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Changes of cohesive flow properties of powders at high temperature are 

observed in many industrial process units, such as fluidized bed reactors, 

granulators and dryers. Many authors investigated the behaviour of powders 

at high temperature through fluidization experiments (Formisani et al., 1998 

and 2002; Lettieri et al., 2000 a d 2001), measurements of the interparticle 

forces (Pagliai et al., 2004 and 2007) and direct measurements at the bulk 

level (Kamiya et al., 2002). However, the understanding of the effect of 

temperature on interparticle interactions and flow properties of bulk solid is 

not clear yet. 

A common approach in engineering science consists of the direct 

characterization of the rheology of powders like bulk solids by means of 

shear cells. In this work a High Temperature Annular Shear Cell, originally 

designed at University of Salerno, was set-up and used to measure yield loci 

up to 500°C and to directly evaluate the effect of temperature on the 

macroscopic flow properties of sample of fluid cracking catalyst powder, fly 

ashes, corundum, synthetic porous -alumina and glass beads.  

Different behaviour was observed for each material. The flowability of 

the FCC powder, fly ashes and corundum did not show change as the 

temperature increased differently from glass beads and, at lower extent, 

porous alumina for which an increment of the cohesive behaviour was 

observed. 

In order to give an interpretation of the effect of temperature on the 

interparticle interactions, a theoretical framework was developed according 

to the particle-particle approach of Rumpf (1974) and Molerus (1985 and 

1993). Furthermore, the availability of a microscopic model able to estimate 

quantitatively the interparticle interactions might extend the experimental 

findings to different compaction conditions, in particular lower than within 

the powder tester. 

For this purpose, the tensile strength of the powder experimentally 

evaluated was related to contact forces acting between particles by coupling 

the Rumpf equation with the equation of the contact force. Only van der 

Waals’ forces were assumed as present inside the bulk solid, according to 

DSC analysis performed in this work that revealed no melting points and 
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formation of liquid bridges for all materials in the range of operating 

temperature.  

With this regard two alternative assumptions of elastic or plastic 

deformation at the contact point of particles were considered. Both the 

assumptions provide correct order of magnitude results in terms of tensile 

strength, provided that a plausible value of the local curvature at contact 

points of particles is taken into account by correctly considering the effect of 

surface roughness and asperities, according to SEM magnification performed 

for all the materials.  

A sensitivity analysis on the main parameters of the theoretical 

framework was performed. Both the increasing cohesive consolidation and 

the slight increase of the cohesive behaviour with the temperature suggest 

the occurrence of the plastic deformation of the contact points and, therefore, 

that the plastic deformation assumption should be adopted to explain the 

effect of the temperature on the interparticle interactions. However, at room 

temperature, the effect of consolidation seems to be correctly represented 

considering also the decrease of the voidage. 

Finally, a significant increase of the macroscopic cohesive behaviour of 

powder with the temperature was measured in presence of a liquid phase 

which promoted the aggregation of the particles, as verified with shear tests 

and SEM magnifications performed on sample of glass beads mixed with the 

low-melting temperature high-density polyethylene (HDPE) powder. 

 



 

  1 

Introduction 

 

 

 

 
The handling of granular materials is of the greatest importance in the 

chemical industry. It is estimated on a weight basis roughly one-half of the 

products and at least three-quarters of the raw materials are in the form of 

granular solids at process conditions (temperature, pressure, etc.) often 

different from ambient conditions. 

Fluidization is one of the most common unit operation involving granular 

materials at high temperature. The rapid mixing and circulation of solids 

allows for a uniform temperature in the system. Therefore, high temperature 

operations in fluidized beds can be controlled simply and reliably. Other 

than fluidization, powders at high temperature are relevant in many others 

industrial applications, for instance, in the granulation, the filtering of hot 

gases, in the drying of pharmaceutical granules, in the curing of ceramics, in 

the combustion of solid fuels and regeneration of nuclear waste. 

In this work, the effect of temperature on flow behaviour of powders was 

studied. Measurements of yield loci and flow functions of chosen materials 

were carried out with the High Temperature Annular Shear cell, an annular 

shear cell designed at University of Salerno and able to operate up to 500°C. 

Subsequently, a theoretical framework was applied in order to give a novel 

contribute to the correct interpretation of the effect of temperature on flow 

properties of powders and on the magnitude of the interparticle interactions. 

Chapter I is a short review of the state of the art, mainly focused on the 

literature concerning the effect of temperature on the failure and flow 

properties of powders. The last section of this chapter deals with the particle-

particle approach developed by Rumpf (1974) and Molerus (1993) in order 

to correlate bulk flow properties with interparticle interactions. This is, in 

fact, the approach adopted in this work for a better understanding and 

interpretation of the experimental results at high temperature. 

The aim of this work is defined in details in Chapter II. 

Chapter III describes apparatus, materials and methods employed in this 

PhD work. The modified High Temperature Annular Shear Cell, the set-up 

and the procedure of this apparatus are illustrated, such as the Scanning 

Electron Microscope and the Differential Scanning Calorimeter used for the 
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evaluation of the surface properties and of the thermal behaviour of 

materials. Materials data are also listed. 

Chapter IV reports all the experimental results of this work. SEM 

magnifications, DSC analysis and shear measurements performed with HT-

ASC from room temperature up to 500°C for FCC powder, fly ashes, 

corundum, synthetic porous -alumina, glass beads and a mixture of glass 

beads and the low melting point high density polyethylene (HDPE) are 

showed and commented. Yield loci and flow functions evaluated at different 

temperature are showed and compared for all the materials. 

In Chapter V, the results and a sensitivity analysis on the main parameters 

of the theoretical framework are reported and discussed. In particular, an 

interpretation of the experimental evidences is provided correlating the 

macroscopic flow behaviour of powders with the interparticle forces 

following the theory of Rumpf and Molerus described in Chapter I. 

Finally, the main conclusions of this work are summarized and 

suggestions for the future work are proposed. 

In appendix, all the mathematical steps of the particle-particle approach 

are reported according to the assumptions of Rumpf and Molerus. 
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I.1 Particle characterization of granular materials 

A granular material can be defined as any material composed of many 

individual solid particles, irrespective of the particle size. Thus the term 

granular material embraces a wide variety of materials from the coarsest 

colliery rubble to the finest icing sugar. 

Particle size and shape are basic characteristics of bulk solids and are of 

fundamental importance in most applications involving such material. Table 

I.1 lists a classification of granular materials according to size and some of 

the common terms relating to particle size. 

In spite of their importance, no universally accepted method has yet 

emerged to define particle dimension. In fact, most of particles show a 

distribution of particle size and are normally not spherical. Therefore, the 

term diameter is not able to characterize the dimension of a bulk solid and it 

Table I.1 Classification of granular materials (Neddermann, 1992) 

Size range 

[m] 

Standard terms 
Characteristics 

Component Bulk 

30000 – 3000 

(but may be as 

low as 1000 m) 

grain and lump broken solid 

Free-flowing, but could cause 

mechanical arching problems 

during discharge from bins and 

silos 

1000 – 300 granule granular solid 
Easy-flowing with cohesive effects 

if % of fines is high 

< 100 particle powder  

(i) 100 – 10 particle granular powder 
may show cohesive effects and 

some handling properties 

(ii) 10 – 1 particle 
superfine 

powder 

highly cohesive: very difficult to 

handle 

(iii) <1 particle ultrafine powder 
extremely difficult (or impossible) 

to handle 
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is necessary to define an equivalent diameter as a diameter having the same 

value of a particular physical property as the particle of interest and a mean 

diameter which takes into account the particle size distribution. 

Considering a distribution of particles where ni defines the number of 

particles having diameter di, the surface mean diameter dSV was defined as 

the diameter which preserves the volume-surface ratio of particles. Also 

known as Sauter mean diameter, it is calculated by: 
3

SV 2

i ii

i ii

n d
d

n d




 (I.1) 

Therefore, it is equally important to define parameters describing the 

shape of a particle. One approach is to define the sphericity  of the particle 

as: 

surface area of a sphere having the same volume as the particle

surface area of the particle
   (I.2) 

Clearly,  ≤ 1, where  = 1 for spherical particles. All factors remaining 

the same as  deviates from unity, the particle becomes less spherical and 

consequently less flowable (more cohesive) and more difficult to handle. 

 

I.2 Density of a bulk solid 

The most important characteristics of a particle are its size, its shape and 

its density. In a granular material, the density of particles does not 

correspond to the density of the bulk solid. In fact, there are two densities of 

interest: the density of the particles p and the density of the mixture of solid 

and interstitial gas, which is known as bulk density b. These are related by: 

 b p f1      (I.3) 

where  is the void fraction, defined as the volumetric fraction of the 

material occupied by the interstitial fluid having density f. 

The particle density p can differ from the density of the material when 

particle shows cavities and porosity inside. In this case, an inner voidage i 

can be defined and related the particle density p by: 

 p s i1    (I.4) 

where s is density of the solid material. 

 

I.3 The interparticle forces 

The adhesive force between particles or a particle and a solid surface 

plays an important role in powder-handling processes. The van der Waals’ 

force, the electrostatic force, and the capillary force are the main sources of 

interparticle forces. Obviously, when these forces are high, the powder 

becomes less free-flowing and therefore difficult to handle. 
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I.3.1 Van der Waals’ forces 

The Dutch physicist van der Waals was the first to point out that 

deviations from the ideal-gas law at high pressures could be explained by 

assuming that molecules in a gas attract each other (van der Waals, 1873). 

Therefore, this so-called van der Waals force is a consequence of the general 

attraction between molecules on the surface. In particular, the force acts 

between two macroscopic bodies such as particle-particle and particle-wall 

(London, 1930; Lifshitz, 1956). 

In Table I.2, the equations representing the van der Waals’ force are 

listed (Masuda et al., 2006).  

The constant A in these equations is called the Hamaker constant and 

takes into account the properties of the material of the particles and of any 

third material between the two bodies. However, only van der Waals 

attraction in air is considered in this work. 

The values of the Hamaker constant in air are generally about 10
-20

 J, 

(Visser, 1972). The separation distance z in the equations in Table I.2 is 

usually taken as z0 = 0.4 nm (= 4 Å) in air (Krupp, 1967). 

At the contacting surfaces, it is very difficult that the surface of particle is 

perfectly smooth. It seems justifiable to consider a curvature radius taking 

Table I.2 Expressions of van der Waals’ force (Masuda et al., 2006)

 

 

 
1 2

vdW 2
1 26

AR R
F

R R z



 (I.5) 

 

vdW 26

AR
F

z
 -  (I.6) 
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into account asperities and the shape not perfectly spherical of particles. In 

the case of rough surface, asperities limit the approach of two particles and 

the effective separation distance is larger, thereby limiting the van der Waals 

attraction. For these reasons, the nominal particle diameter often 

overestimates the characteristic diameter of the contact area. 

According to these hypotheses, eq. (I.5) becomes (Schubert, 1982): 

vdW 2
012

A
F

z


  (I.7) 

where  is the values of a mean curvature radius at the contacting surface.  

When particles are subjected to compression or consolidation, 

equilibrium holds at contact between forces due to the external stress, the 

attraction force due to the van der Waals interaction and the elastic or plastic 

resistance force of the material. By simple modification of the classical 

Hamaker theory, Dahneke (1972) was able to compute the increase of the 

van der Waals’ force with increasing flattening of the contact point. 

Dahneke’s result for the van der Waals’ force acting between two particles 

is: 

vdW 2
00

2
1

12

A h
F

zz

 
  

 
 (I.8) 

where h denotes the sum of flattenings of both particles. 

With a monodisperse distribution of perfectly smooth spherical particles 

of an absolutely rigid materials,  corresponds to the diameter of the 

particles and h = 0. With these hypotheses, eq. (I.8) becomes equivalent to 

eq. (I.5). 

 

I.3.2 Electrostatic forces 

Particles with different electric charge attract each other. 

Between two charged particles, coulombic force Fec acts and the force is 

approximately calculated by the following equation: 

1 2
ec 2

r 0

1

4

q q
F

z
 

 
 (I.9) 

where q1 and q2 are the total charges of the particles, z is the distance 

between centers of the particles, 0 and r are the dielectric constant of free 

space and the relative dielectric constant, respectively. 

Electrostatic force can be attractive or repulsive, in spite of the charge of 

particles, differently from van der Waals’ force, that is only attractive. 

Electrostatic interaction can occur also between a charged particle and an 

uncharged surface because of to its own image charge. When a charged 

particle approaches a surface, it induces an “image charge” in the surface. 

The image force Fei that acts is (Masuda et al., 2006): 
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 

2
r 0

ei 2
r 0 r 0

1

4 2

q
F

z

   


     
 (I.10) 

where q is the particle charge and  is the dielectric constant of the wall 

material. 

 

I.3.3 Capillary forces 

When a liquid phase forms in the bulk solid of particles, for example when 

the relative humidity of atmosphere is relatively high (>65%) or a chemical 

component melts at high temperature, a liquid bridge is formed at the contact 

point of two particles, as shown in Figure I.1, resulting in a component 

additional to the van der Waals attraction. 

Let’s consider two identical spheres of diameter d, joined by a liquid 

bridge of half-angle  and separated by distance z, as shown in Figure I.1. 

Following the Fisher’s theory (1926), the total force exerted through the 

bridge can be considered as the contribution of: 

 the surface tension s, acting on the solid-liquid interface: 

1 22 sF r    (I.11) 

 the capillary pressure, P, arising from the curvature of liquid 

meniscus at the fluid-liquid interface: 
2

2 2F r P    (I.12) 

The total capillary force will be given by the sum of eqs. (I.11), (I.12): 
2

cap 2 22 sF r r P       (I.13) 

If the cross section of the liquid bridge is approximated by a circular arc, 

capillary pressure P is expressed by: 

cap s

1 2

1 1
F

r r

 
   

 
 (I.14) 

Figure I.1 Schematic representation of a liquid bridge between particles. 
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If it is assumed that r1 is very much higher than r2, the geometric relations 

among particle diameter d, r1 and r2 give the following simplified equation 

for contacting sphere of the same size: 

cap sF d   (I.15) 

For a spherical particle on a plane wall, it becomes 

cap,wall s2F d   (I.16) 

 

Figure I.2 Comparison of the magnitude of interparticle forces. Dashed 

lines indicate asperity-to-plane contact. Theoretical interparticle forces 

for single-point contact between equal spheres in air, with particle 

weight plotted for comparison (Seville et al., 1998). 
van der Waals i. A = 6.5 × 10

-20
 J (quartz) 

 ii. values presented for interparticle separations of 1.65 Å and 

4.0 Å 

 iii. dashed lines assume asperity-to-plane contact with asperity 

radius 0.1 μm 

capillary i. s = 72.8 × 10-2 N m
-1

  (water) 

 ii. values are maximum, eq. (I.15) 

 iii. dashed lines indicate asperity contact as above 

electrostatic i. maximum force (opposite sign) 

 ii. r = 1; 0 = 8.9 × 10
-12

 C
2
 N

-1
 m

-2
 

 iii. charge density = 10 C m
-2

 

weight p = 3 × 10
3
 kg m

-3
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I.3.4 Comparison of interparticle forces 

Comparison of the magnitude of interparticle forces is showed in Figure 

I.2. The capillary force is the dominating force, as long as the liquid bridge is 

formed. Without the liquid bridge, the van der Waals force dominates. 

