 

documentation [62], Apache Solr is “is highly reliable, scalable and fault tolerant, providing 

distributed indexing, replication and load-balanced querying, automated failover and recovery, 

centralized configuration and more". In particular, Apache Solr can be run in a standalone 

configuration or it is possible to setup a cluster of Solr servers through SolrCloud to combine fault 

tolerance and high availability as well as scalability using replication and distributed indexing 

dividing the index into partitions called shards. Floasys does not use the Subversion repository for 

the geometrical data because they are very huge (GB). A simulation contains mainly two meshes 

(geometrical data): (1) a surface mesh that is the vehicle shapes used to build the (2) volume mesh 

used at solving time to solve the simulation. Floasys extracts only the surface mesh and makes two 

outputs: a simplified geometry that serves just as overview of the vehicle product (it is fast to 

retrieve and render with WebGL) and a surface mesh file (e.g., STL file). Floasys does not store 

geometric volume mesh (the most heavy part of a simulation) reducing the overall required amount 

of physical space. In this way it saves space on repositories and it is always possible to build 

volume mesh from surface mesh.  

   In order to get the simplified 3D geometry version used only for the visualization on web, Floasys 

in batch connects to the Matlab server and reduces the original STL surface mesh creating the 

lightweight version. This simplified version contains all vehicle parts separately. After many 

attempts the best trade-off between running time and the 3D geometry quality is to use the Matlab 

reducepatch command. The quality of the obtained mesh is assessed asking to CFD analysts. 

Floasys interacts with Matlab as a black box, it gives in input the original mesh and gets in output 

the simplified mesh, so in future we could replace Matlab with another system. The proposed 

solution has an interesting advantage. XML files store the most important and useful simulation 

data including a simplified 3D geometry. Therefore, users can open the XML files using the 

repository tool and access to all simulation data without the original software and without the HPC 

resources. It is a useful feature because sometimes CFD analysts need to open simulations to 

consult data, in this way no proprietary software license nor HPC resources are used. For each 

simulation file (left-side of Fig. 3.27) stored in closed file format, an XML file exists in the SVN 

repository (right-side of Fig. 3.27) that contains extracted simulation data and metadata in open 

format. In addition, each XML file is indexed using Apache Solr [62]. Each XML file is always 

linked with its original simulation file using an unique ID. In this way, the users can always get the 

original simulation following the provided link. Floasys generates a unique ID for each simulation 

file and stores it with metadata in the XML file. The ID is based on the original simulation file 

content and path. This solution has the following advantages. Floasys does not change the 

simulation file content to add other information such as the ID. It performs search operations using 

indexed XML content getting high performances and providing version control for them.  
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Another alternative solution is to add metadata directly to simulation files avoiding the creation of 

XML files. 

 

 
Figure 3.27: Simulation Data versioning. 

 

   This solution has been discarded because has the following drawbacks: 

 

� it is difficult to find available and unused fields in the simulation files; 

� the simulation files are still stored in closed file format, so the solution is vendor software 

specific; 

� the metadata management requires the access to files through the vendor software using 

HPC resources due the geometry data; 

� it is difficult to provide version control over simulation files because they takes up to ten 

gigabytes. 

 

   From implementation point of view, two Java libraries have been used: SolrJ to interact with the 

Solr Server and SVNKit to commit and update data to Subversion repository. The solution meets 

also other industrial constraints, such as the impossibility to move existing files and folders or to 

store them within a database. Finally, the solution must be independent by the specific simulator, so 

it cannot store metadata within the simulation files, also because files are in closed file format. 

 

 

3.9 Collaborative Requirements Traceability 

 
During the design of a system it is essential to track the requirements through all the design steps. 

The Figure 3.28 depicts graphically the mapping among the stakeholders' requirements, the 

solutions and the used technologies. Therefore, it shows three columns: the first one lists the 

collaborative requirements identified and described in the chapter 2, the second column lists the 

solutions and the last one lists the specific technologies. In addition, the Figure 3.28 has arrows to 

track and map for each technology and solution, the related stakeholder requirement.  

   The simulation data centralisation has achieved using central repositories, such as network shared 

folder. Stakeholders aim to add metadata over simulation data, and Floasys provides a file tagging 

feature. In addition, engineers want retrieve simulations based on the file name and its content. 

Unfortunately simulations are closed file format. Floasys extracts the simulation data, stores them in 
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open format and indexes all the data through Apache Solr, a scalable search engine widely adopted 

by big digital firms. The worldwide and the dispersed teams have triggered the requirements to 

share simulations. Floasys supports the sharing of data through the exchange of URLs, a standard 

technique to share resources over Internet. Floasys has a plug-in based architecture and a central 

layer called isolation layer to meet the extensibility and modularity Non-Functional requirements. 

Within the isolation layer it uses a common unified Simulation Model that handles the simulations 

heterogeneities. 

 

3.10 Code Snippets 
 

This section describes two code snippets took from Floasys: how to run a simulation and how to 

extend Floasys. The main aim is to show with two practical examples the concepts described in the 

previous sections like the extension by plug-in. 

 

 
Figure 3.28: Mapping of requirements, solutions and technologies. 

 

 

3.10.1 How to run a simulation 
 

   This section describes a practical example of the Floasys Framework use. Floasys supports both 

collaborative and engineering tasks. Here, this section presents a typical engineering workflow 

supported by Floasys called run a simulation. An engineer selects a simulation file from the 
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repository and solve it using the available High Performance Computing resources. This workflow 

and its relative tasks are depicted in Figure 3.29. 

 

Task A the actor uses his credentials (a pair user name and password) to be authenticated within 

Floasys; 

 

Task B the user selects a simulation file through the repository tool with the goal to solve it; 

 

Task C the user through the wizard inserts all the parameters to run a simulation (e.g., number of 

processors); 

 

Task D the user clicks on finish and Floasys runs the simulation on the cluster; 

 

Task E the run of a simulation takes hours so the engineer uses the Monitor Tool that shows a chart 

to monitor the simulation convergence. 

 

 
Figure 3.29: Run Simulation Workflow supported by Floasys 

 

   In the Task B, Since Floasys manages multiple types of simulator, it recognizes which one is able 

to manage the selected simulation file. For instance, let’s assume for simplicity that Floasys has 

configured to manage two types of simulator called A (e.g., OpenFoam) and B (e.g., CD-Adapco 

STAR-CCM+). When the user selects a file of type A, Floasys recognizes this file and knows that 
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the simulator to use is the type A. This feature has been implemented using the Chain of 

Responsibility design pattern [59]. 

   Figure 3.30 shows a piece of source code within the wizard to run the simulation when the user 

clicks on finish, at the end of Task D. At line 2, the object file contains the path of the selected 

simulation file. Lines 5-6 use the Floasys Framework to understand whether in the system there is at 

least one simulator able to manage that file (resource generically), and if at least one exist then the 

simpack contains a reference to a Resource Descriptor with details on the simulation file as well as 

the simulator able to solve the simulation (line 7). In Figure 3.32a, the SimulationPack class 

diagram has two subclasses one for each supported simulator, in the example STAR-CCM+ and 

OpenFoam. Each subclasses can decide how to represent a resource, in according on how the 

simulator stores the data. STAR-CCM+ uses a single file so it has a file path as instance variable, 

instead OpenFoam that stores a simulation on multiple file within a directory has a folder path. 

 

 
Figure 3.30: A code snippet: how solve a simulation within Floasys. 

 

   The example is just to show that Floasys can handle any kind of simulation because for each 

simulation there will be a relative SimulationPack that will be used by its proper simulator wrapper 

within Floasys. Lines 10-12 read the parameters to solve the simulation from the wizard GUI and 

create an object to carry them. Finally, at line 15 the simulator runs the simulation described by the 

resource descriptor simpack using the parameters within options and the authentication info within 

auth. 

 
Figure 3.31: Search a simulator able to handle the simulation file. 
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   Figure 3.31 shows the Floasys framework pseudo-code used to search a simulator able to read 

(handle) the simulation file selected by the user. Floasys integrates multiple simulators and all their 

instances are stored within the collection simulator. Each simulator wrapper has a method 

canHandle (Fig. 3.32b) to understand whether the simulator is able to recognize and handle an 

object. Therefore, the code in Figure 3.31 simply calls this method on all simulators. The first one 

that returns a reference to a SimulationPack object declares that it is able to handle the object, will 

accept all requests and will provide the required services. The method createSimulationPack (line 6 

of Fig. 3.30) calls this piece of code. 

 

 
Figure 3.32: Floasys Framework: (a) SimulationPack and (b) Simulator. 

 

 

3.10.2 Extension by plug-in 
 

   Floasys has an extensible and modular architecture based on the plug-in concept inherited from 

the Eclipse Remote Application Platform. In this way Floasys integrates dynamically the simulators 

and the front-end modules. Technically, the plug-in architecture has designed around the extension 

point and extensions concepts (Fig. 3.33). 

 

 
Figure 3.33: Eclipse Extension Point and Extension concepts. 
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In the plug-in mechanism there are two components: a module to be extended and at least one 

extender module. The module to be extended defines an extension point like a power socket. It 

defines formally the rules to extend it, mainly syntactic rules. An extender module defines an 

extension compliant to the extension point. Definitively, between the extension point and the 

extension exists a contract. Using this mechanism it is possible to simply copy the extender module 

within the software plugins folder and the new functionalities will be available within the software. 

Technically, an Eclipse plug-in is a Java Archive (zip file with jar extension), with a plugin.xml file 

inside that contains all the information to execute the plug-in. Obviously, Java Runtime is not able 

directly to read and execute this kind of jar, but the Eclipse platform with its characteristics can read 

and load this file as a plug-in. In addition to the XML file, a plug-in has also an activator that 

manages its lifecycle. 

 

 
Figure 3.34: How to define an extension point within Eclipse. 

 

   Figure 3.34 shows the Eclipse window used to define an extension point. In particular it defines 

how a simulator can be integrated within Floasys. A simulator plug-in is essentially a Java class that 

implements the interface ISimulator (Fig. 3.32). All data have shown on the left side of Figure 3.34. 

 

 
Figure 3.35: Floasys Simulator Wrapper Plug-In Eclipse Project. 

 

 

Figure 3.35 shows the extender plug-in (the simulator wrapper). The project has a XML file called 

plugin.xml that defines the wrapper for STAR-CCM+. The extension details are in the following 

order: a unique ID to identify the plug-in within the platform, a user readable name for the simulator 

and the Java class that implements the ISimulator interface. 
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Figure 3.36: Plug-in Simulator Wrapper Extension Definition. 

 

 

3.11 Remote Application Platform 
 

   The Integrated Development Environments (IDE) are software to aid the developers to design, 

implement and test software systems. The most known IDEs are Microsoft Visual Studio, Apple 

Xcode, NetBeans and Eclipse. Eclipse IDE is cross-platform and has a plug-in based architecture. 

Eclipse IDE is gaining even more success because it supports multiple programming languages 

(e.g., C, C++, PHP, HTML, Javascript, CSS, etc.) and its environment can change dynamically in 

according to the programming language and the performed tasks. For instance, in the software 

development lifecycle there are the programming and debugging steps; the Eclipse IDE has two 

user interfaces configurations called perspectives that contain the needed tool in each phase.  

   Eclipse is more than an IDE, under the hood there is a full stack platform to develop standalone 

and web-based application that will have the Eclipse Style. Therefore, applications could have a 

graphical user interface based on the perspective concept with multiple views. In addition, the 

developed applications can use all the features already developed for the Eclipse IDE, such as the 

source code file parsing. One of the interesting feature that can be reused is the plug-in architecture. 

In this way, the application can be structured in a central core and additional modules to plug in the 

software. Floasys strongly relies on this concept so that it has a pure plug-in architecture. 

   The RAP architecture overview is shown in Figure 3.37. It has a client-server architecture. The 

server is just a servlet container like Apache Tomcat or Jetty. The client is the browser installed on 

the clients workstations. A RAP Client shows the graphical user interface based on HTML and 

Javascript. RAP is based on the Half Object Plus Protocol so a widget has two parts: the widget 

graphical user interface and its logic like the event handlers. These two parts are divided between 

the client and the server. The client just visualises the widget and gets the user interactions. All the 

events generated by the user on the clients are managed by the server. For instance, when the user 

performs a double click on an item of a table, this event is sent to the server that has a listener for it 

and manage it. Figure 3.38 shows a conceptual view of the Half Object Plus Protocol (HOPP), the 

circle that represent an object is split in two parts: one is the client object and the other one the 

server object. These two objects become separate and run on different hardware. A communication 

layer is placed between the two objects. RAP uses the HTTP protocol to exchange data between the 

two half objects. In particular the objects exchange messages in JSON format. The main drawback 

of this protocol is that any event on the client side triggers a message from the client to the server to 

handle the event and reply. These drawback is evident when the user scrolls a widget like a list of 

items. In this case any time the user scrolls the list, an event and a message is sent to the server 

adding a communication delay to exchange the message. A solution to this drawback is to split the 

object asymmetrically. Instead to send any event to the server, the client can handle the events 

directly in the browser avoiding the communication with the server. Of course, other events that 

require the server to be performed trigger a message from the client to the server. Java is the 

programming language to develop RAP applications, and Java is used to develop both the client and 

the server side features. One of the drawback of use the same language to program both client and 
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server, especially as happens in RAP is that sometimes the developer loose the knowledge on which 

part of the system he is programming. RAP directly decides where a piece of code is executed with 

the rule that the graphical user interface (everything within the graphical thread) is on the clients 

and all the codes to manage the events is on the server. 

 

 
Figure 3.37: Eclipse RAP Client-Server Architecture. 

 

 

 
Figure 3.38: Half Object Plus Protocol in RAP. 

 

 

3.12 Visualisation Tool 

 
   Nowadays, industries and researchers extensively run simulations and experiments to design their 

products. In the automotive, industrial equipment, high-tech, aerospace and defence sectors [63], 

industries perform computer numerical simulations to design their product facing time-to-market, 

high quality and cost down pressures [63]. For  example, automotive industries use Computational 

Fluid Dynamic (CFD) simulations to design the external vehicle aerodynamics or the internal air-

conditioning. Another example comes from the engine design: researchers and industries have real 

engine test-beds that run for hours collecting sensor data like pressure, temperature and torque 

forces. 

   Simulation repositories usually store huge amounts of data for years. For instance, in large 

manufactures like Fiat Chrysler Automobiles, each analyst performs at least one hundred 

simulations per year [64], and there are many analysts working over years. This has generated a 
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large, valuable repository of assets. In addition, analysts typically deal with simulations that are at 

least ten gigabytes each [64]. This gives an idea of the large quantity of data to manage within these 

repositories and the difficulty in having a clear idea of what they contain. Simulation Analysts, as 

well as Experiment Analysts, need to clean, analyse and compare the collected results as well as get 

insight into the data repository. Sometimes, specific phenomenons need to be understood. For 

instance, if a particular event in an engine experiment run occurs sporadically, found through the 

analysis of huge amounts of experimental data, then the analyst need to extract the input conditions 

for which such an event occurs (e.g., for which pressure values). For this reason there is a demand 

for software platforms able to collect, centralise, and get insight into information in a data 

repository, as well as to analyse and share results [10].  

 

 

 
 

Figure 3.39: The ExploraTool's Graphical User Interface. It shows an overview of the simulation 

repository through an initial hierarchy made by the following simulations' attributes: brand, project 

model, power source and engine type 

 

 

I identified the following three main requirements: (1) data collection, centralisation [63], and 

sharing [64] (2) data heterogeneity management, and (3) repository visualisation and exploration. 

The requirements one and two have been extensively described in the previous chapters, here this 

chapter will focus on the simulation repository visualisation and exploration. 

This chapter focuses on the visualisation, exploration, and query of large repository of simulations. 

The idea is to provide a graphical tool called ExploraTool to (1) get an overview of the repository 

content, (2) navigate the repository of simulations based on their properties, and (3) select and 

extract a set of simulations in order to compare their performance. The tool is actually usable for 

generic data exploration, thereby being usable to also explore repositories of experimental data, or 

any other big data sets. 
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3.13 Related Works 

 
   The visualisation of large datasets has become really important because the classical list based 

widgets are not able to manage the large number of items, and also because it is practically 

impossible to show all the data available within a dataset. In this context, the 2D space-filling 

visualisation techniques aim to exploit all the available screen-space supporting the overview of the 

datasets, the opportunity to navigate the dataset and get more details on request. Generically 

speaking, the 2D space-filling approaches divide the available screen space recursively using a 

basic shape (e.g., rectangle, circle). In this way parent-child relationships are represented as nested 

shapes, and sibling nodes are represented as closest shapes at same depth. 

   Treemap was introduced by Shneiderman during 1990 to have a compact file system visualisation 

and be able to identify at a glance the directories that take up the most of the space on the hard 

drive. Then, treemap [65] has been extensively used to present intrinsically hierarchical data, 

providing an overview of an entire dataset at a glance. In treemap, every node in the hierarchy is 

represented as a rectangle with an area proportional to the node size. Parent-child nodes are 

represented as nested rectangles. Usually the navigation within the hierarchy is based on a drill-

down with a left mouse click to go down in the hierarchy and a roll-up with a right mouse click to 

go up in the hierarchy. Over years, the treemap visualisation approach has been used to visualize 

different hierarchical data, such as inherently hierarchical organisation structures [66], file systems 

[67], Usenet newsgroup [68] and so on. Well-known treemap drawbacks are the hierarchy 

discernment [69] and the fact that the position of the mouse pointer designates an entire branch of 

the tree [70] because each point belongs to a single leaf node but also to all its ancestors [70]. Of 

course, one of their advantages is the use of the all available 2D space. 

   Ellimap [69] is another type of 2D space-filling visualisation approach. It uses ellipses instead of 

rectangles to represent the nodes. In this way, there is always space between ellipses, both nested 

ellipses and adjacent ellipses (i.e., sibling nodes in the hierarchy). According to Otjacques at al. 

[71], the use of ellipses with their extra space improves the hierarchy discernment compared to the 

visualisation based on rectangles. 

   ExploraTool exploits the ellimap visualisation technique to explore large repository of simulations 

within Fiat Chrysler Automobiles (FCA). Until now, the ellimap has always been used coupled with 

other classical visualisation widgets like tree widget [69]. Here, this chapter explores the repository 

of simulations directly through the ellimap, integrating a vertical navigation bar to track the user 

position in the hierarchy during the navigation. In addition, this work exploits the natural extra 

space between the ellipses in order to provide a hierarchy navigation facility in which the user 

points directly to the target shape and interacts with the left mouse click. 
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Figure 3.40: Original treemap visualisation introduced by Shneiderman during 1990. 

 

 

3.14 ExploraTool features 

 
   This section describes ExploraTool and its features. Instead of starting from scratch with an empty 

screen without results, the tool shows an initial overview of the dataset filling all the 2D screen 

available space. Starting from this initial view, the user can navigate the simulation repository 

through an hierarchical structure made by nested groups of simulations. The tool's graphical user 

interface (Fig. 3.39) has a central view to show graphically the simulations available within the 

repository. The tool shows data using the ellimap [69] visualisation technique, a 2D space-filling 

approach that uses ellipses as basic shapes to represent sets of simulations. As shown in Figure 

3.39, the external white space is the universe that represent the set of all simulations within the 

repository. The universe of simulations is further divided in subsets represented as ellipses. Each 

ellipse area is proportional to the number of items that it represents. The ExploraTool shows an 

initial overview of the dataset displaying the simulations by brand, project model, power source and 

engine type. This default initial sequence of attributes is based on the feedback provided by analysts 

in Fiat Chrysler Automobiles [64]. 

   The user can have additional details on each group of simulations (ellipse) just by hovering the 

mouse cursor over it. The tool shows the additional information, such as, the number of items in a 

yellow box on the top-right (see Figure 3.39). This space can be used in the future to provide 

aggregated statistics about the shown group of simulations. The user can navigate the hierarchy 
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through an in-depth navigation based on the drill-down and roll-up operations. On the left, the tool 

has a vertical navigation hierarchy bar that has multiple aims: (1) it gives an overview of the 

hierarchy, (2) it shows the current depth during the simulation repository navigation supporting the 

user orientation [72], and (3) it allows hierarchy rearrangement by swapping the levels. 

   The tool shows exactly r levels of the hierarchy. Actually, the default value for this parameter r is 

decided at configuration time and it can be changed via the user preference functions. Of course, the 

trade-off is between the amount of data categories displayed on the screen-space and the 

computational efficiency to extract the relevant hierarchy from the repository of simulations. 

 

 

3.14.1 Data Exploration: in-depth navigation 

 
   The user can further explore the simulation repository through the in-depth navigation [70] based 

on two basic operations: drill-down and roll-up. Drill-down occurs when a user has identified a 

potential interesting group of simulations and he/she wishes to explore further details of this group, 

and so he/she clicks on an ellipse to obtain more details. Every time the user drills down in the 

hierarchy by one level, ExploraTool loads further data showing more nested ellipses. ExploraTool 

shows multiple nested ellipses, so the user can drill-down one level at time or multiple-levels in one 

step just clicking on the most internal nested ellipses. Roll-up is the operation opposite to the drill-

down.  

 
Figure 3.41: The ExploraTool (on the left) shows an initial overview of the repository with all the simulations 

progressively grouped by brand, vehicle model, power source and engine type, as shown by the vertical 

navigation bar. In addition, the analyst has moved the mouse pointer on the project Delta highlighting the 

relevant ellipse contour and showing additional details within the selection details yellow tooltip box. In order 

to focus on this group, the user can drill-down by directly clicking on the ellipse with the label Delta. The 

ExploraTool smoothly enlarges the selected group (right side of the figure) rendering a fast transition. When 

the user desires to go back to see less details, he can directly click on the universe white space to perform a 

roll-up operation returning to the initial view shown on the left. 

 

When the user wants to have a global dataset view he/she goes up in the hierarchy clicking on the 

container ellipse. Every time the user drills down in the hierarchy, he/she is effectively performing a 

refinement of the query, filtering all of the simulations in the repository. 

   All the operations provided by the ExploraTool rely on the direct manipulation [73] principle 

introduced by Shniderman. It concerns the direct interaction and manipulation of the rendered 

objects. The use of ellipses as basic shapes guarantee that there will be always space between 

sibling ellipses at same level and among nested ellipses. In this way every operation performed by 

the user involves exactly the target shape. For instance, in order to drill down in the hierarchy, the 

user points and clicks exactly on the nested ellipse. In order to roll-up the user points and clicks 

exactly on the parent shape utilising the space between the parent and child ellipses (Figure 3.41) 

which is always present. It is not the same for other 2D space-filling techniques. For instance, in the 
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treemap visualisation technique both nested rectangles and adjacent rectangles have no space 

among them, so the position of the mouse pointer designates a branch of the tree [70] because each 

point belongs to a single leaf node but also to all its ancestors [70]. 

Finally, in the ExploraTool, also to obtain the list of simulations within a specific ellipse the user 

can click directly on the target ellipse. 

 

3.14.2 Shapes and Colours 
 

   The use of the colours is really important within a visualisation tool. ExploraTool uses the colours 

described in the following work [74]. Table 3.1 lists the colours used within the ExploraTool and 

visible through the Figure 3.39 and Figure 3.41. 

 

 
Table 3.1: Colours used to draw the ellipses within the ExploraTool. 

 

3.15 ExploraTool Software Architecture 

 
This section describes the ExploraTool architecture and the technologies used for its 

implementation. The tool is based on a Client/Server architecture (Fig. 3.42). Nevertheless in the 

industrial contexts for confidentiality reasons software systems usually are used within the 

industries boundaries (Intranet-based), the overall architecture is designed using standard protocols 

to work properly both on the Intranet and Internet. 

 

 
Figure 3.42: ExploraTool prototype client/server architecture. 

 

   In order to explore the repository, analysts can just open one of the web-browsers (e.g., Mozilla 

Firefox) installed on their workstations targeting to a specific Intranet URL. This allows zero-

configuration on the client-side. 
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   On the server-side there are one or multiple simulation repositories. The Floasys Framework [10] 

reads the data from the simulation repository, transforms them in open format and indexes them to 

improve their retrieval. ExploraTool on the server-side uses the Floasys Framework API to retrieve 

the simulations stored within the repository. The overall process with detailed steps has been 

depicted in Figure 3.43. The simulation data in tabular format are the input for the Hierarchy 

generation phase performed by the algorithm. The output is a tree data structure converted in JSON 

text format and sent to the Web-Browser. The browser gets the hierarchy structure, generates an 

ellipse for each node in the hierarchy and packs all the ellipses. 

 

 

 
Figure 3.43: Pipeline of transformation from the simulation repository to the visualization on the 

client Web-browser. 

 

 

From technological point of view, ExploraTool leverage from mainstream technologies. Clients 

exchange data with the server in JSON text format [48, 49] using standard Web protocols (e.g., 

HTTP). Clients are implemented using the open source JavaScript library D3 Data-Driven 

Documents1 [75] and SVG. The server has been implemented using Java. 

 

 

 3.16 Conclusions and Future Works 
 
This chapter has introduced two main typical Floasys workflows and described some of the Floasys 

Functionalities showing its main screenshots. The collaborative functionalities are generic and can 

be applied to any other field. For instance, the idea to centralize data, tag them adding metadata 

over data and provide a search tool as well as the data sharing exchanging the URLs can be used for 

simulation data, experimental data and any other data. The Floasys engineering functionalities are 

specific of the CFD engineering sector, but they can be used in any other sector that uses the CFD 
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simulations to design their products, such as the aeronautics, rail and naval sectors. Finally, the idea 

to generate automatic documentation from the data repository is a key feature for the industries 

because they standardise how the engineers work with less effort to make the outcomes. And it’s an 

important thing considering that companies assess the value of a technology based on the saved 

time, and saved money or earn money; and not how cool is a technology. 

