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1. INTRODUCTION 
 

1.1 Cancer-related inflammation 

Worldwide occurrence of autoimmune diseases and cancer is 

increased, this is particularly clear in more developed countries [1]. 

Several environmental factors, including pollution and increased 

average age, may play a role and partially explain this observation, but 

the concurrence of inflammation and cancer seems to be connected and 

not independent. Similarly, 

but from the opposite 

direction, the introduction of 

non-steroidal anti-

inflammatory drugs to 

protect for chronic 

inflammatory syndromes 

was able to protect patients 

from the increased risks of 

cancer development [2]. Epidemiological studies demonstrated that 

chronic inflammation predisposes to different forms of cancer, thus 

cancer-related inflammation, was recently included as the seventh 

hallmark of cancer [3].  

Before the introduction of effective therapeutic options, 

inflammatory bowel diseases (IBDs) were associated with increased risk 

of developing colorectal cancer (CRC). IBDs are chronic inflammation of 

Figure 1. Inflammation as the seventh hallmark of cancer 

[3]. 
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the gut that include Crohn Disease (CD) and Ulcerative Colitis (UC). 

IBDs are multifactorial disorders characterized by, abdominal pain, 

diarrhea and rectal bleeding [4].  

In patients with long-established IBD, the risk of developing colon 

cancer is increased, thus CRC was the perfect target to study the axis 

between chronic inflammation and cancer. 

CRC was first recognized as a complication of ulcerative colitis 

(UC) by Crohn and Rosenberg in 1925. Although CRC in UC patients 

only accounts for 1% of all cases of CRC seen in the general population, 

it accounts for one sixth of all deaths in UC patients. For this reason, it 

deserves a great attention. Since 1925, numerous epidemiological 

studies have confirmed an increased risk of CRC for UC patients in the 

first decade after an UC diagnosis [4]. More recent studies have reported 

that this risk at later stages of UC has decreased markedly over time and 

no longer exceeds that of the general population. Although the risk in 

adults continues to be a matter of debate, the general consensus from all 

studies agrees with the view that CRC risk is highest in patients who are 

diagnosed with UC during childhood, adolescence or young adulthood, 

especially in male patients. The reduced risk of CRC incidence in older 

UC patients over time reflects the results of improvements in the therapy 

of IBD patients and the introduction of routine endoscopic screening [5].  

Corticosteroids and especially, 5-ASA and thiopurines are used 

as chemopreventive agents due to their ability to inhibit, delay or reverse 

CRC in UC. Recently, biologic agents have been introduced for the 
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induction and the maintenance of therapy in IBD patients. In Europe, 

the approved agent is infliximab, a monoclonal antibody that blocks 

tumor necrosis factor α (TNFα), one of the most important molecules 

involved in the pathogenesis of IBD.  

However, conflicting reports exist concerning the relationship between 

infliximab and an increased risk of CRC and other forms of cancer in IBD 

patients receiving such therapy. While infliximab treatment has been 

associated with the development of carcinoid tumor, signet ring cell 

carcinoma of the bowel, breast cancer, lung cancer, and colorectal cancer, 

however, in other cases there was no significantly increased risk of 

cancer by TNFα antagonist exposure [6]. It is tempting to speculate that, 

due to the recent introduction of biological agents into the clinical 

practice, long-term observational studies of these treatment sequelae are 

needed. Furthermore, these divergent data are reported to be due to 

perhaps the intrinsic dual nature of the immunomodulatory drugs that 

both induce a decreased immunosurveillance, thereby providing 

advantages for oncogenic viruses, and exert a direct oncogenic effect for 

certain immunosuppressive drugs. These effects are not limited to the 

intestinal epithelium; in fact, cases of extra-intestinal neoplasia, such as 

lymphoproliferative disorders, skin and uterine cervical cancer have 

been reported in IBD patients under immunosuppressive treatment. 

Thus, immunosuppression and inflammation are the two main drivers 

of IBD-related carcinogenesis. The challenge is that these two 

mechanisms may be interlinked, particularly in the intestinal tissues.  
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The dual nature of TNFα activity is responsible for its paradoxical 

anti- and protumor activity depending on cell type, environment, dose, 

and other factors. On one hand, TNFα exerts its anti-tumoral potential 

by its interaction with death domain containing proteins and caspases 

that induce apoptosis. On the other hand, TNFα has a pro-tumoral 

activity resulting from the activation of NF-κB and mitogen-activated 

protein kinase pathways, which are in turn associated with 

inflammation and carcinogenesis [7].  

 

1.2 Inflammatory bowel diseases  

Inflammatory bowel diseases (IBD) include Crohn’s Disease (CD) 

and Ulcerative Colitis (UC), which are both chronic relapsing 

inflammatory disorders of the gastro-intestinal tract [8].  

The mucosal 

immune system 

is dynamically 

regulated to a 

state of tolerance 

to luminal 

antigens 

including 

commensal 

bacteria and food derived antigens. However, breaches of mucosal 

immune tolerance can occur due to both environmental and genetic 

Figure 2. IBD includes Crohn’s disease and Ulcerative colitis.   
 https://www.bowelcanceraustralia.org/bowel-diseases 
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factors resulting in perturbed intestinal homeostasis. Several different 

events can trigger inflammatory responses that may result in chronic 

inflammation and pathological changes associated with IBD. A common 

ground for this multifactorial disorder is an increased production of 

diverse panel of cytokines, [9] some of which are pro-inflammatory and 

hence targets for therapeutic blockade.  

As aforementioned, clinical investigations have led to the discovery of 

anti-TNFα 

monoclonal 

antibodies 

(Infliximab 

and others) 

which has 

dramatically changed the medical approach to IBD. Similar to CD, a 

subgroup of UC patients also exhibit increased TNFα levels in the colon. 

In fact, Braegger et al. reported the presence of TNFα in stool samples in 

such UC patients [10]. Animal models have significantly contributed to 

the elucidation of the pathological mechanisms of IBD and to the 

validation of immunological targets for IBD treatment [11].  

 

 

 

 

Figure 3. Perturbed intestinal homeostasis and cytokine production in IBD patients [9]. 
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1.3 Animal models of CRC 

To dissect the intricate relationship 

between inflammation and increased 

cancer risks we decided to take 

advantage of the well consolidated 

murine models of genetic predisposition 

leading to CRC (APCmin mice) and a low 

grade, spontaneous and progressive UC 

model (Winnie). We created a new murine model of colitis-associated 

cancer, the Winnie-APCMin model [12].  

The APCmin murine model is among the most frequently used model to 

study colorectal cancer (CRC), even if conventional protocols require the 

administration of dextran sodium sulfate (DSS) as inflammatory insult 

to develop CRC in a relatively short time. DSS specifically acts on the 

intestinal epithelium 

integrity to induce an 

acute inflammation 

characterized by 

multiple events that 

poorly represent the 

cascade of events that 

characterize the human 

ulcerative colitis [13-

15].  

Figure 4. H&E stain for histopathology of 

a murine colonic tumor tumor.  

Figure 5. H&E stain for histopathology of Winnie mice [Liso et al. 

Under Revision]. 
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To overcome this bias and create a reliable model of inflammatory 

induced CRC, we crossed APCmin with Winnie mice. Winnie colitis is due 

to a missense mutation in the Muc2 mucin gene resulting in spontaneous 

distal colitis developing as early as 5 weeks of age [16]. This intestinal 

epithelial defect conferring endoplasmic reticulum (ER) stress results in 

inflammation involving both innate and adaptive immunity. In the 

Winnie mouse the colonic pathology is predominantly mediated by the 

dysregulation of numerous cytokines, including elevated TNFα similar 

to human UC where the intestinal inflammation is most severe in the 

distal colon and the disease severity increases with age. 

The risk of neoplastic progression in IBD is multi-factorial.  This 

heterogeneity may at least in part be due to differences in genetic 

susceptibility, which may act in combination with various 

environmental factors including diet and intestinal microbial 

community [17]. In particular, the intestinal microbiota has recently 

acquired a great interest in the context of inflammation and 

carcinogenesis [18]. Murine models allow investigation of the intestinal 

microbiota and CRC-associated dysbiosis.  

For this reason, in parallel with the creation of a Winnie-APCmin colony, 

we investigated the possibility to use nutritional strategies to reduce the 

intestinal inflammation and prevent the associated intestinal dysbiosis. 

As dysbiosis has recently been suggested as the cause of disease 

recurrence for patient that achieved UC clinical remission, nutritional 
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strategies may prevent dysbiosis and, consequently, remove one of the 

inflammatory insult required for CRC development. 