It may be more plausible that interparticle forces depend more on the 

particle surface than on the bulk. Therefore, the van der Waals and capillary 

forces depend more on the local curvature of the particle (presence of 

asperities) than the particle radius. 

The magnitude of the interparticle forces becomes negligible compared to 

that of the gravitational force when the particle size exceeds a certain value. 

The gravitational force can be expressed by the following equation 
3

g p
6

d
F g


   (I.17) 

where p is the particle density and g is the acceleration due to gravity. 

This result is also plotted in Figure I.2 and suggests, for the set of chosen 

variables, that spherical particles of diameter of order 100 m should exhibit 

interparticle van der Waals forces equal to their single particle weight. 

 

I.3.5 Measurements of the interparticle forces at high temperature 

It is by understanding interparticle forces that the particle technologists 

are able to optimize procedures and to design equipments for industrial 

plants processing granular materials. At these purposes, it is equally 

Figure I.3 Schematic representation of the HTMFB: (1) DC 

motor + axial linear actuator; (2) micromanipulators; (3) heating 

element + thermocouple; (4) objective + digital camera; (5) LVDT 

displacement sensor; (6) flexure strip assembly (Pagliai et al., 2004). 
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important measure the forces acting between two particles. 

For this purpose, many experimental equipments were developed. They 

are mainly based on the measurements of the displacement caused by these 

forces on a cantilever system able to deform for very small forces (10
-9

 N) 

(Luckman, 1989). 

To the contrary, it is so difficult to evaluate these forces at high 

temperature, mainly because of difficulties related to design a heating system 

operating at the same time of the measurement device. 

Pagliai et al. (2004 and 2007) developed a novel technique, called High 

Temperature Micro-Force Balance (HTMFB), which combines these two 

aspects and allows a direct observation of the physical phenomena (Figure 

I.3). Particles, which can be of diameters as low as 10 m, are attached on 

the tips of micropipettes, connected to two micromanipulators, under the 

focus of the microscope lens. This device permits to measure the strength of 

a liquid bridge formed between particles, either by the addition of a liquid 

onto the particles or by melting the particle surfaces (i.e. as occurs during 

sintering). The particles are positioned within the coils of a heating element 

calibrated with a thermocouple in order to reach temperatures up to 1000°C. 

Of the two micromanipulators, one is held static whilst the other causes the 

particles to separate via a linear actuator at high resolution (0.1 m), driven 

by a DC motor. A digital camera, plugged into a personal computer (PC) and 

fitted in the microscope objective, grabs image sequences for each run of 

experiments for later analysis of, for example, the surface effects. The 

separation of the particles causes a flexure strip mounted on the static 

micromanipulator to bend, under loads as low as 10
-6

 N. The linear variable 

differential transformer (LVDT) displacement sensor provides the position 

of the strip with a resolution of 20 nm, with the data collected by a data 

logger in the PC. 

For the Hooke’s law, the relevant force of the liquid bridge Fcap can be 

calculated by: 

cap κF D ·  (I.18) 

where  is the spring constant and D the displacement of the bending 

strip. 

 

I.4 Flow properties of powders 

A possible approach for a macroscopic analysis of the rheological 

behavior of powders consists of measuring the interparticle interactions and 

integrating them on all the population of particles. However, this approach is 

much problematic since has to take into account of particle size distribution, 

shape and surface properties of particles which are difficult to correctly 

evaluate. 
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Another approach more common in engineering science consists of a 

direct characterization of the rheology of powders like a bulk solid. 

This approach follows the Mohr analysis of a continuum solid. According 

to this analysis, considering a set of σ, τ axes, the state of stresses in any 

point of a solid can be represented by a circle, commonly known as Mohr’s 

circle. Every point on the circle, corresponding to a combination of normal 

stress, σ, (considered as positive when compressive) and shear stress, τ, 

defines a specific plane of stresses. As shown in Figure I.4, a plane inclined 

at  anticlockwise from x-plane is given by the end of the radius inclined at 

2β anticlockwise from the radius to the point X, as shown by point U. In 

particular the stresses on the y-plane, for which θ is 90°, are therefore given 

by the other end of the diameter from the point X. There are two planes of 

particular interest, namely those on which the shear stress is zero. These are 

known as the principal planes and are indicated in Figure I.4 as ζ1 and ζ2, 

called the major and minor principal stresses. It can be seen that the major 

principal plane lies at an angle λ clockwise from the x-plane and that the 

minor principal plane lies at an angle 90 – λ anticlockwise from the x-plane. 

 

I.4.1 The Mohr-Coulomb failure criterion 

In order to analyze the behavior of granular materials when they are 

subjected to a force, the Coulomb yield criterion is adopted. Following this 

criterion, a perfect elastic behavior is hypothesized when the force is below a 

critical value while a perfect plastic behavior is considered when the force 

exceed this critical value. This value does not depend on the slip plane or the 

rate of deformation but only on the normal stress applied on the slip plane. In 

general, it can be written as: 

 f   

Figure I.4 Mohr analysis (Neddermann, 1992). 
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This relationship is commonly known as internal yield locus. 

For many materials, the expression takes linear form: 

τ μ C  (I.19) 

where μ and C are called respectively the coefficient of friction and the 

cohesion and depends on the material. The angle of internal friction , that is 

the slope of the yield locus, is related to the coefficient of internal friction μ 

by the relationship μ = tan. 

For the Coulomb yield criterion, shown in Figure I.5, on any plane 

η < μζ + C no failure will occur. If, in the other hand, η = μζ +C , a slip plane 

will be formed. Value of η > μζ + C cannot occur, except perhaps 

transiently. The Mohr-Coulomb failure criterion derives from the 

conjunction of the Mohr analysis and the Coulomb yield criterion. For this 

criterion, in failure condition the Mohr’s circle identifying the state of 

stresses of bulk solid can be only tangent to the yield locus and the tangency 

point represents the failure plane of the material, like the point S of Figure 

I.5. 

A slip plane along a bounding surface or a wall can occur when a bulk 

solid is subjected to a force. Similarly to the case of the internal failure, the 

wall yield locus is defined as the upper limit of shear stress on the wall 

plane. It depends on the type of powder and on the material of the wall and 

the following linear relationship is commonly adopted: 

W W W W    A  (I.20) 

where subscripts W indicates stresses in wall region. The wall yield locus 

is not tangent to the principal Mohr’s circle which, on the other hand, 

represents the state of stresses inside the bulk of the powder. Finally, μW is 

Figure I.5 The internal yield locus and the Mohr-Coulomb criterion:  

(i) τ > μσ + C; (ii) τ = μσ + C; (iii) τ < μσ + C. 
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the coefficient of wall friction and AW is the adhesion. The angle of wall 

friction W, as the angle of internal friction , is related to μW by μW = tanW 

 

I.4.2 Measurements of the failure and flow properties of powders 

Different types of equipments and test are able to evaluate the failure 

properties of granular materials at ambient condition (Schwedes, 2003). 

A very intuitive test is the uniaxial test. A sample is filled into a cylinder 

with frictionless walls and is consolidated under a normal stress ζ1 leading to 

a bulk density ρb. After removing the walls, the sample is loaded with an 

increasing normal stress up to the point of failure. The stress at failure is the 

unconfined yield strength fc. Greater is the unconfined yield strength, greater 

is the cohesive behavior and worse is the flowability of the material. The 

plot of the unconfined yield strength fc vs. the normal stress ζ1 is commonly 

known as flow function, which is one of the key parameter in the design of 

hoppers and silos. Jenike (1964) introduced a classification of granular 

material according to the ratio of ζ1 and fc called flow factor ffc (Figure I.6): 

 ffc < 1: granular materials are known as hardened; 

 1 < ffc < 2: granular materials are known as very cohesive; 

 2 < ffc < 4: granular materials are known as cohesive; 

 4 < ffc < 10: granular materials are known as easy flowing; 

 ffc > 10: granular materials are known as free flowing. 

However, the main limit of the uniaxial test is that only cohesive powders 

can be studied since they do not yield after the walls have been removed. 

The more common equipments for the evaluation of the failure and flow 

properties are the shear cells. They consist of measuring the force F able to 

generate a slip plane inside a sample of granular material for a specified 

applied normal load N. There are translational or rotational shear cells 

according to the shear plane is generated for translation or rotation of the 

Figure I.6 The flow function and the Jenike classification of granular 

materials (Jenike, 1964). 
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components of the shear cell. 

The most important translational shear cell is the Jenike shear cell. It 

consists of a circular base, a ring placed on top of the base and a lid (Figure 

I.7). A powder sample is filled into the base and the ring. 

The test procedure follows two steps. The first step, known as 

preconsolidation or preshear, consists of applying a horizontal shear in the 

sample by moving forwards the ring at a specified preconsolidation load, ζc, 

applied on the lid hold steady. Preshear is applied until steady state 

conditions are reached and detected by a constant value of measured shear 

force, ηc, necessary to hold the lid in steady position. The second step, knows 

as shear, consists of applying again a shear within the sample with a normal 

load applied, , on the lid lower than the preconsolidation load. 

The maximum of the registered shear force measured on the lid allows 

calculating the incipient shear stress of the material, , as consolidated 

during the preshear and is a function of the applied normal load. Repetition 

of these steps with decreasing normal loads during shear steps allows 

evaluating the internal yield locus. 

A schematic of the experimental procedure of the measurement of the 

internal yield locus is shown in Figure I.8. 

Figure I.7 Jenike shear cell. (a) base; (b) ring; (c) lid (Standard Shear 

Testing Technique, 1989). 

Figure I.8 Measurement of the yield locus with a shear cell: schematic of 

the experimental procedure. 
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The internal yield locus is the best fitting line with the measured value in 

a ζ,η diagram. The detailed experimental procedure was developed by the 

Working Party on the Mechanics of Particulate Solids within the European 

Federation of Chemical Engineering and described in the “Standard Shear 

Testing Technique for Particulate Solids using the Jenike Shear Cell” (1989). 

The major principal stress ζ1 of the preconsolidation is evaluated by the 

intersection of the ζ-axis and the Mohr’s circle tangent to the yield locus and 

passing to the point of consolidation (ζc, ηc). Each yield locus is parametric 

with the consolidation level of the bulk solid, defined by the major principal 

stress ζ1. With higher preconsolidation loads, the bulk density ρb increases 

and the yield locus moves upwards. 

The unconfined yield strength fc is estimated by the intersection of the ζ-

axis and the Mohr’s circle tangent to the yield locus and passing to the origin 

of the axis. Each yield locus gives one pair of values of the unconfined yield 

strength fc and the major consolidation stress ζ1 from which is possible to 

plot the flow function. It can be easily calculated by geometric consideration 

as: 

c

2 cos

1 sin

C
f




 
 (I.21) 

Another key parameter is the effective angle of internal friction e, the 

angle between the ζ-axis and the tangent to the principal Mohr’s circle. It is 

a measure of the inner friction at steady state flow and is very important in 

the design of hoppers and silos. 

A less intuitive concept for granular materials is the tensile strength t. It 

represents the resistance force to separate two layers of material by means of 

a tensile force. It is evaluated by the intersection of the negative ζ-axis and 

Figure I.9 The internal yield locus and the main flow and failure 

parameters. 
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the yield locus. It is not equal to zero when interparticle attractive 

interactions are present. It can be simply calculated as: 

t
tan

C
 


 (I.22) 

All these parameters are represented in Figure I.9. 

Translational shear cells, as the Jenike shear cell, show the following 

disadvantages: no measurements at low consolidation levels are possible, the 

maximum strain is small and much time is needed for a test. The rotational 

annular shear cells, as the Schulze Ring Shear Tester schematically 

represented in Figure I.10, provide comparable results with Jenike shear cell, 

do not have limits of strain and are able to perform measurements at small 

normal stresses (< 1 kPa) by means of a balancing system of the lid of the 

cell, indicated by the force FA. The experimental procedure follows the same 

principle of the Jenike shear cell, with repeated steps of preshear and shear. 

In this case, the measured variable is the torque needed to the rotation of the 

lid from which the shear stress η is derived. 

In the other hand, the evaluation of the wall yield locus does not required 

two steps. Shear stresses are measured formerly for decreasing normal loads 

and subsequently increasing normal loads until to the initial maximum value 

without preshear. In this case, the measured shear is not the peak of the 

curve, like for the internal yield locus, but the constant value representing 

steady state conditions. For this reason, the wall yield locus is not function of 

the consolidation level and of the packing of the powder. 

 

Figure I.10 Schematic of the annular Schulze shear cell (Schulze, 1994). 
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I.4.2.1 Measurements of flow properties at high temperature – A 

literature survey 

Few works about the direct evaluation of the flow properties of powders 

at high temperature are in literature. In the most of case, the increase of the 

cohesive behaviour of powders as the temperature increases was observed. 

In some papers, measurements at high temperature were performed through 

shear cells. 

MgSO4 and CaSO4 powders was analyzed by Smith et al. (1997) with a 

Jenike shear cell at ambient condition after that the sample was preheated for 

1 h at 750°C. Experimental results for consolidation load of 40-200 kPa 

show an increase of the flow function as the temperature increases for all the 

analyzed powders. SEM observations and X-ray diffraction measurements 

showed agglomerates formed during the preheating of the sample. However, 

with this technique it is not possible to control the temperature of the 

powders during the test. 

This disadvantage was worked out performing measurements inside 

heated chambers where the temperature is opportunely controlled. (Pilz e 

Loeffler, 1995; Kanaoka et al. 2001). 

Yield loci at 20°C, 400°C and 850°C of a fine quartz powder 

(d0.5 = 3.32 μm) for a consolidation load of 3 kPa was evaluated with a 

Jenike shear cell (Pilz e Loeffler, 1995). Also in this case, an increase of the 

cohesive behaviour of granular material as the temperature increases was 

observed. Furthermore, the effect of different experimental procedures was 

studied. In particular, yield loci were measured when preshear was 

performed before and after the heating of the sample. Greater values of shear 

stresses were measured in the first case. Unfortunately, measurements at 

lower consolidation levels are not possible with this apparatus. 