Floasys's architecture is extensible so that it supports the adding of new services over collected data. 

A lot of research work can be done for the creation of new services. For instance, one useful service 

is the comparison among experiments in terms of mathematical functions to identify the ones that 

have the same trend or the ones with the same physical phenomena. This service involves the study 

of time-series algorithms. 

In the final part, the chapter described a tool called ExploraTool to visualise, explore and query 

large repositories of simulations. Large industries like FCA have large repository of simulation data 

and they must be sure that analysts have access to previous generated data. ExploraTool provides an 

overview of the repository content fostering its exploration selecting the key attributes to limit the 

space of results to find previous simulations. In addition, ExploraTool is immediately useful to 

answer questions like how many simulations we performed for the vehicle X?, and why for the 

vehicle Y with the engine type Z there are few simulations? ExploraTool gives a further advantage 

for the technical managers who can periodically check the working in progress on a specific vehicle 

model. The idea behind the tool is generic and can be easily used with the repository of experiments 

as well as other type of big data sets. In order to do this, it is necessary to identify the common and 

interesting data categories, and build the relative hierarchy that ExploraTool will render. 

   As future works on the ExploraTool, it is important to improve the layout algorithm to avoid thin 

ellipses, thereby improving the overall visualisation aesthetic. Of course, the residual space among 

nested ellipses can be reduced, but this could impact upon user hierarchy perception and 

discernment. In addition, an evaluation study is essential to analyse the tool usability and the user 

satisfaction when interacting with it, by utilizing a well-known questionnaire [81, 82]. Furthermore, 

will be interesting to generalise the tool and use it on a generic repository like a catalogue of 

products and compare how users will perform with it as compared to using different types of 

visualisation techniques, like a classical list of results, Treemap, FacetMap [77], etc. Within the 

industrial context an interesting issue to explore is the data authorisation problem, where a user may 

only have access to a specific subset of simulations within the repository. 
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Chapter 4 

 

 
 

Floasys Extension and Fields of Application 
 

Contents 

 

 

 
 

 
    This chapter illustrates the Floasys multi-disciplinary applications, not limited just to the 

Computational Fluid Dynamics field. It begins with a brief description of other filed of applications: 

Structural, Thermal, Multibody, Fatigue and Coupled Analysis. One of the main goal of the present 

work is to guarantee collaboration in these complex scenario. 

   In the 2
nd

 paragraph it’s described the way to extend Floasys to other Industrial Environment 

(Aeronautical, Rail, Naval, etc.) through the plug-ins architecture. 

 

 

 

4.1 Multi-Disciplinary Analysis 

 
   A complex industrial project involves several departments that have to optimize the performances 

to achieve the prefixed target. Each department has its rules and best practices to reach this goal. 

It follows a brief description of the main areas of analysis with a focus on the collaborative topics. 
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4.1.1 Structural Analysis 

 
   Structural analysis is the determination of the effects of loads on physical structures and their 

components. Structures subject to this type of analysis include all that must withstand loads, such as 

buildings, bridges, vehicles, machinery, furniture, attire, soil strata, prostheses and biological tissue.     

Structural analysis employs the fields of applied mechanics, materials science and applied 

mathematics to compute a structure's deformations, internal forces, stresses, support reactions, 

accelerations, and stability. The results of the analysis are used to verify a structure's fitness for use, 

often precluding physical tests. Structural analysis is thus a key part of the engineering design of 

structures. 

   To perform an accurate analysis a structural engineer must determine such information as 

structural loads, geometry, support conditions, and materials properties. The results of such an 

analysis typically include support reactions, stresses and displacements. This information is then 

compared to criteria that indicate the conditions of failure. Advanced structural analysis may 

examine dynamic response, stability and non-linear behavior. There are three approaches to the 

analysis: the mechanics of materials approach (also known as strength of materials), the elasticity 

theory approach (which is actually a special case of the more general field of continuum 

mechanics), and the finite element approach. The first two make use of analytical formulations 

which apply mostly to simple linear elastic models, lead to closed-form solutions, and can often be 

solved by hand. The finite element approach is actually a numerical method for solving differential 

equations generated by theories of mechanics such as elasticity theory and strength of materials. 

However, the finite-element method depends heavily on the processing power of computers and is 

more applicable to structures of arbitrary size and complexity. 

   Regardless of approach, the formulation is based on the same three fundamental relations: 

equilibrium, constitutive, and compatibility. The solutions are approximate when any of these 

relations are only approximately satisfied, or only an approximation of reality. 

   Each method has noteworthy limitations. The method of mechanics of materials is limited to very 

simple structural elements under relatively simple loading conditions. The structural elements and 

loading conditions allowed, however, are sufficient to solve many useful engineering problems. The 

theory of elasticity allows the solution of structural elements of general geometry under general 

loading conditions, in principle. Analytical solution, however, is limited to relatively simple cases. 

The solution of elasticity problems also requires the solution of a system of partial differential 

equations, which is considerably more mathematically demanding than the solution of mechanics of 

materials problems, which require at most the solution of an ordinary differential equation. The 

finite element method is perhaps the most restrictive and most useful at the same time. This method 

itself relies upon other structural theories (such as the other two discussed here) for equations to 

solve. It does, however, make it generally possible to solve these equations, even with highly 

complex geometry and loading conditions, with the restriction that there is always some numerical 

error. Effective and reliable use of this method requires a solid understanding of its limitations. 

   It is common practice to use approximate solutions of differential equations as the basis for 

structural analysis. This is usually done using numerical approximation techniques. The most 

commonly used numerical approximation in structural analysis is the Finite Element Method. 

The finite element method approximates a structure as an assembly of elements or components with 

various forms of connection between them and each element of which has an associated stiffness. 

Thus, a continuous system such as a plate or shell is modeled as a discrete system with a finite 

number of elements interconnected at finite number of nodes and the overall stiffness is the result of 

the addition of the stiffness of the various elements. The behaviour of individual elements is 

characterized by the element's stiffness (or flexibility) relation. The assemblage of the various 
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stiffness's into a master stiffness matrix that represents the entire structure leads to the system's 

stiffness or flexibility relation. To establish the stiffness (or flexibility) of a particular element, we 

can use the mechanics of materials approach for simple one-dimensional bar elements, and the 

elasticity approach for more complex two- and three-dimensional elements. The analytical and 

computational development are best effected throughout by means of matrix algebra, solving partial 

differential equations. 

   Early applications of matrix methods were applied to articulated frameworks with truss, beam and 

column elements; later and more advanced matrix methods, referred to as "finite element analysis", 

model an entire structure with one-, two-, and three-dimensional elements and can be used for 

articulated systems together with continuous systems such as a pressure vessel, plates, shells, and 

three-dimensional solids. Commercial computer software for structural analysis typically uses 

matrix finite-element analysis, which can be further classified into two main approaches: the 

displacement or stiffness method and the force or flexibility method. The stiffness method is the 

most popular by far thanks to its ease of implementation as well as of formulation for advanced 

applications. The finite-element technology is now sophisticated enough to handle just about any 

system as long as sufficient computing power is available. Its applicability includes, but is not 

limited to, linear and non-linear analysis, solid and fluid interactions, materials that are isotropic, 

orthotropic, or anisotropic, and external effects that are static, dynamic, and environmental factors. 

This, however, does not imply that the computed solution will automatically be reliable because 

much depends on the model and the reliability of the data input. 

 

4.1.2 Thermal Analysis 

 
   Thermal analysis is a branch of materials science where the properties of materials are studied as 

they change with temperature. Several methods are commonly used – these are distinguished from 

one another by the property which is measured: 

 

• Dielectric thermal analysis (DEA): dielectric permittivity and loss factor 

• Thermal Analysis (DTA): temperature difference versus temperature or time 

• Differential Scanning Calorimetry (DSC): heat flow changes versus temperature or time 

• Dilatometry (DIL): volume changes with temperature change 

• Dynamic Mechanical Analysis (DMA or DMTA) : measures storage modulus (stiffness) 

and loss modulus (damping) versus temperature, time and frequency 

• Evolved Gas Analysis (EGA) : analysis of gases evolved during heating of a material, 

usually decomposition products 

• Laser flash analysis (LFA): thermal diffusivity and thermal conductivity 

• Thermogravimetric Analysis (TGA): mass change versus temperature or time 

• Thermomechanical analysis (TMA): dimensional changes versus temperature or time 

• Thermo-optical analysis (TOA): optical properties 

• Derivatography: A complex method in thermal analysis 

 
Simultaneous Thermal Analysis (STA) generally refers to the simultaneous application of 

Thermogravimetry (TGA) and differential scanning calorimetry (DSC) to one and the same sample 

in a single instrument. The test conditions are perfectly identical for the TGA and DSC signals 

(same atmosphere, gas flow rate, vapor pressure of the sample, heating rate, thermal contact to the 

sample crucible and sensor, radiation effect, etc.). The information gathered can even be enhanced 
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by coupling the STA instrument to an Evolved Gas Analyzer (EGA) like Fourier transform infrared 

spectroscopy (FTIR) or mass spectrometry (MS). 

   Other, less common, methods measure the sound or light emission from a sample, or the electrical 

discharge from a dielectric material, or the mechanical relaxation in a stressed specimen. The 

essence of all these techniques is that the sample's response is recorded as a function of temperature 

(and time). It is usual to control the temperature in a predetermined way - either by a continuous 

increase or decrease in temperature at a constant rate (linear heating/cooling) or by carrying out a 

series of determinations at different temperatures (stepwise isothermal measurements). More 

advanced temperature profiles have been developed which use an oscillating (usually sine or square 

wave) heating rate (Modulated Temperature Thermal Analysis) or modify the heating rate in 

response to changes in the system's properties (Sample Controlled Thermal Analysis). 

    In addition to controlling the temperature of the sample, it is also important to control its 

environment (e.g. atmosphere). Measurements may be carried out in air or under an inert gas (e.g. 

nitrogen or helium). Reducing or reactive atmospheres have also been used and measurements are 

even carried out with the sample surrounded by water or other liquids. Inverse gas chromatography 

is a technique which studies the interaction of gases and vapours with a surface - measurements are 

often made at different temperatures so that these experiments can be considered to come under the 

auspices of Thermal Analysis. Atomic force microscopy uses a fine stylus to map the topography 

and mechanical properties of surfaces to high spatial resolution. By controlling the temperature of 

the heated tip and/or the sample a form of spatially resolved thermal analysis can be carried out. 

   Thermal analysis is also often used as a term for the study of heat transfer through structures. 

Many of the basic engineering data for modelling such systems comes from measurements of heat 

capacity and thermal conductivity. 

 

4.1.3 Multibody Analysis 

 
   Multibody analysis is the study of the dynamic behavior of interconnected rigid or flexible bodies, 

each of which may undergo large translational and rotational displacements. 

The systematic treatment of the dynamic behavior of interconnected bodies has led to a large 

number of important multibody formalisms in the field of mechanics. The simplest bodies or 

elements of a multibody system were treated by Newton (free particle) and Euler (rigid body). Euler 

introduced reaction forces between bodies. Later, a series of formalisms were derived, only to 

mention Lagrange’s formalisms based on minimal coordinates and a second formulation that 

introduces constraints. 

   Basically, the motion of bodies is described by their kinematic behavior. The dynamic behavior 

results from the equilibrium of applied forces and the rate of change of momentum. Nowadays, the 

term multibody system is related to a large number of engineering fields of research, especially in 

robotics and vehicle dynamics. As an important feature, multibody system formalisms usually offer 

an algorithmic, computer-aided way to model, analyze, simulate and optimize the arbitrary motion 

of possibly thousands of interconnected bodies. 

While single bodies or parts of a mechanical system are studied in detail with finite element 

methods, the behavior of the whole multibody system is usually studied with multibody system 

methods within the following areas: 

 

• Aerospace engineering (helicopter, landing gears, behavior of machines under different 

gravity conditions) 

• Biomechanics 

• Combustion engine, gears and transmissions, chain drive, belt drive 
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• Dynamic simulation, Vehicle simulation (vehicle dynamics, rapid prototyping of vehicles, 

improvement of stability, comfort optimization, improvement of efficiency, ...) 

• Hoist, conveyor, paper mill 

• Military applications 

• Particle simulation (granular media, sand, molecules) 

• Physics engine 

• Robotics 

 

 

4.1.4 Fatigue Analysis 

 
    In materials science, fatigue is the weakening of a material caused by repeatedly applied loads. It 

is the progressive and localized structural damage that occurs when a material is subjected to cyclic 

loading. The nominal maximum stress values that cause such damage may be much less than the 

strength of the material typically quoted as the ultimate tensile stress limit, or the yield stress limit. 

Fatigue occurs when a material is subjected to repeated loading and unloading. If the loads are 

above a certain threshold, microscopic cracks will begin to form at the stress concentrators such as 

the surface, persistent slip bands (PSBs), and grain interfaces. Eventually a crack will reach a 

critical size, the crack will propagate suddenly, and the structure will fracture. The shape of the 

structure will significantly affect the fatigue life; square holes or sharp corners will lead to elevated 

local stresses where fatigue cracks can initiate. Round holes and smooth transitions or fillets will 

therefore increase the fatigue strength of the structure. 

 

 

4.1.5 Multiphysics Analysis 
 
   Multiphysics treats simulations that involve multiple physical models or multiple simultaneous 

physical phenomena. For example, combining chemical kinetics and fluid mechanics or combining 

finite elements with molecular dynamics. Multiphysics typically involves solving coupled systems 

of partial differential equations. Many physical simulations involve coupled systems, such as 

electric and magnetic fields for electromagnetism, pressure and velocity for sound, or the real and 

the imaginary part of the quantum mechanical wave function. Another case is the mean field 

approximation for the electronic structure of atoms, where the electric field and the electron wave 

functions are coupled. 

   Single Discretization Methods mainly rely on the Finite Element Method or similar commonplace 

numerical methods for simulating coupled physics: thermal stress, electromechanical interaction, 

fluid structure interaction (FSI), fluid flow with heat transport and chemical reactions, 

electromagnetic fluids (magnetohydrodynamics or plasma), electromagnetically induced heating. In 

many cases, to get accurate results, it is important to include mutual dependencies where the 

material properties significant for one field (such as the electric field) vary with the value of another 

field (such as temperature) and vice versa. 

   In Multiple Discretization Methods each subset of partial differential equations has different 

mathematical behavior, for example when compressible fluid flow is coupled with structural 

analysis or heat transfer. To perform an optimal simulation in those cases, a different discretization 

procedure must be applied to each subset. For example, the compressible flow is discretized with a 

finite volume method and the conjugate heat transfer with a finite element analysis. Another 

example is the use of electromagnetic or electrostatic Particle-in-cell (PIC, EMPIC, ESPIC) 
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methods combined with Direct simulation Monte Carlo, where the particles may interact with an 

electromagetic (EM) field or other fields, with each other, and with fluids evolved by finite volume 

or other methods. The particles interact with the EM fields through the charges and currents they 

create and by being accelerated by the EM field. Particles collide with each other, and they collide 

with fluids. 

 

 

4.1.6 Collaborative Use Cases 

 
    In this complex scenario Floasys comes in handy. Obviously different roles in the company have 

different needs; in every engineering department we have at least these roles: 

 

• CAE Analyst 

• Performance Engineering 

• Project Manager 

 

The CAE Analyst has the task to do the CAE Analysis, the Performance Engineering is responsible 

for a specific project performance and the Project Manager is responsible for the whole project. So 

the Multi-Disciplinary issues presented in this chapter are prevalently oriented to the Project 

Manager view of the project. In Figure 4.1 is illustrate a typical hierarchy in the company 

organization. 

 

     

 
Figure 4.1: Hierarchy in the performance target achieving. 

 
To constantly monitor project performances is best-practice to make use of a Radar chart as 

depicted in Figure 4.2. 

 

 



�

���

�

 
Figure 4.2: Radar chart to monitor Project status. 

 

 

This tool gives a fast overview of the status of the project and helps companies to recognize critical 

issues and put on the track of recovery actions. 

So Floasys guarantees collaborative needs, around the various simulation environments, through all 

the services described in the previous chapters as shown in the Use Case in Figure 4.3. 

 

 

 
 

Figure 4.3: Typical Use Case involving several CAE Environments. 

 
4.2 Intersectorial Extension through Industrial Environment plug-ins 
     

     The extensibility features of Floasys through plug-ins architecture gives opportunity to adapt the 

framework to several industrial sectors (rail, naval, automotive, aeronautical, etc.). Indeed each 
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sector has its own regulations, configurations and data sets. It’s enough, in terms of implementation, 

to add another layer to the Floasys Architecture as shown in Figure 4.4. 

 

 
 

Figure 4.4: Floasys Architecture extension through Industrial Environment Plug-ins. 

 

 

 

4.2.1 Regulations 

 
    It’s well knowns that each sector has its specific regulations to observe. The Target Deployments 

depends on the main rules that the final project has to satisfy. The regulations plug-ins take into 

account these aspect and fix the performance to monitor and to achieve at every stage of the project. 

 

4.2.2 Configurations 

 
   In the same way, the simulation case settings are different for each industrial sector. A structural 

analysis for naval industrial is completely different from a structural analysis for automotive 

industrial. The configurations plug-ins allows to decouple the diversity from the main framework. 

 

4.2.3 Data Sets 

 
     Finally, the input/output data to exchange through engineering environment may be completely 

different in term of Data Sets. This is another issue to solve through the layer of Industrial 

Environment Plug-ins. 
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4.2.4 Collaborative Use Cases 

 
    In terms of collaboration, the Industrial Environment Plug-ins Layer guarantees all the 

functionality described in the previous chapter. The Figure 4.5 depicts the scenario. 

 

 
Figure 4.5: Industrial Environment plug-in functionality 

 

4.3 Conclusions 

 
     This chapter described the need to adapt the platform to each industrial environment. The 

question was solved through the Floasys architectural nature that allow the implementation of 

several industrial context with the addition of another layer that manage the differentiation in terms 

of Regulations, Configurations and Data Sets. 

 

 

 

 

 

 

 



�


��

�

Chapter 5 

 
 

 

Conclusions & Future Works 
 

 

 

Contents 
 

 
 

 
This concluding chapter provides an overview of the entire dissertation describing the main 

achieved results. 

 

 

5.1 Summary 

 
   Nowadays enterprises are world-wide and compete on a global market. They have multiple 

locations around the world over multiple nations and often over different time zones. In this context 

modern Internet technologies can support the communication, coordination and the sharing of 

resources among workers.�Starting with the main objectives that a CSCW system is intended to 

achieve, I have played a direct field experience, I found that these elements emerge as customer 

needs and I have implemented them in the platform prototype developed. 

   The aim of this dissertation is to analyse a real use case provided by Fiat Chrysler Automobiles to 

understand the needs of engineering teams that work far from each other, and explore the use of 

modern technologies, such as the collaborative systems to support their work. 

   In this dissertation, I was able to identify the key collaborative requirements analyzing a real use 

case of two teams within FCA, through the use of stakeholders interviews, on-site observations and 

an on-line user survey. In addition, I was able to address these requirements with an integrated, 

extensible and modular architecture to collect, centralise and store simulations in open format 

independently by the original simulator software. Over the basic platform there are other tools and 

services like simulation tagging, simulation searching and engineering features. The provided 

Floasys architecture is modular and extensible so industries can customise it designing, 

implementing and testing new modules to plug in the architecture. 

   In this way, the dissertation provides solutions and technologies able to address the collaborative 

requirements. Furthermore, requirements, solutions and technologies are tracked through the 

dissertation and their links. 

   Floasys is Web-based platform designed and developed to meet the collaborative and engineering 

requirements. It is an industrial prototype currently under testing and evaluation in FCA. Ideas 

behind Floasys, such as the integrated, extensible and modular architecture, could be adopted also 

in other contexts. The great opportunity to have different modules to plug in the architecture allows 

the deployment of a system tailored to engineers needs and development of some custom modules 



�


��

�

to embed team know-how. The solution to integrate existing engineering software and extract data 

from closed file format enables the creation of value added services over open format industrial 

data. In addition, large industries, independently by the sector, have multiple geographically 

distributed teams so, the collaboration around open format data and the sharing of data at different 

granularity and aggregation are great features. All features that could boost the industry 

competitiveness. Floasys relies on mainstream open source solutions and its architecture is made 

integrating widely used existing enterprise technologies.  

   The architecture can be divided into four main uncoupled parts: 

 

� simulators wrappers that communicate with the simulator software to get the simulation 

data and transform them in XML open format; 

� the version control repository for the XML files (e.g., SVN); 

� an enterprise search engine to index, cache and search the XML documents (e.g., Apache 

Solr), and 

� the central web server that provides the Web content (e.g., JBoss servlet container). 

 

   From scalability point of view, Apache Solr has been choose because it can scale using 

SolrCloud. To guarantee the data versioning, Floasys relies on Subversion technologies and it 

supports multiple SVN repositories and a mainstream container. In this way the data to put under 

versioning can be spread over multiple servers splitting data by folder. 

   Of course, as next steps, different tests have been planned: controlled benchmark tests to 

quantitatively assess and evaluate the Floasys performance, reliability and robustness. Also the 

evaluation of the graphical user interface is interesting so the plan is to conduct an evaluation study 

to analyse the usability of the Floasys user interface, and the user satisfaction when interacting with 

it [81, 82]. The user acceptance of the software will be investigated as well [83]. 

 

 

5.2 Future Works 

 
Through this dissertation many other ideas come to light that could be explored. This section 

discusses the main ways to further explore the topics. 

   The main research avenue that could be further explored are: 

 

 

� Visually Repository Exploration. In a working context analysts perform a lot of 

simulations and experiments per year, so the repository are really huge and contains the 

products history of many years. One of the main observed difficult concern the repository 

data visualisation and navigation. Analysts need to get insight into the overall repository 

getting first its overview. The questions that usually arise are: how many simulations we 

have for the project Y? How the vehicle performances have evolved during the years? 

 

� Experimental data heterogeneity Engineers run test-bed engines for hours collecting a 

huge amount of data generating a high valuable repository of assets over years. The main 

issue here is the heterogeneity among the data representations because engineers use 

different engine test-beds. One idea to manage this heterogeneity is to use the technologies 

form the semantic web to create a common representation storing everything in a central 

repository. At there is a performance issue because the same repository must be able to 

manage queries to filter and compare data. 
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� Social networks coupled with simulation repository. An interesting future work is the 

opportunity to link the subversion repository (SVN) that contains simulation data in open 

format with an internal private social network enabling the discussions on artefacts [84]. 

The research aim could to understand and evaluate the benefits of using the social in the 

field of industrial CFD simulations. 
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I. INTRODUCTION

Computational Fluid Dynamics (CFD) is computer numeri-

cal simulation able to solve and analyse problems that involve

fluid flow, heat transfers and related physical phenomena. Ac-

tually, it is used in many industrial sectors such as automotive,

aerospace, high tech, oil/gas and so on. Today, industries un-

derstand the advantages of using CFD simulations during the

product development process especially when their products

are impacted by fluid flow, heating, cooling and so on [1].

The manufacturers’ goal is to bring high quality products to

the market quickly, keeping the costs down. The top external

pressure factors that lead the product development are: time-

to-market, quality and cost [2]. These factors are often in

conflict together [3]. Products are becoming more complex.

They have a high number of components and configurations.

Brands offer many options and the customers can combine

the options together to get their configuration [4]. Engineers

need to understand how the components interact together and

to assess the performance of each configuration under many

physics conditions. The prototypes and the infrastructure that

are required to asses the prototype performances (e.g. the wind

tunnel for the automotive sector) are expensive. So, it is often

expensive and time-consuming to assess the product behaviour

for every physics condition within the budget constraints,

especially for the extreme conditions.

A benefit of using computer simulations is a reduction of

the number of the physical prototypes that leads to a cost

reduction. According to the market research “Engineering

Evolved” [3] three or more different types of simulations are

able to reduce the number of prototypes by 37% and CFD

is one type of simulation [2]. CFD simulations are able to

reduce the number of physical prototypes [3], to manage the

overall product system complexity and to get a better insight

into product behaviour since the initial development process

stages [2].

Standard CFD Workflow phases are shown diagrammati-

cally in Fig. 1: pre-processing, solving and post-processing

phases. Industries are looking for an increasingly integration

of the CFD Workflow into the business process [5]. This

integration heavily depends on internal team organization,

industry’s best practices, the product development plan and in-

dustry’s policies. Of course, CFD software are designed so that

they focus mainly on the CFD simulations; business process

integration is not their main goal and, it is often completely

ignored. The main benefit of integrating CFD Workflow into

processes is to promote collaboration between CFD engineers,

design engineers and analysts [2]. In an industrial context,

CFD simulations are just a part of a more wide and complex

product development process, so engineers perform additional

tasks to standard CFD Workflow. For some products, design

and CFD tasks can sometimes be done by the same team,

using integrated products (like SolidWorks and CATIA). In

the automotive industry (and in other fields like aerospace)

the teams are different and therefore the CFD workflow is

distinct from design. Besides, in the automotive industry CFD

engineers perform different types of CFD simulations on the

same product (i.e. external aerodynamics, aeroacustics, air

conditioning and engine thermal analysis), so they need to use

different CFD software because each one is validated for its

own area of application. We observed that many engineers’

tasks are repetitive, error-prone and time-consuming (e.g.

find and compare simulations results, document generation,

parametric studies) and they can be automated. Another issue

is the simulation data and results accessibility. All engineers,

both CFD and design engineers, must have full and user-

friendly access to centrally managed simulation results.