1.4 Anti-inflammatory effects of polyphenols 

 

A major field of investigation of our laboratory is characterization of the 

anti-inflammatory properties of plant-derived polyphenols.  Dietary 

polyphenols are associated with a wide range of health benefits, 

protecting against chronic diseases and promoting healthy aging. 

Dietary polyphenols offer a complementary approach to the treatment 

of inflammatory bowel diseases (IBD), a group of common chronic 

intestinal inflammation syndromes for which there is no cure. Several 

studies have described the beneficial effects of plant-derived 

polyphenols as natural ligands that are able to reduce inflammation, 

with some inhibiting production of TNFα from cell lines of different 

Figure 6. Intraperitoneal administration of ROBs ameliorates 2% DSS-mediated acute colitis 

[20]. 
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origins in both in vitro and in vivo models [19, 20]. In our laboratory we 

previously compared numerous polyphenols and identified quercetin as 

one of the most potent suppressor of the inflammatory response [21]. 

Quercetin, similarly to many other phytochemicals, is a hydrophobic 

compound characterized by low solubility in water and consequent low 

bioavailability. These major limitations can be bypassed by developing 

efficient delivery systems that have the ability to protect, as well as 

release, polyphenols at the appropriate site of action. A wide variety of 

new delivery systems has been proposed, including liposomes, 

nanoparticles, and nanoemulsions [22]. Among these, plant oil bodies 

(OBs) represent a convenient and feasible option to achieve the 

aforementioned goals. OBs are lipid storage vesicles that are naturally 

found in plant seeds. Isolated OBs are remarkably stable due to the steric 

hindrance and electro-negative repulsion provided by surface proteins 

of the organelles [23, 24]. Reconstituted oil bodies (ROBs), as well as 

native OBs, have been previously reported as useful vehicles for the 

stabilization of curcumin and previously used by our research group to 

demonstrate the ability of polyphenol administration to suppress 

dendritic cells inflammatory pathway [21].  
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Another strategy recently-developed strategy to administrate hi-doses 

of stable polyphenols was developed by the research group of Prof. 

Cathie Martin [25]. In 

2008 they created a 

tomatoe line engineer 

to accumulate 

anthocyanin at 

concentrations 

comparable to the 

anthocyanin levels 

found in blackberries and blueberries. Possibly due to the polyphenol 

anti-inflammatory abilities and the previously unknown effect to the 

intestinal microbial communities, the administration of these tomato 

fruit to cancer-susceptible Trp53−/− mice resulted in a significant 

extension of life span [25].  

We recently obtained new lines of dried tomatoes fruit enriched in 

polyphenols to evaluate possibility to use nutritional regimes enriched 

in polyphenols to suppress the chronic intestinal inflammation and 

protect from intestinal dysbiosis.  

 

  

Figure 7. Wild type versus purple tomatoes [21]. 
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2. Aims 
 

2.1 Creation of a murine model of inflammatory induced CRC 

The development of murine models to study CRC development and 

progression has been crucial to better understand the disease and to 

develop new therapies. The most frequently used murine models of 

tumor development combine the administration of the carcinogen agent 

azoxymethane or the genetic predisposition APCmin with various agents 

promoting colonic injury such as DSS, oxazolone or enterotoxic bacteria 

Bacteroides fragilis [13, 26-28]. The aim of the study was to create a new 

murine line of spontaneous inflammatory-induced colorectal cancer 

combining the genetic predisposition APCmin with the mutation in the 

Muc2 gene that results in ER stress and spontaneous mild and 

progressive UC. 

In particular, we aim to: 

 Create and establish the Winnie-APCmin colony.  

 Characterize the development of neoplastic lesion in the intestine of 

this new model. 

 Characterize the intestinal molecular fingerprint of the new murine 

lines. 

 Characterize the intestinal microbiota of the new murine lines. 

 

2.2 Nutritional strategies to suppress intestinal inflammation and 

dysbiosis 

Together with numerous other research group, we already reported the 

anti-inflammatory potential of numerous natural bio-active compounds 

as potential candidate for prevention and treatment of the intestinal 

inflammatory response. [21, 29, 30] Despite evidences for the biological 

effects of these phytonutrients being reported, knowledge of the 

underlying molecular mechanisms activated upon polyphenols 

treatment remain poorly understood. A second parallel aim of the study 
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was to explore the possibility to prevent intestinal inflammation using 

nutritional derived bioactive compounds. To achieve this goal we 

studied the effects of quercetin administration to in-vitro cultured 

dendritic cells that are the most powerful antigen presenting cells. 

Furthermore we tested the effects of polyphenol enriched diet to the 

relative abundance of intestinal microbial species. 

In particular, we aim to: 

 Identify quercetin induced molecular mediators suppressing the 

inflammatory response. 

 Characterize the mechanism of the quercetin induced inflammatory 

suppression. 

 Evaluate the effects of nutritional intervention in the murine model 

of UC (Winnie). 

 

3. METHODS 
 

3.01 Mice  

The new murine transgenic line Winnie-APCMin was created by breeding 

Winnie mice, a murine line established from Dr. Eri’s group at the 

University of Tasmania, with APCMin mice murine line on a C57BL/6J 

background. WT, APCMin and secretory leukocyte protease inhibitor 

(SLPI) knockout mice murine lines were purchased from Jackson 

Laboratories (C57BL/6J, Stock No. 000664, C57BL/6J-ApcMin/J, Stock 

No. 002020, B6; 129-Slpitm1Smw/J,  Stock No: 010926 respectively) (Bar 

Harbor, ME, USA). All animal experiments were carried out in 

accordance with EU Directive n.63/2010 enforced by Italian D.L. 

n.26/2014, and approved by the Committee on the Ethics of Animal 
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Experiments of Ministero della Salute – Direzione Generale Sanità 

Animale (768/2015-PR 27/07/2015) and the official RBM veterinarian. 

Animals were sacrificed if found in severe clinical condition in order to 

avoid undue suffering. Winnie-APCMin mice and their parental lines 

were sacrificed at 5 weeks and colon was explanted to evaluate the 

clinical severity of colitis. C57BL/6 and Winnie mice were treated with 

different diet and sacrificed after two weeks of treatment. For the latter, 

mice weight, pellet consumption and drinking water were monitored on 

a daily basis. Each group of mice received a different diet. Freeze-dried 

tomato was supplemented by addition to a standard rodent diet (4RF18) 

at 1% (tomato based-diets). Groups of mice were fed with the different 

tomato supplemented diets for two weeks. Body weight, stool 

consistency and rectal bleeding were recorded. Mice were sacrificed at 

day 14, and colon and mesenteric lymph node (MLN) tissues were 

explanted to evaluate the clinical severity of colitis. Colon length and 

weight were measured as indicators of colonic inflammation. The 

colon/body weight indices were calculated as the ratio of the colon wet 

weight and the total body weight (BW), and as the ratio of the colon 

length and the total BW of each mouse. Genotyping was performed by 

PCR (APCMin) and qPCR (Winnie) from 5mm tail tissue obtained from 

4-week old mice, DNA was extracted using DNeasy® kit purchased by 

QIAGEN and following manufacturer’s instructions. For APCMin we 

followed the official PCR protocol described by the Jackson Laboratory 

(https://www2.jax.org/protocolsdb/f?p=116:2:0::NO:2:P2_MASTER_PR

OTOCOL_ID,P2_JRS_CODE:15431,002020); for Winnie mice we 
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performed a single nucleotide polymorphisms (SNP) genotyping 

analysis using a custom TaqMan® Assay (AHCSX8U) to discriminate 

for the presence of a point mutation on the Mucin 2 gene by a real-time 

PCR reaction.  

 

3.02  Histology 

Tissue sections from large intestine were fixed in 10% buffered formalin, 

dehydrated and paraffin embedded. Based on the major intestinal axis, 

the samples had a length variable between 0.5 cm and 1.5 cm and span 

of all the colonic wall. We evaluated a mucosal area between 7.5 mm2 

and 22.5 mm2 wide with a mean measure of 15 mm2. 3µm thick-sections 

from proximal, medial and distal colon were stained with H&E 

following standard protocols. Colonic tissue sections were evaluated for 

inflammatory features and neoplasia. Periodic acid–Schiff (PAS) staining 

on distal colon sections was performed to identify mucins. Observations 

and imaging were performed with Nikon Eclipse Ti2.  

