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ABSTRACT 

Weather-induced landslides cause a large number of  casualties as well as 
severe economic losses worldwide every year. Such a diffuse risk cannot 
be mitigated only by means of  structural works, typically characterized by 
significant economic and environmental impacts. Therefore, landslide 
early warning systems (LEWS) are being increasingly applied as non-
structural mitigation measures aiming at reducing the loss-of-life 
probability and other adverse consequences from landslide events by 
prompting people to act appropriately and in sufficient time to reduce the 
possibility of  harm or loss. The systems can be distinguished, as a function 
of  the scale of  design and operation, in two different categories. Territorial 
systems (Te-LEWS), deal with multiple landslides over wide areas at 
regional scale, i.e. typically a basin, a municipality or a region; local systems 
(Lo-LEWS) address single landslides at slope scale.  
In a preliminary phase of  this study, a detailed review of  Lo-LEWS 
operational worldwide is provided. The information has been retrieved 
from peer-reviewed articles published in scientific journals and 
proceedings of  technical conferences, books, reports, and institutional 
web pages. The main characteristics of  these systems have been 
summarized and described according to a scheme based on a clear 
distinction between three modules: landslide model, warning model and 
warning system. The monitoring strategies implemented therein have been 
presented and discussed, focusing on the monitored parameters and the 
monitoring instruments for each type of  landslide. Subsequently, warning 
models developed within Te-LEWS for weather-induced landslides have 
been analyzed, pointing out that: their outputs are strongly dependent 
from the accurateness and reliability of  the information on landslide 
occurrences; and only meteorological variables are considered in most of  
the cases, thus leading to an unavoidable uncertainty in the empirically 
defined thresholds. To overcome these issues, original procedures for 
defining warning models are herein proposed and tested on case studies 
in Campania and Emilia-Romagna regions (Italy) and in Norway. In Italy, 
a probabilistic approach has been developed to determine landslide 
conditional probabilities related to rainfall of specific intensity and 



 

xvi 

duration. The adopted Bayesian methodology allows to consider the 
uncertainty of the data and to provide a quantitative assessment of the 
reliability of the results. Data on landslide occurrences have been derived 
from a new landslide inventory, named “FraneItalia”, wherein data are 
retrieved from online journalistic news; the correlations between 
landslides and rainfall have been assessed by analyzing satellite-rainfall 
records within weather alert zones. On the other hand, the methodology 
proposed for Norway aims at integrating the hydro-meteorological 
variables employed within the regional model used by the national early 
warning system (i.e. combinations of relative water supply and relative soil 
water saturation degree) with monitoring data collected at local scale, 
specifically pore water pressure observations acquired by the Norwegian 
Geotechnical Institute for a variety of projects. The analyses are carried 
out on a number of hydrological basins (test areas) defined at national 
scale and selected considering the occurrence of landslides in loose soils 
from 2013 to 2017 and the availability of a significant number of pore 
water pressure measurements. For each basin, the alerts issued by the 
regional model are assessed by means of a 2-step analysis employing 
indicators derived from simple moving averages of the pore water 
pressure measurements.  
The warning models developed herein were successfully applied to 
selected case studies. Therefore, the proposed methodologies can be 
considered valuable frameworks considering aspects that are crucial for 
improving the efficiency of the models, such as: the potential of non-
conventional landslide inventories and remote sensing monitoring 
instruments to complement the traditional sources of data, the use of 
probabilistic techniques for defining more objective rainfall thresholds, 
and the additional contribution of the information derived from the local 
observations of pore water pressures. 
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SOMMARIO 

Le frane meteo-indotte causano un numero elevato di vittime oltre a 
ingenti perdite economiche in tutto il mondo ogni anno. Un rischio tanto 
diffuso non può essere mitigato solamente attraverso opere strutturali, 
tipicamente contraddistinte da considerevoli impatti economici e 
ambientali. Di conseguenza, i sistemi di allerta da frana (LEWS) vengono 
sempre più applicati come misure di mitigazione di tipo non strutturale 
con lo scopo di ridurre la probabilità di perdita della vita e altre 
conseguenze avverse derivanti da eventi franosi inducendo le persone ad 
agire responsabilmente e in tempo utile per ridurre la possibilità di danno 
o perdita. Tali sistemi possono essere classificati in due differenti categorie, 
in funzione della scala a cui vengono progettati e applicati. I sistemi 
territoriali (Te-LEWS), si occupano di numerose frane su vaste aree a scala 
regionale, tipicamente un bacino idrografico, un comune o una regione; i 
sistemi locali (Lo-LEWS) operano su singole frane alla scala di pendio. 
In una fase preliminare di questo studio, è presentata una rassegna 
dettagliata dei sistemi di allerta locali operanti in tutto il mondo. Le 
informazioni sono state ricavate sia da articoli specializzati pubblicati in 
riviste, sia da atti di conferenze tecniche, libri, report e pagine web 
istituzionali. Le principali caratteristiche di questi sistemi sono state 
sintetizzate e descritte secondo uno schema basato su una chiara 
distinzione tra tre moduli: modello di franosità, modello di allerta e sistema 
di allerta. Le strategie di monitoraggio ivi implementate sono state 
presentate e discusse, concentrandosi particolarmente sui parametri 
monitorati e sugli strumenti di monitoraggio adottati per ciascun tipo di 
frana. Successivamente, sono stati analizzati i modelli di allerta sviluppati 
all’interno dei sistemi di allerta territoriali, rilevando che i loro rendimenti 
dipendono fortemente dall’accuratezza e dall’affidabilità delle 
informazioni sull’occorrenza delle frane e nella maggior parte dei casi sono 
considerate soltanto variabili meteorologiche, portando dunque a 
un’ineluttabile incertezza nelle soglie definite in via empirica. Al fine di 
risolvere queste problematiche, delle procedure originali per definire dei 
modelli di allerta sono proposte in questo lavoro e testate in casi di studio 
in Emilia-Romagna e Campania (Italia) e in Norvegia. In Italia, un 
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approccio probabilistico è stato sviluppato per determinare le probabilità 
condizionate relative a frane di specifica durata e intensità. La metodologia 
bayesiana adottata permette di considerare l’incertezza dei dati e di 
garantire una stima quantitativa dell’affidabilità dei risultati. Le 
informazioni sull’occorrenza delle frane sono state derivate da un nuovo 
inventario di frane, chiamato “FraneItalia”, i cui dati sono ricavati da 
articoli di stampa online; le correlazioni tra frane e piogge sono state 
valutate analizzando dati satellitari di pioggia all’interno di zone di allerta 
meteo. Invece, la metodologia proposta per la Norvegia mira ad integrare 
le variabili meteorologiche impiegate nel modello regionale utilizzato dal 
sistema nazionale di allerta (combinazioni di apporto idrico e grado di 
saturazione del suolo relativi) con dati di monitoraggio raccolti a scala 
locale, nello specifico misure di pressioni interstiziali acquisite dal 
Norwegian Geotechnical Institute per diversi progetti. Le analisi sono 
eseguite su una serie di bacini idrografici (aree di studio) definiti a scala 
nazionale e selezionati considerando l’occorrenza di frane in sedimenti 
sciolti dal 2013 al 2107 e la disponibilità di un numero significativo di 
misure di pressioni interstiziali. Per ogni bacino le allerte emanate dal 
modello regionale sono valutate attraverso un’analisi in due passi che 
impiega indicatori derivati da medie mobili semplici delle misure di 
pressioni interstiziali. 
I modelli di allerta sviluppati in questo studio sono stati applicati con 
successo ai casi di studio selezionati. Di conseguenza, le metodologie 
proposte possono essere considerate degli utili schemi che tengono conto 
di aspetti cruciali per migliorare l’efficienza dei modelli di allerta, fra cui: il 
potenziale di inventari di frana non convenzionali e strumenti in 
telerilevamento nell’integrare le tradizionali fonti di dati, l’utilizzo di 
tecniche probabilistiche per definire soglie pluviometriche più obiettive e 
il contributo addizionale delle informazioni derivate da osservazioni locali 
di pressioni. 
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1 INTRODUCTION 

Problem statement 
Weather-induced landslides are widespread and destructive natural 
phenomena occurring all around the world that may cause severe human 
and economic losses. The continuous urbanization process in landslide 
prone areas and the increasing number of extreme atmospheric 
phenomena have drastically raised, worldwide, the exposure of people 
affected by weather-induced landslides. Landslide risk can be reduced by 
adopting different mitigation methods, such as: active measures reducing 
the probability of occurrence of landslides, engineering works decreasing 
the vulnerability of the elements at risk, and non-structural actions. 
Among the latter, landslide early warning systems (LEWS) certainly 
constitute a significant option available to the authorities in charge of risk 
management and governance. LEWS aim at reducing the loss-of-life 
probability and other adverse consequences from landslide events by 
informing individuals, communities, and organizations threatened by 
landslides to prepare and to act appropriately and in sufficient time to 
reduce the possibility of harm or loss (UNISDR 2006). LEWS have been 
recognized as important tools for landslide risk reduction and community 
resilience in many recent international initiatives (e.g., Sendai Framework 
for Disaster Risk Reduction 2015-2030, UN Agenda 2030 for sustainable 
development, European Climate Adaptation Platform). Therefore, in 
recent years scientists, governmental agencies and NGOs have shown an 
increasing interest in LEWS. 
LEWS can be designed and employed at two different reference scales 
(e.g., Thiebes et al. 2012; Calvello 2017). Systems addressing single 
landslides at slope scale can be referred to as local systems (Lo-LEWS). 
Systems dealing with multiple landslides over wide areas at regional scale 
can be referred to as territorial systems (Te-LEWS), i.e., they can be 
employed over a basin, a municipality, a region, or a nation (Piciullo et al. 
2018). 
Many literature contributions describe LEWS operational at both local 
and regional scale dealing with weather-induced landslides. Yet, standard 
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requirements for the definition of an efficient LEWS still do not exist, thus 
crucial aspects may be neglected by systems developers and managers. The 
efficiency of LEWS strongly depends on the monitoring strategies 
adopted and the method developed for the definition of the warning 
model. Indeed, monitoring strategies play a central role, both in the design 
and in the operational phase of a LEWS, as suitable parameters to monitor 
must be identified and the most appropriate monitoring instruments need 
to be selected according to a set of criteria, such as simplicity, robustness, 
reliability, and cost. Another crucial issue is the definition of an 
appropriate warning methodology that considers the quantity and the 
quality of the input data and the expected outputs of the model. 
 
Objectives 
This PhD thesis aims at defining and testing original methodologies for 
improving the performance of warning models employed within LEWS 
for weather-induced landslides. 
In the following, the main research questions and the respective objectives 
are summarized. 
How to improve quantity and quality of landslide data?  

• Definition and population of a landslide inventory from online 
news 

• Analyses on landslide occurrences at regional scale 
How to best incorporate remote sensing data into current land-based monitoring 
networks? 

• Collection of meteorological monitoring data from satellite 
observations 

• Analysis of remote sensing data at regional scale 

• Integration between widespread meteorological monitoring data 
and local observations 

How to define rainfall thresholds in an objective and reproducible way? 

• Definition of probabilistic thresholds for landslide occurrence 

• Development and implementation of a probabilistic warning 
model 

How can local observations be profitably used within warning models implemented at 
regional scale? 

• Identification of the most appropriate parameters to be monitored 
at local scale in relation to the types of landslide under surveillance 
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• Development and implementation of a multi-scalar warning 
model 

 
Thesis Outline 
Chapter 2 presents the main characteristics of the landslide phenomena 
addressed herein, their possible consequences in terms of human and 
economic losses, and the mitigation measures available for landslide risk 
management. Regarding non-structural options, LEWS are introduced by 
describing their structure and by summarizing the findings of literature 
contributions on Lo-LEWS and Te-LEWS operational all around the 
world. Concerning Lo-LEWS, the information refers to 29 systems for 
which the main characteristics are analyzed considering three main 
modules: landslide model, warning model, and warning system (Pecoraro 
et al. 2018). Information on Te-LEWS are derived from three recent 
literature reviews reporting 24 Te-LEWS operational worldwide for 
rainfall-induced landslides (Piciullo et al. 2018), 21 regional LEWS 
operational in Italy (Pecoraro and Calvello 2016), and rainfall thresholds 
employed within 45 Te-LEWS operational worldwide (Segoni et al. 
2018a). 
In Chapter 3 the monitoring strategies adopted within the reviewed Lo-
LEWS and the Te-LEWS are discussed and analyzed in terms of 
monitored parameters and monitoring instruments. Moreover, the main 
characteristics of the warning models employed within the Te-LEWS are 
also reported. These analyses allow highlighting some relevant aspects that 
need to be taken into account in order to improve the efficiency of LEWS: 
the definition of objective and reproducible warning models; the 
availability of reliable landslide records and monitoring data; the 
integration of local geotechnical observations within warning models. 
Chapter 4 introduces a framework highlighting the steps necessary for the 
definition of a warning model for weather-induced landslides: collection 
of the input data; delimitation of the warning zones; identification of the 
landslide events; selection of the warning parameters; spatial-temporal 
correlation between landslide events and weather events; calibration and 
validation of the warning model. Following this framework, two original 
methodologies are proposed for the definition of warning models for 
weather-induced landslides: a probabilistic warning model, developed by 
applying a Bayesian approach to determine the conditional probability of 
landslide occurrence; and a multi-scalar warning model, integrating 
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widespread meteorological monitoring data and geotechnical observations 
collected at local scale. 
In Chapter 5 the probabilistic warning model is tested in two Italian 
regions, Emilia-Romagna and Campania, adopting as territorial units the 
weather warning zones defined by the two regional civil protection 
agencies. Data on landslide occurrences are derived from the “FraneItalia” 
catalog, a landslide inventory based on information retrieved from online 
Italian news (Calvello and Pecoraro 2018). Rainfall measurements are 
derived from the satellite-based NASA Global Precipitation Measurement 
(GPM) database, and are elaborated through Google Earth Engine, a 
cloud-platform for planetary-scale environmental data analysis. Triggering 
and non-triggering rainfall events are differentiated considering the 
spatial-temporal distribution of landslide events within each territorial 
unit. A Bayesian framework is applied to determine the probability of 
landslide occurrence associated to each combination of rainfall parameters 
and to define the warning levels within the model. The two probabilistic 
models are validated using two different validation procedures. 
In Chapter 6, the multi-scalar warning model is applied considering 30 
Norwegian hydrogeological basins starting from the nationwide Te-LEWS 
currently operational in Norway. These territorial units have been 
identified considering information available at national scale according to 
two selection criteria. The warning events issued by the national system, 
which only takes into account gridded monitoring data (i.e., rainfall and 
normalized values of water supply and soil water content), are assessed 
considering trends of local pore water pressure observations. The warning 
model is defined looking at the results of parametric analyses so as to 
identify the best-performing parameters to be employed. The multi-scalar 
warning model is finally validated employing statistical performance 
indicators. 
Finally, in Chapter 7 the results achieved are discussed and analyzed in 
order to evaluate the potential of the proposed methodologies in 
improving the performance of warning models for weather-induced 
landslides.
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2 EWS FOR WEATHER-INDUCED 
LANDSLIDES 