Fig. 1. CFD Workflow.

Our paper presents and validates a flexible architecture to

manage the CFD Workflow. Our idea is to design and develop

an architecture that enables the creation of tools to use within

CFD Workflow. Architecture is the foundation for all future

services upon existing CFD software.



The paper is organized as follows. Section II presents both

functional and non-functional requirements for the system to

design and it also reports some aspects of engineers’ tasks to

automate. Section III describes designed architecture to meet

non-functional requirements. Section IV presents Floasys the

prototype of the architecture that we are developing and some

built tools.

II. MANAGING CFD WORKFLOW

During the last year we have worked closely with a team of

professionals that extensively use CFD, analysing their needs

and supporting many of the findings and suggestions from lit-

erature and recent survey in the field. The professional team is

composed by four highly skilled engineers with a strong CFD

experience. They work in the automotive industry and they are

not computer scientists. The issues that we are facing within

automotive sector seem to be very common issues also in other

sectors. Aberdeen Group market research [2], through a survey

and interviews, has studied the experiences of 704 companies

about the use of CFD to design products. Companies belong

to industrial equipment, automotive, aerospace and defense,

high tech, oil/gas and military/public sectors. In the analysed

automotive context we observed issues that are almost similar

to what has been outlined at the end of Aberdeen Group study.

So, we hope that our analysis, that is based on a limited

context (i.e. automotive), can be successfully translated into

other similar contexts, as well.

Our initial approach is based on an empirical study through

direct observations about how engineers work on simulations

and discussions with them. At beginning we have tried to

identify error-prone, repetitive and time-consuming tasks. So,

we have focused on single team member tasks and we have

identified initial functional requirements. In this step we have

realized that many tasks (e.g. simulation finding, document

generation) are not covered by CFD software, because they

depend on internal organization and we have pointed out the

need for simulation data sharing.

Our claim is that industries require many services upon and

correlated to CFD simulations. These services are important

in order to reduce costs, time and to improve engineers’ tasks.

Besides, there is a strong need to increase the integration of

CFD Workflow into the overall product development process.

So, our idea is to design an architecture for CFD Workflow

management that supports the creation of services within the

CFD Workflow, independently by and upon CFD software.

This section describes some gathered functional requirements

and it covers non-functional requirements that have led the

architecture design.

A. Functional Requirements

The following are the identified actions to perform in order

to improve industrial daily CFD engineers’ work:

• centrally manage simulation data;

• identify and automate tasks through software tools;

• take advantage of wizards and templates.

1) Centrally manage simulation data: The aim is to improve

the simulation data accessibility and to promote knowledge

sharing among engineers.

We observed that this action is already performed by storing

all the simulations data in a proprietary file format within one

or more shared network folders. Engineers usually need to find

the old simulation data stored in the repository to compare

the results. It is interesting for the engineers to search the

simulations stored in the central repository by the simulation

revision name, the physic properties and other tags defined by

the end-users. The simulation files are often binary files, so the

engineers can not use the search tools based on text content.

We think that simulation data tagging, linking and searching

are interesting features. The file system has a hierarchical

structure and it is not enough to meet these described criteria.

According to Aberdeen Group study [2], in order to improve

their performances, companies should “Centrally manage pre-

vious simulation results”. It is not useful for engineers to

store centrally only the simulation results: they need both

the simulation results and the configuration case data. So, we

decided to centrally manage the configuration case with all

settings (e.g. boundary conditions, physical properties, the max

number of iterations), the solving logs, the convergence charts

and results (i.e. contour-plots and tabular data). Over the years

industries perform a high quantity of simulations and each

simulation file takes up over ten gigabytes due the geometry

model details. Engineers usually need to find simulation data

to compare the results.

We think that a central repository for all simulation data

provides an historical view for a given project and a strategic

competitive advantage for the future. Simulation central repos-

itory is the knowledge base on which apply metrics, perform

statistics and make strategic decisions.

In order to centrally manage simulation data, we have

identified the following functional requirements: (1) centrally

manage configuration case, solving logs, convergence charts

and results; (2) simulation data tagging; (3) search based on

simulation data and simulation tags; (4) automatic documents

generation from simulation data and (5) version control.

2) Tasks automation: Here we report some examples of tasks

to automate, considering that this paper focus on the archi-

tecture design rather than on a particular tool. CFD Workflow

needs a better integration in the product development process.

For example, engineers create many documents based on the

simulation experiments and results. They always use the same

document structure but with different data. So, the first task to

be automate is the automatic document generation. The first

time engineers will prepare n document templates, each one

with its basic structure, and will store them in the system.

In order to generate documents, the engineer then selects

one or more simulations and chooses a document template;

the system merges the simulations data and results with the

chosen template. The CFD team is highly skilled and has a

lot of experience with command line tools, but as reported in

literature this requires high training costs. A common CFD

engineer task is to run simulations using the HPC systems.



Usually, engineers use a small set of commands through an

ssh connection to submit/kill a job and to monitor the running

jobs. Engineers need to do some other operations in order to

monitor the simulation convergence data. Our idea is to create

a Monitoring Tool: a workbench that provides in one view

the job queues and the convergence charts for the running

simulations.

3) Take advantage of wizards and templates: Wizards and

templates guarantee that all team members work in the same

way. Besides, wizards incorporate the best practices and sup-

port less experienced users. Both wizards and templates are a

good way to support engineers in the repetitive and error-prone

tasks.

B. Non-Functional Requirements

Our goals are to identify leading non-functional require-

ments and to find a trade-off among them. Non-functional

requirements gathered from our analysis are: extensibility,

modularity, open, portability, Intranet-based and deployment.

1) Extensibility: Extensibility is the ability of a software sys-

tem to allow and accept significant extension of its capabilities

without major rewriting of code [6]. Extensibility answers to

the question: how easy is it to add new functionality to the

system [7]? In order to add future functionalities that depend

by industry’s product development process and by particular

CFD team, the system should be open for future extensions.

Industries want functionalities tailored to their needs and they

want to develop their in-house tools. Industries initially use the

base set of functionalities, then in order to accommodate future

needs they can develop new functionalities. For example, each

industry uses its internal document template; the system must

be extensible in order to support future format and future

changes in document templates.

2) Modularity: Modularity is the degree to which a system or

computer program is composed by discrete components such

that a change to one component has minimal impact on other

components [6]. A module is a logically separable part of a

program [6]. The software system is made by modules that fit

together to create the overall system. Modularity advantages

are: module replacement, creation of new modules and a well-

structured system. With modularity, it is possible to identify

which services are provided by each module. The system is

tailored to customer needs: each customer can compose a

system loading just the need modules.

3) Open: The system must use open protocols and open

formats to avoid vendor lock-in and to be interoperable with

other systems. Vendor lock-in is the phenomenon that causes

customer dependency on given vendor with regard to specific

good or service [8]. We observed a potential CFD software

vendor lock-in data format that occurs when end-user stores

data in a proprietary format and the proprietary software

does not have import/export functions to an open format.

CFD Workflow requires the use of many different software:

CAD/CAE, CFD and post-processing software. Before choos-

ing a software, industries estimate the benefits in using open

formats. Nowadays, industries use open formats to store and

to exchange geometry data between CAD/CAE software and

pre-processing tools. IGES and STEP are well-established

open formats for geometry data exchange. Industries usually

do not store CFD simulation data in an open format. CFD

General Notation System (CGNS) is a standard for CFD input

and output, grid, flow solution and boundary conditions [9].

CGNS concerns with CFD data representation and can be

used also for data exchange [10]. A software must have

import and export options [11] to open formats, but not

all software vendors offer these functionalities. In our case

study, simulation data such as geometry mesh, physical model,

convergence data and results are stored into proprietary file

format and the proprietary software does not have the export

option to CGNS format. This practice is due to proprietary

software adoption. Only simulation results are exported in a

neutral format.

4) Portability: Portability is how easily a system or component

can be transferred from one hardware or software environment

to another [6]. Our goal is to build tools and automated

procedures that run independently by CFD software. We can

say that tools are portable across CFD simulators.

Many CFD software provide a script language which en-

ables engineers to extend software functionalities. Over the

years, engineers have written their own scripts to automate

the execution of tasks. Scripts are very important for the

manufacturers because they contains the experience of the

engineers, the internal procedures and the business process

practices. Scripts can increase productivity because they auto-

mate tasks, but they can also create a potential vendor lock-in

problem: scripts are fitted on particular CFD software features

and are not portable across CFD software. Our aim is to create

automated procedures that run over any CFD software. A

solution to vendor lock-in anti-pattern is to design the system

with an isolation layer [12].

5) Intranet-Based: Engineers access to services, tools and

resources within the company Intranet. In using the system,

engineers expect to have Intranet performances, such as high

bandwidth, low latency and good response time.

6) Deployment: Deployment into an existing industry can be

expensive especially when it must be done on each client

workstation. System design must take in account the future

deployment costs. The system should reduce costs and time

for deploying and updating the system on all clients.

III. SYSTEM ARCHITECTURE DESIGN

This section reports the design decisions made to achieve the

requirements presented in Section II. Here, we intentionally

do not mention any particular software technology, and we

speak about patterns, architectures and protocols to guarantee

a future reproducibility of our architecture. In the first part we

describe a client/server system architecture taking in account

both hardware and software, then we give more details about

the server-side software architecture.
A. System architecture

Our system has a client/server architecture (Fig. 2). The

clients are web-based, so the end-users use their web browser



Fig. 2. System Architecture.

to access to the simulation data, HPC resources and CFD

functionalities provided by the central web server. The server

exchanges data with the simulation repository that provides

the persistence service. The simulation repository stores the

simulation data: an important asset for the industry over the

years. It stores data in an open format (e.g. CGNS) and

guarantees version control. We aim to store and to put under

version control geometry model, physics model, boundary con-

ditions, charts, simulation results, contour plots and generated

documents. The server does CRUD (create, read, update and

delete) operations on the repository. However, nowadays each

simulation file takes up gigabytes of disk space and over the

years the number of simulations grows incredibly: it is not

practical to store all data for all simulations. Manufactures

(based on their needs) should choose which data must be

stored. Often, engineers perform parametric studies on the

same geometry model changing only the physic values. In

these cases, it is convenient to store the geometry only one

time and correlate simulation results, physical model and the

configuration case to the same geometry model. Sometimes,

it is convenient to not apply version control to the geometry

model. In our analysis, CFD engineers do not run and solve

an old simulation, they only need data for results compare.

Engineers can access to configuration case made by physical

model, charts, tabular results and contour plots without run

CFD software again. We add metadata and services (like

versioning) to existing simulation data.

Industries use CFD simulators that only work with propri-

etary file format not allowing the import/export in an open

format. In this situation it is still feasible to have also a vendor

format independent central repository that stores simulation

data in a neutral format. Our solution is to convert proprietary

format data into an open format and to adopt an isolation

layer [12] between CFD simulators and tools (the solution is

detailed exposed in the next section III-B).

The central web server interacts with other servers and

repositories. For example, companies usually already have in-

ternal servers that provide security and authentication services,

so our architecture does not directly provide them but relies

on other existing Intranet servers. The web server directly

Fig. 3. System Requirements Mapping.

connects to HPC resources and it makes them available to

end-users. Job submission, job kill, simulation monitoring and

real-time convergence charts are all services available to non-

HPC system experts.

B. Server-side software architecture

The server-side software architecture (Fig. 4) consists of

three layers. The tools are in the top layer. A CFD tool is an

end-user GUI that provides one or more useful functionalities

to engineers. The middle layer is the isolation layer and finally,

the bottom layer consists of CFD software wrappers.

Each tool performs a well-defined engineering task. Some

of the tools depend on the internal team organization and

by the business process. For example, document generator

tool accepts document templates and creates documents from

them. The server-side architecture is based on a pure plug-

in architecture in which everything is a plug-in [13]. Each

box of the software architecture (Fig. 4) is a plug-in. To

achieve extensibility and modularity requirements, we choose

a pure plug-in architecture because it supports the extensibility

by plug-ins. Every plug-in provides well-defined hook points

called extension points that describe the way to extend the

plug-in’s functionality. Other plug-ins can add new function-

alities by implementing an extension point. A plug-in can be

modified or replaced by another equivalent implementation.

Fig. 4. Server-Side software architecture.

Our architecture supports the concurrent use of multiple

CFD software for companies who have decided to employ,

for example, both commercial CFD software (e.g. CCM+

developed by CD-adapco) and OpenFOAM as reported in [11].

Plug-in based architecture meets the extensibility and mod-

ularity non-functional requirements. Open data formats and

isolation layer meet the open and portability non-functional

requirements. Open protocols and open formats guarantee the

future interoperability with other software. The client/server

and the web-based architecture avoid the installation of the

software on each workstation. Worries about responsiveness



and bad tolerance of networks outages, typical disadvantages

of these architecture, are mitigated by the Intranet setting.

IV. FLOASYS PROTOTYPE ARCHITECTURE

Our aim is to design and implement an architecture that

provides software reusable-building boxes to create new CFD

tools upon any CFD simulator. This section presents the

prototype based on the architecture described in Section III: it

is currently under development and on site testing. It has a pure

plug-in architecture [13] based on the Eclipse Platform [14].

Floasys’s plug-ins can be arranged in three layers as shown

in Fig 5: (1) The top layer consists of CFD tool plug-ins.

Each tool can add a new perspective or can add a new view

to an existing perspective. Usually, tool design is based on

the MVC pattern. (2) The middle layer is the isolation layer.

It provides the core API and the common simulation model.

Plug-ins in the middle layer provide services to up layer tools

by abstracting CFD simulators on bottom layer. (3) In the

bottom layer, simulator wrappers communicate and exchange

data with CFD simulators.

Fig. 5. Floasys Architecture.

Floasys is a web-based client/server architecture (Fig. 6).

We use the Eclipse Remote Application Platform (Eclipse

RAP) to develop the web application. RAP core imple-

ments [15] the Half Object Plus Protocol pattern [16]. Our

assumption is that the system runs on the industry Intranet

infrastructure, so the use of HOPP pattern is not in contrast

with the end-to-end principle [17] because Intranet provides

high bandwidth, high availability and low latency compared

to Internet connection. The server-side software needs a JEE

servlet container (e.g. Apache Tomcat) and a framework

for the plug-in life cycle management (e.g. Eclipse Equinox

OSGi).

A. Simulation Model

The Simulation Model (SimModel) stores the simulation

data. Its aim is to store everything about the simulation not

only the geometry, so it stores the configuration case with

all settings and results. For example, it stores the boundaries,

the physical properties, the stopping criteria, the log files, the

outcomes, the charts, the tabular data, the contour plots and the

generated documents. SimModel is a tree-like data structure

Fig. 6. Client/Server architecture.

as in CGNS standard [9], so it can store each information

about the simulation with a tree node. The system can also

link other metadata (e.g. the tag names) to the simulation by

adding a new tree node. CFD tools should be independent from

any particular CFD simulator and should be used across many

CFD simulators. To obtain such simulator independence, we

have developed the SimModel plug-in showed in the middle

layer of figure 5. SimModel is the only joint point between

CFD simulators on bottom layer and CFD tools on top layer.

Tools implementation is based only on the simulation model

and they interact only with simulation model.

B. Core API

From our framework point of view, CFD simulators are

black boxes which we can extract model information from

and interact with, in order to change some properties. Each

simulator has its own internal data model; it consists of

geometry model, regions, boundaries, physical properties and

so on. Framework API allows to extract simulation data stored

inside a proprietary CFD simulator to obtain the framework

simulation model for a given simulation. Framework relies on

CFD wrapper simulator implementation to extract or change

simulation data. At the end of the day we are interested in

collecting simulation data and building the simulation model.

We store the built simulation model in an open source format

(i.e. xml) to avoid the vendor lock-in issue and to provide

other services such as the version control and the simulation

finding by its data. Potentially, each CFD tool works indepen-

dently by the CFD engine technology (e.g. operating system,

programming language, proprietary and open source software)

because each tool interacts directly with the simulation model.

C. CFD Wrappers

CFD wrappers embed CFD software features and provide

them through a common interface defined by the Core API.

We have categorized CFD simulators by the source code

availability and open protocols implementation. CFD soft-

ware wrappers currently available in our prototype are: Star-

CCM+ on Torque cluster and OpenFOAM CFD codes. Star-

CCM+ is a proprietary software developed by CD-adapco

while OpenFOAM is open source; both CFD software do

not directly implement an open format (e.g. CGNS). For



OpenFOAM it exists a converter called foamToCGNS available

into OpenFOAM Extend Project. From the technical point of

view, the interaction between CFD simulators can be based on

simulator’s API invoking, command line simulator execution

or network based interaction. The implementation of a wrapper

is a non trivial task and is widely studied; literature describes

many techniques and automate wrapper generators [18] (e.g.

CORBA wrappers generators). Star-CCM+ Wrapper on bot-

tom layer (Fig. 6) interacts with a computer cluster through

SSH to submit jobs, to handle job queue, to monitor the

running simulations, to modify simulation file and to extract

information from simulation.

V. CFD TOOL EXAMPLES

This section describes briefly some CFD tools actually de-

veloped and based on the above architecture. A CFD tool is an

end-user GUI that provides one or more useful functionalities

to engineers. Currently available tools are: the repository tool,

the simulation controller tool, the parametric study tool, the

simulation monitoring tool and the document generator tool.

Floasys application GUI is based on the perspective and

view concepts, a traditional GUI organization in Eclipse [19].

Each perspective is a visual container for a set of views.

Perspectives support the task oriented interaction [20], the

CFD engineer will use a different perspective depending on

the task to perform. Each tool can contribute with a new set of

views arranged in one or more perspectives or it can contribute

to an existing perspective with a new view.

The Simulation controller perspective shows data about the

selected simulation; it shows simulation data in a tree-like

structure (Fig. 7). This perspective is the main perspective

because it allows to access to other tools such as document

generator tool and parametric study tool. For example, from

the simulation tree the user can drag-and-drop simulation items

in the parametric study tool. In an industrial context, CFD

engineers perform several simulations on the same model by

changing the set of parameters values. Engineers run many

simulations about the same vehicle model; each simulation

runs with a different inlet velocity value and produces a

different result. Finally, all results are compared together.

Parameter study aim is to assess how a variation of a parameter

value affects simulation solution and which impact has on

design. Parameter study can be laborious, tedious, repetitive

and error-prone task without an automated tool [21].
VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the help and the sup-

port of Comprensorio CRF Elasis Pomigliano (Fiat Group

Automobilies) and, the interactions with Aerothermal CFD

team. In particular, the work has been significantly improved

by the interesting and stimulating discussions with Antonio

Cucca and Ugo Riccio. The authors also thank the anonymous

reviewers for useful comments.

REFERENCES

[1] M. Boucher, “The ROI of Cuncuttent Design with CFD,” 2011.
[2] C. K.-R. Michelle Boucher, “Getting Product Design Right the First

Time with CFD,” 2011.

Fig. 7. Simulation controller perspective.

[3] D. H. Michelle Boucher, “Engineering Envolved: Getting Mechatronics
Performance Right The First Time,” 2008.

[4] J. Weber, Automotive Development Process. Springer, 2009.
[5] E. Sindhu, A. Lee, and S. M. Salim, “Coves: an e-business case study

in the engineering domain,” Business Process Management Journal,
vol. 10, no. 1, pp. 115–125, 2004.

[6] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Ra-
datz, M. Yee, H. Porteous, and F. Springsteel, “IEEE Standard Computer
Dictionary: Compilation of IEEE Standard Computer Glossaries,” 1991.

[7] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering

Using UML, Patterns and Java-(Required). Prentice Hall, 2004.
[8] R. Shah, J. Kesan, and A. Kennis, “Lessons for open standard policies:

a case study of the Massachusetts experience,” in Proc. of the 1st inter.

conf. on Theory and practice of electronic governance, 2007, pp. 141–
150.

[9] T. H. Christopher L. Rumsey, Bruce Wedan and M. Poinot, “Recent
Updates to the CFD General Notation System (CGNS),” 50th AIAA

Aerospace Sciences Meeting, 2012.
[10] M. Poinot, M. Costes, and B. Cantaloube, “Application of cgns software

components for helicopter blade fluid-structure strong coupling. 31st
european rotorcraft forum,” Florence, Sept, 2005.

[11] V. Bertram and P. Couser, “Aspects of Selecting the Appropriate CAD
and CFD Software,” 9th Conf. Computer and IT Applications int the

Maritime Industries (COMPIT). Gubbio., 2010.
[12] W. H. Brown, R. C. Malveau, and T. J. Mowbray, “Antipatterns:

refactoring software, architectures, and projects in crisis,” 1998.
[13] D. Birsan, “On plug-ins and extensible architectures,” Queue, vol. 3,

no. 2, pp. 40–46, Mar. 2005.
[14] J. Des Rivières and J. Wiegand, “Eclipse: a platform for integrating

development tools,” IBM Syst. J., vol. 43, pp. 371–383, 2004.
[15] Last checked on May 24, 2013. [Online]. Available:

http://eclipsesource.com/blogs/2013/02/01/rap-2-0-countdown-15/
[16] J. O. Coplien and D. C. Schmidt, Eds., Pattern languages of program

design. NY, USA: ACM Press/Addison-Wesley Publishing Co., 1995.
[17] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in

system design,” ACM Trans. Comput. Syst., pp. 277–288, 1984.
[18] S. J. Eric Wohlstadter and P. Devanbu, “Generating Wrappers for

Command Line Programs: The Cal-Aggie Wrap-O-Matic Project,” Proc.

of the 23rd Inter. Conf. on Software Engineering, 2001.
[19] D. Rubel, “The Heart of Eclipse,” Queue, 2006.
[20] D. Springgay, “Using perspectives in the eclipse ui,” Eclipse Corner

Article, Object Technology International, Inc, 2001.
[21] M. Yarrow, K. M. McCann, R. Biswas, and R. F. V. d. Wijngaart,

“An Advanced User Interface Approach for Complex Parameter Study
Process Specification on the Information Power Grid,” in Proc. of the

1st IEEE/ACM Inter. Workshop on Grid Computing, 2000, pp. 146–157.



A platform to collaborate around CFD simulations

Claudio Gargiulo

R&D - Aerothermal CFD

Fiat Chrysler Automobiles, Italy

Email: claudio.gargiulo@fiat.com

Donato Pirozzi

ISISLab, Dip. di Informatica
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Abstract—This paper describes Floasys, a web-based platform
to foster the collaboration among Computational Fluid Dynamics
analysts and to promote model reuse by centrally managing
simulation data and providing metadata annotations and search
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I. INTRODUCTION

Nowadays, SMEs and large industries extensively use sim-

ulations to design new products. Products have become even

more complex, they integrate many components (e.g. more

than 20000 separate components for automotive product [1])

and are available to customers in many configurations. To man-

age this complexity, to get “a better insight into product be-

haviour” [2] and to reduce costs for prototypes [3], industries

simulate products with Computational Fluid Dynamics (CFD)

simulations that enable the investigation of physical product

behaviour. In addition, SMEs and large industries have many

locations, so dispersed teams need to collaborate together and

share knowledge to design products. Also co-located engineers

who work in the same room need to communicate sharing

simulation, know-how, best practices and other information.

The paper introduces Floasys, a web-based platform de-

signed to support data, knowledge and result sharing among

CFD analysts in Fiat Chrysler Automobiles (FCA). The aim

is to promote the model reuse and the result sharing to make

design decisions. Floasys collects and centralizes data from

CFD simulators integrating their functionality and data in

a user-friendly GUI. Floasys provides a tool to search data

independently by the specific simulator. The search tool is

very useful to get simulations performed by different engineers

to compare performance about multiple design revisions. In

addition, it allows the data sharing through URLs exchange.

The Floasys targets are industries who use CFD simulators

to design their products. One of the main requirements is the

integration of validated and widely used CFD simulators.

The paper is organized as follows. Section II describes

the industrial FCA use case about CFD simulations and the

need to share data and collaborate. This section also reports

the stakeholders Functional and Non-Functional Requirements

(NFR). These have led the Floasys platform design in terms

of Front-End (Section III), architecture and engineers tools

(Section IV).

II. FCA USE CASE

This section introduces Fiat Chrysler Automobiles use case

and the stakeholders requirements about a platform to foster

the collaboration among engineers, promote data sharing and

automate repetitive and error-prone tasks. Some space is

allocated to describe the Product Development Process (PDP),

the CFD Workflow and the internal industrial organization.

A. Product Development Process and CFD Workflow

Manufacturers aim is to bring products on market quickly

within the budget and performance constraints [2]. The PDP

describes the process adopted to design, develop and bring

products on the market [4] and involves a continuous in-

formation exchange among many tasks. Large industries are

dislocated and organized in multiple organization structures

of different types. One type of structure is the functional area.

Functional areas have technical know-how about a specific sec-

tor (i.e. engineering, cost engineering, marketing, commercial).

The CFD unit is the engineering functional area with highly

skilled engineers who perform simulations to analyze the aero-

dynamic and aerothermal automotive product behaviour. Au-

tomotive designers, CFD analysts and performance engineers

collaborate together to design the vehicle products. This use

case focuses on the CFD functional area and its relationships

with the PDP. CFD is a numerical computer simulation able

to solve and analyze problems that involve the fluid flow and

other related physical phenomena. CFD is widely adopted

in many industrial sectors such as automotive, aerospace,

high-tech and chemical sectors. CFD benefits are a “better

insight into product behavior” [2], product optimization in

according to the performance objectives, the simulation of ex-

treme environmental conditions (i.e. low or high temperatures)

and a cost reduction due less number physical prototypes.