 

3.03  RNA extraction and qPCR analysis 

Total RNA was isolated from the medial part of the large intestine or 

bone marrow derived dendritic cells (BMDCs). The RNA was extracted 

using TRIzol® (Thermo Fisher Scientific, MA, USA) according to 

manufacturer’s instructions and reverse transcribed with I Script 

Reverse Transcription Supermix (BioRad Laboratories, CA, USA). 500ng 
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of total RNA was reverse transcribed with the High Capacity cDNA 

Reverse Transcription kit (Thermo Fisher Scientific, MA, USA) by using 

random primers for cDNA synthesis. Gene expression of Il1β, Ifnγ, Il12, 

Il10, Il4, TNFα, Slpi, Hmox1 and Gapdh was performed with TaqMan 

Gene Expression Assays (Thermo Fisher Scientific MA, USA) murine 

probes: Mm00434228_m1, Mm01168134_m1, Mm01288989_m1, 

Mm00439614_m1, Mm00445259_m1, Mm00443258_m1, 

Mm00441530_g1, Mm01254822_m1, Mm99999915_g1, respectively. 

Tier-based gene expression analysis was performed by using Colonic 

neoplasms Tier 1 M96 (Cat.#100-36551, Biorad, CA, USA). Real-time 

PCR was performed on CFX96 System (Biorad, Hercules, CA, USA). The 

expression of all target genes was calculated relative to Gapdh 

expression using ΔΔCt method.  

 

3.04 Bacterial microbiome metagenomics 

Total genomic bacterial DNA was isolated from frozen stool samples of 

4- , 8- and 16-week old WT and Winnie mice (4 samples/genotype for 

each timing) using the QIAamp® Fast DNA Stool Mini Kit (QIAGEN, 

Hilden, Germany), according to manufacturer’s instructions.  

16S metagenetics were carried out at Genomix4life (spin-off of the 

University of Salerno, Italy) by using the Illumina MiSeq platform. The 

V3-V4 region of the 16S rRNA gene for analysis of diversity inside the 

domains of Bacteria was amplified.18 PCR and sequencing analyses 

were carried out according to the protocol of Genomix4life. Quality 
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control (QC) and taxonomic assignments were undertaken according to 

the QIIME and the Ribosomal Database Project Bayesian classifier in 

combination with a set of custom designed informatics pipelines 

implemented by Genomix4life for analyses of microbial communities. 

Taxonomic attribution was carried out using the BLAST search in the 

NCBI 16S ribosomal RNA sequences database.19 The percentage of each 

bacterial OTU was analysed individually for each sample, providing 

relative abundance information among the samples based on the relative 

numbers of reads within each.20  Alpha-diversity indexes were 

evaluated using the number of OTUs, Chao1 species richness and the 

Shannon index. Alpha diversity was calculated using Qiime.21-22  

 

3.05 Generation and culture of murine DCs 

DCs were harvested from murine bone marrow (BM). Briefly, BMs from 

the tibiae and femurs of 6- to 8-week-old male C57BL/6 and Slpi-KO 

mice were flushed with 0.5mM EDTA (Thermo Fisher Scientific, MA, 

USA), and depleted of red blood cells with ACK lysing buffer (Thermo 

Fisher Scientific, MA, USA). BMDCs were plated in a 10 ml dish (1x106 

cells/mL) in RPMI 1640 (Thermo Fisher Scientific, MA, USA) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS, 

Thermo Fisher Scientific, MA, USA), 100 U/mL penicillin (Thermo 

Fisher Scientific, MA, USA), 100 mg/mL streptomycin (Thermo Fisher 

Scientific, MA, USA), 25 µg/mL rmGM-CSF (Miltenyi Biotec, Bergisch 

Gladbach, GER), and 25 µg/mL rmIL-4 (Miltenyi Biotec, Bergisch 
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Gladbach, GER) at 37°C in a humidified 5% CO2 atmosphere. On day 5 

BMDCs were harvested, restimulated with new growth factors and 

plated at 1x106 cells/mL on 24-well culture plate. BMDCs were treated 

with 25µM of quercetin from Sigma (Sigma-Aldrich, St Louis, MO, 

USA) on day 5 and day 7. On day 8 BMDCs were stimulated with 1 

µg/mL of LPS (L6143, Sigma-Aldrich, St Louis, MO, USA) for 24 hours. 

To evaluate the iron-induced inflammatory cytokine secretion, 

differentiating cells (at day 7) were treated with quercetin (Sigma-

Aldrich, St Louis, MO, USA) or OH-piridone used as control chelator. 

Immediately after, FeCl3 (Sigma-Aldrich, St Louis, MO, USA) and 

Ascorbic Acid for 24 hours were additioned in the culture media. On 

day 8 BMDCs were stimulated with 1 µg/mL of LPS (Sigma-Aldrich, St 

Louis, MO, USA) for 24 hours. For mRNA expression differentiating 

cells were treated with quercetin on day 5 and day 7. On day 8 BMDCs 

were stimulated with 1 µg/mL of LPS ( Sigma-Aldrich, St Louis, MO, 

USA) for 6 hours. 

 

3.06 Purification of OBs 

OBs were extracted from almond seeds.  OB purification was carried out 

by a two-layer flotation procedure as previously reported [31], and a 

further purification step was performed consisting of two sequential 

washings with 2.0 M NaCl.  OBs were finally resuspended in 150 mM 

Tris–HCl, pH 7.5, containing 0.6 M sucrose. 
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3.07 Quercetin and piperine encapsulation into ROBs 

Quercetin and piperine were encapsulated into the ROBs using the 

above reported protocol [31] with few modifications.  Natural OBs were 

resuspended in 150 mM TRIS-HCl pH 7.5, containing 0.5 M sucrose, 1 

mM EDTA, 10 mM KCl, 1 mM MgCl2, 5 mM ascorbic acid (buffer A) and 

twice extracted with chloroform : methanol (2:1), in order to separate PLs 

and proteins from TAGs.  After centrifugation at 1000 g for 5 minutes, 

the upper phase was extracted with five volumes of diethyl ether 

anhydrous (to recover TAGs).  All the recovered fractions were dried by 

a rotavapor. ROB reconstitution mixture consisted of the whole 

chloroform-methanol phase (PLs) with a quercetin (or piperine)/TAGs 

ratio of 1/250 starting from 2 mg of each phytochemical.  The final 

volume was adjusted to 3 ml by the addition of buffer A.  Samples were 

sonicated by a Brandson digital Sonifier 250-D at an amplitude of 40% 

and a cycle of 30 seconds pulse on and 30 seconds off for three times.  

After sonication, samples were centrifuged at 2000 g for 10 minutes and 

ROBs containing quercetin or piperine were recovered from the top of 

the centrifuge-tubes. HPLC analysis was carried out extracting the 

encapsulated phytochemicals using 2 volumes of ultrapure water, 2 

volumes of methyl-butyl-ether, and 1 volume of methanol.  After 

centrifugation at 1000 g for 5 minutes, the methyl-butyl-ether phase was 

recovered, dried (rotavapor), and resuspended into 50% ethanol.  

Quercetin was quantified by reverse phase-HPLC using the method 

described above [32] onto a 1100 Agilent work chromatographic station 
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equipped with a photodiodes array UV-Vis detection system.  The 

elution profile was monitored at 370 nm.  Quercetin, purchased from 

Sigma-Aldrich, was used as standard. 

 

3.08 Microarray gene expression analysis of ROBS-QP-treated DCs 

BMDCs were isolated and cultured as described. On day 5 and day 7 

BMDCs were treated with ROBs-QP (25 µM). LPS was administered [1 

µg/mL] at day 8 and 6 h later BMDCs were harvested. Total RNA was 

isolated with QIAzol (Qiagen, Hilden, GER) and treated with DNAase1 

(Ambion). RNA integrity was assessed using the BioRad Experion 

System (BioRad Laboratories). RNA was amplified using the Illumina 

TotalPrep RNA Amplification kit (Ambion). The quantity and quality of 

biotin-UTP incorporated 

cRNA was also assessed using the BioRad Experion System as 

previously described. Whole-genome gene expression experiments were 

conducted using MouseRef-8 v2.0 Expression Bead-Chips (direct 

hybridization assay) on the Illumina iScan microarray platform 

(Illumina). Data were processed through specific algorithms of filtration 

and cleaning of the signal of the Illumina Genome Studio Software (Cut 

off: detection p-value < 0.005; AVG signal<100). Final output consisted 

of fluorescence intensity of each probe (AVG signal), representing the 

expression levels of each gene after quantile normalization. All the genes 

differentially expressed (“Differential Expression Analysis” with the 
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“Illuminacustom error model” and with false Discovery Rate to adjust 

the p-value) between groups were analyzed using the Core Analysis 

function of Ingenuity Pathway Analysis (Ingenuity System Inc., 

Redwood, CA, USA) to identify biological functions, pathways, and 

networks. 