Weather-induced landslides are widespread phenomena, representing a 
significant risk for people, structures and infrastructures in many parts of 
the world. Such a diffuse risk cannot be mitigated only by means of 
structural measures, thus landslide early warning systems (LEWS) are 
being increasingly applied as non-structural risk mitigation measures. 
Section 2.1 introduces the main features and the possible consequences of 
the weather-induced landslides, also reporting the structural and non-
structural risk mitigation measures. Section 2.2 focuses on landslides early 
warning systems, presenting their main structure and differentiating 
between local systems (Lo-LEWS) and territorial systems (Te-LEWS). 
Section 2.3 presents a literature review on Lo-LEWS and an analysis of 
their main characteristics considering three main modules: landslide 
model, warning model, and warning system. Finally, Section 2.4 
summarizes information on Te-LEWS gathered from three recent 
literature contributions: Piciullo et al. (2018) described and analysed the 
main characteristics of territorial LEWS operational worldwide; Pecoraro 
and Calvello (2016) presented a review on regional LEWS for weather-
induced landslides in Italy; Segoni et al. (2018a) investigated the 
procedures for defining rainfall thresholds for landslide occurrence. 

2.1 WEATHER-INDUCED LANDSLIDES 

2.1.1 Types of landslides and possible consequences 

According to Cruden (1991), a landslide can be defined as “a movement of a 
mass of rock, debris or earth down a slope” activated or triggered by causes that 
can be either external or internal. However, the generic term “landslide” 
includes a variety of different phenomena, which are not perfectly 
repeatable, thus it is not possible to develop a taxonomic classification. 
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Therefore, since the early decades of the last century several classification 
schemes considering several discriminating factors have been proposed 
(e.g., Skempton 1953; Varnes 1958; Blong 1973; Varnes 1978; Hutchinson 
1988: Cruden and Varnes 1996; Leroueil et al. 1996; Hungr et al. 2001: and 
Hungr et al. 2014). For instance, the classification proposed by Varnes 
(1978) distinguishes among three types of materials (i.e., rock, debris, and 
earth) and five types of movements (i.e., fall, topple, slide, lateral spread, 
and flow). An additional class (i.e., the complex movements) is introduced 
by the author in order to define any combination of more than one 
movement. Cruden and Varnes (1996) allows differentiating between 
slow- and fast-moving landslides on the basis of seven velocity classes, 
each of them associated to a probable destructive significance. Hungr et 
al. (2014) state that simple term assigned to a landslide type (or a specific 
case) should reflect the particular focus of the researcher. Following this 
approach, Calvello (2017) proposes that for early warning purposes a 
landslide should be classified on the basis of its propagation phase and 
taking into account four main characteristics: i) type of movement and 
material, ii) activity phase, iii) velocity, and iv) volume (Figure 2.1). 
 

 

Figure 2.1 Example of landslide classification scheme for early warning purposes 
proposed by Calvello (2017) 
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This thesis addresses weather-induced landslides occurring in shallow soil 
layers as first failure phenomena. They comprise a wide range of slope 
movements of limited size that mainly develop in soil layers up to a 
maximum of a few meters, such as shallow slides, debris slides, debris 
flows, debris avalanches, and hyperconcentrated flows. The main 
triggering mechanism for these landslides typically consists of rain or snow 
infiltration in shallow soil layers, resulting in an increase of the pore water 
pressure and a decrease of the soil shear strength (Caine 1980), as well as 
in the loss of the apparent cohesion in partially saturated soils (Fredlund 
1987). The triggering process is characterized by a nearly totally absence 
of warning signs. Although the triggering volume is often limited, the 
landslide mass may incorporate the soil material lying along the slope in 
the propagation phase, increasing significantly the volume. Moreover, in 
steep channels shallow slides may evolve into debris flows, destructive 
phenomena characterized by extremely high velocities (Hungr et al. 2014). 
Shallow weather-induced landslides can occur frequently and often 
simultaneously over large areas, thus they represent a widespread risk for 
local communities, structures, and infrastructures in many parts of the 
world (Calvello 2017). Recently, several different global databases (e.g., the 
EM-DAT International Disaster Database, the NASA Global Landslide 
Catalogue, and the Global Fatal Landslide Database) provided data on the 
societal impact of these landslides. However, information is generally 
related to all type of landslides and global databases generally 
underestimate the landslides impact on society, as landslide events are 
often incorporated in other major climate-related natural disasters (Petley 
2012; Kirschbaum et al. 2015). Nevertheless, their analysis allows some 
general considerations on human and economic losses of weather-induced 
landslides, their spatial distribution and possible future trends. For 
instance, the EM-DAT database suggested that weather-induced 
landslides account for 5.2% of natural climate-related disaster events, 
resulting in 18,418 deaths and about 8 billion EUR of economic losses 
(Guha-Sapir et al. 2018). Moreover, Froude and Petley (2018) 
demonstrated that the majority of the 4862 fatal landslide events reported 
in the Global Fatal Landslide Database between 2004 and 2016 were 
triggered by rainfall or snowmelt (79%) and were mainly concentrated in: 
Central America, the Caribbean islands, Andes mountains, East Africa, the 
Himalayan Arc, China, and the European Alps. Finally, Haque et al. (2016) 
reported that 1.3 to 3.6 million Europeans live in landslide prone areas and 
8000 to 20,000 km of roads and railways are highly exposed to landslides. 
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2.1.2 Structural and non-structural risk mitigation measures 

The awareness of the possible catastrophic consequences of landslides, in 
terms of victims and social-economic impacts, led the technical and 
scientific community to the adoption of a rigorous approach aimed at an 
efficient and effective prevention, mitigation and control of landslide risk. 
To this aim, Fell et al. (2005) proposed an integrated logical framework 
for landslide risk management, including three phases: risk analysis, risk 
assessment, and risk management (Figure 2.2). 

 

 

Figure 2.2 Schematic representation of the integrated risk management process 
proposed by Fell et al. (2005) 

 
Within this framework, risk analysis represents the basic level of risk 
management process and it is essentially aimed at the estimation of the 
current or potential level of risk in a specific area affected by a given 
landslide phenomenon. Risk analysis generally contains the following 
steps: definition of scope, danger (threat) identification, estimation of 
probability of occurrence to estimate hazard, evaluation of the 
vulnerability of the element(s) at risk, consequence identification, and risk 
estimation.  
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In general terms, landslide risk (R) can be expressed through the widely 
accepted formula of Varnes (1984): 

𝑅 = 𝐻 × 𝐸𝑅 × 𝑉 (2.1) 

where: H (hazard) is the probability that a particular landslide 
phenomenon occurs within a certain area in a given period of time; ER 
(elements at risk) are people, building, engineering works, infrastructures, 
environmental features and economic activities in the area affected by a 
landslide; V (vulnerability) is the degree of loss to a given element or a set 
of elements within the area affected by a landslide, expressed on a scale 
from 0 (no loss) to 1 (total loss). 
Risk assessment is the process of making a decision or recommendation 
on whether existing risks are tolerable and present risk control measures 
are adequate, and if not, whether alternative risk control measures are 
justified or will be implemented. To this aim, the outputs from the risk 
analysis are compared against values judgements and risk tolerance criteria 
determined taking account of political, legal, environmental, regulatory 
and societal factors. 
Finally, risk management represents the systematic application of 
management policies, procedures and practices in order to identify, 
analyze, assess, and in case mitigate and monitor landslide risk. The risk 
management process is iterative, requiring consideration of the risk 
mitigation options and the results of the implementation of the mitigation 
measures and of the monitoring.  
According to UNISDR (2006), mitigation measures can be classified into 
two main groups: structural measures (i.e., any physical construction to 
reduce or avoid possible impacts of landslides, or the application of 
engineering techniques or technology to achieve landslide resistance and 
resilience in structures or systems) and non-structural measures (i.e., 
mitigation strategies not involving physical construction which use 
knowledge, practice or agreement to reduce disaster risks and impacts, in 
particular through policies and laws, public awareness raising, training and 
education).  
Following equation (2.1), structural measures mainly address either hazard 
(e.g., reduction of the general slope angle, modification of geometry 
and/or mass distribution, surface drains) or vulnerability (e.g., diversion 
channels, re-modelling of the slope, planting and vegetation of the slope, 
catch trenches). Conversely, non-structural measures usually address 
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elements at risk (e.g., land-use planning, early warning, public 
preparedness). 
Within these frameworks, landslide early warning systems (LEWS) may be 
considered a non-structural passive mitigation option to be employed in 
areas where risk, occasionally, rises above defined acceptability levels 
(Calvello 2017). 

2.2 LANDSLIDE EARLY WARNING SYSTEMS 

2.2.1 Structure and main modules 

LEWS are being increasingly applied worldwide, mainly because of: their 
lower economic costs and environmental impact compared to structural 
measures (e.g., Intrieri et al. 2012; Thiebes and Glade 2016); the 
continuous development of new technologies for landslide monitoring 
(e.g., Chae et al. 2017; Crosta et al. 2017); and increasing availability of 
reliable databases to calibrate the warning models (e.g., Haque et al. 2016; 
Calvello and Pecoraro 2018). LEWS aim at reducing the loss-of-life 
probability and other adverse consequences from landslide events by 
informing individuals, communities, and organizations threatened by 
landslides to prepare and to act appropriately and in sufficient time to 
reduce the possibility of harm or loss (UNISDR 2006). 
The types of landslides and the mechanisms responsible of their 
occurrence or reactivation, as well as the early warning conditions that 
might be detected before a paroxysmal phase of movements, vary widely 
depending on the geo-environmental context. Therefore, it is necessary 
for managers of LEWS to adapt the design of the systems to the particular 
conditions at the locations where these systems will be operational. To this 
aim a certain degree of flexibility is required during the implementation, 
while at the same time universal standards should be defined so that 
uniformity in the development of such systems and improvement of 
community resilience in landslide prone areas can be obtained. 
In 2006 UNISDR defined a simple list of the main elements and actions 
that national governments or community organizations can refer to when 
developing or evaluating people-oriented early warning systems for natural 
hazards. The checklist is structured around four key components: i) risk 
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knowledge, i.e., systematic assessment of hazards and vulnerabilities; ii) 
monitoring and warning service, i.e., accurate and timely forecasting of 
hazards using reliable, scientific methods and technologies; iii) 
dissemination and communication, i.e., clear and timely distribution of 
warnings to all those at risk; iv) response capability, i.e., national and local 
capacities and knowledge to act correctly when warnings are 
communicated. Di Biagio and Kjekstad (2007) focus on EWS for 
landslides and introduce a block diagram describing the four main 
activities that should be implemented in: monitoring, analysis of data and 
forecasting, warning and response. The framework proposed by Sassa et 
al. (2009) in the context of the project “Early Warning of Landslide” is 
divided into three main flows. The central flow contains the monitoring 
of triggering factors and the development of landslide risk maps and early 
warning technologies. The left flow represents an aspect of technology for 
site and time prediction of landslides. Finally, the right flow refers to the 
social aspects, including the risk communication and the evacuation 
systems. Intrieri et al. (2013) point out that an EWS may suffer from the 
imbalance among their components; for instance, often some of them may 
lack in the social/communication aspects. The authors describe landslide 
EWS as the balanced combination of four main activities: design, 
monitoring, forecasting and education. Recently, the scheme proposed by 
Piciullo et al. (2018) identifies the main components necessary to design a 
territorial EWS for rainfall-induced landslides, highlighting the importance 
of both technical and social aspects. For this purpose, the conceptual 
model is organized as a jigsaw puzzle, based on four main modules of the 
warning system: i) setting, ii) correlation law, iii) decisional algorithm, and 
iv) warning management. 
Although the proposed schemes and the described elements correctly 
represent LEWS, a more detailed and representative conceptual model for 
LEWS is herein provided. For this purpose, Figure 2.3 introduces a 
scheme modified from a similar framework developed by Calvello (2017) 
for weather-induced landslides. The proposed layout clearly differentiates 
among three main modules: landslide model, warning model and warning 
system. Within this framework, a landslide model is one the components 
of a warning model and the latter is one of the components of an early 
warning system. A landslide model may be described as a functional 
relationship between landslide causes (e.g., weather, geomorphological, 
anthropic) and landslide events, taking into account the geological, 
geomorphological and hydrogeological features of the slope and the data 
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provided by monitoring instruments. A warning model includes the 
landslide model as well as warning criteria and warning levels. Warning 
criteria are represented by the decision-making procedures necessary for 
issuing the warnings and for establishing a connection between the 
outputs of the landslide model to a set of warning levels. Each warning 
level is associated to the state of activity of the landslide, to the possible 
consequences and, of course, to the expected actions from the actors 
involved (e.g., EW managers, politicians, scientist, stakeholders, citizens). 
The number of levels adopted by the model can vary from a minimum of 

two⎯i.e., warning, no warning⎯to five or more. Finally, a warning model 
is part of a warning system, whose other four components are: warning 
dissemination, communication and education, community involvement 
and an emergency plan. On this issue, it is important to stress the role of 
the community and the social aspects in general, at times neglected by 
technicians, but still essential, as well as other components, for LEWS to 
be effective. 
 