Kanaoka et al. (2001) performed measurements at high temperature (up 

to 950°C) and at low consolidation level (< 1 kPa) on fly ash particles 

(d0.5 = 2.35 μm) by means of a Powder Bed Tester placed in a heated 

chamber. It measures the stress able to generate the shear of a moving plate 

on a preconsolidated powder sample packed in a fixed plate. The Powder 

Bed Tester has the advantages that measurements are possible at low 

consolidation stresses. On the other hand, measurements performed by this 

apparatus evaluate the adhesion of the powder respect to a specified wall 

sample but does not allow estimating the internal flow properties. The 

measured properties are underestimated respect to those evaluated with the 

standard Jenike shear cell (Schwedes, 2003). However, in this study an 

increase of the adhesive force was measured as the temperature increase. 

Furthermore, sintering and agglomeration occurred for temperature greater 

than 800°C as demonstrated by thermogravimetric and SEM analysis. 

Besides shear test, different techniques are available to evaluate the flow 

properties of granular materials at high temperature. 
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A split cell is a circular cell equally divided into a stationary part and a 

movable part. It measures the tensile strength able to separate in horizontal 

direction the movable part from the fixed part of the cell filled of powder. 

Kamiya et al. (2002) placed this apparatus in a heated chamber, as shown in 

Figure I.11, and perform measurements on ashes and silica powder up to 

900°C. An increment of the tensile strength with the increasing temperature 

was observed up to 800°C. Above 800°C, experimental results for the ashes 

showed a faster increase of the tensile strength with the temperature because 

of the formation of liquid bridges and sintering phenomena. Below 800°C, 

the increase of the cohesive behaviour was explained with alteration of the 

surface properties of particles, according to IR spectroscopy analysis on the 

experimental materials. 

Similar to Kamiya et al. (2002), Hurley et al. (2006) carried out 

measurements by means of a split cell with a porous metallic bottom through 

which air was pulled. The aim of this work was to study the effect of 

temperature on the adhesive and cohesive properties of dusts of combustion 

in order to evaluate its role on the efficiency of candle filters. Different 

results came out. For one type of dust, a decrease of the tensile strength with 

the temperature increase was observed up to 400°C. However, when 

alteration of the chemical composition, new crystalline structure or sintering 

occur at high temperature, a different behaviour was observed and chemical 

aspects have to be considered for a correct interpretation of the phenomena 

occurring at high temperature. 

Measurements of torque necessary to the rotation of an impeller into a 

bed of different samples of cohesive powders were performed by Zimmerlin 

et al. (2008) up to 700°C. The increase of the torque as the temperature 

increases was observed. Also in this case, it was explained as an increase of 

the cohesive behaviour of powders with increasing temperature. 

Figure I.11 Schematic of the split-type tensile strength system on high 

temperature conditions (Kamiya et al., 2002). 
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Ripp and Ripperger (2010) designed an annular shear cell according to 

Schulze operating from 80°C to 220°C. For this purpose, an electric heater 

was placed on the upper part of the lid while the vertical walls and the 

bottom of the cell were provided with a double casing through which a 

heating or a cooling medium can flow. An impressive experimental 

campaign was conducted and wall friction and internal friction at different 

temperature were evaluated for different kinds of powders. From this work, a 

not univocal effect of temperature was determined for all the types of 

powders. 

 

I.5 Fluidization 

Fluidization is one of the most common unit operation involving granular 

materials. As its name implies, it is a process that transforms a bed of solid 

particles into a fluid-like state through an upwards flow of gas or liquid. The 

fluid-like properties of fluidized beds make them attractive for industrial 

processes where a solid (often the catalyst for a reaction) and a gas are to be 

put in contact. Moreover, the rapid mixing and circulation of solids allows 

for a uniform temperature in the system. Therefore, high temperature 

operations in fluidized beds can be controlled simply and reliably. 

Let us consider a bed of fine solid particles is placed in a vessel and fitted 

with a porous baseplate and a fluid (gas or liquid) is pumped upwards 

through the base. Now, if the fluid velocity is gradually increased, the drag 

force acting on the particle rises and the pressure drop through the bed will 

also increase until the point at which the drag force is equal to the 

gravitational force holding the particles within the container. At this point, 

the bed will expand upwards as the particles become suspended in the 

flowing stream. In this condition, the particles are then said to be fluidized 

and the bed takes the appearance and responds in the same way of a liquid. 

The superficial velocity at which this phenomenon occurs is called 

minimum fluidization velocity umf and depends on the physical properties of 

the fluid and the solid particles. 

Its valued can be found by measuring the pressure drop across the bed as 

a function of fluid velocity, as shown in Figure I.12. Furthermore, at the 

minimum fluidization condition, the force exerted by the upwards flowing 

fluid is equal to the gravitational force acting on the particles, then: 

 p mf f mf

mf

1
P

g
H


         (I.23) 

where P is the pressure drop across the bed, Hmf and mf are the height 

and the void fraction of the bed at minimum fluidization, respectively. 

However, many empirical and semi-empirical equations are available to 

evaluate umf starting from the physical properties of the solid particles and 

the fluid. They are mainly based on the principle of extending the pressure 
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drop relations for packed beds to the minimum fluidization condition, where 

the superficial velocity is umf. 

One of the problems to predict umf is the minimum fluidization voidage 

fraction mf is unknown a priori. Wen and Yu (1966) reported two valid 

empirical relationships for a wide range of particles: 

mf
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Combining these equations with the Ergun equation at minimum 

fluidization: 
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where  is the viscosity of the fluidizing gas (or fluid), they obtained the 

generalized correlation: 

 
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Figure I.12 The pressure drop across the bed and the bed height as a 

function of the superficial velocity for a Geldart group A powder. 
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from which umf can be estimated knowing only the physical properties of 

fluid and solids. 

If the fluid is a gas, at superficial velocity above umf, it is observed 

experimentally gas bubbles form within the bed for many powders. The 

value of superficial velocity at which bubbles appear is called minimum 

bubbling velocity umb and, such as for umf, also depends on the physical 

properties of the particles. Above this velocity, the bed is essentially divided 

in a dense or emulsion phase, where gas goes through the particles rather 

like in a packed bed, and a bubble phase, where much of the gas is out of 

contact with solids. If the fluid is a liquid, bubbles form are rarely observed. 

A convenient classification of powders has been suggested by Geldart 

(1973) in according to the experimentally observed behaviors at fluidization 

conditions. He arranged granular materials into four groups (Figure I.13): 

 group A: powders characterized by a relatively small particle size 

(d = 30 – 150 m) and a low particle density (< 1500 kg m
-3

). They 

show a good expansion of the emulsion phase as the fluidizing gas 

velocity increases and form bubbles for a minimum bubbling 

velocity umb, always greater than umf (as shown in Figure I.12). 

 group B: powders which begin to bubble at gas velocity just in 

excess to umf and characterized by d = 150 – 500 m and densities in 

the range 1500 – 4000 kg m
-3

. The dense phase voidage of these 

Figure I.13 Geldart’s classification of powders. 
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powders remain more or less constant to the minimum fluidization 

value as the fluid velocity increases. 

 group C: cohesive powders of very small size (d < 30 m) shaped 

far from spherical. They are difficult to fluidize. 

 group D: very large size and very dense powders. Normally, they are 

fluidizable but no bubble form. This is probably due to the dense 

phase gas velocity higher than the velocity of bubbles formed. 

Liu et al. (1996) carried out fluidization experiments for solid particles 

belonging to Geldart group A, B and D with liquids of changing viscosity 

and with CO2 under ambient to supercritical conditions. Results showed 

fluidization quality changes progressively from aggregative, normally 

associated with gas fluidized systems in which a portion of the rising fluid 

pass through the bed in the form of bubbles as soon as fluid velocity exceed 

the minimum fluidization velocity, to particulate, usually referring to liquid 

fluidized bed which expands uniformly and homogenously from minimum 

fluidization to dilute-phase transport. They defined a transitional 

fluidization, characterized by the transition homogenous to heterogeneous 

fluidization as the fluid velocity rises, which generally includes: 

 solid particles belonging to Geldart group A fluidized in gases at 

ambient condition; 

 group B fluidized in gases with elevated pressure; 

 group D, fluidized in supercritical gas or liquids relatively low 

density and viscosity. 

These patterns form a continuous spectrum consisting of gradual and 

progressive changes as particle size, particle and fluid densities and fluid 

viscosity vary. 

Wang et al. (1998) conducted experiments on the fluidization of many 

types of Geldart group C particles, showing that the fluidizing process of 

fine particles usually involves plugging, channeling, disrupting and 

agglomerating. Furthermore, they showed agglomerates vary in size and 

density with the superficial velocity and the cohesiveness of the material and 

behave as the same as single particles. 

The Geldart classification considers only hydrodynamic parameters like 

the diameter and the density of particles and the density of the fluid, and 

does not take into account the interactions between particles. Both the 

behaviour of a powder in a fluidized bed and the initial point of fluidization 

are governed by the interparticle forces as long as its magnitude is of the 

order of, or larger than, the gravitational and the fluid-dynamic forces, also 

acting on the particles under these circumstances. 

Molerus (1982) derived equivalent limiting conditions of the Geldart 

classification by taking into account the interparticle forces and 

demonstrated that: 
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 separation of Geldart group A from Geldart group C is due to the 

dominance of the cohesion forces in the type C compared to the 

hydrodynamic and gravitational forces; 

 separation of Geldart group B from Geldart group A follows from 

the negligible magnitude of the interparticle forces in the fluidization 

condition in type B compared to the hydrodynamic and gravitational 

forces. 

On the transition between homogenous and bubbling regime, many works 

try to define what is the controlling factor between the hydrodynamic and 

interparticle forces. However, the question is still now controversial. 

Massimilla and Donsì (1972 and 1973) carried out bed expansion 

experiments in a semicircular column with a transparent flat wall and 

discovered through microscopic observations cavities and micro channels 

into the bed of the same order as the particle size. This mode of bed 

expansion was explained by considering the role of interparticle forces 

which act to stabilize cavities and microchannels, playing an important role 

in the fluidization behaviour of fine powders. 

On the effect of the interparticle forces on the homogenous fluidization, 

Mutsers and Rietema (1977) carried out experiments on a tilting fluidized 

bed. In these experiments, it is appeared possible tilting the bed until a 

certain angle without the powder sliding. These clearly demonstrated a 

powder structure with a certain mechanical strength exists in the expanded 

state of homogenous fluidization because of the no-negligible presence of 

the interparticle interactions. 

 

I.5.1 The effect of temperature on the fluidization behaviour 

Research on the influence of temperature on fluidization has been gaining 

interest, but findings are still controversial. A satisfactory understanding of 

the phenomena which are responsible for modifications in the structure of 

fluidized beds, and therefore responsible for changes in the flow behaviour, 

from ambient to high temperature, has not yet been adequately achieved. 

Xie and Geldart (1995) performed measurements at different 

temperatures (≤ 500°C) of the incipient fluidization and bubbling velocities 

and the voidage at the minimum bubbling point for samples of various size 

fractions of FCC powders and found that these parameters decrease as the 

temperature increase. Furthermore, they compared these values with values 

estimated from some existing correlations, normally based entirely on 

hydrodynamics considerations. Although these equations predict well for the 

coarser fraction at ambient temperature, they become increasingly inaccurate 

as particle size is decreased and this is believed to be the result of ignoring 

the interparticle forces. 

Subramani et al. (2007) conducted experiments of fluidization up to 

700°C on different Geldart B powders and developed two new correlations 
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improving the prediction of the voidage and the velocity at minimum 

fluidization at high temperature. 

Yang (2007) did not take into account interparticle forces and re-

interpreted the Geldart’s classification considering pressure and temperature 

different from ambient condition. In particular, only the effect on the 

viscosity and the density of the fluid with these two variables was 

considered. Increasing the operating pressure will increase the fluid density, 

while not changing viscosity it will increase the tendency to Group A 

behaviour. Increasing the temperature, however, will have different results 

depending on the decrease of the fluid density and the increase of viscosity. 

With a different approach, Formisani et al. (1998, 2002) found out the 

voidage in the fixed state and at incipient fluidization, the dense phase 

voidage of a bubbling fluidized bed increasing practically linear with 

temperature. They carried out bed expansion and collapse test up to 700°C 

on different samples of FCC powders, silica sand and corundum and 

demonstrated that, taking correctly into account the thermal variation of the 

incipient fluidization voidage, some classical equations of fluidization 

theory, as Carman-Kozeny’s and Ergun’s, based only on hydrodynamic 

forces, take again their predictive ability. 

Lettieri et al. (2000 and 2001) confirmed the Formisani’s experimental 

results in which the incipient and dense phase voidage of a bubbling 

fluidized bed increase with temperature. Additionally, they demonstrated the 

increase of temperature leads significant modifications of the fluidization 

dynamics because of the increase of interparticle interaction. In fact, SEM 

observations of Geldart group A samples after bed expansion and collapse 

experiments at high temperature (up to 700°C) revealed the formation of 

stable aggregates, as if the effect of the temperature increase caused a 

transition from a Group A to a Group C type of behaviour. 

Bruni et al. (2006) performed an extensive experimental campaign aimed 

at studying the influence on fluidization of changing the size distribution of 

the fine sub-cuts (particles below 45 μm) of Group A powders (alumina 

powders) up to 400°C. Fluidization experiments showed that fines addition 

did not affect the quality of fluidization while significant changes were 

observed in bed collapse test. In particular, a decrease of the dense phase 

collapse rate was observed with the increasing temperature. It was related to 

the changes of the packing of the structure, more compacted as the 

dimension of fines decrease. Furthermore, the validity of the Richardson-

Zaki correlation was verified by changing the parameters of the equation 

with the fines percentage and the temperature. Results were explained with 

the effect of the increase of the relative weight of the interparticle forces on 

the mass forces due to the decreasing mean dimension of particles. 

Although the effect of temperature on the fluidization is not univocally 

explained, the common interpretation is that interparticle forces have to be 
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necessarily taken into account for understanding the flow behaviour of 

powders in fluidization and changing the temperature. 

 

I.6 The particle-particle approach 

The state of stress in a point of a continuum is completely determined by 

the symmetrical stress tensor, which can be graphically represented by 

Mohr’s circle. As described in previous paragraphs, the Mohr’s circle is also 

used for the representation of stress state on powder sample as well as in 

theoretical models based on continuum mechanics. This continuum approach 

allows simplifying particularly the analysis of the failure and flow properties 

of granular materials and to apply directly experimental findings and 

measurements to standard procedures for the design of industrial 

equipments. However, the main disadvantage of this method consists of the 

difficulty to extend experimental evidences to engineering applications 

providing different packing conditions of powders. 

On the other hand, for science and technology it is useful to combine the 

continuum approach and a particle-particle approach in order to provide a 

better understanding of the mechanical properties of bulk solids. 