Experimental tests, on the other hand, with real prototypes

are very expensive (i.e. wind tunnel infrastructure).

Style designers create the exterior and interior product

design with manual drawings that will become 3D models

using CAD software. CFD engineers use the 3D model to

simulate and analyze the product performances (e.g. aerody-

namics, aerothermal, aeroacoustic, air conditioning and cabin

climatization) with CFD simulators. CFD analysts perform

simulations and report data in documents. In order to meet



Fig. 1: Product Development Process and CFD Workflow.

the engineering targets, performance engineers use simulation

results to decide the changes to make and constraints for

the next style revisions (style constraints). At this stage,

engineers decide which prototypes to build and test in the wind

tunnel infrastructure. Finally, experimental data are correlated

to numerical simulation data, and additional style constraints

are defined in according to the performance goals. CFD

Workflow is iterative and consists of three phases (Fig. 1): pre-

processing, solving and post-processing. In the pre-processing

phase, CFD analysts take the vehicle geometries from stylists,

and perform clean-up and meshing (both surface and volume

mesh) tasks. Vehicle geometry is inserted into a virtual wind

tunnel. So, CFD analysts define the geometric and physical-

mathematical models to simulate. The physical-mathematical

model contains the solid materials and fluid flow characteris-

tics as well as the boundary and initial conditions. Volume

mesh is a spatial discrete representation of the geometric

domain. At each simulation step, physical values (i.e. velocity

and pressure) are computed for each mesh cell. The size,

shape and number of volume cells determine how many time

and how many computational resources (e.g. the number of

processors) are required by the simulation. Solving phase

consists in running model simulation using HPC resources.

The tuning of CFD simulations is a time consuming task

because geometries are complex and the number of parameters

to set is high. The simulation running takes about several hours

(currently up to 12 hours with at least 40 processors). It is

very important to monitor the running simulation to check

periodically the simulation convergence. CFD analysts monitor

the residual and the physical quantities about the examined

phenomena (i.e. the pressure forces under the vehicle body).

In post-processing, CFD analysts use simulation results to

create documents about the simulated product. Simulation

results are tabular data, contour-plots and streamline images.

The document creation (e.g. spreadsheets and slides) requires

manual copy-and-paste operations to obtain artifacts compliant

to the industrial templates.

B. Stakeholders Requirements

Requirements elicitation activity is performed using inter-

views and surveys involving performance engineers, technical

manager and CFD analysts. Obviously, stakeholders have

different requirements. Performance engineers and technical

manager ask management features such as the opportunity

to monitor resources, projects timeline and goals. On the

other hand, CFD analysts, who perform simulations, require

engineering features (e.g. simulation monitoring, automatic

document generation) and aim to share and exchange both

simulation data and results. In order to support collaboration

among engineers (Fig. 2) and to make the right design

decisions, they must access to centrally available simulation

data. Data sharing is required in many design phases and

with different granularity. Performance engineers and technical

manager need aggregate data (e.g. statistical data, trends about

performance) while CFD analysts need access to simulation

data (e.g. model, simulation case). In addition, to further

foster the model reuse, an advanced search tool is suggested.

In this way CFD analysts perform simulations starting by

previous works changing some parameters or some geometry

components.

Fig. 2: CFD functional area stakeholders.

This section outlines the requirements pointed out by CFD

analysts. Some requirements and the issues that we are facing

in the automotive context seem to be very similar to what

is depicted in market researches [2] about other sectors that

use CFD. So, we are confident that many of our findings

and proposed solutions can be take into account and adopted

also in other sectors (i.e. aerospace, high tech). The market

research “Getting Product Design Right the First Time with

CFD” [2] has interviewed 704 companies who use CFD to

design and develop products impacted by fluid flow. Aberdeen

Group has introduced a performance index used to classify

companies in three groups: laggard, industry average and best-

in-class. Industries aim to centrally manage results and to

“use CFD results to improve collaboration between design

engineers, R&D engineers, and analysts” [2]. Idea is that

to support collaboration between engineers and analysts they

must have access to CFD results and leverage on them to make

design decisions. The following is a detailed description of the

requirements gathered by our analysis.

1) Centralize Simulation data and results: In according to

Aberdeen Group market research [2], industries aim to cen-

tralize simulation results. Our goal is to centralize not only

the results but all simulation data such as 3D geometries,

simulation setup, results and documents allowing their easy

retrieval. Industries already centralize the files using network

shared folders without impose any rules on how to store them.

The difficulties to centralize data concern mainly the single

simulation file size (each one takes up to ten gigabytes) and

the high number of files (based on our internal survey each

engineer performs at least two hundred simulations per year).

Actually, to save space many old simulation files are removed



from the shared network folder and are stored only on backup

devices, creating some issues on their retrieval. The main issue

concerns the 3D geometry and meshing, to face these issues

our aim is to store only the surface meshing and rebuild

volume mesh from it basing on simulation case setup. Our

idea is to provide a reduced 3D model, so engineers could

display and identify instantly which components are used to

perform simulations (e.g. spoiler presence).

2) Provide metadata over simulation data: The need, here,

is to store additional metadata over simulation data and use

them to provide other services. CFD simulators do not consider

this aspect so engineers can not store additional data such as

project name, revision and so. Actually, to overcome this issue,

engineers use simulation file name to encode metadata.

3) Provide searching facility over simulation data and meta-

data: Search functionality both for data and metadata are

mandatory due the huge amount of data. Actually, simulators

do not provide search functionality and existing operating

system search tools are not so useful because the most useful

data are stored in a closed simulation file format. This require-

ment is also related to avoid vendor lock-in requirement (see

below in requirement II-B7) because in order to provide search

functionality data must be stored in an open and neutral format

(i.e. XML). One query could be the opportunity to search

simulation data about a specific project, brand and revision.

4) Support data sharing: The centralization of data and their

retrieval are initial steps towards a collaborative CFD platform.

CFD analysts need a mechanism to exchange references about

data. On Internet a common way to share resources is exchang-

ing URLs. So, our idea is to identify univocally simulation data

with URL and use them to share data among engineers. An

important aspect of this technique is who can see what data.

Multiple industrial roles exists (Fig. 2), so an access control

is important to control the sharing of confidential data.

5) Provide version control over data: The requirement to

provide version control over the simulation data is reported in

literature [2]. The main difficulty concerns the version control

of 3D geometry data. To give an idea, now each simulation

file takes up to ten gigabytes due to huge geometry data.

6) Integrate multiple industrial CFD Simulators: CFD ana-

lysts use multiple CFD simulators. They have validated these

software over the years and analysts are confident with them.

So, it is important to support and collect data from multiple

daily used CFD Simulators. This is the key difference with

other educational platforms that integrate simplified or in-

house developed solvers. In the analyzed context, engineers

use mainly a proprietary CD-adapco Star-CCM+ and an open

source OpenFOAM software. For some products both design

and simulations can be performed by the same team using an

all-in-one integrated CAD-CFD software. Automotive prod-

ucts are complex since they integrate mechanical components,

embedded systems, as well as electronics devices with many

configurations. In addition, to design an automotive product,

many teams are involved. Styling, CAD design and simulations

are performed by different teams. Each team has its know-how

and focuses on the design of a specific product feature.

7) Avoid Vendor Lock-In and Data Lock-In: The support

of multiple industrial CFD simulators within the platform

(requirement II-B6) consists in the integration of industrial

open source and closed commercial CFD simulators. The main

issue is the potential Vendor Lock-In both in terms of services

and data. Vendor Lock-In is a well-known Anti-Pattern [5]:

the phenomenon that causes customer dependency on given

vendor software about a specific good or service [6] with

high switching costs [7]. Data Lock-In concerns the data and

occurs when the only way to access to data is using the

vendor software. For instance when the platform must access

to a closed file format and the vendor software does not have

export functionality to open standard. Data Lock-In is very

common in Cloud Environments [8] and is an obstacle to

cloud computing [9]. Vendors lock users in to make harder

for them to leave product because they cannot get their data.

Stakeholders aim to integrate existing CFD simulators but at

same time it is very important to avoid the Vendor Lock-In.

III. FLOASYS

In order to meet the stakeholders requirements, the pro-

posed solution centralizes simulation data (requirement II-B1),

provides functionality to add metadata over simulation data

(requirement II-B2) and finally has a structured and assisted

Search tool to get simulations performed by different engineers

(requirement II-B3). The proposed features are designed and

developed over the Floasys architecture. In particular the added

tools are: the repository tool to navigate the simulation data

repositories, a Search tool to get the simulations performed by

different analysts. Floasys is a web-based platform to support

CFD engineering tasks in FCA. Floasys was designed to be

modular and extensible to meet the future needs.

A. Front-end

Floasys provides a re-configurable web-based GUI based on

Perspectives and Views concepts provided by Eclipse Remote

Application Platform (RAP) [10]. Our idea is that the virtual

workbench GUI changes according to the engineering tasks.

In this way, the system is able to show only the functionality

more relevant to perform the task. A perspective is a specific

configuration of the workbench and contains many views to

show information. A perspective provides a well-organized

software functionality access because they divide them into

semantically homogeneous sections.

1) System independent Repository Tool: It allows the repos-

itories navigation and simulations selection. The Repository

tool is able to handle simulation data from different simula-

tors using the Floasys framework services. Floasys supports

multiple simulators: the first difference to face is how they

store simulation data. For instance, OpenFOAM stores data

in a well-defined directories structure consisting in three

folders (e.g. system, constant and iteration directories) and

data are stored in multiple files. Instead, Star-CCM+ stores all

simulation data in one single-vendor format file. OpenFOAM

files are plain text readable without the software, instead Star-

CCM+ files are in closed format and they can be read only



through the vendor software. Repository tool inherits the user

file system access permissions, so the logged user can access

only to the files he/she is authorized. Floasys can access to

network folder through a server using a SSH connection with

the logged user credentials.

Fig. 3: Repository tool with the tagging file operation.

2) Tagging features: CFD analysts perform a lot of simula-

tions per year storing them in the repositories. By using an

internal survey and interviews we asked question about CFD

Analysts simulation file organization. Actually, existing tools

do not support the efficient search of simulation data, not even

the operating systems search tools, simply because simulation

are usually in a closed binary file format. In addition, survey

responders pointed out that simulations do not contain desired

searching information. For instance, simulations are about a

specific brand, project name, revision etc., information that

can not be stored within the simulation files. These additional

information are very useful to retrieve the simulations espe-

cially to share data among engineers. Our idea is to provide

the tagging feature to enrich simulation files with metadata

(i.e. project, brand, and free tags). In this way, our system

meets requirement II-B2. The tagging feature is available in

the Repository tool. CFD analysts can annotate the selected

files with free tags or recommended tags (Fig. 3). The tag

operations are both unstructured with free tags and structured

tags taken by the forms shown in Fig. 4.

Fig. 4: An example of structured data to store.

3) Search tool: Floasys Search tool provides functionality to

search simulation data stored in the repositories and to get

files with found data. Both tags and simulation data are used

to search files so the tool meets requirement II-B3. In order to

avoid data lock-in and to manage the search over closed file

format, we decide to extract some other important simulation

data (e.g. the names of components, simulation parameters)

and to store them in XML files. In this way, the search

operation is faster because it does not need the direct access

to the closed files format and it does not require to open

the simulation file using the proprietary software. Every time

the analyst opens a simulation through Floasys, the platform

automatically extracts the simulation data storing them in open

format. The data extraction is already required to support

the engineering tasks. The Search Tool (Fig. 5) is another

Floasys perspective useful to perform searches inserting the

keywords. The system performs the search by using indexed

data and simulation file names displaying results in a list. At

same time, Floasys recommends further keywords to refine

the search (Fig. 5). End-user can select a listed simulation to

display the revisions history. In this way, the tool supports the

search activity suggesting further search keys to reduce the

total number of potential results.

Fig. 5: Search Tool

4) Data sharing: Each simulation file has a unique ID within

the platform, all relevant data are linked to this ID such as

documents, simplified 3D geometry, surface mesh and so on.

Both repository and search tools provide a unique URL for

each selected simulation. Our idea is to share data simply

by sharing the unique reference to the specific simulation

data. Now, URLs identify simulation data and inherits the

file system permissions. The URL is private and is accessible

only within the industry boundaries. Considering the Computer

Supported Cooperative Work (CSCW) space-time quadrants

[11], Floasys supports the asynchronous data sharing both for

dislocated and co-located teams.

5) Web-based 3D Model Visualization: Floasys shows a re-

duced 3D geometries of the simulated vehicle. With this tool

engineers have a quick feedback on which components are

used to simulate the product without the CAD software. It

has a list of components with their Property IDs (PID). The



user can activate or deactivate some parts and can perform the

basic zoom and pan operations. The 3D vehicle geometries

usually are very complex. To give an idea, each geometric

model takes up ten gigabytes and engineers use very per-

forming hardware to open and manipulate them. An important

requirement for any engineering platform is the visualization

of 3D geometric. As many other platforms, Floasys is web-

based. The vehicle geometries are impossible to render in

the browsers using WebGL because they are very detailed

and heavy; also the quantity of data to transfer from server

to client is very huge. To overcome this common issue and

considering that the geometric representation is useful to give

an immediate feedback on which components are included

in the simulation, Floasys generates a simplified geometry

representation to render in the browser. Engineers need to have

numerical tabular data, contour-plots and the 3D geometric

model in the same view. Floasys provides a reduced geometry

visualization so engineers can quickly check which are the

vehicle components at a glance. For instance, an engineer can

quickly visual check if the vehicle is simulated with the spoiler.

IV. ARCHITECTURE

This section covers the architectural solution to centralize

data and to provide tagging and search tools as well as data

sharing. In order to meet the stakeholders requirements the

main issues to face are the proprietary nature of the CFD

software, the closed file formats and the huge amount of data.

Our aim is to centralize data (e.g. 3D geometry, model, results,

documents) and provide services over them (e.g. metadata and

search functionality) so it is important to access simulation

data independently by the CFD simulators. CFD Analysts use

proprietary simulators that generate closed file format and do

not have export functionality in open format (e.g. XML). For

instance, exporting to standard format is a well-established

functionality for geometry data (e.g. in STL format) but is not

available for the entire simulation case, setup and parameters.

A. Data centralization, tagging and search

For each simulation, Floasys generates an XML file to store

simulation data and metadata. The XML files are centrally

managed, are indexed to have high search performances and

are linked to the original simulations. In addition, both tagging

and search features are independent by the specific simulator

avoiding Vendor Data Lock-In. Every time an end-user uses

Floasys, it extract all useful data storing them in XML format,

independently by the specific software. In this way, we face

the issue that simulator files are in closed file format by storing

data in open format. Our idea is to perform data search using

only data stored within XML files using Apache Solr [12].

Each XML file is linked with the original simulation file using

an unique ID. So, the search operation is performed over the

XML file and then, when requested by end-user following

the link to the original simulation file. Two Java libraries

are used (Fig. 8): SolrJ to interact with the Solr Server and

SVNKit to commit and update data to SVN repository. Our

solution meets also other industrial constraints, such as the

Fig. 6: Simulation Data versioning.

impossibility to move existing files and folders or to store them

within a database. Finally, the solution must be independent

by the specific simulator, so it can not store metadata within

the simulation files, also because files are in closed file format.

B. Simulation Data Version Control

Simulations are stored in closed file format and contain

detailed and heavy vehicle geometries, so it is hard to provide

version control directly over these files. Our solution extracts

data from the closed files and stores them in open format (e.g.

XML). It extracts also the original surface mesh (STL format)

avoiding to store the volume mesh (the most heavy part created

form the surface mesh) and a simplified 3D geometry. Floasys

provides the version control over the XML files. The store of

surface mesh reduces the overall required amount of storage.

In addition, though it happens rarely, CFD Analysts can use

the stored surface mesh to run the simulation again. After

many attempts the best trade-off between running time and

the 3D geometry quality is to use the Matlab reducepatch

command. So, in the post-processing phase Floasys in batch

connects to Matlab server and reduce the original STL file

creating the lightweight version. This simplified version con-

tains all vehicle parts separately. Proposed solution has an

interesting advantage. XML files store the most important and

useful simulation data including a simplified 3D geometry.

So, users can open the XML files using the repository tool

and access to all simulation data without the original software

and without the HPC resources. It is a useful feature because

sometimes CFD analysts need to open simulations to consult

data, in this way no proprietary software license nor HPC

resources are used. Floasys interacts with Matlab as a black

box, it gives in input the original mesh and gets in output

the simplified mesh, so in future we could replace Matlab

with another system. For each simulation file (left-side of Fig.

7) an XML file exists in the SVN repository (right-side of

Fig. 7) that contains extracted simulation data and metadata.

The linking between simulation files and XMLs metadata is

very important to retrieve the original simulation file, and is

created by using a unique ID. Floasys generates a unique ID

for each simulation file and stores it with metadata in the

XML file. The ID is based on the original simulation file

content and path. This solution has the following advantages.

Floasys does not change the simulation file content to add

other information such as the ID. It performs search operations



Fig. 7: Floasys Client/Server Architecture.

using indexed XML content getting high performances and

providing version control for them. Other alternative were

discarded such as to add metadata directly to simulation files

avoiding the creation of XML files. The drawbacks in this case

are: 1) it is difficult to find available and unused fields in the

simulation files; 2) the simulation files are stored in closed

file format, so the solution is vendor software specific; 3) the

metadata management requires the access to files through the

vendor software using HPC resources due the geometry data

and 4) it is difficult to provide version control over simulation

files because they takes up to ten gigabytes.

C. Floasys Platform Architecture

Floasys is based on a Client/Server architecture (Fig. 8)

developed using Eclipse Remote Application Platform (RAP)

[10]. Floasys is Intranet-based for security reasons. It could

be exposed also on Internet, but limitations exists such as

the huge amount of simulation data (gigabytes) to transfer.

In addition, trusting and security issues must be taken into

account to avoid espionage. Industries usually have their own

repositories for simulation data (i.e. shared network folders)

that must be used by the platform. The architecture needs

an additional repository to store metadata (req. II-B2) about

simulation data. The repository can be an internal SVN

server or a shared network folder (without the version control

support). The server-side software architecture [13] follows

a three layers approach. The tools are in the top layer and

contribute both in Front-end and functionality. A CFD tool is

an end-user GUI that provides one or more useful functionality

to engineers. Each tool performs a well-defined engineering

task. Some tools depend on the internal team organization

and business process. For example, document generator tool

accepts document templates and creates documents from them.

The architecture has an isolation layer that isolates the front

end tools from the CFD software. The isolation layer has

multiple aims: it provides common service APIs to the front-

end managing the simulators differences, it decouples front-

end from the simulators wrappers and it allows the automatic

or manual simulators selection that are able to provide the

needed services. Finally, the bottom layer consists of CFD

software wrappers. The server-side architecture is based on

a pure plug-in architecture in which everything is a plug-

in [14]. Each box of the software architecture is a plug-

in. To achieve extensibility and modularity requirements, we

choose a pure plug-in architecture because it supports the

extensibility by plug-ins. Every plug-in provides well-defined

hook points called extension points that describe the way to

extend the plug-in’s functionality. Other plug-ins can add new

functionalities by implementing an extension point. A plug-

in can be modified or replaced by another equivalent imple-

mentation. For instance, Floasys framework defines extension

points (hook points) to extend its functionality by providing

other simulator wrappers or Front-end plug-ins.

V. FUTURE WORKS

Planned future work aims to support simulation data sharing

among groups of engineers providing more control over the

shared data. For instance, it is important for the technical

manager to control what data are exchanged and reconfigure

which groups must exchange data.
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SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION
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Abstract.

This paper introduces Floasys, a Web-based platform to foster the collaboration among engineers involved in Computational
Fluid Dynamics (CFD) simulations. The platform has been designed around the simulation data, i.e., fostering and stimulating
sharing, re-use and aggregation of models, simulation results and engineers annotations. Floasys requirements come directly from
an extensive requirements study that we conducted with two different teams in Automobiles (FCA), geographically distributed,
who daily perform an intense activity of CFD simulations to design vehicle products. Collaborative requirements were gathered
through stakeholders’ interviews and a user survey. We describe, first, Functional and Non-Functional requirements as suggested by
relevant literature (both in scientific and industrial setting) and by the user survey performed within FCA teams. Then, we show
Floasys functionalities and its architecture, that is based on a centrally managed repository of simulation data. By enriching the
repository with metadata annotations, Floasys provides all the desired functionalities to allow CFD analysts an easy and immediate
access to simulation data and results performed within the teams so that they can leverage them to make the right design decisions.

In this paper, we were able to (1) identify key collaborative requirements for CFD design, (2) address each of them with
an integrated, extensible and modular architecture, (3) implement a working industrial prototype (currently under testing and
evaluation in a real setting like FCA), and (4) identify the possible extensions to different contexts (like aeronautic, rail and naval
sectors).

Key words: Data sharing, model sharing, collaboration, simulation survey, CFD simulators integration, Web-based simulation,
simulation tagging, simulation search, simulation data version control.

AMS subject classifications. 68U20

1. Introduction. Nowadays, SMEs and large industries extensively use simulations to design new prod-
ucts. Products became even more complex, they integrate many components (e.g., more than 20000 separate
components for automotive product [1]) and are available to customers in many configurations. To manage this
complexity, to get “a better insight into product behaviour” [2], and to reduce costs for prototypes [3], industries
use different types of computer simulations [3] to simulate and analyse the products behaviour. One type of
simulation is Computational Fluid Dynamics (CFD) used to investigate the physical product behaviour, such as
external aerodynamics, underhood cooling, air conditioning and so on. In addition, SMEs and large industries
have many locations, therefore, both co-located and geographically distributed engineers need to collaborate
together, share simulation models, know-how, best practices and other important information.

This paper introduces Floasys, a Web-based platform designed to support simulation data, knowledge and
result sharing among CFD analysts in Fiat Chrysler Automobiles (FCA). The goal is to promote the sharing

of simulation models and results to foster their reuse among engineers. This work introduces, analyses
and discusses Functional and Non-Functional collaborative requirements (Section 2) as suggested by relevant
literature (both in scientific and industrial setting) and by results of an extensive user survey performed within
FCA teams. The collaborative requirements are: simulation data centralisation, metadata over simulation data,
search facility, version control over data and data sharing. Functional and Non-Functional requirements led
the design of Floasys’ architecture and its functionalities. Floasys collects and centralises simulation data over
time. Simulation data are collected from multiple simulators and are stored in open format (e.g., XML). Floasys
provides additional services over collected simulation data. It provides a Search tool that is independent by the
specific simulator. It is very useful to get simulations performed by different engineers to compare performance
about multiple design revisions. In addition, it allows the data sharing through URLs exchange. The Floasys
target customers are industries who use CFD simulators to design their products. From architectural point of
view, Floasys meets the extensibility and modularity Non-Functional requirements since it can be tailored to
customer needs, accommodate future needs and used in many departments. Although this work concerns an
automotive use case, issues that we are facing within this sector seems to be very common issues also in other
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sectors as highlighted in [2, 4], especially for the list of gathered requirements. Therefore, we believe that many
of our considerations and design decisions could be adopted also for other type of simulations and in other
contexts (i.e., aeronautic, rail and naval sectors).

The paper is organized as follows. Section 2 briefly introduces the use case study and outlines who are
the stakeholders. The aim is to provide an overview about the context and its internal organization. Then, it
analyses the collaborative Functional and Non-Functional requirements. Section 3 introduces the Floasys proto-
type with its functionalities. Section 4 discusses the Floasys architecture design decisions to meet stakeholders’
requirements. Through the paper, we track and map the collaborative requirements with the solution ideas
and the specific implementation technologies (i.e., libraries) used to develop the Floasys architecture. Section 6
concludes the paper and discusses possible future works.

2. Collaborative Requirements. This section analyses the key collaborative Functional and Non-Func-
tional requirements to design a platform to foster the collaboration among industrial simulation practitioners
and promote the sharing of models, results, and know-how. These requirements come from a relevant literature
study and an extensive requirements elicitation activity performed through observations, stakeholders interviews
and a user survey (Appendix A).

Fiat Chrysler Automobiles (FCA), as many other large industries, is organised in multiple geographically
distributed teams that collaborate together. Through our survey analysis, we get that all analysts collaborate at
least with another engineer in the same office and more than half analysts collaborate with at least one engineer
who works in another location. They collaborate together sharing file geometries (CAD files), simulations and
documents (e.g., slides, spreadsheets).

Fig. 2.1. Geographically distributed teams that collaborate together in asynchronous way.

Large industries have multiple locations around the world and are internally organized in multiple structures
of different types. One type of structure is the functional area. Functional areas have technical know-how
about a specific sector (i.e., engineering, cost engineering, marketing, commercial). Specifically, engineering
functional areas perform tasks to design products and constantly invest in Research and Development (R&D)
to improve their know-how and to be ready to provide innovative design solutions. The Computational Fluid
Dynamics (CFD) unit is the engineering functional area with highly skilled engineers, called CFD analysts,
who perform numerical computer simulations to analyse problems that involve fluid flow and other related
physical phenomena, such as aerodynamic, aerothermal and aeroacoustic automotive product behaviour. CFD
is widely adopted in many industrial sectors, such as automotive, aerospace, high-tech and chemical sectors.
CFD analysts perform simulations following the CFD Workflow [5] that is iterative and consists of three phases:
(1) pre-processing to prepare simulation, (2) solving and (3) post-processing to analyse results. The CFD unit
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and the CFD Workflow are our use cases. In each CFD unit, there are analysts and a technical manager who
is responsible for the internal team organisation, resources monitoring and their allocations.