 
Figure 2.3 Framework identifying the main modules of landslide early warning 
systems (modified from Calvello 2017) 

2.2.2 The scale of analysis 

LEWS can be designed and employed at two different reference scales 
(e.g., Thiebes et al. 2012; Calvello and Piciullo 2016). Systems addressing 
single landslides at slope scale can be named as local (Lo-LEWS). Systems 
dealing with multiple landslides over wide areas at regional scale are 
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referred to as territorial systems (Te-LEWS), i.e., they can be employed 
over a basin, a municipality, a region, or a nation (Piciullo et al. 2018).  

The main aim of Lo-LEWS is the temporary evacuation of people from 
areas where, at specific times, the risk level to which they are exposed is 
considered to be intolerably high. They typically implement a network of 
instruments to monitor the parameters most relevant for early warning 
purposes, considering predisposing and triggering factors. Their design 
and operation are strongly influenced by numerous constraints and 
factors, from time to time different, depending on the characteristics (e.g., 
size, possible precursors, potential velocity) of the landslide under 
surveillance.  
On the other hand, Te-LEWS are used to provide generalized warnings to 
authorities, civil protection personnel and the population over 
appropriately-defined homogeneous warning zones of relevant extension. 
Typically, these systems address weather-induced landslides through the 
monitoring and prediction of meteorological parameters. 
A key difference between local and territorial LEWS is represented by the 
definition of a “landslide event”. Regarding local LEWS, a landslide event 
may be represented either by: a single active or dormant phenomenon; a 
potential slope instability, due to a first failure of a soil or rock mass. 
Differently, for territorial LEWS a landslide event may be defined as a 
series of landslides grouped on the basis of their characteristics, so as to 
implicitly evaluate the numerosity of a set of multiple phenomena 
occurring in a given area within a given time period. 
The scale of analysis of a LEWS also inevitably influences the stakeholders 
involved as well as most of its operational characteristics, including: the 
model adopted to characterize a landslide event; the criteria to issue the 
warnings and their meaning; the lead time; the tools used to disseminate 
the warnings; the definition of the emergency plan. 
Recently, Sättele et al. (2012) and Stähli et al. (2015) distinguished among 
three classes of EWS for natural hazards: i) alarm systems, detecting 
process parameters of a phenomena already in progress; ii) warning 
systems, monitoring triggering factors before the beginning of a landslide 
event; and iii) forecasting systems, predicting the level of danger of a 
landslide process. According to the authors, they can be differentiated 
considering: the area under surveillance, the lead time, the parameter 
monitored, the number of warning levels, and the degree of automation. 
Calvello (2017) presented a scheme combining the two categories of 
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LEWS defined on the basis of their scale of analysis with the classification 
proposed by Sättele et al. (2012) and Stähli et al. (2015). Local LEWS are 
indeed typically implemented as either alarm or warning systems; whereas 
territorial LEWSs are generally used as either warning or forecasting 
systems (Table 2.1). 

 

 

Table 2.1 Local and territorial LEWS function of detection factors, lead time and 
warning characteristics (Calvello 2017) 

Class 
(function 
of scale) 

Class 
(Sättele et 
al. 2012) 

Detection 
Lead 
time 

Warning 

Local Alarm 
Parameters of 
ongoing event 

Short Automatic 

Local and 
territorial 

Warning 
Factors of 
susceptibility 

Extended 
Predefined 
thresholds 

Territorial Forecasting 
Sensor data 
and forecasts 

Regular 
intervals 

Data 
interpretation 

 
Many LEWS operational all around the world and reported in the 
scientific literature deal with weather-induced landslides. Comprehensive 
reviews of systems operational at both local and regional scale are 
presented in Sections 2.3 and 2.4, respectively. 

2.3 REVIEW ON LOCAL LANDSLIDE EARLY WARNING 

SYSTEMS 

(based on Pecoraro et al. 2018) 

2.3.1 Location, period, and state of activity 

Figure 2.4 presents a summary of the location and the period of activity 
of 29 Lo-LEWS operational all around the world. The majority of them 
(22) are currently active both as prototypes (4) and as operational systems 
(18). On the other hand, in five cases prototype systems were designed at 
operating for relatively limited periods of time: Nojiri River basin, Japan 
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(AS_1991_P); Moscardo catchment, Italy (EU_1995_P); Wollongong, 
Australia (OC_2005_P); Banjarnegara, Indonesia (AS_2007_P); and 
Swabian Alb, Germany (EU_2007c_P). Only two of the operational 
systems described herein are no longer active: Xintan Town, China 
(AS_1977_N) and North Vancouver, Canada (NA_2009_N). Among the 
29 Lo-LEWS reported herein, only few applications have been gathered 
before the 2000s. 
 

 

Figure 2.4 Local landslide early warning systems: a) national distribution; b) 
location and period of activity (Pecoraro et al. 2018) 

 
The oldest system was designed in Xintan Town, China (AS_1977_N) in 
1977 for addressing a large rock avalanche on the northern bank of the 
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Yangtze River. On 12 May 1985 the upper part of the hillside collapsed 
destroying the historical town located in front of the slope. However, the 
system successfully predicted the catastrophic collapse and all the 1371 
inhabitants of the surrounding area were warned and evacuated in time 
(Wang 2009). In 1991, a prototype system was employed in the Nojiri 
River basin, Japan (AS_1991_P) for detecting the possible occurrence of 
debris flows on the flanks of Mt. Sakurajima volcano through embedded 
acoustic sensors (Takeshi 2011). In the early 1990s, USGS developed an 
automated lahar warning system comprising a network of geophones, a 
ground-based radio telemetry system and a warning-dissemination 
component. After a first application at Mt. Rainier, USA (NA_1998_A) in 
1997, the system was installed in many other lahars-threatened areas 
situated in USA, Indonesia, the Philippines, Ecuador, Mexico, and Japan 
(Pierson et al. 2014). The first two systems operational in Europe were 
carried out in the Moscardo catchment, Italy (EU_1995_P) and in the 
south-eastern coastal areas of England (EU_1997_A). In the first case, 
seismic detectors were placed along debris flows prone channels in the 
summers 1995 and 1996 for assessing their capability to detect phenomena 
while in progress (Arattano 1999). In the second case, a series of dramatic 
landslide events led to the establishment of a number of real-time Lo-
LEWS to safeguard people exposed at risk from future potential landslip 
and cliff-top recession (Clark et al. 1996). Furthermore, the large majority 
of the systems—24 out of 29—have been developed in the last 20 years, 
especially in Europe. Among them, the system operational in the Sorfjord 
region, Norway (EU_2004_A) since 2004 is particularly well-known and 
well-described in the scientific literature. Indeed, the Åknes rockslide 
under surveillance represents a significant threat to the local communities 
for the potential to trigger a tsunami as a consequence of the fall of the 
sliding mass into the fjord. For this reason, the landslide is investigated 
year-round by a variety of monitoring instruments, including nine corner 
reflectors, GPS, laser, radar and seismic sensors. However, it should be 
noted that the successful operation of this system relies more on social 
aspects, i.e. the trust between the experts making the observations and the 
residents of the area threatened by the tsunami, rather than on technical 
aspects (Blikra et al. 2013). Other relevant examples of local LEWS 
deployed in Europe are addressing the following: a complex slope 
movement in the Southern French Alps known as La Valette landslide 
since 2007 (EU_2007_A); a large and deep colluvial landslide affecting the 
municipality of Ancona, Italy since 2008 (EU_2008_A); and a complex 
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phenomenon composed of retrogressive rockslides and rock avalanches 
threatening the village of Preonzo in the Swiss Alps since 2010 
(EU_2010c_A). Besides, many other LEWS exist at local scale outside 
Europe. In Asia, local LEWS have been implemented both at prototype 
(AS_2007_P, AS_2014_P) and operational systems (AS_2002_A, 
AS_2004_A, AS_2005_A). Among the latter, the system employed in 
Wushan Town, China (AS_2004_A) has been operational since 2004 for 
monitoring the Yuhuangge landslide, the largest of the 27 phenomena 
affecting the area where hundreds of building and structures have been 
relocated after the impoundment of the Three Gorges Reservoir in 2003 
(Yin et al. 2010). In North America, a relevant example is represented by 
the system deployed in 2005 at Turtle Mountain, Canada (NA_2005_A) 
dealing with the Frank Slide, which partially buried the city of Frank in 
1903, killing over 70 people (Read et al. 2005). In Oceania, a system has 
been installed since 2000 at Mt. Ruapehu, New Zealand (OC_2000_A), 
where lahars are likely to occur either when the crater lake over flows or 
when the tephra dam collapses with or without a volcanic eruption 
(Massey et al. 2009). 
Table 2.2 lists information on the location and the country where the 
system has been employed, the institution in charge of operating the 
system, the source of the data used for the analyses and the year of the last 
information available. In the large majority of the cases—27 out of 29—
the systems are operated either by government institutions, often directly 
involved in landslide risk management, or by civil protection agencies 
operating at national or regional level. Only two prototype systems are 
designed and managed by university research groups: the Nojiri River 
basin, Japan (AS_1991_P) and Wollongong, Australia (OC_2005_P). The 
information on the period of activity and the main characteristics of the 
Lo-LEWS was retrieved on different sources: articles published in 
international journal, proceeding of international conferences, web pages, 
and grey literature. Systems for which recent up to date information on 
the state of activity is not available have been considered operational for 
the following years, unless information on their termination was found in 
literature. It is worth mentioning that, besides the 29 Lo-LEWS reported 
in Table 2.2, many other systems are operational at local scale around the 
world to deal with unstable slopes in various contexts, such as: road and 
railway embankments, pipelines and open pit mines. If they have not been 
included herein, it means that information on these systems is not 
available, it was not found or it is privately disclosed in internal reports. 
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Table 2.2 Location, country, managing institution, source of information, and 
year of most recent information of the Lo-LEWS reviewed by Pecoraro et al. (2018) 