 

3.09 Small interfering RNA (siRNA) 

siRNA transfection was performed in BMDCs culture from WT mice 

obtained as described before. Cells were cultured at 1x106 in a 12-well 

plate and the transfection was carried out at day 4 using Lipofectamine 

3000 (Thermo Fisher Scientific, MA, USA) in accordance with 

manufacturer’s procedure. siRNA for Slpi were purchased from Thermo 

Fisher Scientific (s202008) and used at a final concentration of 40 pmol. 

In transfection experiments a mock-transfection control was performed 

by putting cells through the transfection procedure without adding 

siRNA. The Silencer Select Negative Control siRNA (4390843, Thermo 

Fisher Scientific, MA, USA) and Silencer® Select GAPDH Positive 

Control siRNA (4390849, Thermo Fisher Scientific, MA, USA) were used 

as negative control and positive control, respectively, for the setup of 

siRNA transfection. Each transfection experiment was done in triplicate. 

On day 5, cells were treated with 25 µM of quercetin and the day later 

cells were stimulated with 1 µg/ml of LPS. After 24 hours, cells were 
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lysed with TRIzol® (Thermo Fisher Scientific, MA, USA) and used for 

total RNA extraction. 

 

3.10 ELISA 

Cell culture supernatants were analyzed for IL-6, IL-12p70 and TNFα 

release in triplicate, using an ELISA kit (R&D Systems, Minneapolis, 

MN, USA) following manufacturer’ instructions. 

 

3.11 Iron staining 

BMDCs, were plated for 24h into Glass Bottom Cell Culture Dishes 

(MatTek corporation P35G-1.5-14.C), and treated with and without 

quercetin and FeCl3 (day 7). Following BMDCs cultures were exposed 

to 1 µg/mL of LPS and stained with The Iron Stain Kit (GENTAUR 

Molecular Products; IRN-2 Belgium) for the determination ferric iron 

deposits in tissue samples. This product is based on the Prussian Blue 

reaction in which ionic iron reacts with acid ferrocyanide producing a 

blue color. BMDCs were fixed in 1% paraformaldehyde and then stained 

following manufacturer instructions. 

 

3.12 Western blotting  

The amount of Hmox1, after stimulation of quercetin, was determined 

by Western blot analysis. Total protein extract were prepared with lysis 
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buffer containing 150 mM NaCl, 50 mM Tris-HCl (pH 8), 1% NonidetP-

40, 0.1% sodium deoxycholate, 0.1% SDS, plus proteinase inhibitors. The 

protein concentration was determined by the Bradford assay (BioRad, 

CA, USA). 30 µg of each protein lysate was separated on a 10% SDS-

PAGE and transferred to polyvinyldene difluoride (PVDF) membrane 

(Millipore, MA, USA). The membranes were incubated in 5% non-fat 

milk powder diluted in PBS containing 0.1% Tween-20 (T-PBS) for 2h at 

room temperature (RT) and probed with a rabbit polyclonal anti–Hmox1 

antibody (PA5-27338 ThermoFischer scientific MA, USA) in blocking 

buffer overnight at 4°C at a final dilution of 1:1000. Finally, membranes 

were incubated with secondary antibody of horseradish peroxidase 

conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology, CA, USA) at 

a final dilution of 1:5000. Immunocomplexes were detected with the ECL 

method (GE Healthcare, Little Chalfont, UK). The same membranes 

were stripped and re-probed with anti-α-tubulin monoclonal antibody 

(Santa Cruz Biotechnology) at a final dilution of 1:2000. Images of 

Western-blots were acquired and quantified using a ChemiDoc MP 

(BioRad, CA, USA) apparatus. Ratio between intensities of Hmox1 and 

α-tubulin bands was used to normalize Hmox1 in each sample. 

 

3.13 Tomato-enriched diet administration.  

The Bronze tomato line (E8:MYB12, E8:Del/Ros, 35S:StSy) was 

developed as previously described [34]. Freeze-dried tomato was 

supplemented by addition to a standard rodent diet (4RF18) at 1% 
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(tomato based-diets). Mice, pellet consumption and drinking water were 

monitored on a daily basis. 

Sex- and weight-matched mice were divided in 5 groups (5 WT mice 

each).  Each group of mice received a different diet. Groups of mice were 

fed with the different tomato supplemented diets for two weeks. Stools 

were collected and stored at -80°C. 

For the intervention experimental setup, sex- and weight-matched mice 

were divided into four groups (four mice each). Groups of mice (WT and 

Winnie) were fed with the different tomato supplemented diets for two 

weeks. Mice were sacrificed at day 14, and colon and mesenteric lymph 

node (MLN) tissues were explanted to evaluate the clinical severity of 

colitis. Colon length was measured as an indicator of colonic 

inflammation. The colon/body weight indices were calculated as the 

ratio of the colon wet weight and the total body weight (BW), and as the 

ratio of the colon length and the total BW of each mouse. Body weight, 

occult and rectal bleeding and stool consistency were monitored daily. 

Disease activity index (DAI) was determined by scoring changes in body 

weight, occult blood and gross bleeding. 

 

3.14 Cytofluorimetric Analysis 

FoxP3 staining: Mesenteric lymph nodes (MLNs) were isolated from 

mice fed with tomato (Control or Bronze)-enriched food. MLNs were 

passed through a 30 µm cell strainer (Miltenyi Biotec, Bergisch 
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Gladbach, Germany) to obtain a single cell suspension and then washed 

with DPBS (Gibco, Waltham, MA, USA) + 0.5% bovine serum albumin 

(BSA, Sigma-Aldrich, St. Louis, MO, USA). Single cell suspensions were 

stained with CD4-FITC and CD25-PE (Miltenyi Biotec, Bergisch 

Gladbach, Germany). Cells were then permeabilized with Foxp3 

Fixation/Permeabilization Kit (eBioscience, San Diego, CA, USA) and 

subsequently washed with PERM Buffer (eBioscience, San Diego, CA, 

USA). Finally, cells were stained with Foxp3-APC (Miltenyi Biotec, 

Bergisch Gladbach, Germany), according to the manufacturer’s 

instructions. Flow Cytometer acquisition was performed using NAVIOS 

(Beckman Coulter, Brea, CA, USA). 

T cell Intracellular Staining: T cells from MLNs of mice fed with tomato 

(Control or Bronze)-enriched food were cultured with a 500X Cell 

Stimulation Cocktail (eBiosceince, San Diego, CA, USA) for 12 h, washed 

with DPBS + 0.5% BSA and stained with CD4-APC-Vio700 (Miltenyi 

Biotec, Bergisch Gladbach, Germany). After washing, cells were then 

permeabilized with BD CytoFix/CytoPerm® Fixation/Permeabilization 

Kit® (BD Biosciences, Franklin Lakes, NJ, USA), washed with PERM 

Buffer, and stained with: IL-17A-FITC, TNFα-PE and IFNγ-APC 

according to manufacturer’s instructions (Miltenyi Biotec, Bergisch 

Gladbach, Germany). Flow Cytometer data analysis was performed 

using NAVIOS (Beckman Coulter). 

 

3.15 Statistical Analysis  
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All data were expressed as the means ± SEM. All results were obtained 

from three consecutive and independent experiments. Metagenomic 

data (Unifrac distance metric and taxonomic abundance) were analyzed 

by Principal Component Analysis (PCA)23 using a statistical software 

Statistica for Windows (Statistica 6.0 for Windows 1998, StatSoft, 

Vigonza, Italia). Permut-MatrixEN software was used to identify 

clusters at the level of the mouse groups and taxa.24 Statistical analysis 

of the relative abundances of microbial genera was based on Duncan’s 

Multiple Range test, with a significance level of p≤0.05. Finally, unless 

specifically described, other data and group differences were analyzed 

and compared by paired or unpaired, two-tailed Student’s t-tests.  

Cell biology data statistical significance was evaluated using two-tailed 

Student’s t test, One Way ANOVA followed by Tukey’s multiple 

comparison as post test and the 2way-ANOVA test using the Bonferroni 

as a post-test for the grouped analysis. Results were considered 

statistically significant at p<0.05. 
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4. RESULTS 
 
The Winnie-APCmin model 
We believed that the Winnie-APCmin could become an animal model that 

better resembles the chronic inflammatory insult recently included as a 

leading factor for cancer development (including CRC) [3]. During these 

past 3 years, we have successfully established the Winnie-APCmin colony 

and carefully characterized the development of neoplastic lesion in the 

intestine of this new model compared with all the parental lines. 