Furthermore, by means of a microscopic model able to estimate 

quantitatively the interparticle interactions it might be possible to extend the 

experimental findings derived from shear testers to different compaction 

conditions. 

According to the particle-particle approach of Rumpf (1974) and Molerus 

(1985), in order to relate bulk solids properties to binary interparticle 

interactions a randomly packed bed consisting of monodisperse spheres can 

be assumed. In particular, in this approach the following assumptions were 

considered: 

1. particles are assumed to be spherical; 

2. the contact areas between particles are small enough in comparison 

with the particle surfaces. Consequently, contact areas can be 

assumed as contact points; 

3. the contact points are distributed over the sphere surface with equal 

probability; 

4. the packing structure is isotropic. In particular, area porosity and 

volume porosity are equal for arbitrarily orientated planes in the 

packing. 

5. the transmission of an isostatic state of compressive stress with three 

equal principal stresses was further assumed. 

From these hypotheses, Rumpf and Molerus derived the following 

equation relating the isostatic stress with a mean isotropic contact force: 
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where ζ is the normal isostatic stress, Fc is the mean isotropic contact 

force and k is the coordination number, the number of contacts per particles, 

dependent from the packing and, then, the voidage of the powder bed. The 

exact analysis of Molerus (1993) was reported in Appendix A. 

According to Smith (1929), for porosities usually founds in bulk solids: 

3.1k     (I.31) 

It follows thus from previous equation that, in any point of the bulk solid: 
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I.6.1 The dependence of the contact forces on previous consolidation 

Eq. (I.8) of paragraph I.3.1 has already introduced the physical 

phenomenon of flattening occurring at the contact point of particles when 

they are submitted to compression or consolidation. 

This is the case of preshear during tests performed with shear cell, when 

the sample of powder is initially compacted at a specified consolidation 

level, defined by the major principal stress 1, by an applied external normal 

load. 

Considering environmental conditions where liquid bridge and 

electrostatic force do not occur and where van der Waals’ forces play a 

dominant role, an equilibrium holds between the normal force, FN, due to the 

external consolidation force, the attraction force due to the van der Waals 

interaction, FvdW, and the resistance force of the material, FW: 

N vdW WF F F   (I.33) 

where the external compression force FN, according to (I.31), is equal to: 
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In particular, the material can exert two kinds of resistance: elastic or 

plastic. 

With purely elastic behaviour, the repulsive force may be considered as 

elastic resistance force between the contacting particles. If only elastic 

resistance exists, powders do not show a cohesive behaviour increasing with 

the consolidation. In fact, if the system is unloaded, the pure elastic repulsion 

brings the system back to the initial state before the application of the 

consolidation load and no memory is kept of the consolidation on the single 

contact point. It means that the magnitude of cohesion value do not depend 

on previous consolidation. In this case, when the system is freed, like when a 

tensile stress is applied, the contact force is defined by the classical equation 

of the van der Waals’ force of eq. (I.7). 

On the other hand, when the plastic irreversible deformation occurs at 

contact point of particles during consolidation, the extent of particle 

flattening at the contact point has to be taken into account for the correct 
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evaluation of the adhesion force. In fact, when the external load, FN, is 

removed, the generated flattening remains, affecting the magnitude of the 

van der Waals’ interaction also when the consolidation load is removed, as 

showed in eq. (I.8). 

It is worth to notice the flattening of the contact point is a function of the 

consolidation load which, therefore, affects also the magnitude of the 

interparticle force. For small plastic deformation, the resistance force is 

(Molerus, 1993): 

W pl fF F p h    (I.35) 

Let us consider the force balance eq. (I.35), including eq. (I.8) for the van 

der Waals’ force and eq. (I.35) for the plastic resistance of the material. The 

force balance becomes: 
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From eq. (I.36) the analytical solution of the dimension of flattenings, h, 

at the consolidation contact can be easily computed. Inserting it in eq. (I.8), 

it is possible to obtain the adhesion force due to van der Waals interaction at 

a flattened contact as: 
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The main problem of this approach, both for elastic or plastic behaviour, 

is related to the difficulty to know with greater accuracy the properties of 

materials appearing in eqs. (I.8) and (I.37), such as the Hamaker constant A, 

the compressive strength ζf and the mean curvature radius δ. 

In this work, the condition of a static bulk solid submitted to a previous 

consolidation, where the only contact forces are van der Waals’ forces, was 

assumed corresponding to the theoretical definition of tensile strength t, 

introduced in par. I.4.2. With this hypothesis, according to eq. (I.32): 
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However, this will be focused in more detail in chapter V. 
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Chapter II 

The aim of the work 

 

 

 

 
This work is a part of a much broader research of the Powder Technology 

group of the Department of Industrial Engineering of University of Salerno 

aimed at investigating the flow behaviour of powders under realistic process 

conditions. 

Changes of cohesive flow properties of powders at high temperature are 

observed in many industrial process units, such as fluidized bed reactors, 

granulators and dryers. 

Many authors investigated the behaviour of powders at high temperature 

through fluidization experiments (Formisani et al., 1998; Lettieri et al., 2000 

and 2001), direct measurements (Pagliai et al., 2004 and 2007) and 

evaluation on the bulk solid (Kanaoka et al., 2001; Kamiya et al., 2002), 

with different interpretation on the role of temperature on the flow behaviour 

of powder. Although from the literature the increase of the cohesive 

behaviour appears clear when liquid bridges occur between particles, the 

effect of temperature on van der Waals’ kind of forces is still controversial, 

in particular at low consolidation levels of powder, as in fluidization, where 

the relative weight of interparticle forces is greater because of the decrease 

of mass forces. 

Furthermore, conventional testers and procedures are not suitable for 

measuring the powder flow properties at high temperature. 

 

The first part of this PhD course was aimed to the development of an 

experimental apparatus able to study the behaviour of powders at high 

temperature. Shear cells are the more common testers to evaluate the flow 

behaviour of powders. In this work, an annular Schulze shear cell HT-ASC, 

originally designed at University of Salerno, was developed and set-up in 

order to perform measurement up to 500°C. In this novel way, it was 

possible to evaluate the effect of temperature on the powder flow properties 

by the direct measurements of yield loci on different materials. 
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The aim of the second part of this PhD course was to give an interpretation 

of the physical phenomena occurring at microscale. For this purpose, the 

development of a theoretical framework was needed, considering 

simplifying hypotheses, according to the particle-particle approach 

developed by Rumpf (1974) and Molerus (1985) and describing the correct 

spatial organization of particles in bulk. In fact, this approach allows 

correlating the measured powder flow properties to the interparticle 

interactions in order to give qualitative and quantitative explanations to the 

experimental evidences at macroscale level. 

 

This particle-particle approach is not commonly adopted in engineering 

science because of the complexity to directly evaluate interparticle forces 

and parameters like the Hamaker constant and the mean curvature radius at 

contact point which implies also difficult to predict interactions between 

particles. Therefore, the analysis of the powders as bulk solid is preferred 

and standard procedures utilizing powder flow properties evaluated by shear 

cells are commonly adopted for the design of equipments for storage and 

conveying of powder, like silos, hoppers and chutes, where the powder is in 

compacted conditions. 

The aim of the work is also associated to the possibility to extend 

experimental measurements performed in consolidated conditions by shear 

cell to other compaction conditions, especially lower such as in fluidization. 

The quantitative evaluation of interparticle interactions from measurements 

performed on a bulk solid might be the key step in this way of the research. 

In fact, from the knowledge of the magnitude of the interparticle interactions 

Figure II.1 A concept map represented the logical steps correlating a 

continuum to a particle-particle approach. 
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appears possible to predict the behaviour of powder considering different 

packing conditions, at room and high temperature, by the development of 

proper mathematical models considering force balances on single particles 

considering the appropriate hypotheses for the specific applications. 

Therefore, the development of a theoretical framework correlating powder 

flow properties to interparticle interactions, as this work pursues, can be seen 

as a preliminary step associated to this aim. 

As observed in following chapters, results of this study, at room temperature 

such as at high temperature, are encouraging and suggest further studies in 

future work. 
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Chapter III 

Experimental 

 

 

 

 
III.1 High Temperature Annular Shear Cell (HT-ASC) 

Shear cells are commonly used to evaluate the failure and flow properties 

of granular materials at ambient condition. Although the large use of 

powders at high temperature in industrial equipments and plants, 

conventional testers and procedures are not still suited for testing powder 

flow properties at high temperature. 

A Schulze shear cell was modified at University of Salerno in order to 

perform measurements of the powder flow properties at high temperature. 

Figure III.1 shows a schematic of the new High Temperature Annular Shear 

Cell. It consists of a bottom annular trough containing the powder sample 

and an annular lid placed on the top of the sample like an annular Schulze 

shear cell. The lid is fixed at a crossbeam connected by two tie-rods to two 

Figure III.1 Schematic of the High Temperature Annular Shear Cell. 
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load beams. These allow measuring the shear force acting on the shear plane 

developed inside the powder sample by the rotation of the bottom ring 

relative to the lid for a specified normal load, exerted by weight pieces 

placed on a hanger connected to the crossbeam. 

To heat the cell and the powder sample contained in it, electric heaters 

were introduced below the cell bottom and on the lid. In order to minimize 

the temperature gradient within the sample and for safe operation of the cell, 

a covering insulating material was placed around the trough of the cell and 

above the lid. 

A cooling system was designed to cool the cell base where it is in contact 

Table III.1 Data of the High Temperature Annular Shear Cell 

Bottom Ring: 

inner diameter 60 mm 

outer diameter 120 mm 

nominal height 10 mm 

internal volume 95.08 mm 

Lid:  

inner diameter 62 mm 

outer diameter 118 mm 

Power supplier:  

lower heater 600W 

upper heater 260W 

Figure III.2 The annular Schulze Shear Cell SV10. 
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with the gears of the rotation mechanism of the tester. Indeed, in order to 

keep the cell base in contact with the instrument gears at room temperature, 

the insulating material below the trough of the cell is over a metal disk 

acting as a fin refrigerated by a water stream flowing inside a cavity in the 

ring at the base of the cell inserted in the rotating gear. 

Figures III.2 and III.3 show some pictures of the original SV10 Schulze 

Figure III.3 The modified High Temperature Annular Shear Cell. 

Figure III.4 Logic of the temperature control of the High 

Temperature Annular Shear Cell. 
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shear cell and the modified High Temperature Annular Shear Cell. The main 

data of the modified shear cell are listed in Table III.1. 

 

III.1.1 Set-up of the High Temperature Annular Shear Cell 

In this work, the set-up of the HT-ASC was performed. 

A temperature control system was developed to achieve a constant 

temperature in the powder sample. In particular, the temperature vertical 

uniformity inside the powder sample is verified and controlled by a PID 

temperature control system. It consists of three J thermocouples measuring 

the temperature at three different depths of the sample. A dedicated 

a 

Figure III.5 Temperature vs. time inside the High Temperature Annular 

Shear Cell. Solid line ( ̶ ): set point temperature, TSP. Dashed line ( ̵ ̵ ): 

lower temperature, TDOWN. Dotted line (···): middle temperature, TMID. 

Dash-dotted line (· ̵ ·): upper temperature, TUP. 

 

b 
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LabView software was developed for this purpose. 

It acquires these values for sample temperature monitoring. The top and 

bottom temperature, TUP and TDOWN, are compared with the set-point 

temperature TSP in order to control with two separate PID loops the heating 

power on the lid and on the trough separately, as show in Figure III.4. The 

differences between TUP, TDOWN with TSP, eUP and eDOWN respectively, define 

the time percentages tUP and tDOWN of an assigned period for which heaters 

are turned on. All PID parameters are set so that about 25 minutes are 

necessary to reach the steady state without temperature overshoots during 

experiments. Figures III.5a and III.5b show the temperature with the time 

during heating of the cell with a sample of FCC powder (see par. III.2) for a 

set-point temperature of 500°C. In particular, a constant temperature along 

the sample depth can be observed. 

After the design of the temperature control system, the set-up of the HT–

ASC was completed verifying the equivalence of the measurements 

performed by the modified shear cell with the original Schulze shear cell at 

room temperature. 

A comparison between yield loci of FCC powders measured at room 

temperature by the High Temperature Annular Shear Cell and the standard 

Schulze Ring Shear Tester SV10 cell was performed for two specified 

normal load. Figure III.6 shows the good agreement between the 

experimental results, confirming the correspondence of the measurements 

Figure III.6 Comparison between yield loci measurements for the FCC 

powder obtained at 20°C with the SV10 Shear Cell (, 1 = 997 Pa; 

, 1 = 1211 Pa) and the High Temperature Annular Shear Cell 

( , 1 = 981 Pa; , 1 = 1205 Pa). 
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carried out by the modified High Temperature Annular Shear Cell and the 

original SV10 Shear Cell. 

 

III.1.2 Procedure with the High Temperature Annular Shear Cell 

The experimental procedure to evaluate high temperature yield loci of the 

material with the modified cell mainly followed the standard procedure for 

shear tests with the annular Schulze shear cell, with the two steps of 

preshear and shear previously described in par. I.4.2. 

In this case, samples were subjected to a drying process in an oven at 

200°C before filling the bottom ring of the cell and positioning it on the desk 

of the Ring Shear Tester in order to remove the volatile components (i.e. 

moisture contents). Indeed, for FCC powder, having a high content of 

humidity before the pretreatment, an upward gas flow through the gap 

between the lid and the outer wall of the trough of the cell was observed at 

about 150°C, invalidating the test (see par. IV.2) 

Afterwards, thermocouples and cooling system are set and the lid and the 

weights for consolidation are placed according to the standard procedure. In 

order to achieve the desired operating temperature, before starting the shear 

test, heaters were activated and some time was waited to let the temperature 

reach the steady state at the desired value at all measurement points. 

Each measurement was repeated twice. 

 

III.2 Scanning Electron Microscope (SEM) 

The Scanning Electron Microscope (SEM) is a type of microscope that 

uses a beam of electron to produce a magnified image of a sample. In a 

Figure III.7 Schematic of the Scanning Electron Microscope (SEM). 
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typical SEM an electron beam carrying a significant amount of kinetic 

energy passes through the sample and interacts with it. The beam decelerates 

and dissipates its energy as a variety of signals (secondary electrons, 

backscattered electrons, diffracted backscattered electrons, X-ray) which 

produce SEM images up to magnification about from about 10 to 500000 

times and allow making evaluations about morphology and topography of 

the sample. 

Figure III.7 shows a schematic of the Scanning Electron Microscope. In 

particular, the beam emitted by an electron gun is focused by one or two 

condenser lens before passing through deflection coils that deflect the beam 

so that the SEM furnishes a raster scan of the sample. Detectors of secondary 

and backscattered electrons necessary to produce the image of the sample 

complete the equipment. 