ID Location Institution 
Source of 

information 
Latest 

information 

AS_1977_N Xintan Town (CN) No info [29], [46] 2016 

AS_1991_P Nojiri River Basin (JP) Kyoto University [21], [41] 2004 

AS_2002_A Taiwan torrents (TW) SWCB [52] 2011 

AS_2004_A Wushan Town (CN) MLR [47], [51] 2010 

AS_2005_A Lake Sarez (TJ) Ministry of Defense [13] 2007 

AS_2007_P Banjarnegara (ID) AIT [18], [39] 2009 

AS_2014_P Longjingwan (CN) SKLGP [19], [23] 2015 

EU_1995_P 
Moscardo catchment 

(IT) 
Forest Service of Friuli-
Venezia Giulia Region 

[1] 1996 

EU_1997_A Coastal areas (EN) No info [8], [40] 2015 

EU_2000_A Nals (IT) Civil Defence [40], [44] 2015 

EU_2000b_A 
Illgraben catchmrnt 

(CH) 
Cantonal CCU [2], [23] 2009 

EU_2002_A South-west (DE) No info [44] 2002 

EU_2003_A Aosta Valley (IT) Aosta Control Centre [5], [42], [43] 2010 

EU_2004_A Åknes (NO) 
Åknes/Tafjord Early 

Warning Centre 
[3], [4,] [26], [27] 2013 

EU_2006_P Ruinon (IT) 
ARPA Lombardia 

Early Warning Centre 
[3], [10]  2006 

EU_2007_A La Valette (FR) RTM [48] 2017 

EU_2007b_P Torgiovannetto (IT) No info [20] 2007 

EU_2007c_P Swabian Alb (DE)  BMBF [44] 2008 

EU_2008_A Ancona (IT) 
Ancona Monitoring 

Center 
[3], [6], [7], [9] 2012 

EU_2009_A Mont de La Saxe (IT) 
Regional Geological 

Survey 
[11], [12], [32] 2015 

EU_2009b_A Mannen (NO) Åknes/Tafjord EWC [3], [4], [26] 2013 

EU_2010_A Alice Bel Colle (IT) 
Alice Bel Colle 
municipality 

[36] 2010 

EU_2010b_A Bagnaschino (IT) 
Geological Bureau of 

the Province of Cuneo 
[17] 2012 

EU_2010c_A Preonzo (CH) 
Department of 

Territory - Canton of 
Ticino 

[30], [31] 2016 

NA_1998_A Mt. Rainier (USA) USGS and PCEM [28], [37], [49], [50] 2018 

NA_2005_A Turtle Mountain (CA) 
Alberta Geological 

Survey 
[16], [35], [38] 2014 

NA_2009_N Vancouver (CA) Ministry of Forests [22] 2011 

OC_2000_A Mt. Ruapehu (NZ) 
Department of 
Conservation 

[24], [33] 2010 

OC_2005_P Wollongong (AU) 
University of 
Wollongong 

[14], [15] 2005 
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← Legend:  
a) Institution: SWCB: Soil and Water Conservation Bureau; MLR: Ministry of Land and Resource; 
AIT: Asian Institute of Technology; SKLGP: State Key Laboratory of Geohazard Prevention and 
Geoenvironment Protection; CCU: Cantonal Crisis Unit; RTM: Restauration des Terrains en 
Montagne; BMBF: German Federal Ministry of Education and Research; EWC: Early Warning 
Centre; USGS: United States Geological Survey; PCEM: Pierce County Emergency Management 
b) Source of information: [1]: Arattano (1999); [2]: Badoux et al. (2009); [3]: Baroň et al. (2012); 
[4]: Blikra et al. (2013); [5]: Broccolato (2010); [6]: Cardellini and Osimani (2011); [7]: 
Cardinaletti et al. (2011); [8]: Clark et al. (1996); [9]: Cotecchia (2006); [10]: Crosta and Agliardi 
(2003); [11]: Crosta et al. (2014); [12]: Crosta et al. (2015); [13]: Di Biagio and Kjekstad (2007); 
[14] Flentje and Chowdhury (2005); [15]: Flentje and Chowdhury (2006); [16]: Froese and Moreno 
(2014); [17]: Giuliani et al. (2010); [18]: Honda et al. (2008); [19] Huang et al. (2013); [20] 
Intrieri et al. (2012); [21] Itakura et al. (2000); [22] Jakob et al. (2012); [23] Ju et al. (2015); 
[24]: Keys and Green (2008); [25]: Kristensen and Blikra (2011); [26]: Kristensen et al. (2010); 
[27]: Lacasse and Nadim (2011); [28]: LaHusen (1998); [29]: Li et al. (2016); [30]: Loew et al. 
(2012); [31]: Loew et al. (2016); [32]: Manconi and Giordan (2015); [33]: Massey et al. (2010); 
[34]: McArdell et al. (2007); [35]: Moreno and Froese (2010); [36]: Olivieri et al. (2012); [37]: 
Pierson et al. (2014); [38]: Read et al. (2005); [39]: Sassa et al. (2009); [40]: Stähli et al. (2015); 
[41]: Takeshi (2011); [42]: Tamburini (2005); [43]: Tamburini and Martelli (2006); [44]: Thiebes 
(2011); [45]: Thiebes et al. (2014); [46]: Wang (2009); [47]: Wang et al. (2008); [48]: web page 
from OMIV (accessed: 23 October 2017); [49]: web page from USGS (accessed: 05 September 2018); 
[50]: web page from PCEM (accessed: 05 September 2018); [51]: Yin et al. (2010); [52]: Yin et al. 
(2011) 

 
In the following sections, the 29 Lo-LEWS introduced herein are 
discussed and analyzed considering the three main modules introduced by 
Calvello (2017) and already described in Chapter 2: landslide model, 
warning model and warning system. 

2.3.2 Landslide model 

The landslide model is the first module needed to design a Lo-LEWS, 
according to the scheme proposed in Section 2.2.1. Table 2.3 summarizes 
the landslide models used in the systems reported herein in terms of: 
covered area, landslide cause(s), type(s) of landslide, and monitoring 
system. 
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Table 2.3 Information on landslide model developed within the Lo-LEWS 
reviewed by Pecoraro et al. (2018) 

ID 
Covered 

area 
Type(s) of  
landslide 

Landslide 
cause(s) 

Monitoring system 

AS_1977_N 0.75 km
2
 Rock avalanche Rainfall The, Crack, WLM 

AS_1991_P 10 km
2
 Debris flows Rainfall Geoph 

AS_2002_A 
17 + 3 sites 
(35,980 km2) 

Debris flows Rainfall 
17 on-site + 3 mobile stations:  

RG, Cam, Geoph, Hyd, WS 

AS_2004_A 0.75 km
2
 

Deep-seated 
colluvial  

Rainfall and   
human activity 

GPS, TDR, Inc, Piez, RG, OptF, 
WLM 

AS_2005_A 1.5 km
2
 No info Rainfall WLM, Acc, GPS, SprS, WS 

AS_2007_P 1 km
2
 No info Rainfall EExt, RG, Piez, Cam 

AS_2014_P 0.008 km
2
 Rainfall-induced  Rainfall RG, Inc, Piez 

EU_1995_P 4.1 km
2
 Debris flows Rainfall Seis 

EU_1997_A 
6 sites (1 

km2) 
Cliff top 
recession 

Sea activity Tilt, EExt, PS, GPS, Inc 

EU_2000_A App. 0.3 km2 Debris flows Rainfall Geoph, Piez, RG, Cam 

EU_2000b_A 9.5 km
2
 Debris flow Rainfall Geoph, Sat, Cam, RG 

EU_2002_A 0.035 km2 No info No info GPS 

EU_2003_A 4 * < 1 km
2
 No info 

Rainfall and 
snowmelt 

EExt, GPS, WS, TotS, Piez, 
GbSAR 

EU_2004_A 0.75 km
2
 Rockslide 

Rainfall and 
snowmelt 

GPS, TotS, GbSAR, BExt, Crack, 
Tilt, Geoph, WS, DMS, PS 

EU_2006_P 0.26 km
2
 Rockslide Rainfall EExt, TotS, WS, GPS, InSAR 

EU_2007_A 0.5 km
2
 Mudslide Rainfall 

WS, Inc, Piez, BExt, GPS, Cam, 
LiDAR 

EU_2007b_P 0.03 km
2
 Rockslide Rainfall EExt, RG, Cam 

EU_2007c_P 0.4 km
2
 Rockfall Rainfall Inc, Tilt, TDR, Tens, WS, Piez 

EU_2008_A App. 3 km2 No info Rainfall TotS, GPS, RG, DMS, PS 

EU_2009_A 0.15 km
2
 Rockslide 

Rainfall and 
snowmelt 

Surface:  InSAR, GPS, TotS 
Deep:  Inc, BExt, PS, DMS 

EU_2009b_A 0.25 km
2
 Rockslide 

Rainfall and 
snowmelt 

BExt, GPS, GbSAR, DMS, PS, 
WS 

EU_2010_A 0.45 km2 No info Rainfall DMS, Inc, PS 

EU_2010b_A 0.15 km
2
 

Deep-seated 
roto-translational 

Rainfall and 
snowmelt 

DMS, PS, TotS, WS, Inc 

EU_2010c_A 0.01 km
2
 

Rockslides and 
rock avalanches 

Rainfall EExt, RG, TotS, Crack, GbSAR 

NA_1998_A 100 km2 Lahars 
Snowmelt and 

volcanic activity 
Geoph 

NA_2005_A 0.5 km
2
 Rock avalanche Rainfall Tilt, BExt, Crack, WS, RG, TDR 

NA_2009_N 160.76 km2 Debris flows Rainfall RG 

OC_2000_A 0.2 km2 Lahars Dam break 3 Geoph, WLM 

OC_2005_P 2 sites  Rainfall-induced Rainfall Inc, Piez, RG 
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← Legend: The: Theodolite; TotS: Total station; Crack: Crackmeter; Mic: Microphone; RG: Rain 
gauge; Cam: Camera; Geoph: Geophone; WLM: Water level meter; WS: Weather station; Bar: 
Barometer; GPS: Global positioning system; TDR: Time domain reflectometer; Inc: Inclinometer; Hyd: 
Hydrometer; PT: Pressure transducer; OptF: Optic fiber; Acc: Accelerometer; TM: Turbidity mteter; 
EExt: Embedded Extensometer; BExt: Borehole Extensometer; Seis: Seismometer; Tilt: Tiltmeter; 
Sat: Satellite sensor; GbSAR: Ground-based synthetic aperture radar; DMS: “Differential monitoring 
of instability” column; InSAR: Interferometric synthetic aperture radar; LiDAR: Light detection and 
ranging; Tens: Tensiometer) 

 
Covered area 
The reviewed systems are mostly designed to operate at slope scale, 
dealing with a single landslide system over a limited portion of territory. 
Although they have been designed to operate at the same scale of 
operation, the area under surveillance varies by orders of magnitude, 
ranging from less than 1 km2 to more than 100 km2 (Figure 2.5). 
 

 

Figure 2.5 Lo-LEWS reported in the literature ordered by covered area 

 

The smallest warning areas are covered by the systems operational in: 
Longjingwan, China (AS_2014_P); South-west Germany (EU_2002_A); 
Torgiovannetto, Italy (EU_2007b_P); and Preonzo, Switzerland 
(EU_2010c_A). The first one refers to a rather typical Lo-LEWS 
established in 2014 and aimed at monitoring the Longjingwan landslide, 
an unstable mass characterized by a length of 200 m and a width of 40 m 
(Figure 2.6). According to field surveys, the landslide was reactivated by 
an intense precipitation event on 24 June 1995. Despite the relatively small 
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sliding surface, the landslide represents a high potential risk for the 
inhabitants of the nearby Jinzhong Town (Ju et al. 2015). 
 

 

Figure 2.6 Schematic view (a) and cross section (b) of the Longjingwan landslide 
(Ju et al. 2015) 

 
Conversely, larger areas are investigated by the following systems: Taiwan 
(AS_2002_A); Mount Rainier, USA (NA_1998_A); and North 
Vancouver, Canada (NA_2009_N). The former, established by the 
Taiwanese Council of Agriculture Soil and Water Conservation Bureau 
(SWCB) in 2002, is a peculiar Lo-LEWS, as it is formed by 17 on-site 
monitoring stations located in the proximity of potential debris flows 
torrents (Figure 2.7). However, the presence of 1,503 debris flows-prone 
channels around the island and the extreme variability of the rainfall 
regime in the monsoon season could lead to an ineffective warning. 
Therefore, in 2004 the system has been integrated by three more mobile 
monitoring stations, equipped with the same instruments of the on-site 
ones. This project is aimed both at increasing the capability of collecting 
field data and enhancing the probability of detecting debris flow events 
while already occurring (Yin et al. 2011). 
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Figure 2.7 Shenmu debris flow monitoring station, one of the 17 on-site 
monitoring station located around Taiwan island (Yin et al. 2011) 

 
Landslide cause(s) 
Figure 2.8 displays that twenty-six of the 28 Lo-LEWS for which the 
landslide cause is clearly specified deal with weather-induced landslides, 
i.e. triggered by rainfall, snowmelt or a combination of both. It should be 
stated that at Mt. Rainier, USA (NA_1998_A) the investigated lahars 
(volcanic debris flows) mainly form when water from snowmelt mixes 
with loose volcanic material. However, in some cases they can be directly 
associated with the effects of the volcanic activity when snow and glaciers 
are melted by lava and other pyroclastic surges produced by a volcanic 
eruption. 
 

 
Figure 2.8 Causes of landslides addressed within the Lo-LEWS reviewed by 
Pecoraro et al. (2018) 
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In the two remaining cases, EU_1997_A and OC_2000_A, the landslides 
under surveillance are not triggered by weather conditions. The former 
has been designed to cope with cliff top recessions along the southern and 
eastern coasts of England, which are caused by sea abrasion, mass 
movements and water erosion (Figure 2.9). On the other hand, the lahars 
monitored by the latter are typically triggered by the failure of a tephra 
dam in the former outlet of the lake or by the collapse of part of the rim 
of a crater lake. Other possible triggers may include eruptions that have 
ejected water from the crater lake. 
 

 
Figure 2.9 Coastal landslide occurred in Scarborough, south-eastern coast of 
England (McInnes and Moore 2011) 

 

Type(s) of landslide 
Figure 2.10 shows the types of landslides monitored in the Lo-LEWS 
described herein. Almost all the systems—28 out of 29—deal with one 
type of landslide: this is not surprising, as systems operating at slope scale 
are designed and managed according to the characteristics of the landslide 
under surveillance, which in turn strongly influence the choices on the 
parameters to be monitored and the monitoring methods. The most 
investigated phenomena are debris flows (8) and rockslides (6). In two 
cases (AS_2014_P and OC_2005_P) only generic statement that the 
systems address rainfall-induced landslide is reported. Furthermore, 
neither the types of landslide under investigation nor the style of 
movement is mentioned for six systems.  
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Figure 2.10 Type of landslide under surveillance within the Lo-LEWS reviewed 
herein. Total is higher than 29 because two different type of landslides are 
considered in EU_2010c_A (Pecoraro et al. 2018) 

 
A peculiar system is operational in Preonzo, Switzerland (EU_2010c_A), 
where a series of retrogressive rockslides and rock avalanches are being 
monitored as a part of an extremely complex phenomenon (Figure 2.11). 
 