In a large industry, many CFD units collaborate together (Fig. 2.1). The collaboration is among geo-
graphically distributed CFD units and, among CFD units and other industrial teams, such as the product style
designers and the performance engineers. In order to design an automotive product many engineers collaborate
together. Especially, to perform aerodynamics/aerothermal analyses, CFD analysts, automotive designers, and
performance engineers collaborate together.

The prerequisite to enable the collaboration among analysts is the simulation data centralisation.
Industries perform many simulations per year, therefore, in order to foster the model reuse and promote
the data sharing, it is fundamental how easy it is to retrieve the needed data stored in multiple repositories
with different formats (often in closed file format). In order to improve data retrieval, users aim to annotate
simulation files with additional metadata over data, such as free tags or structured data, and to have a search

tool able to get desired data. Search tools should support at least the search through files’ names, annotated
metadata and simulations’ contents. Simulation data version control is another desired feature. The aim
is to have a history of modifications made to simulations. It is a desired feature because the same simulation is
often performed changing only some parameters (e.g., inlet velocity).

Table 2.1

Stakeholders’ Collaborative Requirements.

Requirement Notes

Req. 1 Simulation Data centralisation
Req. 2 Metadata over simulation data Link metadata to simulations (e.g., free tags).
Req. 3 Search facility Search based on file names, file content and tags.
Req. 4 Version control over data
Req. 5 Data sharing
Req. 6 Integrate multiple simulators Avoid Vendor Lock-In
Req. 7 Extensibility and modularity
Req. 8 Do not change how engineers work

In order to gather the collaborative requirements (Table 2.1), we worked closely with a team of professionals
in Pomigliano D’Arco (Italy) who extensively use CFD simulations to design automotive products. We observed
their daily work annotating, collecting and analysing their tasks and workflows. We constantly discussed with
analysts and technical managers trying to get a deep understanding of their work and answer to our questions.
Requirements are refined through continuous iterations. FCA has multiple geographically distributed teams,
therefore in order to get the collaborative requirements directly from stakeholders, we issued an electronic
survey (shown in Appendix A) created with Google Forms1. The survey questions were divided in the following
main sections: participants’ experience, collaboration among engineers and data sharing, data centralisation
and data search, and simulation data versioning. The survey responders are seventeen FCA professionals half
from Pomigliano D’Arco (Naples, Italy) and half from Orbassano (Turin, Italy). Both groups design products
using Computational Fluid Dynamics simulations. Through the paper we sometimes differentiate the technical
managers and the analysts because they have different roles and requirements. Technical managers usually ask
management features, such as the opportunity to monitor resources, projects timeline and performance goals.
On the other hand, CFD analysts, who perform simulations, require engineering features (e.g., simulation
monitoring, automatic document generation). Of course, both roles aim to collaborate over centralised data
at different granularity. Floasys has been designed to also support engineering tasks, such as the simulation
convergence monitoring, engineering wizards to automate repetitive tasks, simulation templates and so on. In
this paper we mainly focus on the collaborative aspects overlooking the engineering Floasys’s features. An
important consideration is the impossibility to change how the employers actually work. Any architectural
software solution to meet the requirements shown in Table 2.1 must rely on existing internal procedures and
must not change them. During the requirement elicitation activity we also tried to understand the ways on
how a collaborative platform could be introduced and deployed over existing practices without hardly change

1http://www.google.com/google-d-s/createforms.html
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how the engineers work but at same time improving their work. The following section will analyse each
requirement listed in Table 2.1.

2.1. Simulation Data Centralisation. In order to support collaboration among engineers (Fig. 2.1) they
must access to centrally available simulation data (Req. 1, Table 2.1). The idea is to collect data from different
sources over time (i.e., from different simulators) and store them in open format like XML. In this way, data
and results can be aggregated in different ways and can be compared within the same project or among different
projects. Performance engineers and technical managers need to work on aggregate data (e.g., statistical data,
trends about performances) whereas CFD analysts access to fine grain simulation data (e.g., model, simulation
case) and their results to perform comparison. Obviously, data aggregation is not feasible with classic shared
network folders that store data in a closed file format. Actually it is manually performed with continuous
copy-and-paste operations among simulators and documents. In according to Aberdeen Group’s whitepaper
“Getting Product Right the First Time with CFD” [2], in order to improve the company competitiveness, they
should centralise simulations results. Our aim is to centralise simulations and all their related data, such as the
3D geometries, simulation setup parameters and documents supporting their retrieval. In order to centralise
data and provide additional services over them, software designers should consider: file size, total number of
performed simulations and closed file format. In our use case, both geometries and simulations are very large
files. In the survey, we asked which are usually the geometries and the simulations file sizes (questions Q5 and
Q6 of the Survey shown in Appendix A). Figure 2.2a shows that the CAD file size is about one gigabyte in
the fifty percent of answers. The file geometry can also contain the surface mesh and/or the volume mesh,
explaining the differences of file size answers depicted in the chart of Figure 2.2a. Instead, the simulation file
size (Fig. 2.2b) is more than ten gigabyte in 80% of answers. Simulations are so large because they contain the
entire detailed vehicle geometry, the surface and the volume mesh as well as the physical/mathematical data to
describe the model.

Fig. 2.2. Geometries (question Q7) and simulations file size (question Q8).

An alternative idea to provide services like data search or results aggregation, is to use a rational database
to store simulation data, but considering file sizes and huge number of simulations we excluded it. In order to
solve simulations the original files can not be moved and must be stored in their original format on file system.
The use of a database leads to continuous transfers of data from the database to the file system and vice versa,
compromising performance and response time.

2.2. Provide Search Facility. The aim is to provide a search tool able to find data using simulation file
names, simulation content (e.g., its model, parameters, etc.) and metadata (e.g., tags). Simulators software
often store simulation data as binary files in a closed file format. In addition, the used CFD simulator does not
have an export functionality to an open format. Therefore, classical search tools are not useful to find simulation
files based on their content (files are in binary format). For instance, the Windows OS search utility can not
be used to search within the file content. To overcome this issue, users actually insert a lot of information
in the simulation file name that will be useful to find data the next time. As shown in Figure 2.3, the main
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information inserted in the file name are (questions Q13-Q18): the project, the release, the revision number,
the engine model and the vehicle trimming. Users decide to put the most important information, regarding
their personal opinion, in the file name with the drawback to have very long file names. In addition, not all
information can be stored in the file name so a lot of data remain within the simulation closed file and can not
be used for next retrievals.

Fig. 2.3. Information inserted in the simulation file names (multiple choices question Q12).

More than half of analysts follow roughly some rules to store files in shared file system trying to follow them
over time. Here, the term “rules” mainly means how engineers give a name to a file and how they decide the
directories structures to improve the future simulation retrieval. Nevertheless these rules are mostly a personal
choice (82%), engineers add essentially the same information to file names because the analysed engineering
field is very specific. The limitation of this approach emerges when an engineer needs to search a simulation
performed by other employees, mostly because he can not use existing search tools (e.g., the Windows Search
tool) to search simulations based on the file content. An example of query is: “search all simulations performed
at inlet velocity X [km/h] that has the spoiler”. Unfortunately these data are not inserted in the file name
and remain inside the closed files. This also limits the aggregation of data at different levels based on specific
keywords and the relative results comparison of multiple different simulations to generate performance history
charts.

Fig. 2.4. Rules to store the files on shared network folder (questions Q11, Q13, Q14).

2.3. Provide Metadata over Simulation Data. Engineers use multiple simulators software, some of
them store data in closed file format. As stated in the previous section, the file content can not be used to
retrieve the files using the classical search tools such as using the Operating System find tool. Actually, to
overcome this issue, engineers insert a lot of information in the simulation file name such as project name,
revision and engine type (Fig. 2.3). Obviously, the file name can not host too many data, so other useful
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data are not annotated with simulations (e.g., free comments, descriptions). To get this requirement through
interviews and the survey we asked whether the engineers desire to link other data to files (question Q15). All
analysts (100%) desire a system to link other information to the files, such as the file tagging.

2.4. Simulation Data Versioning. As reported in the Aberdeen Group market research [2], an action
to improve the company competitiveness is to provide version control over data. Our survey aims to further
investigate this need especially to understand its value for stakeholders. Version control means that users can
track modifications made to a simulation over time. It is interesting because engineers usually do not start
simulations from scratch but they copy an existing file changing some parameters. In addition, starting from
the same simulation file many other simulations can be performed just changing few parameters (e.g., the inlet
velocity). In according to our survey, more than 60% of participants declared that they do not have a tool to
track the simulations modifications. In addition more than 80% of participants said that the feature could be
useful.

Fig. 2.5. Version control (question Q20).

2.5. Support Data Sharing. CFD analysts need a mechanism to exchange references about data. On
Internet a common way to share resources is exchanging URLs. Hence, our idea is to univocally identify
simulation data with URLs and use them to share data among engineers. An important aspect of this technique
is “who can see what data”. Multiple industrial roles exists (Fig. 2.1), so an access control is important to
control the sharing of confidential data.

2.6. Simulator Independence and Integration of Multiple CFD Simulators. The previous re-
quirements must work independently by specific used simulators to generate data. For instance, tagging and
search functions must work on a repository of heterogeneous simulations coming from multiple simulators. This
requirement is very important because in the analysed context, analysts use multiple CFD software and actually
one single software can not be used to perform all simulation types. In our use case and large industries, there
are different teams that use different software to perform tasks. For instance, a team is responsible for the
CAD design whereas another team simulates models using other software. Obviously, in other contexts both
design and simulations can be done by the same team with an all-in-one CAD/CAE software. Through the
survey, we asked (multiple choices question Q21) to indicate which simulator software the analysts use, to give
an idea about their multiplicity. All analysts use Star-CCM+ and more than half of them use OpenFOAM.
Other used software are: CFD++ (35%) and PowerFlow (18%). Analysts have used software over the years
and they are confident with them. Moreover, industries are unwilling to invest in training engineers on other
software products. Therefore, in order to meet the requirements is fundamental to support and collect data
from multiple daily used CFD simulators. This is a key difference with other platforms (i.e., e-Science) that
often integrate simplified or in-house developed solvers [6].

It is evident that any platform must consider the integration of multiple simulators. The integration of
multiple simulators (Req. 6 in Table 2.1) has some difficulties especially because CFD analysts use often
proprietary software and actually a lack of simulator standardisation exists so that many software do not have
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function to export data in open format. The import/export in open format are important functions to evaluate
during the choose of a CAD/CAE software [7] otherwise simulation data are locked in the vendor software.
Vendor Lock-In is a well-known Anti-Pattern [8] [9] [10]: the phenomenon that causes customer dependency on
given vendor about a specific good or service [11] with high switching costs [12]. Vendor Lock-In occurs both
in terms of services and data. Vendor Lock-In Anti-Pattern in terms of services occurs when the architecture
heavily relies on a closed vendor software and strictly depends on vendor choices, so the architecture is product-
dependent [13]. Data Lock-In occurs when the only way to access to data is using the Vendor Software because
data are stored in a proprietary file format or on a vendor server that does not provide an export functionality
to open format or a public customer API. The exporting and importing of geometric data are well-established
functionalities for CFD software, simply because they must commercially support the interaction with other
CAD software. Conversely, it is not the same for simulation data such as case setup, simulation results and
so on. Data Lock-In is very common in Cloud Environments [14] and is an obstacle to cloud computing [15].
Vendors lock users in to make difficult to change product because they cannot get their data; despite, as reported
in literature, giving the opportunity for customers to get their data increases their trust in the product [16]. A
design solution useful to mitigate the Vendor Lock-In is to design the system with an additional layer called
isolation layer [8].

2.7. Extensibility and Modularity. The combination of modularity and extensibility [17, 18] system
qualities advantages are: the opportunity to compose a system with the only needed modules, the introduction
of new functionalities tailored to customers’ needs, and the creation of customers own modules to automatise
specific tasks keeping them private to protect the know-how. Extensibility is the ability of a software system to
allow and accept significant extension of its capabilities without major rewriting of code [17] [18]. Extensibility
is a quality architecture attribute useful during the development and especially in future when more and more
simulators’ features will be integrated in the architecture [19]. Industries want to deploy the same system with
different features. Modularity “is the degree to which a system or computer program is composed by discrete
components such that a change to one component has minimal impact on other components” [17]. The architec-
ture must be modular to support both the adding of new simulators and the removing of existent simulators.
The modularity requirement has an interesting advantage for the architecture design: the engineering tools and
simulators are loosely coupled. An important consideration concerns the software license. Two opposite needs
must be taken into account: on one hand, industries want to protect their know-how, on the other hand, the
architecture must be also adopted in other contexts. Based on our use case, modularity, extensibility and EPL
license [20] are the right mix. The architecture, the framework and some other modules are open source. At
same time industries can protect their know-how developing their own private and closed modules.

3. Floasys Functionalities. This section describes the Floasys functionalities and shows its graphical user
interface (GUI). Floasys provides a simulator independent repository tool to navigate open format simulation
data repositories and annotate selected files through free and structured tags (Req. 2). Floasys has a structured
and assisted Search tool to get simulations performed by different engineers (Req. 3) and share them (Req.
5). Floasys’s screenshots contain CFD related data but its GUI and its ideas are general to be reused in other
engineering areas (e.g., ergonomics).

Floasys is a Web-based platform to support both engineering tasks (e.g., run simulation, monitor sim-
ulations, generate documentation automatically etc.) and data sharing among dispersed engineers. Floasys
centralises simulation data in open format and provides a search tool able to browse and query the simulation
database using tags identifying versions, interesting features and open comments. The Figure 3.1 depicts a real-
world Floasys workflow that is difficult or time-consuming without our platform. It is composed by six tasks
executed in sequence. In Task 1, user finds a simulation using keywords like project name, revision, velocity and
so on. The velocity is an internal simulation parameter. It is embedded in the closed file format, so the task to
search by velocity can not be accomplished without Floasys or at least, as come to light in Section 2, the user
can remember where he stored the simulation file and open it to check the velocity value. In addition, Operating
System find tool can not be used to get the simulation because velocity is not included in the simulation file
name (Fig. 3.2). With Tasks 2 and 3, the user selects a simulation from the list of results to get the original
simulation file and open it with the proprietary software. Unfortunately, the original simulation file is not in the
repository. Using Floasys, nevertheless the original file was deleted, the user can get the simulation data, setup
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Fig. 2.6. Mapping among Stakeholders’ requirements, solutions and prototype technologies.

and results. Of course, these data can not be used directly to simulate it again. Anyway, an expert engineer
can recreate the simulation starting from the provided surface mesh and simulation setup (boundary conditions,
physical model, used parameters, previous reports and so on). The Task 6 concerns the sharing of a simulation
URL to another user via a preferred medium (e.g., e-mail, chat). Of course, the shared URL is available only
within the industry’s Intranet.

Floasys provides a re-configurable GUI based on Perspectives and Views concepts provided by Eclipse
Remote Application Platform (RAP) [21]. The idea is that the virtual workbench changes according to the
engineering tasks. In this way, the system is able to show only relevant functionalities to perform the actual
task. A perspective is a specific configuration of the workbench and contains many views to show information.
A perspective provides well-organized software functionalities access because it divides them in semantically
homogeneous sections.

3.1. System Independent Repository Tool and Simulations Tagging. The Repository tool sup-
ports the navigation of central simulation repositories. Floasys integrates multiple simulators, so data hetero-
geneity is one of the issues to face. For instance, OpenFOAM stores data in a well-defined directories structure
of three folders (e.g., system, constant and iteration directories) and data are stored in multiple files. Instead,
Star-CCM+ stores all simulation data in one single-vendor format file. OpenFOAM files are plain-text readable
without the software, instead Star-CCM+ files are in closed format and they can be read only using the vendor
software. The Repository tool, relaying on Floasys framework services, is simulator independent and is able to
manage data from different simulators. The Repository tool inherits the user file system access permissions, so
logged user can access only to files he/she has authorised. Floasys can access to network folder through a server
using a SSH connection with logged user credentials.

The Repository tool provides file annotation and tagging features. The idea is to enrich simulations files
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Fig. 3.1. Example of a typical workflow supported by Floasys.

with metadata: a user can annotate a simulation file and provide additional information useful to retrieve and
share it in future. Examples of free tag categories are: brand, project name, revision and engine type; all
information that can not be stored directly within simulation files, whereas Floasys allows it. Analysts are free
to add any tag to files. In order to uniform the provided tags, during typing, Floasys suggests the tags to use
(Fig. 3.2). Tags are both unstructured with free tags and structured inserted filling out standard forms like in
Figure 3.3.

3.2. Search Tool and Data sharing. The Search tool (Fig. 3.4) is a Floasys perspective developed to
provide the search of simulation data stored in central repositories. The tool supports the search by file name,
simulation content, free tags and structured data (Req. 3 in Table 2.1). When a user types the search keywords,
Floasys recommends further keywords to refine the search (Fig. 3.4). In this way, the tool supports the search
activity suggesting further search keys to reduce the total number of potential results. The system performs
search using only indexed data without accessing (e.g., open) to original closed format files. The results are
displayed in a list. In order to display the revisions history, the user can select a simulation from the list of
results.

Each simulation file has a unique ID within Floasys and all relevant data (e.g., documents, simplified 3D
geometry, surface mesh and so on) are linked to this ID. Both repository and search tools provide a unique
URL for each selected simulation. Our idea is to share data by simply exchanging unique reference to the
specific simulation data. URLs identify simulation data and inherit file system permissions. The URL is private
and is accessible only within the industry boundaries. Considering the Computer Supported Cooperative Work
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Fig. 3.2. Repository tool to navigate a simulation repository and tag the resources (e.g., files).

Fig. 3.3. An example of structured data to store.

(CSCW) space-time quadrants [22], Floasys supports the asynchronous data sharing for both co-located and
distributed teams.

3.3. Web-based 3D Model Visualisation. Floasys shows a reduced 3D geometry of the simulated
vehicle. Through this tool, engineers can quicly discover which components have been used to simulate the
product without opening the CAD software. The tool shows a list of components with their Property IDs (PID)
on the left (Fig. 3.5). The user can activate or deactivate some parts and can perform the basic zoom and pan
operations. Figure 3.5 shows the simplified 3D surface geometry of a FCA production vehicle. The 3D vehicle
geometries usually are very complex. To give an idea, each geometric model takes up ten gigabytes and engineers
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Fig. 3.4. Search Tool

use very performing hardware to open and manipulate them. An important requirement for any engineering
platform is the visualisation of 3D geometric data. As many other platforms, Floasys is a Web-based platform.
The vehicle geometries are impossible to render in the browsers using WebGL because they are very detailed
and heavy; also the quantity of data to transfer from the server to the clients is very huge. To overcome this
common issue and considering that the geometric representation is useful to give an immediate feedback on
which components are included in the simulation, Floasys generates a simplified geometry representation to be
rendered in the browser. Engineers need to have numerical tabular data, contour-plots and the 3D geometric
model in the same view. Floasys provides a reduced geometry visualisation allowing engineers to quickly check
which are the vehicle components at a glance. For instance, an engineer can visually check if the vehicle is
simulated with the spoiler.

4. Floasys Architecture. This section introduces the Floasys architectural solution to centralise, an-
notate, tag, search and share simulation data. In order to meet the stakeholders’ requirements, our solution
collects simulation data from already existing simulation repositories (e.g., network shared folders), transforms,
indexes (to provide high data retrieval performance) and store them in open format (e.g., XML).

4.1. Architecture Overview. Floasys is based on a Client/Server architecture (Fig. 4.1) developed us-
ing Eclipse Remote Application Platform (RAP) [21]. Clients are Web-based components. Therefore, Floasys
is accessible through any browser installed on the company workstations. The Web-Based RAP clients commu-
nicate with the server exchanging commands and messages in JSON text format [23] over the HTTP protocol.
Servers tend to interact with user browsers using the JSON exchange format [24] because it is easily parsed
in client-side JavaScript language [23]. The Floasys’s server can access to a set of already existing repositories
(mainly shared network folders) that store the simulation files in their original format. In according to the
internal policies, Floasys accesses to these existing FCA repositories in a read-only mode through the SSH
protocol with the logged user credentials. Therefore, the architecture needs an additional repository to store
simulations in open format (e.g., XML) with annotations, tags and additional metadata (Req. 2). Floasys
supports two types of repository: an internal Subversion server or a shared network folder (without the version
control support). In order to improve retrieval performances, Floasys indexes open format XML documents
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Fig. 3.5. Floasys 3D model visualisation.

Fig. 4.1. Floasys Client/Server Architecture.

relaying on a well-established search engine technology like Apache Solr [25, 26, 27]. The server can access
also to simulator software and High Performance Computing (HPC) resources as well as other internal services
like the authentication service. Floasys is Intranet-based for security reasons. In addition, any kind of control
access to data must be compliant with the industries internal policies and can not be override. To provide au-
thentication and to manage both users and groups, Floasys can rely on existing industrial internal Lightweight
Directory Access Protocol (LDAP) servers [28, 29] or use existing Secure SHell (SSH) accounts comply with
existing file and directories access permissions. Floasys could be exposed also on Internet, but limitations exist
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such as the huge amount of simulation data (gigabytes) to transfer. Trusting and security issues must be taken
into account (e.g., to avoid espionage activities). Floasys is designed, developed and tested following an Agile
methodology based on short iterations of two weeks each in average, delivering small functionalities every time.
During the development, especially for server-side features, we wrote black box unit tests using JUnit [30]. From
functionalities testing point of view, for each planned release we had a test plan with the test cases to execute
and check on a controlled environment software installation. In addition, during the Floasys development,
we worked closely to analysts in Fiat Chrysler Automobiles to get the user feedback as soon as possible that
were recorded in an issue tracking system (e.g., Edgewall Software Trac2) and scheduled for the next plans in
according to the issue/enhancement priority.

4.2. Server-side Software Architecture. The Floasys server-side component interacts with the simu-
lator software to collect closed format data and transform them in open format. The architecture is a three
layers approach (Fig. 4.2). It integrates multiple simulators in the bottom layer wrapping the vendor software.
The top layer is the front-end that contains the Web-based GUI tools (or applications). The middle layer
(1) provides a common APIs to the front-end tools, (2) provides a common unified data representation called
Simulation Model for data coming from different vendor systems, (3) it is an isolation layer [8] to decouple the
front-end from vendor-specific simulator wrappers and, (4) it allows the vendor-product switching at run-time
to choose which ones are able to provide the needed services and data.

The middle isolation layer contains the common APIs exposed to the upper applications layer. In order to
keep its use easy, it mainly contains interfaces (or abstract classes) which are implemented by vendor-specific
wrappers. The architecture is able to provide the middle layer services also with other technologies such as
Restful and Web Services to support the interaction and data exchange among other devices (i.e., mobile devices)
and/or industrial systems. In this way, another third application (i.e., mobile application) can access to the
central simulation repositories and provide other service over open format data. Actually Floasys Meeting
Mobile is under development to provide statistical information about projects during the meetings.

An alternative solution to our architecture could be the introduction of a separate isolation layer for each
vendor software. The support of multiple replaceable vendor products and the simulators selection process
requirements impose the introduction of a common isolation layer. In fact, the alternative solution has the
following drawbacks: (1) the selection process is performed in the application layer and (2) separate isolation
layers means also different APIs, differences that must be handled in the application layer. However, the use of
a common isolation layer does not exclude that each wrapper itself is designed with an isolation layer using a
proxy pattern.

The extraction of data from closed file format generally is a tricky task and the solution depends on the
specific proprietary software and it is strictly coupled with it. The reverse engineering of the binary file content
is an extreme solution and we definitively tried to avoid it during Floasys development. Our idea is to interact
with the simulator taking advantage of its specific features. Specifically, CFD simulators have an interesting
built-in feature: the opportunity to write (or record) a macro to automate tasks within the software. In addition,
CFD simulators run “headless” without the graphical user interface (GUI) and can execute macros from the
command line. It is a built-in feature because every CFD simulation requires and runs on High Performance
Computing (HPC) resources. For instance OpenFOAM, an open source CFD software package, is a set of
command line tools without GUI so that the aim of many projects [31] both open and commercial is to design a
GUI for OpenFOAM. Another CFD simulator is CD-Adapco Star-CCM+, it has a Java-based macro language
to automate repetitive tasks. Therefore, Floasys takes advantage of this built-in CFD software feature. In
order to extract the data from a closed file format, the specific Floasys Wrapper runs the original simulator
and execute a macro within the simulator. The macro reads the simulation content and stores everything in a
plain intermediate file that after it is managed by Floasys platform. Floasys reads this plain intermediate file,
transforms it to a common open format creating a XML document stored in the central open repository.

In order to meet extensibility and modularity requirements (Req. 7), the server is based on a pure plug-in
architecture [32]. A plug-in can provide well-defined hook points called extension points to define and describe
the way to extend its functionality. Other plug-ins (or modules) can add new functionalities implementing

2Edgewall Software Trac official web site: http://trac.edgewall.org/
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Fig. 4.2. Floasys Server-side architecture.

an extension point. In addition, a module can be replaced with another equivalent implementation also at
run-time. The Floasys core provides two extensions points to extend its functionalities: (1) one hook point
to introduce new tools in the upper layer and (2) another hook point for new wrappers. In this way, the
following opportunities exist for the final customers: 1) multiple Floasys instances can be deployed choosing
which modules will compose the overall architecture in according to the industrial needs; 2) the industry can
identify exactly which modules contain their specific know-how; 3) each company can decide to invest money
for the development of its own internal modules to customise Floasys and meet specific internal requirements;
4) in according to Eclipse Public License [20] (EPL), each plug-in can be released open sources or with a closed
license.