Differently from an optical microscope that uses light to image the 

sample, and other type of electron microscope like TEM, SEM do not 

produces at any time images of the sample but provides raster scanning of 

the specimen. 

In this work, SEM magnification of samples of experimental materials 

was performed by a SEM ASSING mod. LEO 420 available at the 

Department of Industrial Engineering of University of Salerno (Figure III.8) 

in order to analyze the shape and surface of the particles and to evaluate their 

role on the magnitude of interparticle interactions. 

 

III.3 Differential Scanning Calorimeter (DSC) 

Differential scanning calorimetry (DSC) is a technique that measures the 

energy necessary to maintain a nearly zero temperature difference between a 

substance and an inert reference material, as the two specimens are subjected 

Figure III.8 The Scanning Electron Microscope (SEM) ASSIGN mod. 

LEO 420 (Department of Industrial Engineering, University of Salerno). 
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to identical temperature regimes in an environment heated or cooled at a 

controlled rate. The basic principle of this technique is that when the sample 

undergoes a physical or chemical transformation, such as phase transitions or 

decomposition, more or less heat will need to flow to it than the reference to 

maintain both at the same temperature, depending on the process is 

exothermic or endothermic. 

There are two types of DSC systems in common use. 

In power-compensation DSC (Figure III. 9a) temperatures of the sample 

and reference are controlled independently using separate, identical furnaces. 

The temperatures of the sample and reference are made identical by varying 

the power input to the two furnaces; the energy required to do this is a 

measure of the enthalpy or heat capacity changes in the sample relative to 

the reference. 

In heat-flux DSC (Figure III. 9b), as the apparatus DSC Mettler Toledo 

822 used in this work and placed at the Department of Industrial Engineering 

of University of Salerno, the sample and reference are connected by a low-

resistance heat-flow path. The assembly is enclosed in a single furnace. 

Enthalpy or heat capacity changes in the sample cause a difference in its 

temperature relative to the reference. The resulting heat-flow is small 

because the sample and reference are in good thermal contact and ensures 

the nearly zero temperature difference between the sample and the reference. 

The temperature difference is recorded and can be also related to the 

enthalpy change in the sample using calibration experiments. 

a 

b 

Figure III.9 Schematic of the Differential Scanning Calorimetry (DSC): 

(a) power compensation DSC; (b) heat-flux DSC. 
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A typical experimental curve obtained by a DSC analysis is showed in 

Figure III.10. Assuming heat flow as positive when outgoing from the 

sample, a variation as occurs at point A indicates a change of the heat 

capacity, i.e. due to a glass transition. A negative peak, as point B, indicates 

that an endothermic process occurred, as melting or evaporation of the 

sample of a component of the materials. Likewise, the positive peak C 

signifies an exothermic process, as crystallization. 

According to the objective of this PhD work, DSC analysis was 

performed in order to verify the occurring of transformation that, in such 

way, can affect the powder flow properties, like phase transitions. In 

particular, the temperature program adopted for these tests provides a linear 

temperature increase from 25°C to 500°C at 10°C/min, a time of 15 min 

during which the temperature is held constant and a linear temperature 

decrease from 500°C to 25°C at 10°C/min. The heat flow was assumed 

positive when outgoing from the sample. 

 

III.4 Materials 

Measurements of the flow properties were carried out on different 

experimental materials. 

The particle size distributions of materials are showed in Figure III.11 

(Malvern Instruments Matersizer 2000). 

In Table III.2 the main data of experimental materials are listed. 

FCC powder is a zeolite mainly composed by silica and alumina. It is 

commonly used as catalyst in fluidized and mobilized bed in cracking of 

petroleum at temperatures higher than 650°C. The very large use in chemical 

Figure III.10 Schematic representation of an experimental DSC curve 

indicating typical phenomena occurring during the analysis: (A) change 

of the heat capacity; (B), endothermic process; (C), exothermic process. 
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industry suggested to analyze the flow behaviour of this material at high 

temperature.  

According to Xie (1997), the Hamaker constant and the compressive 

strength of silica were chosen. 

Fly ashes are usually separated by hot flue gas of combustion. Although 

extensive efforts have been paid to develop dust collectors and filter capable 

to operate at higher than 800°C, many problems should still be solved. One 

of the most important issue is the raise of adhesive force of particle at high 

temperature which causes the raise of pressure drop and make the cleaning 

of filter surface affects the performance of dust collector, especially the 

release of dust from a filter element. For these reasons, the knowledge of the 

cohesive behaviour at high temperature is fundamental for the correct design 

of these devices and for the definition of the optimized working conditions. 

These powders show a wide particle size distribution with a high percentage 

of fines. Furthermore, because of the unknown composition, it was not 

possible to establish the Hamaker constant and the compressive strength of 

the material. For these reasons, it is not able to provide modeling or 

quantitative evaluations at particle level with these experimental materials. 

Measurements at high temperature were performed on the same 

corundum powder for which Formisani et al. (2002) found a change of the 

porosity with the temperature in fixed and fluidized state not predictable 

with the classic equations as Ergun and Carman-Kozeny, taking into account 

only the hydrodynamic properties. In order to give a novel contribution to 

their research project, this material was kindly provided by these authors. 

Yield loci at high temperatures were measured also for a sample of synthetic 

porous -alumina. The same Hamaker constant, A, and the compressive 

strength, f, were considered for this powder and corundum. Although 

corundum is the natural form of -alumina, the traces of impurities and the 

different surface properties can imply difference in the behavior of the two 

Table III.2  Material properties 

 
FCC 

powder 
Fly ashes Corundum Alumina Glass beads 

ρp (kg m
-3

) 1400 - 4000 1730 2200 

d10 (μm) 37.1 3.5 54.9 57.3 119.7 

d50 (μm) 72.8 27.2 84.1 96.8 163.4 

d90 (μm) 134.1 123.1 128.8 159.8 223.2 

dsv (μm) 41.4 7.5 79.8 89.1 158.9 

A (10
-20

 J) 15.0 - 14.0 14.0 6.5 

f (GPa) 1.50 - 2.95 2.95 1.10 

*   (Israelachvili, 1992) 

** (Shackelford et al., 2000) 
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materials. The particle density p for alumina reported in Table IV.2 takes 

into account also the internal porosity of particles. 

Finally, a sample of glass beads was analyzed as reference material. 

Moreover, glass beads mixed with a sample of high-density polyethylene 

(HDPE) were studied. The objective was to observe experimentally on a 

prototype material the effect of temperature when liquid bridges and 

capillary forces occur. In fact, HDPE has a low melting point about 110°C. 

Therefore, a mixture of glass beads with a selected fraction of high-density 

polyethylene (d0.1 = 113.0 m; d0.5 = 214.6. m; d0.9 = 391.8 m; 

dSV = 180.7 m) of the 1% of weight percentage was prepared. 

 

Figure III.11 Particle size distributions of experimental materials (for 

each class, di+1/di = 1.148). Solid line ( ̶ ): FCC powder. Dotted line (····): 

fly ashes. Short dashed line: ( ̵  ̵ ): corundum. Dash-dotted line ( ̵ ··): 

porous alumina. Long dashed line ( ̶   ̶ ): glass beads. 
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Chapter IV 

Experimental results 

 

 

 

 
IV.1 SEM magnifications 

SEM magnifications of sample of all materials were carried out in order 

to observe the shape and the surface properties of particle and to make 

qualitative and quantitative evaluations at the microscale level, in particular 

about the magnitude of the interparticle interactions and the their role 

affecting the flow properties of powders at high temperature as well as at 

room temperature. 

Figure IV.1 reports the images of the performed SEM magnifications. 

They show a very rough surface for FCC particles and porous alumina 

differently from corundum and glass beads. Furthermore, the high sphericity 

shape of this material is the closest to the Rumpf and Molerus hypotheses in 

the derivation of their models, confirming the consistency to use glass beads 

as reference material. On the other hand, corundum powder is characterized 

by a very low sphericity. 

For FCC, alumina and corundum, these evidences suggest to consider 

mean curvature radius at the contact point lower than the mean particle size 

for the quantitative evaluation of the interparticle forces. Finally, SEM 

magnification for fly ashes confirms the wide range of particle size while 

particles of HDPE can be clearly observed in Figure IV.1f, mixed to the 

glass beads. 

 

IV.2 DSC analysis 

In order to evaluate the thermal behaviour of materials and better 

understand the physical phenomena occurring between particles at high 

temperature, DSC (Differential Scanning Calorimetry) analysis were 

performed on the experimental materials. 

According to the objective of this PhD work, DSC analysis was 

performed in order to verify the occurring of transformation that, in such 

way, can affect the powder flow properties, like phase transitions. In 
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particular, the temperature program adopted for these tests provides a linear 

temperature increase from 25°C to 500°C at 10°C/min, a time of 15 min 

during which the temperature is held constant and a linear temperature 

decrease from 500°C to 25°C at 10°C/min. The heat flow was assumed 

positive when outgoing from the sample. 

Figures IV.2a and IV.2b report the DSC curve for FCC powder before 

and after the drying of the sample of the material in an oven at 200°C, 

according to the procedure for shear test with HT-ASC (par. III.1.2). The 

a 

b 

d 

e 

c f 

Figure IV.1 SEM magnifications of experimental materials; (a) FCC 

powder (X = 1000); (b) fly ashes (X = 500); (c) corundum (X = 500); (d) 

porous alumina (X = 1000); (d) Glass beads (X = 200); (e) Glass beads 

mixed with HDPE (1%w) (X = 100). 
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more prominent negative peak slightly about 100°C of the first case is due to 

the presence of moisture which evaporates at this temperature. In fact, a 

humidity of 8.70% was measured for FCC powder before the pretreatment in 

front of a 1.39% of the second case (OHAUS Humidity Analyzer MB45), 

confirming that a drying treatment is necessary before the tests. However, no 

melting points were observed up to 500°C. 

The behaviour of fly ashes in the DSC test is showed in Figure IV.3. The 

two small negative peaks at about 50°C and under 450°C are probably due to 

the presence of impurities in the sample which disappears during the 

decreasing temperature step. 

For the corundum powders, porous alumina and glass beads, nothing 

significant was observed during the DSC test. For these materials, like for 

Figure IV.2 DSC analysis of FCC powder before (a) and after (b) the 

drying of the sample at 200°C. Solid line (—): increasing temperature. 

Dotted line (∙∙∙∙): decreasing temperature. 

a 

b 
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fly ashes, DSC analysis show there are not melting points or other phase 

transitions in this temperature range, as reported in Figures IV.4, IV.5 and 

IV.6. 

For these materials no liquid bridges occur during tests and interparticle 

interactions are not related to capillary forces. 

On the other hand, the DSC curve of high-density polyethylene (HDPE), 

reported in Figure IV.7, shows a phase transition corresponding to the 

melting of the material between 100°C and 120°C. This test was performed 

with a different temperature program, providing a linear temperature 

Figure IV.3 DSC analysis of fly ashes. Solid line (—): increasing 

temperature. Dotted line (∙∙∙∙): decreasing temperature. 

Figure IV.4 DSC analysis of corundum powder. Solid line (—): 

increasing temperature. Dotted line (∙∙∙∙): decreasing temperature. 
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increase from 25°C to 250°C at 10°C/min, a time of 15 min during which the 

temperature is held constant and a linear temperature decrease from 250°C to 

25°C at 10°C/min. For the mixture of glass beads and HDPE liquid bridge 

will occur during shear test performed at temperature higher than the melting 

point. 

 

IV.3 Experimental measurements of flow properties with HT-ASC 

After the set-up of the High Temperature Annular Shear Cell through 

which the ability of the modified shear cell to correctly operate up to 500°C 

Figure IV.5 DSC analysis of porous alumina. Solid line (—): increasing 

temperature. Dotted line (∙∙∙∙): decreasing temperature. 

Figure IV.6 DSC analysis of glass beads. Solid line (—): increasing 

temperature. Dotted line (∙∙∙∙): decreasing temperature. 
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was verified, yield loci and powder flow properties are directly measured for 

specified conditions of consolidation and temperature in order to highlight 

the effect of temperature on the flow behaviour of powders. 

In this section, experimental results are distinctly reported for each 

experimental material. All experimental values are listed in Table IV.1 at the 

end of the chapter. 

 

IV.3.1 FCC powder 

Yield loci of the FCC powder were measured at 20°C (room temperature) 

and 500°C. 

In order to extend the experimental evidences to fluidized condition, in 

which FCC powder is commonly utilized in chemical industry, shear tests 

were performed at low consolidation level for major principal stress 1 about 

1000 Pa and 1200 Pa. 

Measured yield loci are reported in Figure IV.8. Although a shift upwards 

with the temperature was observed at 1 ≈ 1000 Pa, the same behaviour is 

not repeated at higher consolidation level. Inspection of the flow functions in 

Figure IV.9 does not show a significant change of the flow properties of 

FCC powder with the increasing temperature. In particular, experimental 

results do not evidence a monotone behaviour.  

Somehow, this was expected. FCC powder is commonly used as catalyst 

of cracking of oil in fluidized bed and it is desirable that the flow properties 

of this powder do not change up to the operating temperature of 650÷750°C. 

On the other hand, it is not in agreement with the results of Xie and Geldart 

(1995), for which the inability to estimate the properties of fluidized bed at 

Figure IV.7 DSC analysis of high-density polyethylene. Solid line (—): 

increasing temperature. Dotted line (∙∙∙∙): decreasing temperature. 
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high temperature by classic correlations based only on hydrodynamic 

hypotheses was the result of the increase of the relative weight of the 

interparticle forces. 

However, measurements performed at the lower consolidation levels do 

not appear fully reliable. This is probably due to the contribution of the 

forces exerted on the cell lid by the electric wiring of the lid heater that 
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Figure IV.8 Measured yield loci for FCC powder with HT-ASC at (a) 

1 ≈ 1000 Pa (: 1 = 997 Pa, T = 20°C; : 1 = 1004 Pa, T = 500°C) 

and (b) 1 ≈ 1200 Pa ( : 1 = 1205 Pa, T = 20°C; : 1 = 1186 Pa, 

T = 500°C). 
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should be completely isolated. These contributions are difficult to be 

completely neutralized or accurately accounted for and have a non negligible 

effect on the points of the yield loci as the measurements were performed at 

low ζ values. 

For this reason, tests for all the other materials were performed at higher 

consolidation loads. 

 

Figure IV.10 Measured flow function for fly ashes at 20°C () and 

500°C (). 

2 < ffC < 4 
4 < ffC < 10 

ffC > 10 

ffC < 1 
1 < ffC < 2 

2 < ffC < 4 

4 < ffC < 10 

ffC > 10 

Figure IV.9 Measured flow function of FCC powder at 20°C () and 

500°C (). 
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IV.3.2 Fly ashes 

The cohesive behaviour at high temperature of fly ashes affects the 

correct working of filters and separators of flue gases of combustion. 