 
Figure 2.11 Map of the Preonzo 2012 trigger, propagation, and deposition areas. 
Elements at risk (industrial area of Sgrussa, cantonal road, A2 highway) are also 
shown (Loew et al. 2016) 

2.3.3 Warning model 

The landslide model is part of the warning model, whose two other 
components are warning criteria and warning levels. Table 2.4 lists the 
main characteristics of the warning models developed within the 29 Lo-
LEWS: warning criteria, warning parameters, and warning levels. 
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Table 2.4 Information on warning model developed within the Lo-LEWS 
reviewed by Pecoraro et al. (2018). Legend: HM: Heuristic method; CL: 
Correlation law; PM: Probabilistic model 

ID Warning criterion Warning parameters 
Warning 

levels 

AS_1977_N Power law: velocity vs. failure time (CL) Velocity 2 

AS_1991_P 
Empirical correlation with acoustic 

emission (HM) 
Acoustic emission 2 

AS_2002_A Rainfall intensity or cumulated rainfall (CL) 
Rainfall intensity or 
accumulated rainfall 

2 

AS_2004_A 
Empirical correlation with displacement,  

pore water pressure, strains (HM) 
Displacement, 

pore water pressure, strains 
4 

AS_2005_A 
Empirical correlation with seismic 

acceleration, stream flow, displacement, 
water quality, rainfall (HM) 

Seismic acceleration, stream 
flow, displacement, water 

quality, rainfall 
3 

AS_2007_P 
Correlation with antecedent rainfall and 

displacement (CL) 
Antecedent rainfall, 

displacement 
3 

AS_2014_P Empirical velocity thresholds (HM)  Velocity 4 

EU_1995_P Correlation with acoustic emission (HM) Acoustic emission 2 

EU_1997_A Empirical thresholds (HM) 
Displacement, groundwater 

level 
2 

EU_2000_A Correlation with acoustic emission (HM) Acoustic emission 2 

EU_2000b_A Rainfall intensity-duration (CL) Rainfall 2 

EU_2002_A 
Pre-defined thresholds based on rate of 

movement (HM) 
Displacement 3 

EU_2003_A Rainfall and displacement thresholds (HM) Rainfall, displacement 3 

EU_2004_A Velocity level (HM) Velocity 5 

EU_2006_P Power law: velocity vs. failure time (CL) Velocity 3 

EU_2007_A No info No info No info 

EU_2007b_P Empirical velocity thresholds (HM) Velocity 3 

EU_2007c_P 
Empirical correlation with pore water 

pressure and displacement (HM) 
Pore water pressure, 

displacement 
3 

EU_2008_A Empirical thresholds (HM) 
Displacement, rainfall, 

groundwater level 
5 

EU_2009_A Empirical displacement thresholds (HM) Displacement 3 

EU_2009b_A Velocity level (HM) Velocity 5 

EU_2010_A Empirical displacement thresholds (HM) Displacement 4 

EU_2010b_A Rain intensity-duration law (CL) Rainfall 2 

EU_2010c_A 
Correlation law: velocity vs. time of failure 

(CL) 
Velocity 4 

NA_1998_A Correlation with acoustic emission (HM) Acoustic emission 3 

NA_2005_A Empirical velocity-based thresholds (HM) Velocity 4 

NA_2009_N 
Discriminant analysis of rainfall events 

(PM) 
Rainfall 5 

OC_2000_A Correlation with absolute lake level (HM) Absolute lake level 6 

OC_2005_P Intensity-duration (CL) Rainfall 3 
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Warning criteria 
A warning criterion can be defined as a functional relationship whereby 
the occurrence of the landslides under surveillance is related to the 
parameters being monitored (e.g., displacements, rainfall). Figure 2.12 
displays that twenty-seven of the 29 identified systems employ empirical 
models, which can be further subdivided into heuristic methods (19 cases) 
and correlation laws (8 cases). On the other hand, a probabilistic model 
has been developed in North Vancouver, Canada (NA_2009_N). No 
information is available for the system dealing with La Valette landslide, 
France (EU_2007_A). 
 

 

Figure 2.12 Warning criteria adopted within the Lo-LEWS reviewed by Pecoraro 
et al. (2018) 

 
Heuristic approaches rely on the identification of the conditions which 
lead to slope instability by analyzing monitoring data and landslide activity. 
The threshold values are typically defined through an expert judgment, 
without any rigorous statistical, mathematical or physical criterion. An 
example is represented by the system employed at Lake Sarez, Tajikistan 
(AS_2005_A), where long-term monitoring data have been collected since 
the international “Lake Sarez Risk Mitigation project” was launched in 
2000. The acquired historical observations have been analyzed and 
multiple thresholds have been implemented considering the following 
parameters: seismic acceleration, stream flow, displacement, water quality, 
and rainfall; in addition, the system is supported by visual observations of 
the landslide activity (Di Biagio and Kjekstad 2007). Another example is 
the system employed in Torgiovannetto, Italy (EU_2007b_P) empirically-
based movement rate thresholds (mm/day) have been defined considering 
measurements from a network of extensometers installed within the 
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rockslide body (Figure 2.13). The thresholds for each extensometer have 
been derived by analysing the most critical periods of the whole dataset 
and their reliability has been assessed by performing a back analysis 
supported by expert judgement and interpretation. Moreover, the system 
is designed to be flexible, since the thresholds can be modified as soon as 
new data become available (Intrieri et al. 2012). 
 

 
Figure 2.13 Example of extensometers data used for defining the thresholds in 
Torgiovannetto (Intrieri et al. 2012) 

 
Eight systems employ correlation laws derived from a statistical analysis 
of historical data. For weather-induced landslides, thresholds are defined 
as the lower-bound limit to the rainfall conditions which resulted in slope 
instability plotting two representative variables (e.g., intensity, duration, 
antecedent rainfall, accumulated rainfall) in Cartesian, semi-logarithmic or 
logarithmic coordinates. In some cases, the thresholds are refined by 
considering also the rainfall events that did not results in landslides. 
Intensity-duration (ID) thresholds have been defined for four systems: 
Taiwan torrents (AS_2002_A), Illgraben catchment (EU_2000b_A), 
Bagnaschino (EU_2010b_A), Wollongong (OC_2005_P). A peculiar 
model has been applied in Banjarnegara (AS_2007_P), where the 
algorithm is based on two different monitoring parameters: antecedent 
rainfall in 24 and 72 h and cumulative displacements. On the other hand, 
systems addressing rockslides—Ruinon (EU_2006_P) and Preonzo 
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(EU_2010c_A)—employ a power law defined assuming that a 
catastrophic event would be preceded by an “accelerating creep” 
behaviour (Crosta and Agliardi 2003; Loew et al. 2016). In both the cases, 
the failure time tf, i.e. the time interval between the beginning of the 
monitoring activity and the collapse of the unstable slope, has been 
derived by a power-law relationship obtained by time-integrating the 

equation which relates the displacement acceleration �̈� of a material close 

to failure to the velocity �̇� (Figure 2.14a,b). 
 

 

Figure 2.14 Failure time calculated from rate of movement in (a) Ruinon (Crosta 
and Agliardi 2003) and (b) Preonzo (Loew et al. 2016) 

 
Finally, the system operational in North Vancouver (NA_2009_N) from 
2009 to 2011 employed a probabilistic model for the definition of the 
thresholds. Indeed, a discriminant function analysis was conducted to 
identify the rainfall variables which provide the best predictive 
discriminatory power and variance. The outcomes of the correlation 
matrix suggested that the most intercorrelated rainfall variables are the 
antecedent and the intensity. These parameters allow the classification of 
a rainstorm into landslide triggering (LS) or non-landslide triggering 
(NLS) groups. The difference between the classification scores of each 
group, ΔCS, can be assumed as a reasonable proxy for the likelihood of 
debris flows occurrence because it represents the distance to the centroid 
of each data population (Jakob et al. 2012). 
 
Warning parameters 
Warning parameters can be considered as variables representative of the 
landslide behaviour, whose critical values must be identified for the 
definition of the thresholds to be implemented. As expected, 
displacements (in terms of rate of movement, velocity and acceleration) 
are the primary parameters for 15 systems, as they provide direct evidence 

(a) (b)
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of the state of activity of the landslide under surveillance- Besides, 
meteorological parameters have been considered for 8 systems addressing 
weather-induced landslides. It is worth mentioning that variables not 
included in the warning model have been investigated in a large number 
of cases (21). The need for additional information may be attributed to the 
willingness to evaluate the landslide model, towards possible updates of 
the adopted warning model. For example, although the thresholds 
developed for the rock avalanche under surveillance at Turtle Mountain 
(NA_2005_A) are based on rate of movement (primary parameters), 
displacement and cracking (secondary parameters) and rainfall (tertiary 
parameters) are also monitored (Froese and Moreno 2014). 
 
Warning levels 
Figure 2.15 shows that the majority of the 29 Lo-LEWS employ two (8 
cases) or three (10 cases) warning levels. Indeed, as stated by Medina-
Cedina and Nadim (2008) the definition of many thresholds could lead to 
a needless complexity not necessarily improving the reliability of the 
system. However, several systems deployed in the 2000s employ four 
warning levels (6 cases) or more (4 cases). The highest number of warning 
levels, from base level (ordinary state) to level 5 (risk characterized by a 
conditional probability of 100%), is adopted at Mt. Ruapehu 
(OC_2000_A). 
 

 

Figure 2.15 Number of warning levels adopted within the Lo-LEWS reviewed by 
Pecoraro et al. (2018) 

 
In North Vancouver (NA_2009_N), the warning model was designed to 
avoid sudden transitions between the four warning levels: no watch, watch 
I/watch II, warning I, warning II (Figure 2.16). Therefore, each level was 
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preceded by the level that was higher or lower in the hierarchy, without 
skipping any step. Moreover, each level was typically maintained for at 
least six consecutive hours, otherwise an override was issued to avoid 
confusion to the system users. No information on this issue is available 
for the system employed for La Valette landslide (EU_2007_A). 
 

 
Figure 2.16 Warning level transitions and switches that allow transitions from one 
warning level to another (Jakob et al. 2012) 

2.3.4 Warning system 

The landslide model and the warning model are embedded in the warning 
system, which refers both to technical issues and social aspects. Table 2.5 
summarizes the main characteristics of the warning models developed 
within the 29 Lo-LEWS: lead time, warning statements, media employed 
to spread the warnings to the recipients, as well as decision-making 
process for issuing a warning. All these aspects vary significantly among 
the systems depending both on the warning level and on the aims for 
which they are designed and managed. 
 
 
 
 

Warning level 
transitions

No Watch

Watch I

Warning I

Warning II

Watch II

X

X

X
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Table 2.5 Information on warning system of Lo-LEWS reviewed by Pecoraro et 
al. (2018) 

ID Lead time 
Warning 

statement 
Information tools Decision-making 

AS_1977_A 24 hours Public No info No info 

AS_1991_P Few seconds Internal  No info No info 

AS_2002_A < 1 hour Internal Triggering signal No info 

AS_2004_A No info Public Website Government 

AS_2005_A < 1 hour Public Warning messages Control centre 

AS_2007_P 1 to 24 hours Public Web pages No info 

AS_2014_P 24 hours Public Web pages Experts judgement 

EU_1995_N Few seconds Internal No info No info 

EU_1997_A No info Internal Automatic phone calls No info 

EU_2000_A 
20 to 60 
minutes 

Public Flood lights No info 

EU_2000b_A Few seconds Public Flashing lights, sirens 
Automated  
alert signals 

EU_2002_A No info Internal Automatic phone calls Road authorities 

EU_2003_A 24 hours Internal Warning messages Expert group 

EU_2004_A 24 hours Public 

Web pages, public 
meetings, newspapers, 
television, radio, sirens, 
automatic phone calls 

Early Warning Centre 

EU_2006_P 24 hours Public No info No info 

EU_2007_A No info Public No info Local risk managers 

EU_2007b_P 24 hours Internal Automatic notification No info 

EU_2007c_P 24 hours Public Two traffic lights, SMS Experts 

EU_2008_A 1 to 3 hours Internal Warning SMS, direct call 
Civil Protection Department 
of the Ancona Municipality 

EU_2009_A 1 hour Public 
Warning messages,  

traffic lights 
Civil Protection 

EU_2009b_A > 24 hours Public 
SMS, emails,  

electronic warning siren 
Early Warning Centre 

EU_2010_A No info Internal SMS, direct call 
Technical personnel of the 
Alice Bel Colle Municipality 

EU_2010b_A No info Public No info No info 

EU_2010c_A > 1 hour Internal SMS 
Cantonal officers and 

automatic alarms 

NA_1998_A 
40 minutes to 

3 hours 
Public 

Warning messages, 
television, radio, sirens 

Automated system 

NA_2005_A 24 hours Internal 
Warning messages,  

phone calls 
Municipal and provincial 

emergency managers 

NA_2009_N 6 hours Public Warning messages 
Warnings updated 

automatically 

OC_2000_A 
5 to 30 
minutes 

Internal 
Pagers, phone calls, 

internet 
Decision-making authorities 

OC_2005_P 6 hours Public Web pages No info 
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Lead time 
The lead time can be described as the interval between the beginning of a 
landslide event and the time when a warning is issued. Therefore, it must 
be necessarily longer than the response time needed to undertake the 
appropriate actions in case of emergency. According to Calvello (2017), 
systems operating at slope scale can be classified into two main categories: 
alarm systems and warning systems. The former typically detect process 
parameters (e.g. acoustic signal) of a phenomenon already in progress 
providing a very short lead time, on the order of seconds or minutes; on 
the contrary, the latter monitor triggering factors (e.g. rainfall) before the 
beginning of a landslide event, thus ensuring a longer lead time, typically 
more than one hour. Eight of the 29 Lo-LEWS presented herein can be 
considered alarm systems, as the lead time varies from few seconds to 
several minutes. Most of them deal with debris flows, such as the 
prototype system employed in the Moscardo catchment (EU_1995_P) in 
1995 and 1996 for research purposes. The four seismic detectors installed 
at a distance of about 20 meters from the torrent channel were capable to 
detect three events occurred during the period of analysis in near-real-
time, i.e. few seconds before the arrival of the debris flows front (Figure 
2.17). 
 