Floasys has two kind of modules: wrappers on bottom to collect data and tools on top to provide engineering
features (Fig. 4.2). An interesting Floasys extension planned for the future is to develop a wrapper that collects
experimental data (e.g., wind tunnel experimental data, engine test bed). This is a challenging goal but
the advantage would be a central repository that contains both simulation and experimental in open format
supporting the comparison among them. An important task is the validation of simulation results and the
comparison among the computer results and experimental data is very important.

Floasys relies on mainstream technologies. The server-side components are Java servlet-based. Floasys is
developed upon Eclipse Remote Application Platform (RAP) that “uses standard servlet technology and runs on
any JEE servlet container” [21]. Therefore, the outcome of the deployment phase is a Web application ARchieve
(WAR) file that is deployed on a JEE servlet container (e.g., JBoss or Tomcat). This software stack can be
installed upon any operating system (e.g., Mac, Windows or Linux). Actually in according to the industrial
internal policies, the server is a Red Hat Linux distribution with JBoss3 but any other Linux distribution can
be used.

4.3. Simulation Model: Managing Simulator Differences. Floasys aims to collect data from multiple
different simulators that often use closed file formats. A lack of interoperability among CFD software exists
(see Section 2) so Floasys must directly handle these heterogeneities. Heterogeneities among vendor products
are both syntactic and semantic. The syntactic heterogeneity concerns the vendor product APIs differences
or the way to interact with them trough command line. The architecture has an isolation layer (Floasys
Framework in Fig. 4.2) to face these syntactic differences that remain within the simulator wrappers and one
common API has provided to upper layers. Semantics and data heterogeneities deal with data differences:
software are often similar but they use different concepts. This issue becomes evident when architectures try to
“support the concurrent use of multiple infrastructures, transparently” [8]. Floasys introduces an intermediate
common representation for simulation data called Simulation Data-Model. It is based on a tree-like data
structure as CGNS [33] format. In order to be reusable, it consists mainly of interfaces and abstract classes. In

3Red Hat JBoss official web site: http://www.jboss.org/
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addition, Floasys provides a basic implementation based on the composite design pattern [34]. Each wrapper
(architecture bottom layer Fig. 4.2) knows how to interact with a specific simulator and can extract data from
a closed file format. The same wrapper is responsible to create the Simulation Data-Model instancing the basic
implementation and translating simulation content in nodes of Data-Model. The Simulation Data-Model is
serialisable. Floasys serialises the Simulation Data-Models in XML documents that are indexed using Solr and
stored in a Subversion repository. Floasys uses Java XStream [35] Library to serialize Simulation Data-Model
in XML. This Data-Model is very powerful because Floasys can enrich the original data adding meta-data as a
new node of the tree structure. Both Floasys Framework and wrappers can add metadata over data inserting
additional nodes in the tree (i.e., documents, automatic extracted information) during extraction phase. Also
users can enrich the Data-Model providing tags and comments through repository tool that become nodes in
Data-Model. All the information stored in Simulation Data-Model can be used during within the Search Tool
to find simulations.

The advantages of our intermediate Simulation Data-Model representation are: (1) metadata over data
adding custom nodes, (2) serialisation in open format such as XML, (3) decoupling of wrappers from tools so
it is possible to replace a wrapper limiting changes to upper layers and (4) opportunity to compare results that
came from simulators with the results that came from the experiments with real prototypes in future. Finally,
we experienced a great advantage of using a Data-Model during Floasys development and for the stakeholders
after. Using the Data-Model has the advantage to use the Floasys front-end without simulators. The idea
is to have a dummy simulator that reads data from the XML file and provides them through the described
architecture as a real simulator. This is a cost-saving in terms of HPC resources and available simulator licenses
for closed software. Considering the 3D geometry complexity, to open a simulation file, engineers access to a
computer cluster using a software license that are fixed by the project budget. Therefore, the requirement to
avoid data lock-in leads to a cost-saving feature.

4.4. Simulation Data Centralisation, Version Control and Data Indexing. The architecture inte-
grates multiple simulators, collects and centralises simulation data. Each simulation contains textual, numerical
(e.g., results), images and geometrical data. Floasys extracts all simulation data embedded in closed file format
and stores them in open format files. The textual and numerical data are stored in XML files in according to
the Simulation Data-Model and are committed to the Subversion repository. These XML files are relatively
small (MB) so they are easily managed by the Subversion repository. Obviously, most Subversion operations
are recursive but Subversion 1.5 introduced the sparse directories [36] (or shallow checkout) to checkout a por-
tion of the working directory with the freedom to get more files and directories later [36]. Therefore, Floasys
relies on the shallow checkout to get a partial group of XML files. Floasys can use multiple Subversion servers
to accommodate future needs. Version control granularity concerns the specific simulation file. In this way,
simulation XML files can be distributed among multiple Subversion servers. Floasys architecture has designed
to store the SVN URL within the Solr search engine during the indexing phase. Hence, when the user search a
simulation and gets the search results, for each result there is the SVN URL to a specific Subversion repository.
Hence, every time Floasys exactly knows the Subversion server used to store the open format XML document.
In addition, in order to provide high search performance, the generated simulation XML files are indexed using
Apache Solr [25]. Apache Solr provides extensions, configuration, infrastructure and programming languages
bindings around Apache Lucene. In according to the official documentation [25], Apache Solr is is highly reliable,
scalable and fault tolerant, providing distributed indexing, replication and load-balanced querying, automated
failover and recovery, centralized configuration and more. In particular, Apache Solr can be run in a standalone
configuration or it is possible to setup a cluster of Solr servers through SolrCloud to combine fault tolerance
and high availability as well as scalability using replication and distributed indexing dividing the index into
partitions called shards.

Floasys does not use the Subversion repository for the geometrical data because they are very huge (GB).
A simulation contains mainly two meshes (geometrical data): (1) a surface mesh that is the vehicle shapes used
to build the (2) volume mesh used at solving time to solve the simulation. Floasys extracts only the surface
mesh and makes two outputs: a simplified geometry that serves just as overview of the vehicle product (it is
fast to retrieve and render with WebGL, see Section 3.3) and a surface mesh file (e.g., STL file). Floasys does
not store geometric volume mesh (the most heavy part of a simulation) reducing the overall required amount
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of physical space. In this way it saves space on repositories and it is always possible to build volume mesh from
surface mesh.

In order to get the simplified 3D geometry version used only for the visualisation on web, Floasys in batch
connects to the Matlab server and reduces the original STL surface mesh creating the lightweight version. This
simplified version contains all vehicle parts separately. After many attempts the best trade-off between running
time and the 3D geometry quality is to use the Matlab reducepatch command. The quality of the obtained
mesh is assessed asking to CFD analysts. Floasys interacts with Matlab as a black box, it gives in input the
original mesh and gets in output the simplified mesh, so in future we could replace Matlab with another system.

The proposed solution has an interesting advantage. XML files store the most important and useful simula-
tion data including a simplified 3D geometry. Therefore, users can open the XML files using the repository tool
and access to all simulation data without the original software and without the HPC resources. It is a useful
feature because sometimes CFD analysts need to open simulations to consult data, in this way no proprietary
software license nor HPC resources are used.

Fig. 4.3. Simulation data versioning.

For each simulation file (left-side of Fig. 4.3) stored in closed file format, an XML file exists in the SVN
repository (right-side of Fig. 4.3) that contains extracted simulation data and metadata in open format. In
addition, each XML file is indexed using Apache Solr [25].

Each XML file is always linked with its original simulation file using an unique ID. In this way, the users can
always get the original simulation following the provided link. Floasys generates a unique ID for each simulation
file and stores it with metadata in the XML file. The ID is based on the original simulation file content and path.
This solution has the following advantages. Floasys does not change the simulation file content to add other
information such as the ID. It performs search operations using indexed XML content getting high performances
and providing version control for them. Another alternative solution is to add metadata directly to simulation
files avoiding the creation of XML files. This solution has been discarded because has the following drawbacks:
1) it is difficult to find available and unused fields in the simulation files; 2) the simulation files are still stored in
closed file format, so the solution is vendor software specific; 3) the metadata management requires the access
to files through the vendor software using HPC resources due the geometry data and 4) it is difficult to provide
version control over simulation files because they takes up to ten gigabytes.

From implementation point of view, two Java libraries have been used (Fig. 4.1): SolrJ to interact with
the Solr Server and SVNKit to commit and update data to Subversion repository. Our solution meets also
other industrial constraints, such as the impossibility to move existing files and folders or to store them within
a database. Finally, the solution must be independent by the specific simulator, so it can not store metadata
within the simulation files, also because files are in closed file format.
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5. Related Works. Aberdeen Group conducts market research studies to help businesses worldwide to
improve performance4. They use a research methodology called P.A.C.E. to classify companies in three cate-
gories: best-in-class, average and laggard. Then they identify and compare companies using the internal and
external pressures, their capabilities and the actions used to face the market challenges. The market research
“Getting Product Design Right the First Time with CFD” [2] by Aberdeen Group studied the experience of
704 companies that perform simulations to design their products. Specifically, they use the Computational
Fluid Dynamics (CFD) simulations to design the products. Their leading market research question is how
the CFD simulations impact the product design and which are the key advantages of using them. The white
paper includes a list of “actions” that are the steps to perform in order to increase the competitiveness of
the companies on the market. Some of the actions are: capture and document best practices for conducting
simulations, centrally manage the simulation results and the best practices, take advantage of predefined wizards
or templates to guide less experienced users. The market research provides some starting points that must be
further investigated, such as “promote the collaboration” among engineers, ensure the right people have access
to the results and offer version control. Obviously, the market research does not discuss the technical solutions
to achieve these actions.

We had the opportunity to work closely with professionals in Fiat Chrysler Automobiles (FCA) who use
CFD simulations to design vehicle products. Our work further investigates the collaborative requirements of
dispersed teams and co-located engineers gathered using interviews and a survey. Here, we analyse the survey
requirements results enriching them with the stakeholders observations and feedback. Our work contributes also
with technical solutions to meet the reported requirements. In [4], authors conducted a survey to understand
the needs and perception of practitioners about the Cloud-based simulation (CBS). In their survey results come
to light the need to share, store and retrieve models in CBS.

Many Web-based platforms have been created over the years to support Computational Fluid Dynamics.
The “e-Science Aerospace Integrated Research System” (e-AIRS) [6] is an educational Web portal developed
in Korea to help students to understand the aerodynamic simulation process [37]. EDISON CFD [38] is the
e-AIRS improvement in terms of stability, faster data response time and waiting time [39, 40]. Such systems
have remarkable differences with our use case requirements and with Floasys. The systems target is the first
difference, both e-AIRS and EDISON CFD have an educational target, instead Floasys aims to industrial sectors
(e.g., automotive sector). The e-AIRS target is educational and therefore it has been used in undergraduate and
graduate classes. This have an impact on the integrated tools, that is the other difference. e-AIRS integrates
custom in-house meshing tools and solvers. It operates with its own Fortran-based in-house CFD solvers [6].
Industries use widely adopted and validated CFD software, so Floasys platform aim is to integrate existing both
commercial and open source solvers (Req. 6). In addition, the meshing is very important because it impacts
on simulation quality results and running times. e-AIRS adopts a custom software called e-AIRSmesh to mesh
the geometry storing the mash in a specific custom file format. Each CFD simulator works with a specific mesh
topology. A Floasys requirement is to integrate multiple industrial adopted and validated CFD solvers (Req.
6). Industries have assistance contracts with CFD software vendors, so industrial platforms can not ignore their
integration. In addition the aim is to avoid Vendor Lock-In adopting open format data.

Many other platforms proposed to manage simulations on HPC resources but they do not focus on col-
laboration among engineers. For example, a Web-based system for Management of CFD simulations for Civil
Engineering was proposed with the goal to develop tools for civil engineers who are not CFD experts but need
to perform CFD analysis [38]. It allows the “dispatching and controlling of long-running simulations” [38]. The
system targets are civil engineers and CFD beginner users. The system was tested with a group of students in
civil engineering class. The main differences concern the system end-user target and the correlated requirements
to achieve. Our system target is automotive industry where CFD analysts need to collaborate, share data, result
and knowledge, simulation data and result centralisation with the aim to promote collaboration. An interesting
emerged common requirement is the need to use templates both for expert and beginner users. The nature of
CFD simulations with high number of parameters to consider forces the creation of standard templates both to
support beginner and expert users.

Another research avenue comes from the Semantic Web field. Many works in literature proposed software

4Aberdeen Group official web site http://www.aberdeen.com/
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platforms for modelling and simulation. Simantics [41] is ontology based modelling; it uses ontologies to seman-
tically describe the simulation model and the data. The two mainly applications that have built on Simantics
platform are: the proprietary Apros6 for power plant M&S and an open source Simantics System Dynamics
Tool based on Melodica language and the OpenMelodica environment. The Simantics’s [41] developers are
working on the integration of OpenFoam, an open source CFD software package.

6. Conclusions and Future Works. In this paper, we were able to identify key collaborative require-
ments for CFD design through the use of stakeholders interviews and a user survey. In addition we were able
to address these requirements with an integrated, extensible and modular architecture. In this way, the paper
provides the solutions and the technologies able to address the collaborative requirements. Requirements, so-
lutions and technologies are tracked through the paper and their links are depicted in the Figure 2.6. Floasys
is Web-based platform designed and developed to meet the collaborative requirements and is the industrial
prototype currently under testing and evaluation in FCA.

Ideas behind Floasys, such as the integrated, extensible and modular architecture, could be adopted also
in other contexts. The great opportunity to have different modules to plug in the architecture allows the
deployment of a system tailored to engineers needs and development of some custom modules to embed team
know-how. The solution to integrate existing engineering software and extract data from closed file format
enables the creation of value added services over open format industrial data. In addition, large industries,
independently by the sector, have multiple geographically distributed teams so, the collaboration around open
format data and the sharing of data at different granularity and aggregation are great features. All features
that could boost the industry competitiveness.

Floasys relies on mainstream open source solutions and its architecture is made integrating widely used
existing enterprise technologies. The architecture can be divided into four main uncoupled parts: (1) simulators
wrappers that communicate with the simulator software to get the simulation data and transform them in XML
open format, (2) the version control repository for the XML files (e.g., SVN), (3) an enterprise search engine to
index, cache and search the XML documents (e.g., Apache Solr), and (4) the central web server that provides
the Web content (e.g., JBoss servlet container). Actually, we choose Apache Solr because it can scale using
SolrCloud, Subversion because Floasys supports multiple SVN repositories and a mainstream servlet container.
As future works, we have planned a controlled benchmark test to quantitatively assess and evaluate the Floasys
performance, reliability and robustness. In addition, we are planning an evaluation study to analyse the usability
of the Floasys user interface, and the user satisfaction when interacting with it [42, 43]. The user acceptance of
the software will be investigated as well [44].

Finally, an interesting future work is the opportunity to link our SVN that contains simulation data in open
format with an internal social network and enable the discussion on artefacts [45]. The aim is to understand
and evaluate the benefits of using the social in the field of industrial CFD simulations.
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[1] D. Sörensen, The automotive development process. Springer, 2006.
[2] C. K.-R. Michelle Boucher, Getting Product Design Right the First Time with CFD, 2011.
[3] D. H. Michelle Boucher, Engineering Envolved: Getting Mechatronics Performance Right The First Time, 2008.
[4] S. Onggo, S. Taylor, and A. Tulegenov, The need for cloud-based simulation from the perspective of simulation practi-

tioners, Proceedings of the Operational Research Society Simulation Workshop (SW14), 2014.
[5] C. Gargiulo, D. Pirozzi, V. Scarano, and G. Valentino, A platform to collaborate around CFD simulations, 23rd IEEE

International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2014), Parma,
Italy, 23-25 June, 2014, pp. 205–210.

[6] J. Moon, C. Kim, Y. Kim, and K. W. Cho, CFD Cyber Education Service using Cyberinfrastructure for e-Science, in Fourth
International Conference on Networked Computing and Advanced Information Management (NCM’08), 2008, vol. 2. pp.
306–313.

[7] V. Bertram and P. Couser, Aspects of Selecting the Appropriate CAD and CFD Software, 9th Conference on Computer
and IT Applications in the Maritime Industries, Gubbio, Italy, 2010.

[8] W. H. Brown, R. C. Malveau, and T. J. Mowbray, AntiPatterns: refactoring software, architectures, and projects in
crisis, 1998.

[9] Cunningham & Cunningham, Inc., Anti-Pattern, [Online]. Available: http://c2.com/cgi/wiki?AntiPattern, checked on
19/01/2015.



SIMULATION DATA SHARING TO FOSTER TEAMWORK COLLABORATION 327

[10] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, Design patterns: Elements of reusable object-oriented software, Reading:
Addison-Wesley, vol. 49, p. 120, 1995.

[11] M. Perry and T. Margoni, Floss for the canadian public sector: open democracy, IEEE Fourth International Conference
on Digital Society (ICDS’10), pp. 294–300.

[12] R. Shah, J. Kesan, and A. Kennis, Lessons for open standard policies: a case study of the Massachusetts experience, in
Proceedings of the 1st international conference on Theory and practice of electronic governance, 2007.

[13] V. Varma, Software Architecture: A Case Based Approach. Pearson Education India, 2009.
[14] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, A survey of large scale data management approaches in cloud environ-

ments, IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 311–336, 2011.
[15] C.-W. Chang, P. Liu, and J.-J. Wu, Probability-based cloud storage providers selection algorithms with maximum availabil-

ity, IEEE International Conference on Parallel Processing (ICPP), pp. 199–208, 2012.
[16] B. W. Fitzpatrick and J. Lueck, The case against data lock-in, Queue, vol. 8, no. 10, 2010.
[17] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Radatz, M. Yee, H. Porteous, and F. Spring-

steel, IEEE standard computer dictionary: Compilation of IEEE standard computer glossaries. IEEE Press, 1991.
[18] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns and Java-(Required). Prentice

Hall, 2004.
[19] J. Humble and D. Farley, Continuous delivery: reliable software releases through build, test, and deployment automation.

Pearson Education, 2010.
[20] Eclipse public license. [Online]. Available: http://www.eclipse.org/legal/epl-v10.html, checked on 19/01/2015.
[21] Eclipse RAP Remote Application Platform, [Online]. Available: http://eclipse.org/rap/, checked on 19/01/2015.
[22] J. Rama and J. Bishop, A survey and comparison of cscw groupware applications, in Proceedings of the 2006 annual research

conference of the South African institute of computer scientists and information technologists on IT research in developing
countries, 2006.

[23] X. Chen and K. Kasemir, Bringing control system user interfaces to the web, TUPPC078, ICALEPCS, vol. 13.
[24] G. Wang, Improving data transmission in web applications via the translation between XML and JSON, in Third International

Conference on Communications and Mobile Computing (CMC), 2011, pp. 182–185.
[25] A. Solr, Apache software foundation Solr, 2014. [Online]. Available: http://lucene.apache.org/solr/, checked on 19/01/2015.
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Appendix A. Requirements elicitation Survey.
The survey aims to identify the most important requirements for a collaborative simulation platform to support the

engineering activities. Survey is confidential and all data will be processed in aggregated way. Thank you for your time
and your advice. At the end we will provide you the survey results and considerations.

Your experience.

Q1. Which is your role in the company?

- CFD analyst
- Technical Manager
- Performance Engineer

Q2. Which is your place of work?

- (FCA) Pomigliano D’Arco (Naples)
- (FCA) Orbassano (Turin)

Q3. How many years you spent working in the CFD field?

- (write the number of years)

Q4. How many simulations do you perform per year?

- (write the number of simulations per year)

Collaboration among analysts and data sharing.

Q5. In my office I daily work with a number of analysts equal to

- (write the number of analysts)

Q6. I daily work with a number of analysts in a different place equal to

- (write the number of analysts)

Q7. On average, the geometries file size in average is

- (write the geometry file size)

Q8. On average, the simulations file size in average is

- (write the simulation file size)

Q9. In order to exchange geometries and simulations files I usually use

E-mail: (Never) 1 2 3 4 5 6 7 (Always)
Chat: (Never) 1 2 3 4 5 6 7 (Always)
Phone: (Never) 1 2 3 4 5 6 7 (Always)
FTP: (Never) 1 2 3 4 5 6 7 (Always)
Ask to a colleague: (Never) 1 2 3 4 5 6 7 (Always)
Internal Platform: (Never) 1 2 3 4 5 6 7 (Always)

Q10. In order to exchange documents I usually use

E-mail: (Never) 1 2 3 4 5 6 7 (Always)
Chat: (Never) 1 2 3 4 5 6 7 (Always)
Phone: (Never) 1 2 3 4 5 6 7 (Always)
FTP: (Never) 1 2 3 4 5 6 7 (Always)
Ask to a colleague: (Never) 1 2 3 4 5 6 7 (Always)
Internal Platform: (Never) 1 2 3 4 5 6 7 (Always)

Data centralisation and simulation data search.

Q11. I follow some rules to store simulations and assign the name to their corresponding files

(Never) 1 2 3 4 5 6 7 (Always)

Q12. The information that I store in the simulation file name are (Multiple choice)

- Project Name
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- Release
- Ground Clearance
- Revision
- Engine
- Vehicle Trimming
- Date

Q13. The rules are:

- Personal Choice
- Team Conventions
- Fixed imposed rules

Q14. I follow the rules over time

(Never) 1 2 3 4 5 6 7 (Always)

Q15. The opportunity to link other information (e.g., tags) to files could be:

(Useless) 1 2 3 4 5 6 7 (Useful)

Q16. In order to find simulation files I usually use

My mind: (Never) 1 2 3 4 5 6 7 (Always)
Free directory navigation: (Never) 1 2 3 4 5 6 7 (Always)
Windows Find Tool: (Never) 1 2 3 4 5 6 7 (Always)
See the file name: (Never) 1 2 3 4 5 6 7 (Always)
Open the simulation: (Never) 1 2 3 4 5 6 7 (Always)
File History: (Never) 1 2 3 4 5 6 7 (Always)
Unix Find Tool: (Never) 1 2 3 4 5 6 7 (Always)
Ask to a coworker: (Never) 1 2 3 4 5 6 7 (Always)

Q17. I have a tool to search simulations according to their content

(Never) 1 2 3 4 5 6 7 (Always)

Q18. A tool to support the search operations based on simulation data could be:

(Useless) 1 2 3 4 5 6 7 (Useful)

Simulation data versioning.

Q19. I have a tool to show the simulation’s modification over time

(Never) 1 2 3 4 5 6 7 (Always)

Q20. A tool to show the simulation revisions could be

(Never) 1 2 3 4 5 6 7 (Always)

Used simulators.

Q21. During my work I use these simulator software (multiple choices):

- Star-CCM+
- OpenFOAM
- SolidWorks
- PowerFlow
- CFD++

Edited by: Giacomo Cabri
Received: September 15, 2014
Accepted: January 5, 2015
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Abstract—This paper describes a tool called ExploraTool to
visualise, explore and graphically query large repositories of
simulations. Instead of starting with the empty list, ExploraTool
provides an initial overview of the repository content, progres-
sively grouping the simulations by their main attributes, such
as brand, vehicle model, power source, engine type and so on.
Users can interactively navigate the repository view through drill-
down, roll-up and rearrangement operations. In this way, using
the ExploraTool, simulation analysts can visualise, explore and
filter large repository of simulations as well as select groups of
simulations to compare their performances.

Keywords—Data Visualisation, Data Exploration, Simulation

I. INTRODUCTION

Nowadays, industries and researchers extensively run sim-
ulations and experiments to design their products. In the auto-
motive, industrial equipment, high-tech, aerospace and defence
sectors [1], industries perform computer numerical simulations
to design their product facing time-to-market, high quality
and cost down pressures [1]. For example, automotive indus-
tries use Computational Fluid Dynamic (CFD) simulations to
design the external vehicle aerodynamics or the internal air-
conditioning. Another example comes from the engine design:
researchers and industries have real engine test-beds that run
for hours collecting sensor data like pressures, temperatures,
and torque forces.

Simulation repositories usually store huge amounts of data
for years. For instance, in large manufactures like Fiat Chrysler
Automobiles, each analyst performs at least one hundred
simulations per year [2], and there are many analysts working
over years. This has generated a large, valuable repository of
assets. In addition, analysts typically deal with simulations
that are at least ten gigabytes each [2]. This gives an idea of
the large quantity of data to manage within these repositories
and the difficulty in having a clear idea of what they contain.
Simulation Analysts, as well as Experiment Analysts, need to
clean, analyse and compare the collected results as well as
get insight into the data repository. Sometimes, specific phe-
nomenons need to be understood. For instance, if a particular
event in an engine experiment run occurs sporadically, then
the analysts need to extract the input conditions for which
such an event occurs (e.g., for which pressure values). For
this reason there is a demand for software platforms able to
collect, centralise, and get insight into information in a data
repository, as well as to analyse and share results [3].

Based on our experience working closely a team of
aerothermal CFD within Fiat Chrysler Automobiles, we identi-
fied the following three main requirements: (1) data collection,

centralisation [1], and sharing [2] (2) data heterogeneity man-
agement, and (3) repository visualisation and exploration.

This paper focuses on the visualisation, exploration, and
query of a large repository of simulations. The idea is to
provide a graphical tool called ExploraTool to (1) get an
overview of the repository content, (2) navigate the reposi-
tory of simulations based on their properties, and (3) select
and extract a set of simulations in order to compare their
performance. The tool is actually usable for generic data
exploration, thereby being usable to also explore repositories
of experimental data, or any other big data sets.