For this powder, shear tests were performed at 20°C and 500°C for 

normal consolidation stress 1 about 4000 and 13500 Pa. 

normal stress  σ  (Pa) 

Figure IV.11 Measured yield loci for fly ashes with HT-ASC at 

(a) 1 ≈ 4000 Pa (: 1 = 4221 Pa, T = 20°C; : 1 = 4336 Pa, 

T = 500°C) and (b) 1 ≈ 13500 Pa (: 1 = 13530 Pa, T = 20°C; 

 : 1 = 13534 Pa, T = 500°C). 
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Figures IV.10 and IV.11 represent flow function and yield loci evaluated 

at room and high temperature. 

Also in this case, the flow properties of powder samples do not show 

significant change with the temperature. 

 

IV.3.3 Corundum 

Measured flow functions and yield loci for corundum powders at 20°C 

and 500°C for major principal stress 1 about 4500°Pa and 14000 Pa are 

showed in Figure IV.12 and IV.13 

These experimental evidences, for which no significant variation of flow 

behaviour of powder was observed, are not in agreement with the 

conclusions of Formisani et al. (2002). In fact, in the absence of electrostatic 

and capillary forces, they attributed the increase of the voidage in fixed and 

fluidized state at high temperature as an increase of the van der Waals forces 

and not only to the effect of the increase of viscosity of the fluidizing gas. 

According to these authors, the increase of van der Waals interactions should 

have increased the cohesive behaviour of powders and flow properties as the 

cohesion and the unconfined yield strength. On the other hand, Figure IV.12 

shows flow functions evaluated at room and high temperature almost 

overlapped as well as the results reported in Table IV.1 does not differ 

significantly. The particle-particle analysis developed in detailed in chap. V 

will try to interpret this experimental evidences and the physical phenomena 

occurring at microscale. 

 

Figure IV.12 Measured flow function for corundum powder at 20°C () 

and 500°C (). 

4 < ffC < 10 

ffC > 10 
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IV.3.4 Alumina 

A sample of a synthetic porous -alumina powder was tested for major 

principal stress 1 about 4000 Pa and 13500 Pa at room temperature and 

500°C. 
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Figure IV.13 Measured yield loci for corundum powder with HT-ASC at 

(a) 1 ≈ 4500 Pa (: 1 = 4329 Pa, T = 20°C; : 1 = 4652 Pa, 

T = 500°C) and (b) 1 ≈ 14000 Pa (: 1 = 14126 Pa, T = 20°C; 

 : 1 = 13795 Pa, T = 500°C). 



Chapter IV 

56 

Differently from natural corundum, a very small increase of the cohesion 

occurs in this temperature range. Although yield loci measured at room and 

high temperature in Figure IV.14 are as good as overlapped, this slight effect 

appears more clearly comparing the flow functions at 20°C and 500°C 

(Figure IV.15). On the other hand, the level of consolidation does not affect 

the cohesive behaviour of powder, with an unconfined yield strength fc 

virtually constant with the major principal stress 1. 
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Figure IV.14 Measured yield loci for porous alumina with HT-ASC at 

(a) 1 ≈ 4000 Pa (: 1 = 4000 Pa, T = 20°C; : 1 = 4033 Pa, 

T = 500°C) and (b) 1 ≈ 13500 Pa (: 1 = 13384 Pa, T = 20°C; 

 : 1 = 13654 Pa, T = 500°C). 

a 
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IV.3.5 Glass beads 

For their perfectly spherical shape and smooth surface, as showed in 

SEM magnification (Figure IV.1e), so that to be considered a model material 

related to the particle-particle approach developed b Rumpf (1974) and 

Figure IV.15 Measured flow function for porous alumina at 20°C () 

and 500°C (). 

ffC > 10 

4 < ffC < 10 

Figure IV.16 Measured flow function for glass beads at 20°C () and 

500°C (). 

ffC > 10 

4 < ffC < 10 
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Molerus(1993), shear tests at high temperature were performed with glass 

beads. 

In particular, yield loci at room temperature and 500°C were evaluated 

for compaction about 3500 Pa and 12000 Pa (Figure IV.17). In this case, 

differently from the other materials, a small but significant increase of 

cohesion and, therefore, of the flow factor were observed, as reported in 
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Figure IV.17 Measured yield loci for glass beads with HT-ASC at 

(a) 1 ≈ 3500 Pa (: 1 = 3421 Pa, T = 20°C; : 1 = 3563 Pa, 

T = 500°C) and (b) 1 ≈ 12000 Pa (: 1 = 11689 Pa, T = 20°C; 

 : 1 = 11970 Pa, T = 500°C). 
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Table IV.1. It appears more clearly observing flow functions, in Figure 

IV.16. Although the flow behaviour of powder remains in the free flowing 

field (ffc > 10) according to the Jenike classification (1964), a reduction of 

the flow factor from about 30% to 50% was observed. Furthermore, the 

effect is more evident for the higher consolidation level. 

 

IV.3.6 Glass beads mixed with 1%w of high density polyethylene 

The experimental evidences reported in literature induced to analyze the 

behaviour of powder sample for which some components melt and liquid 

bridges form, in order to verify the role of the capillary forces on the flow 

properties of bulk solids at high temperature. 

For this purpose, a mixture of pure glass beads and 1%w of HDPE was 

tested at room temperature, 75°C, 100°C, 125°C, 150°C and 200°C for the 

specified consolidation stress 1 about 3500 Pa. All the experimental results 

are reported in Table IV.1. 

In this case, the powder flow properties did not change up to 100°C, 

before the melting temperature of HDPE, according to the thermal behaviour 

observed by DSC analysis (par. IV.2). From 100°C to 125°C, the cohesion 

immediately increase with significant variations of the powder flow 

properties. Figure IV.18 represents yield loci measured at 100°C and 125°C 

where it appears clearer. On the other hand, flow properties remain constant 

from 125°C to 200°C. 
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Figure IV.18 Measured yield loci for the mixture of glass beads and 

HDPE (1%w) measured with HT-ASC at 100°C () and 125°C () for 

major principal stress about 3500 Pa. 
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This large enhance of the cohesive behaviour from room to high 

temperature is attributed to the formation of liquid bridges between particles 

and the onset of capillary forces between particles that are 2-3 orders of 

magnitude higher than van der Waals’ forces. 

In Figure IV.19, a comparison between “pure” glass beads and the 

mixture of glass beads and HDPE at room temperature and after a shear test 

at 125°C is reported. Inspection of this figure shows aggregates in the 

powder sample formed by the melting of the HDPE particles that remain 

stable also when the sample returns to the room temperature, at which SEM 

visualizations were carried out. 

The presence of aggregates localized in different point inside in the 

powder sample which are not homogeneously distributed in the bulk solid is 

not in agreement with the hypothesis of the theory of Rumpf and Molerus 

which provides uniform packing and forces transmitted with contact point at 

the surface of the particles. 

Therefore, the particle-particle analysis, developed in successful chapter, 

may not be extended to this system. However, these results confirm the 

experimental evidences reported in literature (Kanaoka et al., 2001; Kamiya 

et al., 2002; Hurley et al., 2006; Zimmerlin et al., 2008) for which a large 

increase of the cohesive behaviour of bulk solid at high temperature attains if 

liquid bridge or sintering take place. 
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Figure IV.19 SEM magnification of samples of (a) glass beads (X = 80); 

(b) glass beads + HDPE (1%w) at room temperature (X = 50); (c) glass 

beads + HDPE (1%w) after a shear test at 125°C (X = 80). 

a 

b 

c 
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Table IV.1 Results of measurements performed with HT-ASC 

Material 
T 

(°C) 
1 

(Pa) 

C 

(Pa) 
 
(-) 

e 

(-) 

fc 

(Pa) 

ffc 

(-) 
t 

(Pa) 

FCC powder 20 981 45 32.3 36.6 163 6.02 71.2 

FCC powder 500 1004 69 32.7 39.4 252 3.98 107.5 

FCC powder 20 1205 65 31.8 36.9 234 5.15 104.8 

FCC powder 500 1186 68 31.1 36.5 241 4.92 112.7 

Fly ashes 20 4221 319 31.4 38.8 1137 3.71 522.6 

Fly ashes 500 4336 338 34.9 42.8 1297 3.34 484.5 

Fly ashes 20 13530 553 33.0 36.9 2040 6.63 851.5 

Fly ashes 500 13534 506 31.3 34.7 1799 7.52 832.2 

Corundum 20 4329 104 34.9 37.1 399 10.86 149.0 

Corundum 500 4652 68 37.0 38.3 271 14.98 90.2 

Corundum 20 14126 250 34.1 35.7 943 17.14 369.2 

Corundum 500 14795 251 37.7 39.3 1023 14.46 324.7 

Alumina 20 4000 125 32.1 35 452 8.84 199.3 

Alumina 500 4033 157 31.4 35 559 7.21 257.2 

Alumina 20 13384 149 32.1 33.1 541 24.74 237.5 

Alumina 500 13654 168 32.1 33.2 608 22.44 267.8 

Glass beads 20 3421 70 24.0 25.7 215 15.94 157.2 

Glass beads 500 3563 103 25.9 28.3 329 10.83 212.1 

Glass beads 20 11689 93 24.2 24.8 287 40.76 206.9 

Glass beads 500 11970 171 24.2 25.3 528 22.67 380.5 

Glass beads + 

1%w HDPE 
20 3419 82 24.6 26.6 255 13.43 179.1 

Glass beads + 

1%w HDPE 
75 3364 80 23.8 25.8 244 13.77 181.4 

Glass beads + 

1%w HDPE 
100 3393 88 23.7 25.8 268 12.65 200.5 

Glass beads + 

1%w HDPE 
125 3602 190 26.4 31.1 614 5.87 382.8 

Glass beads + 

1%w HDPE 
150 3592 202 25.8 30.8 643 5.59 417.9 

Glass beads + 

1%w HDPE 
200 3493 205 24.8 29.8 641 5.57 443.7 
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Model results and sensitivity 

analysis 

 

 

 

 
V.1 Estimate of the mean curvature radius at contact points 

Except for the glass beads mixed with low-melting HDPE, the 

experimental conditions at which shear test were performed provided 

absence of electrostatic and capillary forces. Furthermore, drying in oven at 

200°C before shear tests and the high temperature ensures the absence of 

liquid bridge due to the humidity. DSC analysis confirmed the absence of 

melting point for each experimental material in the range of operating 

temperature. Therefore, the interparticle interactions occurring in these cases 

can be associated only to van der Waals’ forces. 

In general, a not univocal effect of temperature on the powder flow 

properties was observed experimentally. In fact, although for FCC powders, 

fly ashes and corundum no change with the temperature was measured, a 

very small increase and a more significant enhance of the cohesion appear 

from shear tests on porous alumina and glass beads respectively. 

A quantitative evaluation was performed n order to better understand the 

kind of interparticle interactions occurring inside the shear cell, to give an 

interpretation of the physical phenomena that takes place at room and high 

temperature at the particle-particle level and to correlate the powder flow 

properties with the forces that acts between particles with the aim to extend 

the experimental findings to different compaction conditions. 

In particular, a theoretical framework was developed according to the 

theory of Rumpf (1974) and Molerus (1985 and 1993), already introduced in 

section I.6. In this approach the following assumptions were considered: 

1. particles are assumed to be spherical; 

2. the contact areas between particles are small enough in comparison 

with the particle surfaces. Consequently, contact areas can be assumed 

as contact points; 
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3. the contact points are distributed over the sphere surface with equal 

probability; 

4. the packing structure is isotropic; 

5. the transmission of an isostatic state of compressive stress occurs with 

three equal principal stresses. 

Following these assumptions, the proper hypothesis made in this work 

considers the theoretically condition of the tensile strength t as representing 

a bulk solid in which only van der Waals’ kind of forces, FvdW, act at the 

contact points between particles considering environmental conditions in 

which liquid bridges and electrostatic forces do not occur, as mentioned 

above. In fact, tensile strength represents the tensional state of a bulk solid in 

which only normal binary forces act between particles, without any shear 

stress or external normal load to take into account. According to this 

hypothesis, eq. (I.38) is valid for this analysis. Finally, the particle Sauter 

mean diameter dSV appears in place of the uniform particle diameter as 

representative of the size distribution of particles and eq. (I.38) becomes: 

 vdW
t 2

SV

1F

d

 
 


 (V.1) 

In particular, in this study two main cases were studied, as described in 

detail in par. I.6.1: 

1. a reversible elastic behaviour of powder, for which van der Waals 

interactions in tensile condition are described by eq. (I.7): 

vdW 2
012

A
F

z


  (I.7) 

2. an irreversible plastic behaviour, for which flattenings occur at contact 

points between particles due the external load applied during the 

preconsolidation of the powders at the preshear of the shear test. In 

this case, the van der Waals’ force can be expressed by eq. (I.37): 

 

 
N f 0

vdW 2 3
0 f 0

1 2

12 1 6

F p zA
F

z A p z

  


 
 (I.37) 

where pf is plastic compression yield pressure of hindered material 

that, according to Molerus (1993), is related to the compressive yield 

strength f as pf ≈ 3f and FN is the compressive contact force exerted 

during the preshear that, likewise eq. (V.1), is equal to: 

 

2
1 SV

N
1

d
F

 


 
 (V.2) 

defining an implicit dependence of the tensile strength t with the 

major principal stress 1 for the case of plastic deformation. 

The main problem of this approach is related to the difficulty to know 

with greater accuracy the properties of materials appearing in previous 

equations, such as the Hamaker constant A, the compressive strength ζf and 
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the mean curvature radius δ. In fact, the impossibility of finding these data 

for fly ashes because of the unknown composition of this material did not 

allow performing this analysis on it. Furthermore, the voidage calculated 

from the height of the powder sample in the shear cell is only an averaged 

value and is not representative of the local value in the shear zone which 

develops during shear tests and it is not always possible to exactly measure 

the voidage ε. 

In this work, an estimate of the mean curvature radius  was performed 

assuming material properties as Hamaker constant A and compressive 

strength f reported in Table III.2 and a reference porosity  = 0.4, according 

to typical values for bulk solids in compacted condition. 

For this purpose, for each material, the values of the mean curvature 

radius δ
*
 which allow the best fitting of the estimated tensile strengths to the 

experimental values t at room temperature were calculated for both elastic 

(δ
*
el) and plastic (δ

*
pl) case considering eq. (I.7) and eq. (I.37) in eq. (V.1) 

alternatively. For the elastic case, in particular, the best fitting was applied 

on the experimental value at lower major principal stress 1, in order to 

verify, in the successive section, the role of porosity and compressive 

strength to the prediction of the change of the powder flow properties with 

the consolidation. 