 
Figure 2.17 Seismic measurements from a geophone installed in the Moscardo 
catchment on 5 July 1995 (Arattano 1999) 

 
Conversely, fifteen systems can be considered warning systems, as the lead 
time varies from 1 to 24 h. Indeed, they typically address landslides which 
evolve slowly in the initial phase, but can be characterized by movement 
rates rapidly increasing before a general failure stage (e.g. rockslides, deep-
seated landslides). As an example, the lead time is expected to be 24 h in 
Swabian Alb (EU_2007c_P), where a limit-equilibrium model was 
integrated into a semi-automated prototype early warning system in the 
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context of the ILEWS project, aimed at assessing the stability conditions 
of the slow-moving landslide under surveillance every 24 h (Figure 2.18). 
Information on the provided lead time is not available for the remaining 
six systems. 
 

 
Figure 2.18 ILEWS status control highlighting the parameters monitored and the 
thresholds for issuing the daily alerts (Thiebes et al. 2014) 

 
Warning statements 
Table 2.5 shows that in 12 cases only internal statements are planned, 
hence the information is not directly spread to the public in an early stage, 
but it is targeted to competent authorities, such as politicians, scientists, 
government institutions, civil protection agencies, or infrastructure 
authorities. For example, in the system designed for assessing the Ancona 
Landslide in Italy (EU_2008_A) a team of engineers, geologists, technical 
experts and urban planners have access year-round the values of the 
monitored parameters. Moreover, a special task force, named “Centro 
Operativo di Controllo” (COC), is in charge of coordinating the 
emergency actions established in case a warning is issued (Figure 2.19). 
The COC is an interagency structure, which involves experts from other 
municipality departments as well as experts from other local institutions 
and organizations and is coordinated by the Major of Ancona who is 
responsible for all risk mitigation measures (Cardinaletti et al. 2011). 
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Figure 2.19 Organization of the structure designed for assessing the Ancona 
Landslide (Cardinaletti et al. 2011) 

 
Differently, in the remaining 17 cases the systems are designed to directly 
inform and warn the population of a possible occurrence of a landslide, 
prompting them to move to safer places. For example, in Wollongong 
(OC_2005_P) a web-based software to provide real-time graphical 
updates of the monitoring data as well as the issued warnings has been 
developed as a joint initiative of the research time in charge of managing 
the prototype system and University of Wollongong Centre for 
Educational Development and Interactive Resources (CEDIR). Figure 
2.20 presents the home page of the website reporting a map of the 
monitoring stations and a list of the monitored sites in the upper left part 
of the page (Flentje and Chowdhury 2005). 
 

 
Figure 2.20 Home page of the website dedicated at spreading information on 
landslides under surveillance in Wollongong (Flentje and Chowdhury 2005) 
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Information tools 
Figure 2.21a,b displays the communication strategies developed within the 
29 Lo-LEWS described herein. Warning messages, typically sent as an 
SMS, are the most used tool—13 out of 29—, because many recipients 
can be easily informed even in emergency situations and the latency 
between a decision to alert to message receipt is minimized. In nine cases, 
warning signals, such as traffic lights and sirens, are adopted along road 
and railways threated in mountainous environments. Moreover, manually 
or automated phone calls have been also employed in Lo-LEWS deployed 
before 2000, while internet-based tools, such web pages and email, have 
been used in more recent systems. Although many communications tools 
are available, redundancy has been often overlooked in the reviewed Lo-
LEWS, because only 21% of them combine two techniques and 14% more 
than two techniques. However, two relevant exceptions are represented 
by the systems operational in Åknes (EU_2004_A), and at Mt. Rainier 
(NA_1998_A), where several techniques—SMS sent in Norwegian, 
English, and German; warning messages on website, automated phone 
calls, newspapers, radio/television news ads; warning sirens in the former; 
warning messages, radio/television news ads, warning sirens in the 
latter—are combined and evacuation drills are also conducted. 
 

 
Figure 2.21 Communication tools used (a) and their redundancy (b) within the 
Lo-LEWS reviewed by Pecoraro et al. (2018) 

 
Decision-making process 
In a number of cases—11 out of 29—information on criteria for issuing 
or canceling an alert are not available. However, in the majority of the 
documented cases (14) the alerts are issued manually by system managers, 
experts or local authorities. The only documented exceptions are: 
Illgraben catchment (EU_2000_A), for which alert signs are activated by 



2. EWS for weather-induced landslides 

 

37 

a detection system; Preonzo (EU_2010c_A), where the highest level of 
warning is issued by cantonal officials supported by an automated alert 
system based on crack meters (Figure 2.22); Mt. Rainier (NA_1998_A), 
where the alerts are issued by a computer base station, after analyzing the 
signals from the field stations; and North Vancouver (NA_2009_N), 
where the warning levels were updated hourly combining rainfall measures 
from a rain gauge and rainfall forecasts. 

 

 
Figure 2.22 Downstream view of two radar sensors for measuring flow depth as 
employed in the Illgraben catchment (Badoux et al. 2009) 

2.4 REVIEWS ON TERRITORIAL LANDSLIDE EARLY 

WARNING SYSTEMS 

2.4.1 Reviews on territorial landslide early warning systems 

Piciullo et al. (2018) prepared a review on 24 Te-LEWS operational 
worldwide. The information was retrieved from different sources: 
international journals and publications, scientific reports, web pages, and 
gray literature, and, in some cases, personal contacts of the authors with 
system managers. Figure 2.23 provides a summary of the location and the 
state of activity of the reviewed systems. 
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Figure 2.23 Territorial landslide early warning systems operational worldwide: 
location and period of activity. Legend: red squares: dates of catastrophic 
landslide events; dark blue: period of activity, retrieved from reliable references; 
light blue: period of activity, assumed by authors (Piciullo et al. 2018) 

 
Only few experiences at regional scale have been carried out before 2005: 
the majority of the systems have been designed and managed in USA 
(NA1, NA2, NA3, NA4), even though other examples are reported in Asia 
(AS1, AS2) and in South America (SA1). On the other hand, in the last 
decade many other systems have been employing around the world, in 
Asia and in Europe, particularly in Italy (6 cases). In 9 cases out of 24, 
systems have been employed after catastrophic landslide events (red 
squares in Figure 2.23), causing many victims and significant economic 
losses. Only two of the reviewed systems are no longer active, both of 
them located in the USA and employed in the San Francisco Bay (NA1) 
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and in the city of Seattle, Washington (NA4). The former terminated 
because the institution in charge of operating the system, i.e. the National 
Weather Service, experienced a net staff reduction, while the latter was 
operational under an informal agreement between USG, NWS and the city 
of Seattle for four years, in the period 2002-2005. 
The reported territorial LEWS operate at three different territorial levels: 
national (AS4, AS5, AS7, EU6, EU7), regional (AS2, AS3, AS6, AS8, AS9, 
EU1, EU2, EU3, EU4, EU5, NA1, NA2, NA3, NA5, SA2), and municipal 
(AS1, NA4, SA1). The warning area varies by orders of magnitude, even 
among systems operating at the same level. The majority of the reviewed 
systems (18) are designed to forecast the possible occurrence of landslides 
on natural slopes. Only in few cases (AS8, AS9, SA1, SA3) both natural 
and man-made slopes are considered. Hong Kong (AS1) is the only 
reported example of a system exclusively designed for man-made slopes, 
grouped into four main categories: cut slopes, rock slopes, fill slopes, and 
retaining walls. Although all the reported Te-LEWS deal with weather-
induced landslides, in some cases (9) they also consider other natural 
disasters, such as: hurricanes, floods, typhoons, and snow avalanches. 
The main characteristics of the reviewed systems have been analyzed and 
discussed according to a conceptual model organized in four main tiles: 
setting, modelling, warning, and response. Besides, the authors presented 
some considerations and insights on criteria for assessing the success of 
the systems, i.e. the efficiency and the effectiveness. 

2.4.2 Regional LEWS operational in Italy 

Pecoraro and Calvello (2016) described the 21 LEWS designed and 
operated by the Italian regions as a part of the hydrogeological risk 
mitigation strategy. The report has been prepared for the Project of 
National Relevance (PRIN) “Landslide risk mitigation through sustainable 
countermeasures”. Information was gathered from a variety of sources, 
including national and regional laws, technical reports and web pages of 
the institutions in charge of managing the systems. 
The regional LEWS have been introduced by a national law on landslide 
and flood risk management (DPCM 2005), as a response to a catastrophic 
landslide event that occurred in Sarno in 1998 (Cascini 2004). The Italian 
Civil Protection System is constituted by an early warning national office 
(called Central Functional Centre, CFC) and a network of 21 Regional 
Centres (called Periferic Functional Centres, CFP), whose main activities 
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are the prediction, monitoring and evaluation of critical flooding and 
landslide events resulting from heavy rainfalls and (seldom) snowmelt. 
Moreover, the CFP are in charge of designing and operating the regional 
LEWS (Figure 2.24). 
The study is organized into two parts. Firstly, the structure of the Central 
Functional Centre is described reporting: the general organization, the 
responsibilities of the different actors involved in hydrogeological risk 
management, the criteria for defining the warning zones and the 
thresholds for landslide occurrence, the procedures for spreading the 
warnings, as well as the tasks assigned to the CFP. In the second part the 
authors summarized and discussed the main aspects related to the design 
and the implementation of the regional LEWS, such as: types of natural 
hazards under surveillance; number of warning zones; monitoring 
systems; warning criteria and number of warning levels; communication 
tools. Table 2.6 reports some of the abovementioned aspects as well as 
the year of the most recent update for each system. 
 

 
Figure 2.24 Functional Centres in charge of designing and operating regional 
LEWS in Italy (Pecoraro and Calvello 2016) 
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Table 2.6 Regional LEWS operational in Italy: natural hazards addressed; 
warning zones; communication tools (Pecoraro and Calvello 2016) 

Regional 
LEWS 

Natural hazards 
Warning 

zones 
Communication 

tools 

Abruzzo 
Landslides, heavy rainfall, floods, heat 

waves, snow, wind, storm tides 
6 

Email, certified 
email, website 

Aosta Valley 
Landslides, heavy rainfall, heat waves, snow, 

snow avalanches, storm tides 
4 Fax, email, website 

Autonomous 
Province of 

Bolzano 
Landslides, heavy rainfall, snow avalanches 1 

Website, fax, SMS, 
email 

Autonomous 
Province of 

Trento 
No info 1 

Fax, SMS, phone 
call, website, TV 

Basilicata 
Landslides, heavy rainfall, floods, heat 

waves, snow, wind, storm tides 
3 

Fax, website, SMS, 
email, PEC 

Calabria 
Landslides, heavy rainfall, floods, heat 

waves, snow, wind, storm tides 
6 Fax, website 

Campania 
Landslides, heavy rainfall, floods, heat 

waves, snow, wind, storm tides 
8 Fax, website 

Emilia-
Romagna 

Landslides, heavy rainfall, floods, heat 
waves, snow, wind, storm tides 

8 
Fax, email, SMS, 

website 

Friuli-Venezia 
Giulia 

Landslides, heavy rainfall, floods, snow, 
snow avalanches 

4 
Email, certified 

email, SMS, website 

Lazio Landslides, heavy rainfall, floods 7 SMS, website 

Liguria 
Landslides, heavy rainfall, floods, heat 

waves, snow, wind, storm tides 
5 

Email, PEC, SMS, 
Facebook, Twitter, 

websites 

Lombardy 
Landslides, heavy rainfall, floods, heat 
waves, snow, snow avalanches, wind 

8 
Phone call, fax, 
SMS, website 

Marche 
Landslides, heavy rainfall, floods, heat 

waves, snow, wind, storm tides 
4 Fax, website 

Molise 
Landslides, heavy rainfall, floods, heat 

waves, snow, wind, storm tides 
3 Fax, website 

Piedmont 
Landslides, heavy rainfall, floods, heat 

waves, snow, fog 
11 

Fax, website, phone 
call 

Puglia 
Landslides, heavy rainfall, floods, heat 

waves, snow, wind, storm tides 
9 

Fax, website, SMS, 
email, certified 

email 

Sardinia 
Landslides, heavy rainfall, floods, snow, 

wind, storm tides 
7 SMS, email, website 

Sicily Landslides, heavy rainfall, floods 9 
Email, SMS, 

website 

Tuscany 
Landslides, heavy rainfall, floods, snow, 

wind, storm tides 
26 

Fax, email, SMS, 
phone call, website 

Umbria Landslides, heavy rainfall, floods, snow, ice 6 Fax, website 

Veneto 
Landslides, heavy rainfall, floods, snow, 

snow avalanches 
8 

Fax, email, SMS, 
website 
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2.4.3 Rainfall thresholds for landslide occurrence 

Segoni et al. (2018a) reviewed the rainfall thresholds defined for landslide 
occurrence in the last 9 years. The authors examined all published papers 
presenting studies on the definition of thresholds, including the 
contributions on their employment into prototypal or operational LEWS. 
However, the research was restricted exclusively to peer-reviewed papers 
written in English and published in journals in order to guarantee the 
accessibility and the readability to all the reviewed works. They identified 
115 thresholds described in 107 papers (two or more thresholds were 
presented in some articles). Figure 2.25 displays that literature 
contributions report rainfall thresholds for a large variety of countries.  
 