Morphological, molecular and immunological results of this study 

demonstrate that the Winnie-APCmin model is a unique model that could 

be a perfect to address the role of inflammation as a trigger for CRC in 

genetically predispose patients. In fact, the intestinal epithelium of 

Winnie- APCmin mice develops dysplastic lesions at early time points 

with a progression over time that confirm a multi-step process for CRC 

carcinogenesis.  

 

4.01: Winnie-APCMin murine line pathological features. 

To generate a mouse model that reflect the increased intestinal cancer 

risk of UC patients we used a mice breeding strategy counted on double 

heterozygote mutations (on Muc2 and APCMin genes) for males and 

single heterozygote mutation (Muc2) for females (Figure 8A). This 

strategy allowed obtaining colitis associated-CRC (CA-CRC) model 

(Winnie-APCMin) together with all the parental strains (WT, Winnie and 

APCMin mice) from the same couple. Using this strategy, it was possible 
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to collect data related to strains survival and inflammatory features 

comparing genetically different offspring obtained from the same 

breeders. If compared with the breeding strategy used to obtain Winnie 

mice, when the APCMin mutation was introduced in the breeding scheme 

there was a reduction in the survival rate (28.6% versus 0.8%, Figure 8B). 

Similarly to what previously observed for the Winnie model, 5 week-old 

Winnie-APCMin mice were characterized by reduced body weight and 

colon length when compared to WT and APCMin used as control (Figure 

Figure 8: Creation and characterization of the Winnie-APCMin murine model. (A) Breeding strategy used 

to obtain Winnie-APCMin mice and the parental lines from the same breeders. (B) Impact of APCMin 

mutation on survival rate in the breeding scheme of Winnie mice. (C) Body weight analysis of 4-week-old 

mice from different genotypes. Representative images of colons (D) and data analysis of colon length (E) 

and colon length adjusted to the body weight (F) for Winnie-APCMin mice and control lines. C-F: 7 

animals/group. *p<0.05, ***p<0.001 compared to WT mice.  
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8C-E). These data were emphasized when the colon length was related 

to the mice weight (Figure 8F). 

 

4.02: Winnie-APCMin mice develop dysplastic lesions.  

Histological analysis of 5-week old Winnie-APCMin mice demonstrated 

the presence of dysplastic aberrant crypt foci (ACFs) along the all the 

colon length with a gradually increase in incidence and multiplicity 

moving from the proximal to the distal colon tract (Figure 9A-C). As 

expected, dysplastic ACFs are absent in the age-matched parental 

strains, excepted for APCMin mice that showed a lower incidence and 

multiplicity for the neoplastic lesions as compared to the Winnie-

APCMin mice (30% Vs 78% of incidence and a multiplicity of 0.3 ± 0.15 

Vs 2.2 ± 0.62, respectively). The dysplastic ACFs were grouped according 

to the classification of neoplastic pre-invasive intraepithelial lesions of 

the colonic mucosa. No lesions showed the proliferative compartment 

located above the muscolaris mucosa at the basal level. The aberrant 

crypts were classified by two grade of dysplasia: low (mild and 

moderate) and high (severe). The most recurring dysplasia grade was 

the moderate one, with low cigar-shaped-like nuclear crowding up to 

the lumen of the crypt. Atypical mitosis was observed rarely. Dysplastic 

ACFs were carefully characterized for incidence and multiplicity based 

on the number of crypts and the grading into four groups: unicriptic 

lesions; microadenoma >1≤5 Low Grade (LG); microadenoma >5 Low 
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Grade (LG) and microadenoma >5 High Grade (HG). All of them 

showed a tubular pattern.  

 

Winnie-APCMin mice also showed a low incidence and multiplicity of 

non dysplastic ACFs specifically in the medial tract of the colon. A 

similar incidence and multiplicity for this type of lesions is observed in 

the proximal tract of age-matched APCMin mice. Moreover, Periodic 

Figure 9: Histological characterization of the Winnie-APCMin murine model. 

Hematoxylin and eosin staining on 3μm colon sections from proximal (A), medial (B) 

and distal (C) tract of 5 week-old Winnie-APCMin mice. Images were captured at 10X 

(left) and 20X magnifications (right) [De Santis et al. Submitted Feb. 2019]. 
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Acid Schiff (PAS) staining reveals an overall decrease in mucin 

expression in the distal colon of Winnie and Winnie-APCMin mice as 

compared with WT and APCMin mice (Figure 10). Specifically, mucins 

expression became focal in presence of dysplasia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.03: 5 week-old Winnie-APCMin mice gene expression.  

The expression profile was evaluated from 5 week-old mice after 

obtaining mice genotype. RNA from the distal colon of 5 week-old 

Winnie-APCMin mice and all the parental strains was analysed by qPCR 

comparing the expression of 89 selected genes for CRC. Compared to 

WT, the number of genes regulated at 5 week by Winnie and Winnie-

APCMin mice was higher than the ones modulated by APCMin mice (26 

Figure 10: Mucins expression in presence of dysplasia. Periodic Acid Schiff (PAS) staining to highlight 

mucin expression in the distal colon of WT (A), Winnie (B), APCMin (C) and Winnie-APCMin (D) mice [De Santis 

et al. Submitted Feb. 2019]. 



34 
 

and 28 Vs 8, respectively) (Figure 11A). Among the 27 genes resulting 

from the Winnie-APCMin Vs WT analysis, more the a half was in common 

with Winnie (10 up and 6 down) and only one gene was shared with the 

molecular pattern of APCMin mice (down). On the contrary, when 

comparing Winnie and APCMin mice to WT, they only shared two genes 

that had a contra-regulation (Figure 11A).  

 

10 genes specifically up-regulated in Winnie-APCMin Vs WT mice 

confirmed the modulation of genes known to be involved in CRC 

progression both in mice and humans (Figure 11B). We than compared 

Figure 11: Molecular characterization of 5-week-old Winnie-APCMin distal colon. (A) Venn diagram reported qPCR 

data obtained comparing Winnie-APCMin, Winnie and APCMin relative to WT mice. (B) Histogram indicates relative 

expression of 10 specifically up-regulated genes in Winnie-APCMin (white bars) versus WT mice (black bars) (C) 

Winnie-APCMin (white bars) versus WInnie mice (black bars) (D) Winnie-APCMin (white bars) versus APCMin mice 

(black bars)  (n=3 animals/group). Histograms represent the mean of 2-ΔΔCt  ± SEM. *p<0.05, **p<0.01. [De Santis 

et al. Submitted Feb. 2019]. 



35 
 

Winnie-APCMin with Winnie and APCMin mice; the number of modulated 

genes is approximately the same (Figure 11 C, D). Only 3 genes (IL-1, 

CD44 and Mmp2) were similarly upregulated in Winnie-APCMin mice 

regardless if compared with Winnie or APCMin (Figure 11).  

  

4.04: Metagenomic analysis in 4 week-old Winnie-APCMin mice.  

 Stools were collected from 4-week old mice when separated from the 

breeding cage. Metagenomic analysis was performed comparing 

bacterial relative abundance of Winnie-APCMin mice with all the parental 

strains. The phylum profile reveals that Winnie-APCMin are 

characterized by a microbiota intermediate between Winnie and APCMin 

(Figure 12 A). The only exception is represented by the increased ratio 

between the abundance of Bacteroidetes and Prevotella in Winnie-

APCMin (Figure 12 B). This observation is important as Prevotella has 

been reported to be increased in colorectal cancer [33]. 
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Figure 12: The phylum profile in the stools of Winnie-APCMin. Average relative 

abundance of the different phyla in 4-week old Winnie-APCMin mice and all the 

parental strains. (n=4 animals/group) [De Santis et al. Submitted Feb. 2019]. 
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Nutritional strategies to reduce inflammation  
In parallel with the development of the Winnie-APCMin mice we 

explored the possibility to prevent intestinal inflammation using 

nutritional derived bioactive compounds. Together with numerous 

other research group, we already reported the anti-inflammatory 

potential of numerous natural bio-active compounds as potential 

candidate for prevention and treatment of the intestinal inflammatory 

response. [21] The possibility to suppress the inflammatory response 

may also reduce the risk to develop CRC even more if used in 

combination with classical therapies. Plant polyphenols represent one of 

the largest and most ubiquitous groups of secondary metabolites that 

are an integral part of the human diet [34]. These compounds are 

characterized by the presence of one or more phenol rings and two or 

more hydroxyl groups linked directly to the aromatic rings [35] and have 

been associated with anti-oxidant, anti-microbial, anti-proliferative and 

anti-inflammatory properties [36, 37]. Despite evidence for the biological 

effects of these phytonutrients being reported, knowledge of the 

underlying molecular mechanisms activated upon polyphenols 

treatment remain poorly understood [38, 39]. 