These results are summarized in Table V.1 and indicate an increasing of 

theoretical curvature radius from FCC powder to corundum and to glass 

beads respectively. These values somehow confirm what was expected by 

inspecting SEM images in Figure IV.1. In fact, for FCC it was expected a 

relevant radius of the contact point of the order of the particle roughness, 

which is around the micrometer. For corundum it was expected a relevant 

radius of the contact point of the order of the particle edges, which is few 

micrometers. For glass beads it was expected a relevant radius of the contact 

point of the order of the particle size, which is some tens of micrometers. 

On the other hand, for porous alumina, despite of the high roughness of 

surface observed in SEM magnification in Figure IV.1d, slightly higher best 

fitting values 
*
 were evaluated respect to a curvature radius at contact points 

of the order of the micrometer. 

Of course, discrepancies between theoretical and experimental values 

may be attributed to the many simplifying assumptions adopted in the 

model. These results, however, confirm that this simple model provides a 

correct order of magnitude of the tensile strength and, therefore, a reasonable 

Table V.1 Best fitting mean curvature radius δ
*
 assuming elastic (δ

*
el) and 

plastic (δ
*
pl) deformation 

 FCC powder Corundum Alumina Glass beads 


*
el (m) 1.04 8.57 14.5 78.1 


*
pl (m) 0.81 7.75 7.37 27.7 
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estimate of van der Waals interactions if a plausible value of the curvature 

radius is taken into account. 

 

V.2 Sensitivity analysis on the theoretical framework 

In the previous section the difficulties related to finding material 

properties as the Hamaker constant A and the compressive strength f as well 

as to estimate experimentally the mean curvature radius  and the porosity  

were mentioned. 

On the other hand, a quantitative evaluation on this theoretical framework 

was needed in order to verify the validity of the assumptions and to better 

understand the physical phenomena occurring between particles at high 

temperature. 

The mean curvature radius  was varied in order to evaluate the role of 

this parameter on the correct estimate of interparticle interactions and flow 

properties of powders. For this purpose, experimental and estimated tensile 

strength t were compared considering: 

- a perfect spherical shape and no asperities on the surface of the 

particles with the mean curvature radius corresponding to the radius 

of the particles ( = dSV/2); 

- a mean curvature radius  as a fraction n of the mean Sauter diameter 

dSV, where: 

SVd

n
   (V.3) 

In particular, the sensitivity analysis was performed for a fraction n of 20 

and 100, considering both the case of elastic and plastic deformation. 

The sensitivity analysis was developed also with the voidage . In this 

case, in particular, the experimental and estimated tensile strengths for best 

fitting mean curvature radius 
*
were compared with variations of ±10% than 

the hypothesized value of  = 0.4. In fact, theory and experimental 

experience suggest that no large deviations of the voidage with the 

consolidation level occur for easy (4 < ffc < 10) and free flowing powders 

(ffc > 10) like the experimental materials. This analysis proposed to better 

understand if the change of flow properties with consolidation load and 

temperature may be imputable only to the change of voidage and thus to the 

variation of the number of contact points between particles inside the bulk 

solid or plastic deformations and the increase of the van der Waals’ forces 

due to the presence of flattenings have to be taken into account. Also for the 

sensitivity analysis, the cases of elastic and plastic resistance at contact 

points were considered alternatively. 

Finally, for the irreversible plastic case, a sensitivity analysis was carried 

out also for the compressive strength f. This is another key parameter for 

which values in literature are difficult to find at room and high temperature. 
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Furthermore, they are often approximated and referred to unhindered 

condition, differently from the case of a bulk solid, where all the particles are 

in contact each other. To take into account it the rough correlation pf ≈ 3f 

was considered as previously mentioned. The analysis of the relative weight 

of this variable helps to understand better comprehension of the behaviour of 

powders inside the shear cell at room and high temperature. In this analysis, 

the comparison between experimental and estimated tensile strength was 

developed considering variations of ±40% of f. 

In the following sections the results of this sensitivity analysis are 

reported for each materials separately, except for fly ashes for which the 

unknown composition did not allow providing values for the Hamaker 

constant A and the compressive strength f. 

 

V.2.1 FCC powder 

In Figures V.1 and V.2 the estimated tensile strength for reversible elastic 

and irreversible plastic behaviour are showed. In figures are not reported the 

cases of perfect spherical shape of particles ( = dSV/2) for which values of 

the tensile strength t about 1400 Pa was calculated. However, the sensitivity 

analysis for 1/20 and 1/100 of the Sauter mean diameter were carried out. 

This analysis confirmed that an improper value of the mean curvature radius 

produces significant errors in the evaluation of the tensile strength. 

Furthermore, an order of magnitude between 1/20 and 1/100 of the particle 

size are able to describe the surface properties at contact points of the 

particle. 

Considering the best fit mean curvature radius, 
*
el and 

*
pl, the sensitivity 

analysis on the bed voidage  was performed. Observing Figures V.3 and 

V.4, according also to the evidences in Figure V.2, a good estimate at room 

temperature of the tensile strength with the major principal stress is possible 

only taking into account both the decrease of voidage, plausibly due to a 

more compaction of the material, and the plastic deformation at contact 

points. 

Figure V.5, as expected, shows an increase of the slope of the estimated 

tensile strength as the compressive strength reduces. In particular, from this 

figure, a decrease of the compressive strength with the temperature appears 

plausible. 

 

V.2.2 Corundum 

For corundum powder, the sensitivity analysis on the mean curvature 

radius is represented in Figures V.6 and V.7. Both the assumptions of elastic 

and plastic behaviour are able to described the experimental data for mean 

curvature radius slightly higher than 1/20 of dSV, according to the results of 

section V.1. 
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Figure V.1 FCC powder - Sensitivity analysis on the mean curvature 

radius  assuming pure elastic contact. : t,exp – 20°C;  

: t,exp – 500°C; - - -: t,el ( = 
*

el); —: t,el ( = dSV/20); 

····: t,el ( = dSV/100). 

 

 

 

 

 

Figure V.2 FCC powder - Sensitivity analysis on the mean curvature 

radius  assuming pure plastic contact. : t,exp – 20°C; 

: t,exp – 500°C; - - -: t,pl ( = 
*
pl); —: t,pl ( = dSV/20); 

····: t,pl ( = dSV/100). 
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Figure V.3 FCC powder - Sensitivity analysis on the voidage  assuming 

pure elastic contact. : t,exp – 20°C; : t,exp – 500°C; 

—: t,el ( = 
*
el;  = 0.4); ····: t,el ( = 0.36); - - -: t,el ( = 0.44). 

 

 

 

Figure V.4 FCC powder - Sensitivity analysis on the voidage  assuming 

pure plastic contact. : t,exp – 20°C; : t,exp – 500°C; 

—: t,pl ( = 
*
pl;  = 0.4); ····: t,pl ( = 0.36); - - -: t,pl ( = 0.44). 
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Experimental and predicted values have a good agreement at room 

temperature considering the best fit mean curvature radius 
*
pl and assuming 

plastic deformation, as in Figure V.7. In particular with these hypotheses the 

increase of the tensile strength with the consolidation level was predicted. 

On the other hand, the decrease of voidage for the elastic case is not able to 

justify the enhance of the tensile strength with the major principal stress 

(Figure V.8). 

Differently from FCC powder, the experimental tensile strength t 

decreases with the temperature. This singular behaviour, in compliance to 

the adopted physical model, can be explained only making the hypothesis of 

increase of the voidage, as suggested by Formisani et al. (2002). 

Finally, the experimental change of the tensile strength with temperature 

suggests that no significant change of the physical properties of the material 

occurs at high temperature for this material, as evaluated with the sensitivity 

analysis on the compressive strength showed in Figure V.10. 

 

V.2.3 Alumina 

The sensitivity analysis on the main parameters of the theoretical 

framework for porous alumina was performed and reported in following 

figures. 

Figure V.5 FCC powder - Sensitivity analysis on the compressive 

strength f assuming pure plastic contact. : t,exp – 20°C;  

: t,exp – 500°C; —: t,pl ( = 
*
pl); ····: t,pl (f = +40%);  

- - -: t,pl (f = -40%). 



 Model results and sensitivity analysis 

71 

 

Figure V.6 Corundum - Sensitivity analysis on the mean curvature 

radius  assuming pure elastic contact. : t,exp – 20°C; 

: t,exp – 500°C; —: t,el ( = dSV/2); ····: t,el ( = dSV/20);  

- - -: t,el ( = dSV/100); −··:t,el ( = 
*
el). 

 

 

 

Figure V.7 Corundum - Sensitivity analysis on the mean curvature 

radius  assuming pure plastic contact. : t,exp – 20°C; 

: t,exp – 500°C; —: t,pl ( = dSV/2); ····: t,pl ( = dSV/20);  

- - -: t,pl ( = dSV/100);  ̶ ··:t,el ( = 
*
pl). 
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Figure V.8 Corundum - Sensitivity analysis on the voidage  assuming 

pure elastic contact. : t,exp – 20°C; : t,exp – 500°C; 

—: t,el ( = 
*
el;  = 0.4); ····: t,el ( = 0.36); - - -: t,el ( = 0.44). 

 

 

 

Figure V.9 Corundum - Sensitivity analysis on the voidage  assuming 

pure plastic contact. : t,exp – 20°C; : t,exp – 500°C; 

—: t,pl ( = 
*
pl;  = 0.4); ····: t,pl ( = 0.36); - - -: t,pl ( = 0.44). 
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In general, the very small variation of the experimental tensile strength 

with the major principal stress suggests that elastic behaviour at contact 

point occurs between particles, as confirmed by the good match between 

experimental and predicted value in Figure V.11. 

As mentioned in par. V.1, a discrepancy between the best fitting mean 

curvature radius estimated for elastic and plastic behaviour was calculated 

for porous alumina. It can be also observed comparing Figures V.11 and 

V.12. Assuming elastic resistance at the contact point, the decrease of the 

10% of the voidage seems to be sufficient to validate the small increase of 

the experimental tensile strength with the consolidation at room temperature 

(Figure V.13). 

On the other hand, the hypothesis of plastic behaviour is not able to 

predict the tensile strength of the powder, as showed in Figures V.14 and 

V.15. 

However, no one approach distinctly assumed is able to justify the slight 

increase of the tensile strength with the temperature. In this case, probably, 

an “intermediate” behaviour between pure elastic and pure plastic 

deformation can be hypothesized. 

 

 

 

 

 

Figure V.10 Corundum - Sensitivity analysis on the compressive strength 

f assuming pure plastic contact. : t,exp – 20°C;  

: t,exp – 500°C; —: t,pl ( = 
*
pl); ····: t,pl (f = +40%);  

- - -: t,pl (f = -40%). 
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Figure V.11 Alumina - Sensitivity analysis on the mean curvature 

radius  assuming pure elastic contact. : t,exp – 20°C; 

: t,exp – 500°C; —: t,el ( = dSV/2); ····: t,el ( = dSV/20); 

- - -: t,el ( = dSV/100);  ̶ ··:t,el ( = 
*
el). 

Figure V.12 Alumina - Sensitivity analysis on the mean curvature 

radius  assuming pure plastic contact. : t,exp – 20°C; 

: t,exp – 500°C; —: t,pl ( = dSV/2); ····: t,pl ( = dSV/20); 

- - -: t,pl ( = dSV/100); ̶ ··: t,pl ( = 
*
pl). 
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Figure V.13 Alumina - Sensitivity analysis on the voidage  assuming 

pure elastic contact. : t,exp – 20°C; : t,exp – 500°C; 

—: t,el ( = 
*
el;  = 0.4); ····: t,el ( = 0.36); - - -: t,el ( = 0.44). 

 

 

 

Figure V.14 Alumina - Sensitivity analysis on the voidage  assuming 

pure plastic contact. : t,exp – 20°C; : t,exp – 500°C; 

—: t,pl ( = 
*
pl;  = 0.4); ····: t,pl ( = 0.36); - - -: t,pl ( = 0.44). 
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V.2.4 Glass beads 

Glass beads were chosen in this work as reference material for their 

perfectly spherical shape and smooth surface for which are in according to 

the hypotheses of Rumpf (1974) and Molerus (1985 and 1993). 

The sensitivity analysis on the mean curvature radius  confirmed the 

results of the best fitting mean curvature radius 
*
 evaluated in previous 

section and of the same order of magnitude of the particle size. As showed in 

Figure V.16 and V.17, a mean curvature radius lower than 1/20 of the 

particle size underestimates the tensile strength both for elastic and plastic 

deformation. In this analysis the high sensitivity of the tensile strength with 

the curvature radius appears especially for great values of . 

For this material, the experimental results show a slight increase of the 

tensile strength as the consolidation stress increases, with a more evident 

effect at high temperature. The sensitivity analysis on the porosity, reported 

in Figures V.18 and V.19 suggests that irreversible plastic behaviour 

becomes prominent at high temperature respect to room temperature, for 

which the experimental values of the tensile strength are better estimated 

assuming pure elastic contacts between particles. This is probably due the 

decrease of the compressive strength of the material with the temperature, 

which seems plausible observing Figure V.20. 

 

Figure V.15 Alumina - Sensitivity analysis on the compressive strength 

f assuming pure plastic contact. : t,exp – 20°C; : t,exp – 500°C; 

—: t,pl ( = 
*
pl); ····: t,pl (f = +40%); - - -: t,pl (f = -40%). 
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Figure V.16 Glass beads - Sensitivity analysis on the mean curvature 

radius  assuming pure elastic contact. : t,exp – 20°C; 

: t,exp – 500°C; —: t,el ( = dSV/2); ····: t,el ( = dSV/20);  

- - -: t,el ( = dSV/100);   ̶ ··: t,el ( = 
*
el). 

 

 

 

Figure V.17 Glass beads - Sensitivity analysis on the mean curvature 

radius  assuming pure plastic contact. : t,exp – 20°C; 

: t,exp – 500°C; —: t,pl ( = dSV/2); ····: t,pl ( = dSV/10);  

- - -: t,pl ( = dSV/100);  ̶ ··: t,pl ( = 
*
pl). 
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Figure V.18 Glass beads - Sensitivity analysis on the voidage  assuming 

pure elastic contact. : t,exp – 20°C; : t,exp – 500°C; 

—: t,el ( = 
*
el;  = 0.4); ····: t,el ( = 0.36); - - -: t,el ( = 0.44). 

 

 

 

Figure V.19 Glass beads - Sensitivity analysis on the voidage  assuming 

pure plastic contact. : t,exp – 20°C; : t,exp – 500°C; 

—: t,pl ( = 
*
pl;  = 0.4); ····: t,pl ( = 0.36); - - -: t,pl ( = 0.44). 
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V.3 Discussion about the results of the sensitivity analysis 

First of all, this analysis highlights the significant sensitivity of the 

theoretical framework from the mean curvature radius  and the compressive 

strength f, for which an accurate evaluation is necessary for the correct 

prediction of the tensile strength and the interparticle interactions. 