 
Figure 2.25 Geographical distribution of the analyzed rainfall thresholds. 
Countries colored based on the number of published thresholds. In the inset in 
the bottom left, the number of papers per scientific journal in which they were 
published. (Segoni et al. 2018a) 

 
The large majority of them are defined in Europe and Asia (52 and 36%, 
respectively); 9% of the reported thresholds are located in the Americas, 
while Africa and Oceania are only marginally represented in this dataset 
(1% each). The authors stated that this distribution partially reflects the 
distributions of landslide hazard and risk across the world. Besides, they 
noted that Africa and central/south America start to focus on the issue of 
landslide forecasting only recently, thus the scientific progress in this field 
is still advancing.  
On the other size, in North America the low number of papers (3%) is 
mainly related to a landslide risk lower than other continents, as all the 
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thresholds are implemented (or to be implemented) within operational 
LEWS. About half of the papers describe thresholds located in two 
countries: Italy (35%) and China (14%). According to the authors, this can 
be explained again with the high exposure to landslide risk of these two 
countries. This statement is also confirmed by considering that about half 
(53%) of the thresholds operational into LEWS relates to test sites located 
in Italy, while half of the papers which describe study areas in China 
reports prototypal or operational LEWS. 
Figure 2.26 reveals that the number of thresholds published in 
international journal in the last years is increasing, because splitting the 
surveyed time interval into 3-year periods, more than half of the works 
(55%) were published in the 2014-2016 (20 papers in 2014, 24 in 2015, 
and 20 in 2016), while 22% both in the 2008-2010 and in the 2011-2013. 
Moreover, among the 59 thresholds employed within early warning 
systems (40 prototypes and 19 operational), 33 of them (56%) were 
published in the 2014-2016. These outcomes can be interpreted as a proof 
that researches on rainfall thresholds and on their employment within 
LEWS are pressing issues in the scientific community. 
 
 

 
Figure 2.26 Bar chart showing the number of thresholds published in scientific 
journals from 2008 to 2016. Each year, the number of thresholds implemented in 
a LEWS (Yes), the preliminary thresholds (Preliminary), and thresholds not 
deemed to be part of a LEWS (No) are also shown by means of different colored 
bars (Segoni et al. 2018a) 
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Data collected on rainfall thresholds were grouped into four categories: 
publication details, geographical distribution and uses, dataset features, 
threshold definition. In each category the authors selected descriptive 
information to characterize each one of the 115 thresholds in order to 
define the most important steps needed to obtain replicable and reliable 
thresholds with a high predictive capability. 
Regarding this review, it should be noted that only information on rainfall 

thresholds implemented into operational or prototypal Te-LEWS⎯45 out 

of 115⎯are presented and discussed in Chapter 3. 
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3 MONITORING STRATEGIES AND 
WARNING MODELS 

Monitoring strategies and warning models are fundamental technical 
aspects to be taken into account in order to define an efficient LEWS. 
Over the last decades, many systems have been operational both at 
regional and local scale all around the world, as reported in the literature 
reviews introduced in Chapter 2. These valuable experiences provide the 
means for describing these aspects and for investigating their role in the 
success/failure of a LEWS.  
This Chapter is organized into three main parts. Section 3.1 analyses the 
monitoring strategies developed within operational Lo-LEWS. 
Successively, Section 3.2 reports and discusses information on monitoring 
strategies and warning models developed within Te-LEWS for weather-
induced landslides. Finally, Section 3.3 highlights several questions that 
need to be addressed for improving the performance of warning models 
implemented within LEWS for weather-induced landslides. 

3.1 MONITORING STRATEGIES WITHIN LO-LEWS 

(based on Pecoraro et al. 2018) 

3.1.1 Classification of monitoring instruments 

Monitoring is a crucial continuous activity within a LEWS. Indeed, 
monitoring is necessary to investigate landslide occurrence and activity as 
well as to define thresholds and alert criteria to be adopted within a 
warning model in the design phase. Besides, triggering parameters need to 
be continuously monitored in order to assess the probability of thresholds 
exceedance in the operational phase. Mikkelsen et al. (1996) stated that 
monitoring of landslides represents a considerable challenge for 
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geotechnical engineers and elaborated the first classification presented in 
the literature, differentiating monitoring techniques in: surface movement 
measurements, ground displacement measurements, groundwater 
monitoring and others. Besides, the instruments can be further classified 
into manually and automated, based on how the measurements are 
performed. According to Savvaidis (2003), landslide monitoring 
techniques can be differentiated in: remote sensing, photogrammetric, 
ground-based geodetic, satellite-based geodetic, and geotechnical. Their 
applicability varies from case to case depending on several factors, such 
as: expected risk, accessibility of the area, potential for damage, and 
availability of resources. In a report of the ClimChAlp project, Komac et 
al. (2008) individuated four main categories for slope monitoring methods: 
geodetic, geotechnical, geophysical and remote sensing. The author also 
discussed the possible fields of application, considering surface extension, 
coverage, and predominant morphology. Baroň et al. (2012) described the 
parameters monitored for different types of landslides and presented some 
relevant examples from test sites in Europe. Recently, Stähli et al. (2015) 
presented an overview of the technologies typically used in EWS for 
weather-induced landslides operational worldwide. They also discussed 
the applicability of such technologies to alarm, warning and forecasting 
systems.  
Besides global reviews on monitoring strategies, literature contributions 
also exist on specific issues. For example, Arattano and Marchi (2008) 
reviewed the sensors applied for debris flow monitoring. According to 
them, the warning devices can be subdivided into three main classes: i) 
advance warning systems, predicting the possible occurrence of an event 
before its occurrence through the monitoring of the triggering factors; ii) 
event warning systems, monitoring a debris flow while in progress and 
providing an alarm; and iii) post-event warning systems, detecting a debris 
flow already occurred allowing the appropriate risk mitigation measures 
(e.g., stopping the traffic on a railway). Furthermore, Scaioni et al. (2014) 
presented a classification of remote sensing techniques for geotechnical 
investigation, also discussing about their applicability to the different types 
of landslides. Applications are classified into three main classes: i) landslide 
recognition, classification, and post-event analysis; ii) landslide monitoring 
(i.e., monitoring the activity of existing landslides); and iii) landslide 
susceptibility and hazard assessment. Michoud et al. (2012) described the 
techniques for landslide detection (i.e. new landslides recognition from 
space or airborne imagery), characterization (i.e. retrieving information on 
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failure mechanism and volume involved), rapid mapping (i.e. fast semi-
automatic image processing for changes detection and/or target detection; 
hotspot mapping) and long-term monitoring (i.e. processing data for 
retrieving deformation patterns). Stumpf et al. (2012) provided criteria for 
the selection of the most suitable remote sensing technologies based on: 
type of landslide, rate of movement, scales of analysis and risk 
management strategy. Tofani et al. (2012) described and evaluated the 
most innovative landslide remote sensing techniques, aiming at addressing 
their future scientific and technological developments. 
By elaborating the literature contributions described herein, Calvello 
(2017) classified the landslide monitoring instruments in terms of 
parameters, activities and methods of monitoring (Table 3.1). The 
monitoring strategies adopted within the Lo-LEWS presented herein are 
analysed and discussed according to this classification.  
The monitored activities are classified into three main categories: (i) 
deformation, i.e. direct monitoring of the actual kinematic behaviour of a 
landslide; (ii) groundwater and soil moisture, i.e. monitoring of the pore 
water pressure conditions which could lead to an activation or an 
acceleration of a landslide; and (iii) trigger, i.e. monitoring the external 
process responsible of activating or accelerating a landslide. For each 
activity a certain number of monitoring parameters can be defined.  
The monitoring methods are classified in six main categories: (i) 
geotechnical, identifying ground geomorphologic evolution and providing 
measurements of ground displacements, soil deformation, groundwater 
level and total stress in the soil; (ii) hydrologic, measuring the distribution 
and the movement of the water on and below ground surface; (iii) 
geophysical, monitoring changes in the landslide mass, observing physical 
parameters of soil or rock mass (e.g. density, acoustic/elastic parameters, 
resistivity, etc.); (iv) geodetic, assessing landslide displacements by 
measuring horizontal and vertical angles as well as by tracking GPS 
distances; (v) remote sensing, monitoring surface displacements and 
characterizing the slope instability factors without any physical contact 
with the landslide mass; (vi) meteorological, measuring the weather 
parameters that may trigger a landslide (e.g., rainfall, snowmelt) and/or 
influence its behaviour (e.g., wind, air temperature). 
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Table 3.1 Instruments used for landslide monitoring within LEWS, classified 
considering the parameters and the activities monitored and the monitoring 
methods (modified from Calvello 2017) 
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← Legend: Inc: Inclinometer; BExt: Borehole extensometer; DMS: “Differential monitoring of 
stability” column; Tilt: Tiltmeter; GPS: Global positioning satellite; Int: Interferometer; TotS: Total 
station; Cam: Camera; GbLiD: Ground-based LIDAR; ALiD: Airborne LIDAR; GbSAR: 
Ground-based synthetic aperture radar; InSAR: Interferometric synthetic aperture radar; UAV: 
Unmanned air vehicle; OptF: Optic fiber; EExt: Embedded extensometer; Geoph: Geophone; Crack: 
Crackmeter; Acc: Accelerometer; Seis: Seismometer; GPR: Ground penetrating radar; Piez: Piezometer; 
PS: Perforated standpipe; Tens: Tensiometer; TPsy: Thermocouple psychrometer; ElCS: Electrical 
conductivity sensor; ThCS: Thermal conductivity sensor; TDR: Time domain reflectometer; Sat: Satellite 
sensor; RG: Rain gauge; WS: Weather Station; Bar: Barometer; WLM: Water level meter; Hyd: 
Hydrometer; SprS: Spring sampling 

3.1.2 Activities and parameters monitored 

Monitored parameters can be defined as “phenomenon indicators or 
factors related to slope (area of interest), which could be quantified and 
monitored in time” (Baroň et al. 2012). A key issue for any LEWS 
operational at local scale is the understanding of the behaviour of such 
site-specific parameters and, especially, the evaluation of their role as early 
warning indicators by identifying their critical values (i.e., thresholds) 
through an advanced knowledge of their temporal evolution. Figure 3.1a 
displays the parameters monitored in the 29 Lo-LEWS reviewed herein 
and Figure 3.1b presents the information in terms of monitored activities 
based on the classification introduced in Table 3.1. As expected, the large 

majority of the systems⎯27 out of 29⎯monitor deformation, expressed 
in terms of displacement (15 cases), velocity (8 cases), acoustic emissions 
(8 cases), cracking (4), acceleration (2), and strain (1). Indeed, they show 
direct evidence of active deformations and movements in the slope, 
providing relevant information for early warning purposes. Although 
displacements are investigated in the large majority of the cases, velocity 
and acceleration are more commonly considered for describing the 
kinematic behaviour of landslides in rock. In addition, a large number of 
Lo-LEWS monitor triggering parameters (21 cases), especially rainfall (20 
cases), because they can be assumed as the main triggering factor for the 
majority of the investigated landslides. Groundwater conditions are 
investigated in 16 systems, mainly in terms of pore water pressure (8 cases) 
and groundwater level (7 cases), which are recorded at intervals related to 
the period of the year and to the soil characteristics. The groundwater 
regime may display rapid response to intense rainfall or a gradual 
rise/decline of the groundwater level during wet/dry seasons. Only in 5 
cases other parameters have been employed. An example is the system 



Chapter 3 

 

50 

deployed at Lake Sarez, eastern Tajikistan (AS_2005_A), where the 
fluctuations of the lake level and the turbidity of the water represent 
significant landslide precursors. 
 

 
Figure 3.1 Inventory of the parameters (a) and the activities (b) monitored within 
the 29 reviewed Lo-LEWS according to the classification of Table 3.1 (modified 
from Pecoraro et al. 2018) 

 

Further analyses have been carried out in order to determine the most 
investigated activities in relation to the type of landslide under surveillance 
(Figure 3.2). Although the number of records for several classes of 
landslides is quite limited, deformation activity has been investigated in all 
the cases. The two most common classes of landslides, i.e. debris flows 
and rockslides, employ very different parameters, even though the activity 
monitored is the same. Two parameters are concurrently or alternatively 
investigated for debris flows: rainfall (trigger activity) to predict an event 
before its occurrence, and acoustic emission (deformation activity) to 
detect a phenomenon while in progress. Conversely, displacement and rate 
of movement (deformation activity) have always been considered for 
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characterizing the state of activity of the rockslides. It is worth mentioning 
that in the majority of the cases, independently on the type of landslide 
under surveillance, groundwater and meteorological parameters are also 
investigated. This seems to suggest that redundancy of the monitored 
parameters is a crucial aspect to consider for better understanding the 
behaviour of the landslide and for improving the reliability of the system. 
 

 

Figure 3.2 Monitored activities in relation to the type of landslide and to the group 
of parameters according to the classification of Table 3.1; totals are higher than 
29, i.e. the total number of reviewed Lo-LEWS, because multiple parameters are 
monitored in some systems and two different types of landslides are considered 
in EU_2010c_A (Pecoraro et al. 2018) 

3.1.3 Monitoring methods 

The monitoring methods implemented within Lo-LEWS depend on the 
site-specific conditions of the slope to be investigated and, as a 
consequence, on the parameters monitored. Once the parameters more 
suitable for the landslide under surveillance are identified, the most 
appropriate monitoring instruments can be selected according to the 
following criteria: simplicity, robustness, reliability, and cost. Many types 
of monitoring instruments are available and allow the LEWS designers 
and managers to choose among several options for investigating each class 
of parameters. Figure 3.3a displays the monitoring instruments used 
within the 29 Lo-LEWS presented herein while Figure 3.3b summarizes 
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the monitoring methods according to the classification proposed in Table 
3.1.  
 