This paper is organised as follows. Section II presents the
state of the art on 2D space-filling visualisation techniques
and existing tools that rely on them. Section III describes the
ExploraTool features. Section IV describes the ExploraTool’s
architecture and the process used to transform the data read
from the simulation repository to an interactive visualisation.
The last Section V summarises the paper results, reporting the
known tool limitations and the planned future works.

II. RELATED WORKS

The visualisation of large datasets has become really im-
portant because the classical list based widgets are not able
to manage the large number of items, and also because it is
practically impossible to show all the data available within a
dataset. In this context, the 2D space-filling visualisation tech-
niques aim to exploit all the available screen-space supporting
the overview of the datasets, the opportunity to navigate the
dataset and get more details on request. Generically speaking,
the 2D space-filling approaches divide the available screen
space recursively using a basic shape (e.g., rectangle, circle).
In this way parent-child relationships are represented as nested
shapes, and sibling nodes are represented as closest shapes at
same depth.

Treemap was introduced by Shneiderman during 1990 to
have a compact file system visualisation and be able to identify
at a glance the directories that take up the most of the space
on the hard drive. Then, treemap [4] has been extensively
used to present intrinsically hierarchical data, providing an
overview of an entire dataset at a glance. In treemap, every
node in the hierarchy is represented as a rectangle with an
area proportional to the node size. Parent-child nodes are
represented as nested rectangles. Usually the navigation within
the hierarchy is based on a drill-down with a left mouse click to
go down in the hierarchy and a roll-up with a right mouse click
to go up in the hierarchy. Over years, the treemap visualisation



Fig. 1. The ExploraTool’s Graphical User Interface. It shows an overview of the simulation repository through an initial hierarchy made by the following
simulations’ attributes: brand, project model, power source and engine type. The attributes’ order is shown in the navigation bar on the left. Instead of starting
from scratch the tool shows an initial overview, progressively grouping simulations by their main properties. For instance the picture groups simulations first by
the brand (Lancia, Maserati, Fiat, and Alfa), then it further groups simulations by the vehicle model. The user can drill-down by directly clicking on any ellipse.

Fig. 2. The picture shows the result of the drill-down operation performed on the Delta category. Starting from Fig. 1, the analyst clicks on the ellipse “Delta”.
The ExploraTool smoothly enlarges the selected group, rendering a fast transition to the new view. If the user desires to go return back to the less detailed view,
he/she can click directly on the external “universe” white space in order to perform a roll-up operation, thereby returning to the initial view as shown in Fig. 1.



approach has been used to visualise different hierarchical data,
such as inherently hierarchical organisation structures [5], file
systems [6], Usenet newsgroup [7] and so on. Well-known
treemap drawbacks are the hierarchy discernment [8] and the
fact that the position of the mouse pointer designates an entire
branch of the tree [9] because each point belongs to a single
leaf node but also to all its ancestors [9]. Of course, one of
their advantages is the use of the all available 2D space.

Ellimap [8] is another type of 2D space-filling visualisation
approach. It uses ellipses instead of rectangles to represent the
nodes. In this way, there is always space between ellipses,
both nested ellipses and adjacent ellipses (i.e., sibling nodes
in the hierarchy). According to Otjacques at al. [10], the
use of ellipses with their extra space improves the hierarchy
discernment compared to the visualisation based on rectangles.

This paper exploits the ellipmap visualisation technique to
explore large repository of simulations within Fiat Chrysler
Automobiles (FCA). Until now, the ellimap has always been
used coupled with other classical visualisation widgets like
tree widget [8]. Here, we explore the repository of simulations
directly through the ellimap, integrating a vertical navigation
bar to track the user position in the hierarchy during the
navigation. In addition, in this work we exploit the natural
extra space between the ellipses in order to provide a hierarchy
navigation facility in which the user points directly to the target
shape and interacts with the left mouse click.

III. EXPLORATOOL FEATURES

This section describes ExploraTool and its features. Instead
of starting from scratch with an empty screen without results,
the tool shows an initial overview of the dataset filling all
the 2D screen available space. Starting from this initial view,
the user can navigate the simulation repository through an
hierarchical structure made by nested groups of simulations.
The hierarchical structure is created by grouping simulations
by their attributes. The tool’s graphical user interface (Fig.
1 and 2) has a central view to show graphically the simu-
lations available within the repository. The tool shows data
using the ellimap [8] visualisation technique, a 2D space-
filling approach that uses ellipses as basic shapes to represent
sets of simulations. As shown in Fig. 1, the external white
space is the universe that represents the set of all simulations
within the repository. The universe of simulations is further
divided into subsets represented as ellipses. Each ellipse area
is proportional to the number of items that it represents. The
ExploraTool shows an initial overview of the dataset displaying
the simulations by brand, project model, power source and
engine type. This default initial sequence of attributes is
based on the feedback provided by analysts in Fiat Chrysler
Automobiles [2].

The user can obtain additional details on each group of
simulations (ellipse) by hovering the mouse cursor over it. The
tool shows the additional information, such as the number of
items in a yellow box on the top-right (see Fig. 1). This space
can be used in the future to provide aggregated statistics about
the shown group of simulations.

The user can navigate the hierarchy through an in-depth
navigation based on the drill-down and roll-up operations. On
the left, the tool has a vertical navigation hierarchy bar that has

multiple aims: (1) it gives an overview of the hierarchy, (2)
it shows the current depth during the simulation repository
navigation supporting the user orientation [11], and (3) it
allows hierarchy rearrangement by swapping the levels.

The tool shows exactly r levels of the hierarchy. Actually,
the default value for this parameter r is decided at config-
uration time and it can be changed changed via the user
preference functions. Of course, the trade-off is between the
amount of data categories displayed on the screen-space and
the computational efficiency to extract the relevant hierarchy
from the repository of simulations.

The ExploraTool renders the hierarchical data in a range
traversal [12] manner: each time only r levels of the hierarchy
are rendered on the screen. This allows one to have a clean
visualisation without displaying too many shapes on the screen.
The number of levels displayed can be changed at configura-
tion time. When the number of levels to show is exactly equal
to one (r = 1) the render is called level traversal [12] giving
an overview of the nodes at a specific level. When the number
of levels is greater then one (r > 1) the tool gives an overview
of the data at a specific level plus additional details about the
lower levels in the hierarchy.

A. Data Exploration: in-depth navigation

The user can further explore the simulation repository
through the in-depth navigation [9] based on two basic opera-
tions: drill-down and roll-up. Drill-down occurs when a user
has identified a potentially interesting group of simulations and
he/she wishes to explore further details of this group, and so
he/she clicks on an ellipse to obtain more details. Every time
the user drills down in the hierarchy by one level, ExploraTool
loads further data showing more nested ellipses. ExploraTool
shows multiple nested ellipses, so the user can drill-down one
level at time or multiple-levels in one step by clicking on the
internal nested ellipses. Roll-up is the opposite operation to
drill-down. When the user wants to have a global dataset view
he/she goes up in the hierarchy by clicking on the container
ellipse. Every time the user drills down in the hierarchy, he/she
is effectively performing a refinement of the query, filtering all
of the simulations in the repository.

All the operations provided by the ExploraTool rely on the
direct manipulation [13] principle introduced by Shniderman.
It concerns the direct interaction and manipulation of the
rendered objects. The use of ellipses as basic shapes guarantee
that there will be always space between sibling ellipses at same
level and among nested ellipses. In this way every operation
is performed by the user involves exactly the target shape. For
instance, in order to drill down in the hierarchy, the user points
and clicks exactly on the nested ellipse. In order to roll-up the
user points and clicks exactly on the parent shape utilising the
space between the parent and child ellipses (Fig. 2), which
is always present. It is not the same for other 2D space-
filling techniques. For instance, in the treemap visualisation
technique both nested rectangles and adjacent rectangles have
no space between them, so the position of the mouse pointer
designates a branch of the tree [9] because each point belongs
to a single leaf node but also to all its ancestors [9]. Finally,
in the ExploraTool, to obtain the list of simulations within a
specific ellipse the user can click directly on the target ellipse.



B. Hierarchy Attributes Rearrangement

ExploraTool starts with an initial hierarchy built on a
default ordering of the attributes. The initial ordering is
shown in the navigation bar (left-side of Fig. 1). This initial
attribute ordering has been defined by end-users and this
is useful in order to have an initial hierarchy displayed on
the screen. In our use case, the attribute ordering is A =

{brand, project model, power source, engine type} where
generically speaking A is the notation for a set of attributes.

Fig. 3. Hierarchy rearrangement operation performed through the drag-and-
drop of an attribute (facet) from its original position to a new slot. In this way,
the user changes the order of the attributes, thereby updating the hierarchy.

The user can define an ordering of the attributes by
interacting with the navigation bar. The user can drag and
drop an attribute label (facet label) to move it from one slot to
another one. By swapping two attributes that are on different
levels in the navigation bar, the hierarchy updates showing the
simulations in a different way. In this way, the ordering of the
attributes is selected by the user according to his/her query.

C. ExploraTool Tasks

ExploraTool supports the exploration of simulations data
sets, enabling the analyst to easily answer questions such
as: how many simulations were performed for the vehicle
Delta with engine Diesel 1.4 Multiair? or which simulations
have been performed for the vehicle Alfa Giulietta?. By using
ExploraTool the analyst can query the data set through drill-
down and roll-up operations; often they will select common
simulation attributes, such as the vehicle brand, model, and
engine in order to provide information about the simulations
with those target features. Since the ellipse layout is area
proportional, the user is provided with an immediate perception
of the size of groups during their exploration. By hovering the
mouse pointer over an ellipse, the user is also provided with
the exact number of simulations for that group. Finally, the
user can easily obtain the list of all simulations for that group.

IV. EXPLORATOOL SOFTWARE ARCHITECTURE

This section describes the ExploraTool architecture and the
technologies used for its implementation. The tool is based on
a Client/Server architecture (Fig. 4). In order to explore the
repository, analysts just open any of the web-browsers (e.g.,
Mozilla R© Firefox R©) installed on their workstations, targeting
a specific Intranet URL. This allows zero-configuration on the
client-side. Enterprises, for confidentiality reasons, prefer to
run the system within the industry’s boundaries. Therefore,
the prototype has been deployed within the company Intranet.

 ! " # $ % & ! " # $ % '� ( " ) * ! + % " , $ - # . , / " % , 0 " # /Intranet

HTTP
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Fig. 4. ExploraTool prototype client/server architecture. ExploraTool is web-
based, so analysts use the web-browser (clients on the left) to access to the
server. On the Server-side (right part of the picture), ExploraTool accesses to
the existing simulation repositories to retrieve the data and build the hierarchy
chosen by the user.

However the overall architecture is designed using standard
protocols (e.g., HTTP) to work properly both on Intranet and
Internet settings.

On the server-side there are one or more simulation
repositories. ExploraTool reads the data from the simulation
repository, transforms them in open format and indexes them
to improve their retrieval. In order to create the hierarchy,
ExploraTool needs to access the items and the values of the
simulation attributes, which are also called facets [14], [15].
A repository R of simulations is a collection of n items
R = {s1, ..., sn}. ExploraTool reads the simulations’ data and
groups the attribute values together.

From a technological point of view, ExploraTool leverages
from mainstream technologies. Clients exchange data with the
server in JSON text format [16], [17] using standard Web
protocols (e.g., HTTP). Clients are implemented using the
open source JavaScript library D3 Data-Driven Documents1

[18] and SVG. The server has been implemented using Java
and uses the Floasys Framework API [3], [19] to retrieve the
simulations stored within the repository.

A. Hierarchy building process

Figure 5 depicts the process used to extract data from a
repository of simulations, build, and render the hierarchical vi-
sualisation using the elliptical-based 2D space filling approach.
The ExploraTool back-end builds a partial tree data structure
sent to the client that will transform it in an ellipse visualisation
layout. The detailed steps are the following:

1) Tree data structure build: The ExploraTool back-end
reads the data from the simulation repository to build a
tree data structure with a level for each attribute. The tree
building is an intermediate step and the ellimap layout
is based directly on it. Each tree level will be a layer
in the visualisation tool. Each node will be an ellipse in
the visualisation. Fig. 6 shows an example of tree data
structure and the resulting ellimap. In the example (Fig.
6) we assume that the ordering of the attributes is <
brand, project model, power source, engine type >. The
layer Brand in the tree has exactly two nodes (in orange colour)
that have been represented by two orange ellipses labelled 1

1D3JS documention as well as the library download is available on the
official web page http://d3js.org/
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Fig. 5. Pipeline of transformation from the simulation repository to the visualisation on the client Web-browser. In order, the steps are: (1) reading of simulation
data and creation of a tree data structure, (2) conversion of the tree data structure in JSON format, and transferring of the JSON data from the server-side to
the client-side, (3) reading of the JSON data and packing of the ellipses within the available 2D space.

and 2 in the visualisation layout. A parent-child relationship
between two nodes of the tree data structure will be two nested
ellipses in the visualisation layout. Two sibling nodes will be
two separated ellipses on the same level of the visualisation
layout. The resulting tree will have at most r levels, mainly to
limit the overall required computation time to load the dataset
and build the tree data structure. ExploraTool progressively
groups together the simulations with the same attribute value.
This grouping is equivalent to a database SQL query that uses
the group by statement [20]. In the example shown in Fig.
6, ExploraTool firstly groups the simulations by brand, then
by project model, and then by power source.

The resulting tree data structure has a root that represents
the universe of all items, in our case the simulations. Each
level in the tree is an attribute like brand (Fig. 6). Each node
is a value for the given attribute. For instance, at Brand level
(Fig. 6) there will be the nodes with the values Lancia, Alfa,
Maserati and so on. Each tree node has additional metadata,
such as the number of simulations in the repository that have
that value for the specific attribute.

Universe of all simulations

A

1 2

B A B

a b a b

Brand

Project model

Power source a b

a bb a
a b

1 2
A A BB

Tree data structure

Ellipse-based visualisation layout

Fig. 6. The tree data structure built by the ExploraTool and the subsequent
ellimap rendering. The ellipse layout is based directly on the tree data
structure, in a manner so that each level in the tree is a layer of the ellimap,
and each node of the tree is an ellipse.

2) Transferring of JSON data from the server to the client:
The tree data structure is transformed in JSON format and sent

{
"categories": [

{
"name": "Brand", "id": 0

},
{

"name": "Model", "id": 1

},
{

"name": "Power Source", "id": 2

},
{

"name": "Engine", "id": 3

}
],

"root": {
"name": "simulations", "size": 1100,

"children": [

{
"name": "Lancia", "size": 600,

"children": []

},
{

"name": "Fiat", "size": 250,

"children": []

},
{

"name": "Alfa", "size": 150,

"children": []

},
{

"name": "Maserati", "size": 100,

"children": []

}
]

}
}

Fig. 7. A partial example of JSON data format transferred from the server
to the client. In the first part, it contains the categories. The second part is the
hierarchy. The size is the number of simulations below the specific branch in
the hierarchy and is used to generate the area proportional ellipses.

to the client. Fig. 7 shows a partial example of JSON source
code. The first part contains the available categories shown to
the end-user in the navigation bar. The second part contains
the simulation data grouped together. In order to be concise,
Fig. 7 shows only the first layer.

3) Ellipse Packing for Data Visualisation: The client re-
ceives the tree data structure in JSON format and transforms it
into the visualisation layout based on ellipses. Over the years



many algorithms have been proposed to pack rectangles for
treemap. Some of them are: the slice-and-dice, cluster treemap,
squarified [21], ordered [22], and strip [23] algorithms. In
ExploraTool the layout algorithm is a modified version of
the strip treemap. We consider firstly rectangles and then we
replace rectangles with ellipses. In order to pack nested ellipses
(children) within an existing ellipse (parent), our algorithm
circumscribes a rectangle in the parent ellipse and recursively
applies the strip packing algorithm for the children rectangles,
that will be replaced by ellipses.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we described a tool called ExploraTool to
visualise, explore and query large repositories of simulations.
Large companies like FCA have large repositories of simula-
tion data and they must be sure that analysts have access to
previously generated data. ExploraTool provides an overview
of the repository content, fostering its exploration. The analysts
can visually and interactively query the data set view through
drill-down, roll-up and rearrangement operations. The idea
behind our tool is generic and can be easily used with a
repository of experiments as well as other types of data sets.
In order to do this, it is necessary to identify the common and
interesting data categories, and build the relative hierarchy that
ExploraTool will render.

As future work on the ExploraTool we wish to improve
the layout algorithm to avoid thin ellipses, thereby improving
the visualisation overall aesthetic. Of course, the residual space
among nested ellipses can be reduced, but this could impact
upon user hierarchy perception and discernment. In addition,
we are planning an evaluation study [24] to analyse the tool
usability and user satisfaction when interacting with it, by
utilizing a well-known questionnaire [25], [26]. Furthermore,
it will be interesting to generalise the tool and use it on a
generic repository like a catalogue of products and compare
how users will perform with it as compared to using different
types of visualisation techniques, like a classical list of results,
Treemap, FacetMap [15], etc. Within the industrial context an
interesting issue to explore is the data authorisation problem,
where a user may only have access to a specific subset of
simulations within the repository.
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Abstract—This paper describes ExploraTool a new interactive
tool to visually explore data from multiple repositories. The tool
has been applied in a real setting to explore CFD simulation
data and obtain new insights into the space of simulations. The
inclusion of free exploration, filtering operations and chart gen-
eration provides a quick method for performance comparisons.
The paper proposes an algorithmic means of processing input in
the form of tabular data sets, generating a plausible hierarchical
structure over metadata categories which is used to initialize the
visualisation together with interactions methods to explore, select
and compare sets of simulation data. This paper also reports
on the Evaluation Study performed involving 24 engineers over
two distinct locations from a large automotive manufacturer, to
evaluate the usability and the overall user satisfaction with the
tool. Participants rated the tool as intuitive, useful and effective.

Index Terms—Exploratory Search System, Information Re-
trieval, Data Visualisation, User Interfaces, Multirun Simulations,
Industrial User Evaluation Study, Dataset processing.

I. INTRODUCTION

With the increased availability of computing power and

storage capacity, medium and large enterprises can continu-

ously collect data along the product design process (PDP).

Enterprises have large, or even big, data repositories of po-

tentially valuable and strategic assets. In order to boost their

competitiveness it is becoming vital to obtain insights into

the repositories, exploring their content and extracting new

knowledge. Exploring repositories to find valuable information

is difficult [1] because data management systems use tradi-

tional list based widgets, displaying only a small data portion

compared to the repository size, so researchers are exploring

the use of other visualisations (e.g., treemap). Without an

adequate exploring system, data remains in the repositories

without exploitation.

Automotive manufacturers have multiple repositories in

which to store: simulation data generated by different simu-

lator software, experimental data continuously collected from

the Wind Tunnel infrastructure, and competitors’ product data

performances accessible through subscription to third part ser-

vices (e.g., A2Mac1). These repositories are independent, and

in order to compare the various data sets across repositories,

analysts often have to manually access each of them. Due to

this scenario, and market competition, an increasing desire to
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facilitate easy exploration of repositories, select groups of data,

aggregate them, and perform comparisons over the data via an

intuitive interface is evident. In contrast, software engineering

companies often focus only on the simulation functionality

(e.g., Computer Aided Engineering functionality), not address-

ing the actual industrial need to explore their repositories, and

compare data with other simulators’ results.

This paper introduces a web-based tool, called ExploraTool

that enables the visual and interactive exploration of data sets

by item properties. Using ExploraTool, analysts can select

multiple groups of simulations or single simulations, and

compare their relevant simulations’ performances.

ExploraTool has multiple benefits: 1) it provides a visual

overview of the repository content, grouping items together

by their properties (facets) and visualising them using nested

ellipses covering all the available 2D space screen; 2) com-

pared to the traditional list-based results, during the navigation

it gives a clue on the overall repositories content, which

would be non-trivial with traditional file systems organised

by directories and not by item properties; 3) the visualisation

based on facets helps the user to explore and discover item

properties to further investigate and filter the items by selecting

ellipses; 4) ExploraTool reads data from multiple repositories

(i.e., multiple network file systems, external sources), allowing

the Analysts to select simulations from different sources; 5) it

is extensible to be able to also explore experimental data and

competitors’ performance data, integrating together different

data sources to have an all-in-one workbench.

The paper is organised as follows. Section II discusses

the related work in terms of Exploratory Search Systems

and visualisation approaches. Then, the paper evolves and

combines four aspects that are the main paper contributions: 1)

the ExploraTool idea, its graphical user interface and features

described in Section III; 2) the mathematical background

and an algorithm to process as input any kind of tabular

data set and impose on it a plausible hierarchical structure

over metadata categories that ExploraTool is able to visualise,

enabling data set exploration, described in Section IV; 3) a

field study performed within a large automotive manufacturer,

which involved 24 engineers, to evaluate the tool usability

and overall user satisfaction, which is essential for industrial

adoption described in Section V; 4) an overview the future

extensions obtained through both the field evaluation and the

stakeholders’ interviews, along with lessons learnt from the

process and the potential usage of the tool and approach in

other industrial sectors, described in Section VI.

II. RELATED WORK

This paper focuses on the exploration of industrial reposito-

ries that store thousands of simulations performed over years.
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It aims to assist the industrial analysts with their need to

gain insight, understand the content of the repositories and

filter data to help perform comparisons. Instead of displaying

a list of results, this work exploits the use of interactive

visualisation to provide a visual indication of the repositories’

contents, whilst supporting data filtering and selection tasks.

Hence, exploratory search systems, visualisation approaches,

and interaction techniques are related.

Classical lookup search [2], [3] is a query-response

paradigm where the user poses a textual query, the system

performs the retrieval and shows the results in a list-based

widget. Their main drawback [3] is the difficult for users

to memorise and master filtering and operators syntax (e.g.,

“and”, “or” operator, etc.). Exploratory search [3] consid-

ers multiple iterations involving learning and investigation

activities with higher-level goals (e.g., comparison, analysis,

synthesis and evaluation). Exploratory Search Systems [2] aim

to involve and engage users actively into the search process by

providing human control over the seeking process. They aim

to provide features to (re)formulate queries, giving information

on the search space and clues for further possible search

directions [4], allowing the constant exploration and filtering

of retrieved results [3]. The presentation of query results is

imperative to engage the user in the search process [5].

One popular technique to help users in deciding what to do

next is the grouping of results [6]. Two main approaches exist:

clusters and facets. The clustering approach [7] groups, often

automatically, the query results according to similarity metrics.

In the faceted approach, meaningful items’ feature types are

identified in advance, mostly manually, and labelled. Thus,

facets are categories to characterise items in a collection. Each

item is automatically enriched with multiple facets’ labels.

The query results can be grouped together based on these

labels which form a categorisation, and can be used to further

explore the space of results. According to White and Roth [8],

exploratory search tools should “support querying and rapid

query refinement” and “offer facets and metadata-based result

filtering”. The use of clusters or facets aids searchers with

the query formulation that “significantly improves results” [5].

Flamenco [6] is a web-based system where the navigation

is performed through the selection of hyper-links containing

facets’ labels. Relation Browser [9] is another example, it has

two views, a list of facets and a cloud of facets labels; the user

can filter result by choosing the facets. The system mSpace

[10] uses a multi-column faceted browser for multimedia

data. Carrot2 [11] is a web search engine that supports the

navigation of web results through the selection of cluster

hyper-links showed in a tree-based widget alongside of the

list of results. In a testing with real users using Carrot2 [5],

the clusters were useful in providing other relevant keywords

to narrow the search and for serendipity search. Other systems

that relies on the clusters of results have been introduces, like

Vivisimo and SnakeT [12]. AcquaBrowser Library [13] does

not show the cluster names in a listed way, but introduces

a fluid, attractive and interactive word cloud visualisation,

clicking on a word the user can refine his/her search. With

the introduction of touch mobile devices, classical list-based

result presentation poses challenges for the interaction with

Exploratory Search Systems to refine searches [4].

From the GUI point of view, exploration systems are

now exploiting visualisations to graphically display groups of

items to provide an initial overview, permitting interactions to

formulate queries and update the visualisation. This interaction

“overview first, zoom and filter, then details-on-demand” is

known as information seeking mantra [14]. Interactions can

be grouped into: overview, navigation, and manipulation oper-

ations [15], and optionally, based on the application domain,

interactions to compare the results of the query. FacetMap [16]

is based on the facet concept and exploits a 2D visualisation to

support dataset exploration. Facets are represented by ellipses

and navigation is performed by clicking on the ellipses.

ExploraTool presented in this paper is also based on the facets

concept, but in order to scale on the number of facets, it

organises them hierarchically. As example of a manipulation

operation, the “hierarchy manipulation” term refers to a set of

interactive operations performed on a hierarchical visualisation

to directly and interactively change, re-order, move or copy its

items; for example re-ordering through the drag-and-drop of

hierarchical items. Lutz et al. [15] described many types of

hierarchy manipulations by diagrammatically depicting their

use and effects. ExploraTool has a hierarchical manipulation

operation to change the order of the visualised facets.

In the visualisation field, many alternatives have been pro-

posed to overcome the limits of classical list-based widgets

of items, due to the impossibility of showing all items of

a large dataset. One popular approach is the 2D space-

filling visualisation technique that aims to exploit all of

the available screen-space to show the dataset content. This

technique divides the available screen space recursively using

a basic shape (e.g., rectangle, circle). In this way parent-child

relationships are represented as nested shapes, and sibling

nodes are represented as neighbouring shapes at same depth.