 

4.05: Quercetin induces Slpi expression in LPS-activated BMDCs 

In 2015, we published the results of a whole-genome microarray analysis 

performed on mRNA extracted from Quercetin and Piperine 

Reconstituted Oil Bodies (ROBs-QP) treated bone marrow derived 
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dendritic cells (BMDCs) at 6 hours post LPS exposure identified a 

number of genes that were significantly modified by polyphenols 

exposure as previously described [29]. As expected, most of the 

transcripts differentially expressed by polyphenol exposure were those 

of pro-inflammatory genes, which were significantly down-regulated 

consistent with known anti-inflammatory activity of the polyphenols. 

We identified secretory leukocyte protease inhibitor (Slpi) among the 

transcripts differently up-regulated in polyphenol exposed BMDCs 

following LPS stimulation (2.7-fold, P<0.01; Figure 13). The microarray 

data was confirmed by qPCR where Slpi expression was significantly 

up-regulated in the ROBs-QP treated BMDCs reaching a 26-fold (P<0.01) 

increase at 24h post LPS activation compared to a 4-fold increase in 

vehicle treated BMDCs. Significantly, Slpi expression was increased in 

ROBs-QP treated BMDCs even before LPS activation (7-fold induction) 

(Figure 13B) [40].  

 

 

 

 

 

 

 

 

Figure 13: Quercetin induces Slpi expression in LPS-activated BMDCs. A. Slpi expression from the microarray data 

of BMDCs exposed to vehicle or ROBs-QP at day 5 and 7 and treated with 1 μg/mL of LPS for 6 hours (n=4, 

**P<0.01). B. Time course mRNA expression of Slpi mRNA measured by qPCR of BMDCs exposed to vehicle (black 

bars) or ROBs-QP (white bars) at day 5 and 7 and treated with 1 μg/mL of LPS. Fold change are expressed relative 

to vehicle at time 0. mRNA was extracted at indicated time points and bars represent the mean ± SEM of 3 

independent experiments. (*P<0.05, **P<0.01) [40]. 
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Similar Slpi expression profiles were obtained using 25 µM of synthetic 

quercetin (data not shown). For this reason, we chose to study the effect 

of a single polyphenol administration and used synthetic quercetin for 

the remainder of the study.  

 

4.06: Quercetin reduces TNFα secretion by up-regulating Slpi 

As already known, BMDCs isolated from WT mice and treated with 

quercetin showed a significant reduction in secretion of TNFα upon 

activation with LPS compared to non-treated BMDCs (50% suppression, 

P<0.01). To demonstrate the crucial importance of Slpi we treated 

BMDCs from Slpi-KO mice in the same way and observed that DCs 

failed to reduce TNFα secretion (Figure 14A). To further elucidate 

whether the observed difference in TNFα secretion in quercetin treated 

BMDCs from WT and Slpi-KO mice was indeed Slpi dependent we used 

siRNA to knockdown Slpi in WT BMDCs and assessed the TNFα 

secretion profile. siRNA knockdown of Slpi in BMDCs from WT mice (at 

day 4 of culture) also demonstrated a failure to reduce TNFα secretion 

after quercetin treatment and LPS activation (Figure 14B). In contrast, 

BMDCs from WT mice that had Slpi expression knocked-down after 

quercetin treatment (at day 6 of culture) suppressed TNFα secretion after 

exposure to LPS similar to mock siRNA treated BMDCs (Figure 14C) 

[40]. 
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Figure 14: Quercetin reduces TNFα secretion by up-regulating Slpi. A. BMDCs were cultured from WT and 

Slpi-KO mice and treated with quercetin at day 5 and 7. BMDCs cultures were exposed to 1 μg/mL of LPS and 

the secretion of TNFα was determined by ELISA after 24 hours. Bars represent mean cytokine concentration 

± SEM (n=4) for BMDCs from WT or Slpi-KO mice treated with and without quercetin (black and white bars, 

respectively, ***P<0.001). B. BMDCs were transfected with siRNA for Slpi and Lipofectamine® 3000 reagent 

(mock) at day 4, before the administration of quercetin. qPCR for Slpi demonstrated a good efficiency for 

siRNA transfection (left). Bars represent a mean fold change ± SEM (n=3) between LPS stimulated BMDCs +/- 

quercetin relative to LPS unstimulated cells +/- quercetin, respectively. **P<0.01. The secretion of TNFα was 

determined 24 hours after LPS stimulation by ELISA (right). Bars represent mean cytokine concentration ± 

SEM (n=3) for DCs treated with and without quercetin (black and white bars, respectively). ***P<0.001. C. 

BMDCs were treated with quercetin on day 5 and transfected with siRNA for Slpi at day 6 followed by 

quercetin administration at day 7 and a subsequent exposure to LPS on day 8. A good reduction in Slpi 

expression was observed by qPCR analysis (left). Bars represent a mean fold change ± SEM (n=3) between 

LPS stimulated BMDCs +/- quercetin relative to LPS unstimulated cells +/- quercetin, respectively. **P<0.01. 

The secretion of TNFα was determined 24 hours after LPS stimulation by ELISA (right). Bars represent mean 

cytokine concentration ± SEM (n=3) for DCs treated with and without quercetin (black and white bars, 

respectively). *P<0.05 [40]. 
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4.07: Quercetin effects are lost enriching the culture media with iron  

Once realized that we unrevealed a pivotal molecular pathway involved 

in quercetin inflammatory-suppressor ability, we focused our attention 

to the mechanism that triggers the inflammatory suppression. Several 

polyphenols exhibit numerous properties including phylochelation; the 

ability to complex metal ions, including highly reactive iron. Dendritic 

cell inflammatory response is also associated with modulation of several 

iron metabolism related genes. Under inflammatory conditions, 

macrophages, but also monocytes and dendritic cells (DCs), retain iron 

through ferritin, an intracellular protein that can bind up to 400 atoms 

of iron. At the same time, iron export is inhibited due to the cascade of 

events that is triggered by inflammation-mediated increased levels of 

hepcidin. Hepcidin binds to the iron-export protein ferroportin and 

consequently induces its internalization and degradation. The overall 

result is a decreased level of circulating iron and increased load of 

cytoplasmic iron in macrophages [41].  

From the aforementioned microarray, we extracted data demonstrating 

that quercetin exposure induced Ferroportin 1 Fpn1 expression (data not 

shown), thus we expected reduced intracellular iron concentration of 

iron in quercetin-treated DCs.  With the intent to visualize iron 

intracellular content, DCs were plated into glass bottom cell Culture 

dishes, at day 7, 1µM of iron was additioned in the culture media, with 

quercetin (25µM) or same volume of vehicle (1µl DMSO/1ml media).  

LPS was then additioned 24 hours later and 6 hour later, cells were 
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stained with the Iron Stain Kit. Figure 15A shows strong cytoplasmic 

blue color into LPS treated cells, while quercetin presence severely 

reduced cells positivity. We quantified the blue signal intensity in 30 

different images obtained from 3 separated experiments (Figure 15B).  

We then compared Hmox1 protein expression in DCs lysate 24h after 

LPS administration.  Figure 15C shows the immunoblot of vehicle or 

quercetin exposed DCs in presence or absence of LPS.  Vehicle and 

quercetin treated DCs expressed similar level of Hmox1, while LPS 

administration significantly reduced it.  Importantly, when LPS was 

administered to quercetin-exposed DCs, Hmox1 signal was higher than 

control.  To investigate the axis between iron chelation and quercetin, 

we additioned different concentration of iron in the DCs culture media.  