Furthermore, the theoretical framework developed in this work provides 

correct order of magnitude if a plausible value of the mean curvature radius 

is assumed. 

One of the main assumptions of the theory of Rumpf and Molerus is to 

consider a uniform distribution of contact force on the surface of particles. 

With this hypothesis, the same response occurs at each contact point, elastic 

or plastic, when submitted to forces and stresses, depending on these stresses 

exceeds or not the plastic yield of the material. 

Although the original statements of the theoretical framework allowed 

providing correct order of magnitude of the estimated tensile strength and of 

the van der Waals’ interactions, a different distribution of contact forces 

appears more correct and reasonable. Induced anisotropy during preshear is 

probably one of the more intuitive causes of non-uniform packing, 

distribution of stress and thus of contact force inside the bulk solid. 

Let us consider a system with a non-uniform distribution of contact force 

submitted to the preshear. At this moment, elastic and plastic deformations 

Figure V.20 Glass beads - Sensitivity analysis on the compressive 

strength f assuming pure plastic contact. : t,exp – 20°C; 

: t,exp – 500°C; —: t,pl ( = 
*
pl); ····: t,pl (f = +40%); 

- - -: t,pl (f = -40%). 
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are distributed for all the contact points between particles. When the external 

consolidation load is removed, reversible elastic deformations return to the 

state before consolidation while flattenings at the contact surface due to the 

irreversible plastic deformation remain. In this case, the mean contact force 

attributed to van der Waals interactions FvdW of eq. (V.1) cannot be 

estimated considering pure elastic (eq. (I.7)) or pure plastic (eq. (I.37)) 

behaviour, but a mean value taking into account both the case has to be 

considered. In other words, pure elastic and pure plastic deformations 

represent extreme cases of the behaviour of all the contact points of particles. 

This could be the case of porous alumina, where the experimental 

evidences from room to high temperature represent a mid-span case between 

completely elastic and plastic behaviour. 

For FCC powder, the sensitivity analysis suggests that the slight increase 

of tensile strength at high temperature was explained as the effect of the 

decrease of the compressive strength. In any case, this is not in agreement 

with the results of Xie and Geldart (1995) which asserted that variations of 

the properties of fluidized bed at high temperature was the result of the 

increase of the relative weight of the interparticle forces. 

Similar conclusions were developed by Formisani et al. (2002) for which 

the increase of the bed voidage in fixed and fluidized conditions from room 

to high temperature for the same corundum analyzed in this work was 

attributed to an increase of the van der Waals’ forces. Although an enhance 

of the cohesive behaviour of this material was not experimentally observed 

(par. VI.3.3), the sensitivity analysis suggested a possible increase of the 

porosity from room to high temperature according to the experimental 

findings of the authors. 

According to these findings, the sensitivity analysis suggests that the 

increase of the cohesive behaviour with the temperature is mostly related to 

the plastic deformation of contact points and to the strength of the material, 

but could be partially compensated by an increase of powder porosity. 

Finally, it is important to highlight that for glass beads for which 

significant change of physical properties as the compressive strength was 

hypothesized from room to high temperature according to the sensitivity 

analysis, only very small variations of the macroscopic flow properties for 

this material were experimentally observed. 
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Conclusions 

 

 

 

 
This PhD work was aimed to investigate the effect of temperature on 

powder flow properties.  

A High Temperature Annular Shear Cell (HT-ASC), originally designed 

at the Department of Industrial Engineering of University of Salerno, was 

developed and set-up in order to perform direct measurements on powder 

samples at high temperature. 

FCC powder, commonly used as catalyst in cracking of oil, fly ashes, 

collected by filtering flue gas of combustion, corundum, for which literature 

attributed an increase of the interparticle interactions at high temperature 

(Formisani et al., 2002), porous -alumina and glass beads as reference 

material were analyzed. 

The thermal behaviour of the materials was studied by Differential 

Scanning Calorimetry (DSC) analysis up to 500°C. From the DSC curves no 

melting and any phase transitions were observed for these materials. A high 

content of humidity was measured for FCC powder. A drying treatment in an 

oven at 200°C was scheduled in experimental procedure in order to remove 

moisture before the test. In this condition, only van der Waals’ kind of 

interactions was considered plausible inside the powder sample without 

formation of liquid bridges. 

Yield loci up to 500°C were measured with HT-ASC. 

For FCC powder and corundum, experimental evidences did not show 

significant change of flow properties with the temperature. These results 

disagree with the literature for which change of fluidized behaviour for the 

same powders were found between room and high temperature, attributed to 

the increase of van der Waals’ forces (Xie and Geldart, 1995; Formisani et 

al., 2002). 

Measured yield loci and flow functions for fly ashes up to 500°C did not 

show change with the temperature, according with the DSC curve of this 

material for which melt does not occur in this range of temperature. This is 

in agreement with the literature for which an increase of the cohesive 

behaviour due to sintering phenomena was observed only at temperature 

above 800°C (Kanaoka et al., 2001). 
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On the other hand, for glass beads and, at a lower extent, for porous 

alumina, a slight increase of cohesion and of the unconfined yield strength 

was measured. 

In general, a not univocal effect of the temperature on the macroscopic 

powder flow properties can be outlined. 

 

In order to give an interpretation of the experimental evidences and to 

better understand the physical phenomena occurring at particle-particle level, 

a theoretical framework was developed according to the theory of Rumpf 

(1974) and Molerus (1985 and 1993). The tensile strength experimentally 

evaluated by shear tests was correlated to van der Waals’ force acting 

between particles assuming pure elastic and pure plastic deformation at 

contact points alternatively. 

Both the assumptions provided correct order of magnitude in terms of 

tensile strength, once a plausible value of the local curvature at contact 

points of particles has been taken into account by correctly considering the 

effect of surface roughness and asperities. The calculated best fitting values 

of mean curvature radius confirmed the evidences of the SEM 

magnifications where rough surfaces, as FCC powder and alumina, and not 

perfectly spherical shapes, as corundum, were observed. 

A sensitivity analysis was performed on the main parameters of the 

theoretical framework. 

This analysis suggested that the effect of consolidation at room 

temperature seems to be correctly predicted considering plastic deformation 

and the decrease of the voidage. 

At high temperature, the increase of the tensile strength with the 

temperature was mostly related to the plastic deformation of contact points 

and to the mechanical properties of the material, partially compensated by an 

increase of powder porosity, as observed for corundum. Although an effect 

of the temperature on the powder flow properties did not appears clearly, the 

increase of the voidage with the temperature for a powder bed was in 

agreement with experimental findings of Formisani et al. (2002) about this 

material. 

Finally, a significant increase of the macroscopic cohesive behaviour of 

powder with the temperature was measured in presence of a liquid phase 

which promoted the aggregation of the particles, as verified with shear tests 

and SEM magnifications performed on a prototype sample of glass beads 

mixed with the low-melting component high-density polyethylene powder. 

 

It could be reasonable to hypothesize a non-uniform distribution of 

contact forces inside the bulk solid. Only for the contact points where the 

compression force exceed the elastic yield of materials a plastic deformation 

would occur and would explain some of the experimental results. This 

assumption deserves further investigations in the future. 
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However, the results of this PhD work are promising and encourage 

further studies concerning the possibility of estimating interparticle cohesive 

interactions from measurements of powder flow properties with shear test 

and to extend these results also to different compaction conditions, in 

particular lower ones, like those relevant to fluidization. For this purpose, the 

development of a mathematical model and the analysis with more powerful 

tools (i.e. DEM) in order to have a rigorous evaluation of the contact forces 

inside the shear cell would give a significant contribution in this research 

field also considering the occurrence of liquid bridge and aggregation. 

In this research field, in parallel to the enhance in the modeling, 

improvements and novel technique for a more accurate evaluation of 

mechanical (i.e. compressive strength) and surface properties (i.e. 

dimensions of asperities) of particles are needed, also aimed to increase the 

availability of materials data. 

A final suggestion for future work is the further development of the HT-

ASC in order to operate at higher temperature and to extend the area of 

application of the novel tester to the main industrial applications using 

granular materials at high temperature. 
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List of symbols 

 

 

 

 
A Hamaker constant (J) 

Ar Archimedes number (-) 

AW wall adhesion (Pa) 

C cohesion (Pa) 

d particle diameter (m) 

dSV Sauter mean diameter (m) 

d10 10
th
 percentile diameter (μm) 

d50 volume median diameter (μm) 

d90 90
th
 percentile diameter (μm) 

eDOWN difference between the set-point temperature TSP and the bottom 

temperature TDOWN (°C) 

eUP difference between the set-point temperature TSP and the top 

temperature TUP (°C) 

fc unconfined yield strength (Pa) 

ffc flow factor (Pa) 

F force (N) 

FA force exerted by balancing system in Schulze Ring Shear Tester (N) 

Fc mean isotropic contact force (N) 

Fcap capillary force (N) 

Fec coulombic electrostatic force (N) 

Fei electrostatic force induced by a charged particle (N) 

Fg gravitational force (N) 

FN force at contact point due to the external consolidation (N) 

Fpl resistance force at contact point due to plastic deformation (N) 

Fvdw Van der Waals’ force (N) 

FW resistance force of the material at the contact point (N) 

g acceleration due to gravity (m s
-2

) 

k coordination number (-) 

h height of flattenings at contact surface (m) 

Hmf height of a bed of powder at minimum fluidization (m) 

N normal load applied in shear test (N) 

pf plastic compressive yield pressure of hindered material (Pa) 

P pressure (Pa) 



Listo of symbols 

90 

q electric charge of a particle (C) 

r1 radius curvature in the plane of the meridian of the liquid bridge (m) 

r2 radius curvature in the plane orthogonal to the meridian of the liquid 

bridge (m) 

R particle radius (m) 

Re Reynolds number (-) 

tDOWN time percentage of operation of the lower heater of HT-ASC (-) 

tUP time percentage of operation of the upper heater of HT-ASC (-) 

T temperature (°C) 

TDOWN measured temperature at the bottom of the HT-ASC (°C) 

TMID measured temperature in the middle of the HT-ASC (°C) 

TSP set-point temperature of the HT-ASC (°C) 

TUP measured temperature on the top of the HT-ASC (°C) 

umb minimum bubbling velocity (m s
-1

) 

umf minimum fluidization velocity (m s
-1

) 

z separation distance between particles (m) 

z0 separation distance between particles usually assumed in air (m) 

 

Greek letters 

 half-angle of the liquid bridge (deg) 

 angle defining a generic plane in the Mohr’s circle (deg)

 mean curvature radius at contact surface (m) 



 best fitting mean curvature radius at contact surface (m) 

ε voidage of the bulk solid (-) 

εi inner voidage of a particle (-) 

εmf voidage of a bed of powder at minimum fluidization (-) 

 angle of internal friction (deg) 

e effective angle of internal friction (deg) 

W angle of wall friction (deg) 

 viscosity of the fluidizing gas (or fluid) (kg m
-1

 s
-1

) 

 angle of the principal planes in the Mohr’s circle (deg) 

 coefficient of internal friction (-) 

W coefficient of wall friction (-) 

θ contact angle of the liquid on a surface (deg) 

ρb bulk density (kg m
-3

) 

ρf fluid density (kg m
-3

) 

ρp particle density (kg m
-3

) 

ρs solid density (kg m
-3

) 

 normal stress (Pa) 

c normal stress of preshear in shear test (Pa) 

f compressive yield strength (Pa) 

i normal stress on a plane orthogonal to i-direction (Pa) 

ζs surface tension (Pa) 
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ζt tensile strength (Pa) 

ζW normal stress at the wall (Pa) 

ζ1 major principal stress (Pa) 

ζ2 minor principal stress (Pa) 

 shear stress (Pa) 

c shear stress of preshear in shear test(Pa) 

ij shear stress in j-direction exerted on a plane orthogonal to i-direction 

(Pa) 

W shear stress at the wall (Pa) 

ξ dielectric constant (F m
-1

) 

ξ0 dielectric constant of the free space (C
2
 N

-1
 m

-1
) 

ξr relative dielectric constant (-) 

ψ sphericity of a particle (-) 

 

Subscripts 

el estimated value assuming elastic deformation 

exp experimental value 

pl estimated value assuming plastic deformation 
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Appendix A 

The exact analysis of the 

transmission of stresses in a 

packed bed 

 

 

 

 
In the following, the exact analysis of Molerus (1993) concerning with 

the transmission of stresses in a randomly packed bed of monodisperse 

spheres is reported. 

According to the hypothesis of par. I.6, assuming the equal probability of 

contact point over the sphere surface, the average number of contacts per 

surface element dAS of a sphere may then be computed as: 

S

2

d
d

4




A
K k

R
 (A.1) 

Let us consider the transmission of an isostatic stress  through an 

arbitrarily oriented plane AA, cutting an arbitrary sphere and which is distant 

 from the centre of the sphere, as represented in Figure A.1. It can be 

defined the absolute number of particles with centers distant from the plane 

AA between  and  + d as: 

   
n

n d
R

 (A.2) 

where n is the total number of particles cut by plane AA. 

The total compressive force transmitted by particles with centers distant 

from the plane AA in the interval (,  + d) then follows from eqs. (A.1) 

and (A.2), according to Figure A.1: 

S

N S2
d cos d d

4

 
   

 
A

k n
F F A

RR
 (A.3) 

According to Figure A.1: 

 
S

2 2
Scos d



     A A
A dA R  (A.4) 
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from eq. (A.3), considering the assumption of uniform distribution of 

forces on the contact surface, follows: 

 2 2

3
d d

4

  
 



NknF R
F

R
 (A.5) 

The compressive normal force transmitted in the cross-section AA of the 

packing is then: 

 2 2

3 0
d

64
   

R
N NknF knF

F R
R

 (A.6) 

The area of particle cut by the plane AA having the distance with the 

centers in the interval (,  + d) is: 

 2 2
Cd d   

n
A R

R
 (A.7) 

Consequently, the total area of the cut particles in the plane AA is: 

 
2

2 2
C

0

2
d

3

 
   

Rn R
A R n

R
 (A.8) 

According to the hypothesis of random packing, assuming volume void 

fraction ε equal to the area void fraction, it follows that the total area of the 

cut plane AA trough which the force is transmitted is equal to: 

   

2
C 2

1 3 1


 

   

A R
A n  (A.9) 

The isostatic normal compressive stress  = F/A is given by: 

Figure A.1 Force in an interparticle contact (Molerus, 1993). 
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 N

2

1

4

 
 



kF

R
 (A.10) 

which, with R = d/2, and considering contact force Fc transmitted only by 

normal interactions, is equivalent to eq. (I.32). 