The most popular 2D space-filling visualisation is Treemap,

introduced by Shneiderman during 1990 to provide a compact

file system visualisation and to be able to identify at a glance

the directories that take up the most of the space on the

hard drive. Treemap has been extensively used to visualise

intrinsically hierarchical data [17], [18], providing an overview

of an entire dataset at a glance. Ellimap [19] is another type

of 2D space-filling visualisation approach, which uses ellipses

instead of rectangles to represent the nodes. Usually, shapes of

2D space filling visualisations are area proportional to a given

metric (e.g., the number of items), visually giving an overview

on this value. ExploraTool, presented in this paper, is a visual

exploration system that exploits the use of ellimap layout with

additional interaction functionalities (e.g., drill-down, roll-up),

and provides dataset overview through the visualisation of

facets, which are organised hierarchically on multiple levels.

In this way, ExploraTool supports the constant exploration and

filtering through selection of facets [8].

ExploraTool needs to interoperate with multiple repositories

that can store data in different formats. In the CFD field most

simulator software strategically use closed and proprietary data

formats to make it expensive for customers to change their

software products [20], [21]. ExploraTool relies on the plug-

in based Floasys Architecture [22], [23] to be able to com-
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Fig. 1. ExploraTool’s Graphical User Interface (GUI). The central overview shows the simulation data set grouped together via their relevant attributes: brands,

segments, models, power sources, engines, and revisions. The ellipses depict groups of simulations and the prioritised order of the attributes is indicated in the
hierarchy column on the left. The user can filter the data set by clicking on any group of simulations (drill-down). If the user desires to return to the previous
view, he/she can click on the container ellipse (roll-up). The navigation bar (underneath the main view) shows the path followed during the exploration; in
the example, the path is the universe overview, labelled as “Current Path: simulations”. If user desires a comparison of the performances of one group he/she
can click on the “+ Add” button which adds the current group to the table below and the chart automatically updates accordingly.

municate with many software and data sources. Floasys has

an API interface which acts as isolation layer, and a common

data format to communicate with external client applications.

In order to perform data integration he2014integration the

API interface is implemented by other specifically designed

software modules which read data from closed and open

sources. Floasys architecture processes data from interoperable

standards and protocols like CFD General Notation System

(CGNS), and can be extended to other interoperable standards.

III. EXPLORATOOL FEATURES

This Section introduces the ExploraTool’s features: dataset

overview, exploration and vehicles’ performances compar-

isons. The user task is to select a single simulation, or groups

of simulations, in order to compare the vehicles’ performances

(e.g., aerodynamic performances) via an appropriate chart.

A. Data set Overview

The ExploraTool’s GUI (Fig. 1) has a central view which

graphically depicts the simulations available within the repos-

itory, and a chart on the bottom to compare the selected

vehicles’ performances (e.g., aerodynamic performances). Ex-

ploraTool starts with an initial overview of the data set where

the items are progressively grouped together by their main rel-

evant attributes. The screenshot shows the simulations progres-

sively grouped by Brands, Segments, Models, Power Sources,

Engines, and Revisions. Brands and model names shown

in Fig. 1 and throughout the paper have been anonymised,
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replacing them with artificial names. The hierarchy on the

left shows the default initial ordering of attributes, based

on the feedback provided by analysts in a large automotive

manufacturer [22], but it can be changed any time by the user.

Additional details on each group are requested by hovering

the mouse cursor over the corresponding ellipse, causing

additional information to be presented in a yellow tool tip

box (see the top-right of Fig. 1). The same tool tip box could

be used to show additional statistical information (such as the

average, minimum and maximum drag-coefficient Cx values),

as suggested by users during the Usability Study (Section V).

ExploraTool tries to exploit all of the available screen space

using ellimap [19]. Each group of simulations is a set depicted

by an ellipse. In Fig. 1, the external white space represents

the universe of all simulations within the repository. This is

divided into subsets, depicted as ellipses, generating a nested-

ellipse layout. For instance, the ellipse labelled “BrandD” in

Fig. 1 represents the set of all simulations enriched with facet

BrandD. The ellipse labelled “Seg. A” nested in the ellipse

“BrandD” represents the set of all simulations of Seg. A with

BrandD. In order to reduce cluttering, the tool shows only

labels for two levels at a time. Each ellipse’s area is chosen

to be proportional to the number of simulations in that group,

so that a user can obtain a quick perceptual overview of the

spread of simulations. Alternatively, one could assign other

measures to the area, such as the vehicles’ performances for

that group.

TABLE I
TYPICAL EXPLORATOOL TASKS.

Task # Example

Task 1
Selection of a Group

BrandF, Seg. C, ModelY

Task 2
Selection of a Case

BrandB, Seg. C, ModelB, Fuel Petrol, 1.8TBI 16V, Rev. 5

Task 3

Comparison Case vs. Group

Case: BrandD, Seg. B, ModelU, Diesel, 1.3 Multijet 16V, Rev. 2

Group: BrandD, Seg. B

Task 4

Comparison Case vs. Case

Case 1: BrandB, Seg. C, ModelB, Petrol, 1.8 TBI 16V, Rev. 3

Case 2: BrandB, Seg. C, ModelB, Petrol, 1.8 TBI 16V, Rev. 6

Case 3: BrandB, Seg. C, ModelB, Petrol, 1.8 TBI 16V, Rev. 8

Task 5

Comparison Group vs. Group

Group 1: BrandD, Seg. B

Group 2: BrandF, Seg. B

B. Data set Exploration

The users can interactively explore the data set through an

in-depth navigation [24] performing drill-down and roll-up

operations. Drill-down occurs when a user has identified a

potentially interesting group of simulations and he/she wishes

to further explore the group, so he/she can click on the

ellipse to obtain more details. ExploraTool shows multiple

nested ellipses, so the user can drill-down one level at time

or multiple-levels in one step by clicking on the internal

nested ellipses (Fig. 2). Every time the user drills down in

the hierarchy, he/she is effectively performing a refinement

of the query, filtering all of the simulations in the repository.

For instance, when the user selects in sequence the ellipses

BrandF -> Seg. C -> ModelY (Task 1 in Table I), he/she

is performing a query to retrieve from the repository all the

items with exactly these values (ellipse labels). For each click,

ExploraTool smoothly enlarges the selected group, rendering a

fast transition to the new view. Roll-up operation is performed

when the user wants to have a global data set view, he/she

traverses up the hierarchy by clicking on the container ellipse.

Fig. 2. This effect of the drill-down operation by directly clicking on the
ellipse with the label “Seg. B” from the main view of Fig. 1 is shown. The
ExploraTool smoothly enlarges the selected group, rendering a fast transition
between views. If the user desires to go back and see less details, he/she can
click directly on the external space to perform a roll-up operation returning
back by one level at a time. In order to return to the initial overview, as in
Fig. 1, the user can click on the “Home” icon shown on the top-left.

As shown in Fig. 1, the tool shows a vertical navigation

hierarchy bar on the left, which: (1) gives an overview of

the hierarchy [14]; (2) shows the current depth during the

simulation repository navigation, supporting user orientation;

(3) permits the hierarchy re-arrangement by interactively

swapping the facet’s levels, showing visual cues to indicate

for instance what happens if the mouse is released [15]. In

addition, during interactive data set exploration, ExploraTool

shows the navigation path in the navigation bar, indicating

the total number of filtered items, and updates the hierarchy

bar (displaying only the remainder of the hierarchy from the

current position). Fig. 1 shows the whole universe and the total

number of simulations (2248) within the repository.

The operations provided by the ExploraTool rely on the

direct manipulation [15] principle, which concerns the direct

interaction and manipulation of the rendered objects (e.g.,

directly clicking on the target object). The use of ellipses as

basic shapes guarantees there will be space between sibling

ellipses at same level and amongst nested ellipses. This extra

space improves the hierarchy discernment [19] and every

operation involves exactly the target shape. For instance, in

order to drill down in the hierarchy, the user points and clicks
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on exactly the nested ellipse required. In order to roll-up the

user points and clicks on exactly the parent shape utilising

the space between the parent and child ellipses, which is

always present. In other 2D space-filling techniques, such as

the Treemap visualisation technique, both nested rectangles

and adjacent rectangles have no space between them, so the

position of the mouse pointer designates a branch of the tree

[24] because each point belongs to a single leaf node but also

to all its ancestors [24].

C. Vehicles’ Performance Comparison

When the user finds an interesting data set he/she can add

it to basket of simulations to compare by clicking on the

“+ Add” button (Fig. 1). The user explores the repository

and adds groups of items to the comparison bar (bottom

of Fig. 1). Every time a selection is added to the basket,

ExploraTool updates the chart on the right, showing the mean,

maximum and minimum value for each selection, facilitating

the comparison. Hovering the mouse cursor on the chart

displays the exact values from the chart.

IV. ALGORITHM TO PROCESS DATASET

Interactive exploration through ExploraTool is performed

by clicking on ellipses (drill-down and roll-up operations).

Nested ellipses form a hierarchy (tree data structure). Every

time the user drills down, he/she clicks on ellipse that identifies

a branch in the hierarchy. This Section introduces an algorithm

called BuildHierarchy to process any tabular dataset

to generate one of the possible tree data structures to be

visualised with any kind of 2D space-filling visualisation

techniques (e.g., Treemap, ellimap, etc.). The algorithm has

been used within ExploraTool to process data from vehi-

cle simulation repositories and organise the identified facet

categories (i.e., brand, project model, power source, engine

type) in an initial hierarchical ordering (decided in advance

by the analysts) but can be altered any time through a re-

arrangement operation that triggers the hierarchy recomputing.

The algorithm can process any other dataset to be explored

through ExploraTool, such as a catalogue of parts. In or-

der to process other datasets, the requirement is to identify

the facets (attributes) of the items and their values. The

BuildHierarchy algorithm is implemented in the back-

end of ExploraTool, which makes use of the generated tree

data structure to build the ellipse-based visualisation. It runs

in three cases: (1) when the user opens ExploraTool for the

first time, the algorithm builds the initial default partial tree

made of the first r levels; (2) every time the user performs a

drill-down operation, he/she is navigating to a specific branch

of the entire tree and so the algorithm builds a new subtree

with r levels rooted at the selected node (the server provides

chunks of subtrees made by r levels); (3) every time the user

performs the re-arrangement operation, by sorting the facets

in a different order.

A. BuildHierarchy Algorithm Description

Fig. 3 shows an abstract example of the

BuildHierarchy algorithm (Alg. 1). It takes a dataset as

input, and to be independent of the specific technology to

store simulations, it has been transformed as a tabular dataset

where each row records the relevant metadata for an individual

simulation and the columns are their attributes. So, the input

is a collection of n items R = {s1, ..., sn}. The dataset R

(left side of Fig. 3) has a row for each individual item s ∈ R

(i.e., a simulation) that is described through attributes attached

to it. The set A = {a1, a2, ..., am} contains the labels/names

of the attributes used to describe the items. For example,

in the simulations use case, the labels for the facets [16]

are A = {brand, projectmodel, powersource, enginetype}.

The dataset has these facets (attributes) on the columns.

The algorithm output is a tree data structure T =
(V,E) (right side of Fig. 3), where V is the set of nodes

and E are the edges. For each attribute ai ∈ A, there

will be a level in the tree T (the height of tree is ex-

actly the number of facets). Each attribute ai has a set

of valid values called domain Di = dom(ai). For in-

stance, in the simulation context, the attribute power source

has the domain Dpowersource = dom(powersource) =
{Bifuel, Petrol,Diesel}. In the example, the attribute brand

has the following valid values Dbrand = dom(brand) =
{BrandA,BrandB,BrandC,BrandD,BrandF}. At the

level of the tree corresponding to attribute ai, there are the

nodes with the values in Di. Some nodes corresponds to

zero items in the original data set, so they are not present

in the hierarchical view. For instance, the path (root, 1, B, b)
that would be present in the full tree is not present in our

constructed tree because there are no items in the original

data set with the values s[1] = 1 ∧ s[2] = B ∧ s[3] = b.

Fig. 3. Example of hierarchy extraction from a table. The table on the left
has tree attributes A = {a1, a2, a3} and n simulations. The tree on the right
has a level for each domain Di and at each level i there are the nodes with
the labels in Di. ExploraTool builds the visualisation shown on the bottom
of the figure, starting from the tree data structure.

The tree T will be displayed as nested ellipses starting from

the root (Fig. 3 bottom side). For each node, the algorithm

stores the label to be displayed on the ellipses, and calculates

the number of simulations (Count[u] ∈ N, ∀u ∈ V ) that will

determine the area of the relevant ellipse.

Algorithm 1 shows the algorithm pseudo-code to process the

dataset as input and generate the tree data structure. Initially

the tree T has the root node and no edges (E = ∅). The

algorithm scans all the simulations in the repository s ∈ R

exactly one time (Alg. 1 line 5). For each simulation s,
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the algorithm scans the simulations’ attributes in the order

specified by the function fS (Alg. 1 line 6). So, the algorithm

scans the dataset row by row, and for each row the columns.

Algorithm 1 takes each simulation and traverses down the

tree from the root to a leaf, one level at time, through the nodes

with simulation attribute values. On line 7, the algorithm tries

to find the node at level i with value attrvalue. If the node

does not exist, the algorithm creates it at lines 8-11. At line

12, the algorithm counts the number of simulations; this value

will be used to calculate the ellipse’s areas.

Algorithm 1: BuildHierarchy(R, r, fS)

Input: Set of simulations R, number of levels r to load and an
attributes ordering function fS

Output: T = (V,E)

1 root← create the hierarchy root;
2 V ← {root}, E ← ∅;
3 prevnode← root;
4 curnode← null;

5 foreach simulation s in the repository R (s ∈ R) do
6 foreach attribute value “attrval” in s,

7 ordered by fS and limited to the first r values do

8 curnode← Find the child with value attrval;

9 if curnode is null then
10 curnode← create a new node;
11 Label[curnode]← attrval;
12 Count[curnode]← 0;
13 V = V ∪ curnode;
14 E = E ∪ {(prevnode, curnode)};

15 Count[curnode] + +;
16 prevnode← curnode;

17 prevnode← root;

18 return (V,E);

The fS function in input specifies a sorting of the facets

(sorting of domains fS : {1, 2, · · · ,m} → {1, 2, · · · ,m}),

which has a direct impact upon the resulting hierarchy. The

algorithm creates an initial hierarchy based on an initial

domain sorting function fS specified at configuration time.

Then, the tree is rendered using a 2D space-filling visualisation

approach. The user can swap the facets through a rearrange-

ment operation by dragging levels in the hierarchy, choosing

a different permutation of the facets that changes the input

function fS to obtain a different hierarchical views.

B. BuildHierarchy Algorithm Running time discussion

The algorithm generates a tree data structure with height r,

where each level is a facet (attribute). At each level the tree has

a node for each attribute value. For instance, in the hierarchy

at the level of the segment attribute, there is a node for each

segment value (e.g., Seg. A, Seg. B, Seg. C, etc.). In the worst

case all attributes have exactly p values (p nodes at each tree

level). Therefore, in the worst case the total number of nodes

in the tree is O(pr) with p > 1 and 1 ≤ r ≤ m. Introducing

the parameter r, two interesting features can be provided: (1)

details on-demand when the user drills-down in the hierarchy,

it is asking for the next r levels; (2) from a computational

point of view, the algorithm computes only r levels at time.

In order to keep the hierarchy clear during the visualisation,

ExploraTool loads five facets at time; it does not show more

than five levels at each time (r ≤ 5), so the number of the

nodes in the tree is in the worst case O(p5).
In order to build the tree data structure, the algorithm scans

all the dataset items (Θ(n) where |R| = n) and exactly r

columns (O(r), the chosen facets to visualise). Columns are

scanned in the order defined by the sorting function fS , which

is chosen by the user via the GUI. Given the value in the

intersection of the selected row (simulation) and column (at-

tribute), the algorithm checks whether a node with that value is

in the tree at level r. Thus, the algorithm BuildHierarchy

running time is: Θ(n) ·O(r) ·O(p) ≤ O(n · r · p).
Furthermore, the algorithm to process any tabular dataset

and build a hierarchy can be executed by using the map/reduce

paradigm on large data sets in a distributed environment using

for instance Apache Spark1. The idea is to slice the tabular

dataset in q groups of rows. Each group of row will be

processed by a computing node, executing the algorithm and

generating a tree data structure. The trees generated by all

computing nodes can be merged together to obtain the final

hierarchy displayed by ExploraTool.

V. USER EVALUATION STUDY

ExploraTool adopts a novel visual and interactive user inter-

face for the engineering field to explore multiple repositories

of simulations. This section reports on the fundamental activity

to evaluate the tool’s effectiveness and usability in a real

setting involving industrial experts from a large automotive

manufacturer. The question to answer is how users perceive

the system, evaluating its effectiveness, in terms of tasks

completion as well as the usability of the interface and the

overall satisfaction, acquiring user feedback.

A. Methodology

The study lasted thirty minutes for each participant and

consisted of four phases as described in the following.

1) Preliminary Survey: The participant fills out a ques-

tionnaire2 to collect demographic information, particularly as

related to their experience in the simulation field and their

existing procedures to compare vehicle performances using

simulation repositories. ExploraTool uses colours in its user

interface, so it is fundamental to examine its usability by

people with colour deficiencies, especially the effectiveness of

the chosen colour blindness colour palette. Therefore, a quick

Colour Blindness test has been performed (Ishihara test).

2) Training Phase: It demonstrates the functionality to the

participant, using training material with standard basic tasks to

ensure consistency of the explanation among the participants.

3) Testing Phase: Users execute five tasks (Table I) using

ExploraTool in which he/she should find and select single

simulations and/or groups of simulations to compare their

performances. At the end of each task, the user answers

questions to evaluate whether it was successfully completed,

1Apache Spark web-site http://spark.apache.org/
2ExploraTool Usability Study Questionnaires are available on-line at http:

//floasysorg.github.io/Floasys/usabilitystudy/exptoolv1.html
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rate how ease and quick it was to perform the task (standard

questions from the After Scenario Questionnaire3).

4) Summary Survey: The questionnaire concludes with the

assessment of the overall ExploraTool perceived usefulness

and user satisfaction. This part of the questionnaire is based on

a standard TAM model, which is extensively used in usability

studies to explain and/or predict users’ behavioural intentions

when accessing a new technology or system as well as to test

the user acceptance.

B. Evaluation Results Analysis and Discussion

1) Participants’ Demographics: Recruits comprised 24 en-

gineers of a large automotive manufacturer. The sample was

mostly male (87.5%) with mean age of 34 (std. dev. 7.5). The

test has been performed in two locations in Italy: one day

in Pomigliano D’Arco (Naples) involving 8 participants and

almost two days in Orbassano (Torino) involving 16 partici-

pants. The conditions were kept the same (same hardware and

software) in both locations, using an isolated room containing

only one participant at time, where he/she could concentrate

on the test without distractions.

ExploraTool has been designed primarily for simulation

Analysts but different company roles performed the usability

test, all of whom involved in the CFD simulation field: 16

CFD Analysts, 3 Performance Engineers (PEs) and 5 Technical

Managers (TMs) with, on average, 4, 8, and 12 years of

experience in the field, respectively. Technical Managers and

Performance Engineers usually perform few simulations per

year (mean 85, std. dev. 69) as compared to the analysts

(mean 151, std. dev. 123), because TMs are responsible

for the internal team organisation, resource monitoring and

their allocations, whilst PEs work on big picture projects

and are responsible for design choices. There was only one

colour blind participant; whilst he was not able to distinguish

colours, he successfully completed all the tasks, identifying

and discerning correctly the ellipses. ExploraTool uses a space

filling visualisation approach using ellipses to depict groups of

simulations. As such, it is important to understand which users

had previous experience with such visualisations. Participants

had high experience with standard charts (bar, pie, chart and

surface charts) used for the everyday work, but much less had

experience with Treemap (4%).

For all participants it would be useful in their role to

be able to automatically extract simulation data from the

repositories and to obtain comparisons of related statistics

among different releases of the same project or different

projects releases (agreement of 100%). Notwithstanding, all

participants declared that they do not have an automatic tool

to perform these tasks. Instead the common procedure is to

export data from the simulator software in comma separated

value format and to analyse them via Microsoft Excel.

2) Tasks Execution Results: The users executed tasks corre-

sponding to those in Table I. In order to assess the effectiveness

of the tool the error rate has been measured for each task.

As a result, all participants completed tasks 1, 2, 4, and 5

without errors, whilst task 3 had an error rate of 2.8%. A

3ASQ Questionnaire http://garyperlman.com/quest/quest.cgi?form=ASQ

simulation analyst wrongly selected an alternative group of

simulations instead of the group BrandD -> Seg.B requested

in Task 3 (Table I). The responses to the ASQ questionnaire

indicated that participants were highly satisfied with the ease

of the tasks and the amount of time required to complete them;

across all of the tasks there was a mean of 6.9 (std. dev. 0.1)

for the easiness and 6.7 (std. dev. 0.1) for the time, on a 7-

point scale. Furthermore, grouping the participants by their

main role (CFD Analyst, Technical Manager, Performance

Engineer) in the company yields no statistical difference with

regard to the above metrics (Kruskal-Wallis test).
3) Perceived Usefulness and overall Acceptance Results:

At the end of the Testing Phase participants responded to the

TAM questionnaire, whose Cronbach’s Alpha value was 0.92.

TABLE II
SPEARMAN’S CORRELATION COEFFICIENTS BETWEEN SUBSCALES:
PU, PERCEIVED USEFULNESS; EOU, PERCEIVED EASE OF USE;

ATT, ATTITUDE TOWARD USE; BI, BEHAVIOURAL INTENTION TO USE.

Subscale PU EOU ATT BI

PU 1.0

EOU .194 1.0

ATT .604∗∗ .457∗ 1.0

BI .530∗∗ .384 .557∗∗ 1.0

**p < .01, *p < .05

Table II reports the Spearman’s correlation coefficients

among the subscales with the corresponding significance levels

(indicated by the ∗ and the p value). In the table the highest

correlation is between ATT and PU (.604, with p value

< .01). BI is positively correlated with PU and ATT with

high significant level (p < .01 for both metrics). Furthermore,

analysing the TAM answers’ rates (7-point Likert scale) on the

PU, EOU, ATT, BI subscales, results were highly positive for

all these metrics. The highest rate was for the question “Using

the system would enable me to accomplish tasks more quickly”

in the Perceived Usefulness questionnaire section (mean 6.8,

std. dev. 0.4). In addition, a regression analysis was carried

out in order to identify which variables (PU, EOU, and ATT)

influenced the use of ExploraTool (BI). The model yielded

an adjusted R2 value of .606. Based on the analysis of the

attitude results, participants think that ExploraTool’s idea is

wise, smart and interesting. As result, ATT is a significant

variable in increasing the software’s acceptance. When asked

to express the positive tool aspects, the participants indicated:

easiness (71%), quickness (58%), intuitiveness (25%), useful-

ness (17%) and effectiveness (13%). The negative aspects con-

cerned mainly the visualisation (29%), in particular the partial

overlapping of some labels and some thin ellipses, pointing

out the need for improvements of the visualisation overall

aesthetic. In addition users reported future tool improvements,

like additional aggregated statistical data on mouse hovering

(13%) and search by keywords (4%). In summary, despite the

participants’ lack of knowledge of space filling visualisations

like Treemap, they were able to complete the tasks, and

expressed high satisfaction in terms of its usefulness, usability,

and simplicity. Furthermore, users would use the tool on

regular basis and recommend other to use it (questions D18

and D19 of the questionnaire).
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VI. CONCLUSIONS AND FUTURE WORK

This paper presented ExploraTool to visually and interac-

tively explore multiple repositories of simulations through a

novel user interface for the engineering field. As practical in-

dustrial application, the tool has been used to select individual

and/or groups of simulations to compare their performances

(i.e., comparison of aerodynamic simulations by the drag-

coefficient, called Cx). The utility of ExploraTool has been

evaluated in a real setting with expert industrial users. The

users found the tool useful, usable and simple to use, and

users were interested in the novel ExploraTool interactive user

interface. The ExploraTool concept generalises beyond the

simulation context to any other context in which the goal is

to select items by their properties and perform comparisons.

Filling out the questionnaires, analysts indicated the need

to select and compare not only simulations, but also wind

tunnel experiments from a cleaned repository and competitors’

products performance data, extending the applicability of the

tool. As possible extension to other industries, the tool can

provide a visual overview of catalogues of parts, supporting

the interactive finding of parts by their properties.

Reflections on the process adopted to design ExploraTool

may serve to provide good practice suggestions for the design

of novel interactive user interfaces for the engineering field.

In order to identify appropriate tasks and type of interactions,

an essential element was the close interaction with the end-

users, adopting an agile development methodology consisting

of two week periods for the plan, design, develop, and internal

testing phases. For ExploraTool, the crucial stimulation of

discussions and user engagement was a small proof of concept

tool permitting the basic interactions. In this case the users

were willing to pro-actively participate in discussions and

support its development.

As future work, users already provided interesting requests

for new features during the evaluation test: the facility to

bookmark the exploration of results; to introduce a specific

preference section; to filter the repository items by typing a

keyword within a search bar that updates the visualisation

with the filtered items; the ability to export the comparisons

in Excel and PowerPoint in a manner which is compliant to

the internal industrial templates. In addition, improvements

to the layout algorithm are needed to avoid thin ellipses,

thereby improving the overall visualisation aesthetic, whilst

also improving the label positions.
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