Figure 15D shows the LPS induced secretion of IL-6 and IL-12p70 by 

DCs treated with quercetin or vehicle.  The left side of the figure 15D 

shows the quercetin induced reduction of LPS-induced IL-6 and IL-

12p70 secretion.  Quercetin efficiency is gradually lost in presence of 

increasing doses of iron. Indeed, administration of 2µM of iron was able 

to revert quercetin mediated IL-6 and IL-12p70 suppression [42]. 
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Figure 15: Quercetin effects are lost in presence of high doses of iron in the culture media. Histological 

staining for the determination of ferrous pigment in BMDCs, fixed paraformaldehyde 1% (A). LPS treated 

dendritic cells (right panel) and quercetin-exposed dendritic celle (left panel) cultured in FeCl3 (1µM) 

enriched media. Blue signal intensity was quantified in 30 different images obtained from 3 separeted 

experiments. Scale bar is 50µm. The histogram (B) represents the mean blue signal intensity for the iron 

staining ± SEM.  C) Western blot analysis of BMDCs lysate 24h post LPS administration.  The histogram 

represents the ratio between Hmox1 and tubulin bar quantification obtained from 3 different experiments. 

Panel D shows the LPS-induced secretion of IL-6 and IL-12p70. Quercetin (white bars) or vehicle (black bars) 

DCs were treated with FeCl3 and LPS at the indicated doses, IL-6 and IL-12p70 were determined by ELISA. 

Bars represent mean cytokine concentration ± SEM of 3 independent experiments. *P<0.05; 

**P<0.01;***P<0.001 [42]. 
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4.08: Gut Microbiota Respond to the Iron Starvation 

It has long been known that iron availability is crucial for bacterial 

growth, and iron deprivation is an efficient strategy to limit bacterial 

growth. Recently, an increased risk of bacterial infections has been 

observed following the administration of non-physiological amounts of 

iron and, in particular, an increased virulence of Escherichia, Klebsiella, 

Listeria, Neisseria, Pasteurella, Shigella, Salmonella, Vibrio, and 

Yersinia [43]. When studied using murine models of colitis, the 

increased oxidative stress was identified as the major cause of disease 

exacerbation following oral iron administration, but several other 

mechanisms may be important, including endoplasmic reticulum stress, 

a microbial community shift and immune cells activation. Furthermore, 

in vitro results obtained using the intestinal fermentation model 

described by Cinquin et al. [44] demonstrated a direct link between iron 

restricted growth condition and the growth advantage obtained by 

Enterobacteriaceae and lactobacilli [45]. Nonetheless, these in vitro 

results were in contrast with Dostal et al. who observed marginal 

changes in gut microbiota composition in rats under low luminal Fe 

concentrations [46].  

Thanks to the collaboration with Prof. Cathie Martin in Norwich (UK) 

we had the opportunity to use a new transgenic tomato line called 

Bronze, to enrich mice chow with natural polyphenols [47]. We 

investigated any impact of the different tomato-supplemented diets on 

probiotic groups, whose growth is relevant to intestinal health (Figure 
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16). We developed different custom diets supplemented with 1% 

lyophilized fruit from the different tomato lines (wild type, Indigo, 

ResTom, and Bronze) and administered them to age- and sex-matched 

C57Bl/6 mice, for 2 weeks. In particular, mice fed with diets enriched 

with Bronze and ResTom tomato fruit were characterized by a 

significant increase in the phylum Bacteroidetes and a decrease in 

Firmicutes, resulting in a significant increase (P < 0.05) in the ratio of 

Bacteroidetes to Firmicutes which doubled from 0.86 in mice fed the 

standard diet to 1.74–1.79 in mice fed diets enriched with 1% ResTom 

and 1% Bronze tomato fruit, respectively (Figure 16C). These data 

suggested that dietary stilbenoids promoted growth of Bacteroidetes 

over Firmicutes in mice. 
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Figure 16: Composition of the intestinal microbiota of mice fed diets enriched with different tomato 

fruit. Sex-matched mice (n = 5) were divided into five groups, based on the diet (standard diet and diets 

enriched with 1% of wild-type, Indigo, ResTom, and Bronze lyophilized tomato fruit). After 2 weeks diet, 

fecal samples were collected for the microbiota meta-analysis. (A) Circular representation of the 

phylogenetic tree showing the major 150 genera of the intestinal microbiota. The inner bands indicate 

the genera colored by phylum. The outer circles show multibar charts indicating the relative abundances 

of genera in different diet groups. (B) Relative abundances of the phyla found in the microbiome of mice 

in different diet groups. (C) Bacteroidetes/Firmicutes ratio in the microbiome of mice fed with different 

diets. (D) Relative abundances of the genera of the microbiome showing significant differences among 

diet groups. The letters above the histograms in panels (C) and (D) indicate the significant differences 

between two different diet groups assessed by Duncan’s multiple-range test [47]. 
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4.09: Effects of nutritional intervention in Winnie mice 

We demonstrated that the administration of a nutritional regime 

enriched with 1% of Bronze tomato fruit was able to promote a change 

in the composition of the microbiota in healthy mice and partially 

suppress the host inflammatory response to reduce/delay the 

appearance of intestinal damage induced by DSS administration [47]. 

In contrast to the previous experimental setup, we built on our 

published findings and used the murine model of spontaneous UC, 

Winnie, to investigate the therapeutic rather than the preventive 

potential of the Bronze-enriched diet. Our aim was to determine the 

therapeutic potential of a dietary intervention based on the Bronze-

enriched diet in adult Winnie mice.  

We explored the effects of nutritional intervention in a model of 

spontaneous progressive ulcerative colitis. WT and Winnie mice were 

fed for 2 weeks with 1% control (Control) or bronze (Bronze) tomato-

enriched diets. Figure 16A shows the experimental setup. 

Administration of the enriched diets did not alter the weight of WT and 

Winnie mice (Figure 16B) nor their colon weight and length (Figure 16C, 

D, respectively). Morphological analysis of the explanted colon did not 

reveal differences between Control and Bronze treated mice (data not 

shown) [48].  
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4.10: IL-17A Reduction in CD4+ Mesenteric Lymph Node (MLN) T 

Cells Treated with a Bronze Tomato Diet 

Following two weeks of tomato-enriched diets, we isolated and 

analyzed the intracellular cytokine production of the MLNs CD4+ T 

cells. The Bronze enriched diet resulted in a reduced percentage of 

CD25+Foxp3+ (Figure 18A) and increased percentage of TNFα+ cells 

(Figure 18B) compared to the Control diet. Both changes were not 

Figure 17. Experimental design and macroscopic characterization of the experimental groups. (A) 

Sex-matched mice were divided into four groups based on their genotype (Wild Type or Winnie) and 

their diet (enriched with Control or Bronze lyophilized tomato fruit). Mouse weight was recorded at 

the beginning of diet administration (Day 0) and at the end of the trial (2 Weeks). Fecal samples were 

collected for microbial meta-analyses at both time points (Day 0 and Week 2). Tissues were explanted 

and analyzed at the end of the treatments as indicated. Analysis of mice from different groups 

included: mouse weight (B), colon weight/mouse weight (C) and colon length/mouse weight (D). Black 

bars show the values at Day 0, striped bars show the Control- and white bars the Bronze-enriched 

diet. Statistical evaluation was performed using unpaired two-tailed Student’s t-tests [48]. 
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significantly different, but the trend was consistent independent of the 

genotype of the mice. A Bronze diet resulted in a significant reduction 

in the percentage of IL-17A CD4+ cells in WT mice and a similar trend 

in Winnie mice, while the percentage of IFNγ+CD4+ cells was 

unchanged (Figure 18C) both in WT and Winnie. Of note, the percentage 

of IFNγ+CD4− cells was reduced by the Bronze diet, particularly in 

Winnie mice (Figure 18D) [48]. 

 

 

Figure 17. Mesenteric lymph node T cell cytokine staining. (A) Representative Treg staining 

of CD4+ cells. Histograms represent the percentages of Foxp3+CD25+ cells in the MLNs of 

mice fed with Control-enriched diet (striped bars) and Bronze-enriched diet (white bars). (B) 

Representative density plot analysis of intracellular staining of MLNs from Winnie mice. (C,D) 

Intracellular staining of IFNγ and IL-17A in the CD4+ (C) and CD4− (D) MLN cells of WT and 

Winnie mice after 2 weeks of Control or Bronze-enriched diets. Statistical evaluation was 

performed using unpaired two-tailed Student’s t-tests. * P < 0.05 [48]. 
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4.11: Bronze Tomato Diet Molecular Signature 

We previously demonstrated that the administration of a Bronze 

enriched diet was able to reduce the expression of inflammatory 

cytokines (Il-6, Tnf-α, Il-1α, Il-1β, Il-12) in the colon of WT mice [29] and 

that the expression level of Slpi was a reliable marker for the oral intake 

of quercetin [40, 49]. We next analyzed the expression levels of Tnf-α, 

Ifnγ, Il-10, Slpi and Hmox1 in the colon of WT and Winnie mice. While 

both a Bronze and Control enriched diet significantly increased Il-10 

expression in WT mice (Figure 18A), only a Bronze diet induced a higher 

increase in Il-10 in Winnie mice. Tnf-α and Ifnγ colon expression was 

generally lower in mice fed with Control or Bronze diets in both the 

Winnie and WT mice (Figure 18B,C). A significant reduction in Ifnγ 

expression was observed in Winnie mice fed with a Bronze diet 

compared to Day 0, but not in Winnie mice fed with a Control diet. Slpi, 

a major checkpoint for the anti-inflammatory activity of quercetin [40, 

48], was significantly induced by both the Control and the Bronze-

enriched diets both in WT and Winnie mice (Figure 18D). Slpi induction 

was higher in Winnie compared to WT mice. Hmox1 expression was 

similar to that of Slpi, suggesting an anti-inflammatory pathway that is 

induced by the Bronze diet (Figure 18E). 
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4.12: Dysbiotic Intestinal Microbiota Communities Changed 

Following Two Weeks on a Bronze Tomato Diet in Winnie Mice 

Time zero for each mouse was collected both for WT and Winnie mice. 

At day 0 for the mice fed with Control tomato-enriched diet, the 

Shannon index of the Winnie mice was higher than the WT mice (2.413 

and 2.180, respectively, P = 0.011). No statistically significant differences 

were found for the number OTUs and Chao index. To investigate the 

response of the microbiota to the host intake of different dietary regimes, 

fecal material was collected from mice following two weeks of Bronze or 

Control enriched chow. After two weeks of feeding Control tomato, the 

Figure 18. Two weeks of Bronze-enriched diet induced Slpi and Hmox1 expression in the medial colon of 

WT and Winnie mice. Histograms represent the average expression of Il-10, Tnf-α, Ifnγ, Slpi and Hmox1 

(A–E respectively) measured by real time PCR in the medial colon of WT and Winnie mice after two weeks of 

Control- (striped bars) and Bronze-enriched diet (white bars). Black bars represent the gene expression at Day 
0. All bars represent mean expression ± SEM for each treatment. Control and Bronze dependent expression 

were compared to WT Day 0 for the statistical evaluation. Student’s t-test was used to compare every 

measurement to the corresponding WT Day 0 and evaluate the significance of the data. ** P < 0.01,* P < 0.05 
(Student’s t-test). Grouped analyses were performed with the two-way ANOVA test, using Bonferroni as a 

post test ANOVA p Value: IL-10: p = 0.0348; TNFα: p = 0.0523 IFNγ: p = 0.6483 Slpi: p = 0.0058 HMOX: p 

= 0.0002 [48]. 
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WT mice increased their OTUs and their Shannon index compared to 

Day 0. Compared to the Control tomato diet, all WT and Winnie mice 

showed non-significant reductions in OTUs on the Bronze tomato diet. 

In our previous studies, the diversity and richness of the microbiota of 

mice did not show significant differences (P > 0.05) in response to 

different diets [47]. The 3 phylogeny-based β-diversity analyses did not 

show statistical separation between the composition the microbiome of 

fecal mouse samples after two weeks of Bronze or Control tomato diets. 

Samples were mainly clustered according to the genotype (WT or 

Winnie mice).  

The evaluation of the 16S revealed a significant difference (P < 0.05) 

between 20-week old WT and Winnie mice. In particular, the relative 

abundance of Bacteroidetes and Firmicutes (41.97% and 39.26% in WT 

vs. 60.62% and 23.36% in Winnie mice), as well as the ratio between them 

(1.14 vs. 2.76 respectively, P = 0.022) confirmed differences already 

known for hosts characterized by ongoing intestinal inflammation 

[50,51]. Two weeks of dietary intervention changed the microbial 

content of both WT and Winnie mice. The differences in bacterial 

abundance monitored by 16S segregation, observed at time zero, were 

later lost as fecal material from WT and Winnie mice could not be clearly 

differentiated (Figure 19). 
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Figure 19. Total bacteria found in feces of WT and Winnie mice. Relative abundance (%) of total 

(16S rRNA) bacteria, found at the phylum level in the fecal samples of WT and Winnie mice at Day 

0 (0W) and after two weeks (2W) on Bronze (Bronze) or Control tomato (Control) diets [48]. 
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5. CONCLUSIONS 

 
During these last three yeas of PhD we aimed to create a new murine model of 

spontaneous inflammatory-induced colorectal cancer a combining the genetic 

susceptibility of the APCMin model and the chronic intestinal inflammation of the 

Winnie mice. Currently, there is a sharp distinction between CRC and colitis-

associated cancer (CAC) as clinical evaluations reveal that CRC tumors do not 

arise in the context of preceding inflammation [33]. Using murine 

models of CAC a single injection of carcinogen azoxymethane (AOM) is 

sufficient to give rise to multiple colonic tumors, when if chronic colitis 

has been induced, while it takes multiple injection of carcinogen and 

longer time for tumors to form when inflammation is absent [52, 53].  

Differently from CAC, the most commonly used model of CRC is APCMin that is 

genetically predisposed to develop intestinal cancer.  APCMin mice are often treated 

with DSS to induce colonic inflammation resulting in faster CRC development.  

Differently from the DSS induced colitis, Winnie are murine models of spontaneous, 

mild and progressive ulcerative colitis that require several months to show 

histological sign of disease. During these years, we characterized the disease 

progression in Winnie [54]. 5-week old mice show reduced body weight, watery 

diarrhea, but now rectal bleeding or prolapse. Importantly, histologically no 

distinctive sign of UC is present in the colon, but a specific molecular pathway 

characterized by upregulated inflammatory cytokine transcript is present [54].    

In light of the mild inflammatory response observed in 5-wee old Winnie, it was 

surprising to realize that the colon of age matched Winnie-APCMin mice was rich of 



55 
 

dysplastic ACFs along the all the colon length with a gradually increase 

in incidence and multiplicity moving from the proximal to the distal 

colon tract (Figure 9A-C). This feature is extremely relevant as our model 

underlines the importance of chronic inflammation in genetically predisposed 

patients, even if the inflammation is considered mild. For these patients, prevention 

may represent the only effective strategy to improve/prolong disease free periods. 

The Winnie-APCMin molecular pathway underlines the unique molecular feature 

resulting from the combination of genetic predisposition and chronic inflammation. 

This still preliminary observation has been used to submit an experimental protocol 

aiming to prevent the upregulation of some of the Winnie-APCMin specific genes 

using nutritional strategies that suppress the intestinal inflammation and/or prevent 

dysbiosis. Indeed, nutritional based strategies to suppress or mitigate intestinal 

inflammation has been one of the most important research topic of our group [21, 

29, 30, 40, 48, 49]. In particular, during the the first decade of scientific career, the 

candidate contributed to understand the importance of intestinal resident DCs for 

the intestinal homeostasis and the complex dynamic of DCs recruitment and 

polarization in the intestinal lamina propria [55-60]. For this reason we used BMDCs 

as a paradigm of cells potentially affected by polyphenol exposure.    

Dendritic cells respond to quercetin exposure producing secretory leukocyte 

protease inhibitor (SLPI). SLPI is an antimicrobial protein that is also involved in 

tissue repair and possess the ability to block NFkB nuclear translocation with the 

ultimate result to suppress inflammation [61].  Using Slpi-KO DCs we 

demonstrated that Slpi induction was a necessary step following quercetin 

administration to suppress inflammatory cytokine secretion, nonetheless the 

mechanism of action that triggers Slpi production was still not clear. 
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Using an easy dose response experiment, we demonstrated that the administration 

of inorganic iron was able to block quercetin in a dose dependent manner. As 

quercetin is a strong iron chelating agent [62, 63] we proposed that quercetin-iron 

chelation may result in DCs cytoplasmic loss of iron reservoir and consequent 

switch to an inflammatory-impaired phenotype [64, 65]. At the same time, 

nutritional intake of quercetin may contribute to sequestrate iron from the intestinal 

lumen, suppressing bacterial growth. This aspect was partially explored using 

polyphenol enriched diet administered to WT or Winnie mice. Dysbiosis is partially 

recovered after two weeks of 1% enriched diet. Currently ongoing experiments will 

demonstrate if enriched diet may be used as prevention strategies to suppress 

inflammation and prevent intestinal dysbiosis, particularly in the context of CRC 

genetically predisposed individuals.  

The Winnie-APCMin model will be crucial to evaluate the efficiency of the 

polyphenol-enriched nutritional strategies and, potentially, many different 

pharmaceutical approaches.  
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