 
Figure 3.3 Inventory of the monitoring instruments (a) and methods (b) employed 
within the 29 reviewed Lo-LEWS according to the classification of Table 3.1 
(modified from Pecoraro et al. 2018) 

 
A large number of systems (23) employ more than one monitoring 
method, confirming that redundancy is a crucial aspect for developing 
monitoring strategies. A relevant example is represented by the system 
operational at Wushan Town, China (AS_2004_A), where the ground and 
deep displacements of a deep-seated colluvial landslide are monitored 
through geotechnical and geodetic methods (i.e., inclinometers and GPS). 
The system is also integrated by hydrologic (i.e., water level meter), 
geophysical (i.e., TDR), and meteorological sensors (i.e., a network of rain 
gauges). The most employed monitoring methods are geotechnical and 
meteorological, because both of them are considered in 21 systems. 
Geotechnical methods are used for measuring deformation and 
groundwater, mainly by means of traditional sensors (i.e., inclinometers, 
piezometers, perforated standpipes, and extensometers), which deliver 
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reliable data and are robust and cheap. However, systems addressing large 
and complex phenomena, often employ expensive instruments, such as 
differential monitoring of stability (DMS) columns (6 cases) which may 
provide profiles of horizontal and vertical displacements as well as pore 
water pressure measurements along monitored boreholes. Besides, in 13 
systems geotechnical instruments are combined with geodetic sensors in 
order to achieve additional information on the absolute displacements of 
the landslides with respect to some reference points. GPS devices are 
preferred in the large majority of the cases (11), because they ensure 
reliable results and are flexible, since measurements are possible even 
during the night and under adverse weather conditions. As stated before, 
meteorological methods are also widely used, including both rain gauges 
(12 cases) and weather stations (10 cases). Remote-sensing techniques, 
especially cameras and ground-based synthetic aperture radars (GbSAR), 
are employed in a number of applications (13), because they allow 
updating the knowledge on the long-term behaviour of a landslide. 
However, these techniques are quite expensive and do not provide real-
time data suitable for early warning purposes. 
Monitoring methods are also analyzed in relation to the investigated 
landslide (Figure 3.4). 
 

 
Figure 3.4 Monitoring methods grouped in relation to the type of landslide and to 
the group of instruments according to the classification of Table 3.1; totals are 
higher than 29, i.e. the total number of reviewed Lo-LEWS, because multiple 
monitoring methods are employed in some systems and two different types of 
landslides are considered in EU_2010c_A (Pecoraro et al. 2018) 
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Geotechnical methods are widely employed for all types of landslides, 
apart from debris flows monitoring. In these cases, monitoring strategies 
are based either on meteorological instruments for measuring the 
triggering factor (i.e., rainfall) or on geophysical instruments for recording 
the ground vibration produced by the moving mass of water and debris. 
Geotechnical and geophysical methods are often combined for 
monitoring the evolution of the rockslides. Furthermore, remote sensing 
techniques provide additional information in a certain number of cases. In 
particular, cameras are used for debris flows and GbSAR and 
interferometric synthetic aperture radars (InSAR) are employed for large 
and destructive phenomena, such as rockslides and deep-seated colluvial 
landslides. 

3.1.4 Monitoring strategies 

The performed analyses revealed that redundancy of monitoring strategies 
is a crucial aspect of operational Lo-LEWS. However, some parameters 
and instruments are more reliable than others for issuing an alert. Figure 
3.5a,b presents the number of the parameters monitored and the 
monitoring instruments within the 29 Lo-LEWS described herein (in red 
colour in the Figure), highlighting which parameters and the instruments 
are directly used for issuing the alerts (in blue colour in the Figure). It 
should be noted that in seven cases, the exceedance of more than one 
parameter is considered to issue a warning. Therefore, the total number of 
parameters employed for warning purposes (40) exceeds the total number 
of systems. As expected, displacement and its derivates (velocity and 
acceleration) are the parameters most widely employed (25 cases). Besides, 
displacement and velocity are considered the main warning parameters in 
18 cases. They are investigated through a variety of sensors, among which 
the highest warning potential can be attributed to GPS devices (9 cases), 
embedded extensometers (6 cases), and inclinometers (5 cases). Since 
other literature contributions (Baroň and Supper 2013; Michoud et al. 
2013) indicate traditional instruments (e.g., inclinometers and 
extensometers) as the most reliable sensors for warning purposes, the 
widespread application of GPS techniques is quite surprising. On the 
other hand, recent studies demonstrated that these types of instruments 
are very suitable for landslide monitoring, as they proved to be accurate, 
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rapid, efficient, and cost-effective, especially when the study area is higher 
(Gullà et al. 2018, Song et al. 2018).  
 

 

Figure 3.5 a) Total number of monitored parameters composing the monitoring 
networks and monitored parameters directly used to issue the warnings. b) Total 
number of instruments composing the monitoring networks and instruments 
directly used to issue the warnings (Pecoraro et al. 2018) 

 
Rainfall is also widely considered (in 20 cases), since most of the 
investigated phenomena are weather-induced landslides. Rainfall is 
monitored by means either by rain gauges or weather stations, when 
additional parameters (e.g., snowmelt, and temperature) are required for 
landslides occurring in mountainous environments. Acoustic emissions 
are crucial for systems aimed at detecting debris flows in their initial stage. 
In a good number of applications (e.g., Arattano and Marchi 2008) they 
are monitored through geophones, which have demonstrated to be robust 
and reliable sensors. It is worth mentioning that a good number of 
instruments, although are part of several monitoring networks, have not 
been considered suitable for early warning. For example, data acquired by 
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remote sensing sensors have not been included in any warning model 
because they are still not mature enough for geotechnical applications, yet 
they have a high warning potential (Baroň and Supper 2013). Finally, 
although redundancy of monitoring strategies is only one of the aspects to 
be considered for designing a successful Lo-LEWS, it should be stressed 
that acquiring as more information as possible can improve the efficiency, 
the robustness, and the reliability of the systems. 

3.2 MONITORING STRATEGIES AND WARNING MODELS 

WITHIN TE-LEWS 

3.2.1 Monitoring strategies 

A key technical issue for the operation of an effective Te-LEWS is the 
identification, measurement and monitoring of landslide precursors. 
Monitoring strategies are typically based on prediction and forecasting of 
meteorological parameters over appropriately defined homogenous 
warning zones. 
Figure 3.6a displays that rainfall is the main monitored parameter for all 
the territorial systems reviewed by Piciullo et al. (2018). However, six Te-
LEWS employ additional thresholds based on: soil water content (in 4 
cases), pore water pressure (1) and hydrometric parameters (1). A relevant 
example is the prototype system deployed in the city of Seattle, 
Washington (NA4), where an antecedent water index representing the 
depth of water above or below the amount required to bring a 2-m-deep 
column of soil to “field capacity” was also monitored. As expected, in the 
large majority of the cases (22) automatic rain gauges are the most adopted 
instrument for providing information in near real-time (Figure 3.6b). The 
only exception is represented by the national LEWS operating in Japan 
(AS5), which does not employ a network of rain gauges as main tool for 
rainfall monitoring. Rainfall intensities used in the system are estimated by 
a Radar Automated Meteorological Data Acquisition System and 
distributed by the Japan Meteorological Agency. However, a number of 
systems (14) employ both data from a network of rain gauges and weather 
radar observations. Geotechnical instruments (i.e. piezometers and 
tensiometers) are considered in solely three cases: Malaysia (AS4), Norway 
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(EU7), and Seattle (NA4). They can provide supplemental data needed to 
determine the likelihood of a rainfall threshold-exceeding actually 
producing landslides, and are particularly valuable in areas where soil water 
conditions change significantly thorough the year, yet they may prove 
useful in other areas as well. Moreover, in addition to rainfall monitoring 
some systems employ weather forecasts, mainly using nowcasting 
estimates provided by different numerical meteorological models, typically 
developed and deployed at national level. 
 

 
Figure 3.6 Monitored parameters (a) and monitoring methods (b) employed 
within the 24 Te-LEWS operational worldwide 

 
Looking at the Italian regional systems (Pecoraro and Calvello 2016), 
rainfall is again the main parameter to be investigated in all the 19 cases 
for which this information is available (Figure 3.7a). On the other hand, 
soil water content is also considered a critical parameter for landslide 
triggering, as it is monitored in 12 cases. A peculiar example is represented 
by the system employed in the Umbria region, where the rainfall 
thresholds originally employed were successively combined with soil water 
content simulations derived by a physically-based model. Furthermore, 
snowmelt is also monitored in Aosta Valley and Emilia-Romagna, two 
mountainous regions where landslides may be triggered by prolonged 
rainfall as well as by rapid snowmelt from a sudden rise of the temperature. 
Figure 3.7b shows that rain gauges are employed by all the regional 
systems, even though in a number of cases (11) they are supported by 
weather radar observations and in three regions (i.e. Umbria, Liguria, and 
Veneto) satellite estimates are also used. Moreover, geotechnical 
instruments are part of the monitoring networks of the systems 
operational in: Aosta Valley (extensometers and inclinometers), Emilia-
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Romagna (inclinometers and piezometers), Umbria (extensometers) and 
autonomous province of Trento (extensometers, inclinometers, and 
piezometers). However, geotechnical data have been mainly used for 
adjusting operational rainfall thresholds without being part of any warning 
model. 
 

 
Figure 3.7 Monitored parameters (a) and monitoring methods (b) employed 
within the 21 regional LEWS operational in Italy 

 

The review proposed by Segoni et al. (2018a) highlights that still the rain 
gauges are by far the most used instrument to obtain rainfall data for 
threshold analysis within the 45 Te-LEWS: 86.7% of the systems employ 
rain gauges, among which 6.7% combines rain gauges and radar 
measurements (Figure 3.8). 
 

 
Figure 3.8 Sources of rainfall data used to define thresholds within the 45 Te-
LEWS operational worldwide (modified from Segoni et al. 2018a). Legend: n.s.: 
not specified 
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On the other hand, 6.7 and 2.2% of the rainfall measurements are 
provided only by radar and satellite measurements, respectively. In some 
circumstances, this is a forced choice, because no reliable rain gauge 
network exists in the studied area and satellite or radar measurements are 
the best choices available. Conversely, in other cases, the choice of using 
radar is an attempt to obtain rainfall measurement with higher spatial and 
temporal resolution and reduced uncertainties. The source of rainfall data 
is not clearly specified for the 4.4% of the systems. In 6 cases (13.3%), 
additional monitoring instruments, besides those used to obtain rainfall 
data for the threshold analysis, were used. In particular, in 3 cases (6.7%), 
they consist in other instruments used to measure rainfall, e.g., to integrate 
rainfall measures or to have redundancy of rainfall data. In two cases, the 
systems are equipped with instruments for temperature measurements. 
The use of temperature sensors is due to cope with snowmelt-induced 
landslides to take into account snow accumulation/melting phenomena in 
regional scale threshold analysis, or to model the degree of saturation in 
order to adjust operational rainfall thresholds. Only in one case 
piezometers are employed for providing additional information on pore 
water pressure variations. 

3.2.2 Warning models 

The warning model of a Te-LEWS for weather-induced landslides 
typically consists in defining one or more thresholds for landslide 
occurrence in a certain area of interest. The rainfall thresholds are typically 
based on correlation laws derived from a statistical analysis of historical 
data. According to Guzzetti et al. (2007), they can be differentiated into 
three main categories: A) thresholds that combine precipitation 
measurements obtained from specific rainfall events; B) thresholds that 
consider antecedent rainfall conditions; and C) other thresholds. The first 
category can be further subdivided, depending on the precipitation 
measurements, in: A1) intensity-duration; A2) rainfall event-duration; A3) 
total event rainfall; and A4) rainfall event-intensity.  
Following this schematization, Figure 3.9 describes the thresholds defined 
within the 24 Te-LEWS reviewed by Piciullo et al. (2018). The majority of 
the systems (17) employ intensity-duration thresholds (A), whereas other 
thresholds (C) are used in 7 cases and antecedent conditions (B) are 
considered in 6 cases. Rainfall event-duration thresholds (A2) are deployed 
only in the system designed to address landslides along highways in 
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Taiwan (AS6). Ten systems employ one threshold, yet two thresholds are 
evaluated simultaneously in 7 cases. An example is the system operational 
in Rio de Janeiro (SA1), where a combination of antecedent condition of 
rainfall through the measurement of 24-h and 96-h cumulated rainfall was 
first considered. Successively, a third rainfall variable representing the 
intensity duration, i.e. the hourly rainfall, was added to the previous two. 
Other or two more complex thresholds are adopted in the remaining 7 
cases, such as in Hong Kong (AS1). Japan (AS5), and Norway (EU7). The 
latter is a peculiar system, since the thresholds currently used have been 
derived from empirical tree-classification using 206 landslide events 
occurred throughout the country, as a function of two variables: relative 
water supply (derived from rainfall and snowmelt), and relative soil water 
content. 
 

 
Figure 3.9 a) Classification (following the schematization by Guzzetti et al. 2007) 
and b) number of thresholds employed in the 24 Te-LEWS operational worldwide 
(Piciullo et al. 2018) 

 

Figure 3.10 groups the thresholds employed within the 21 Italian regional 
LEWS (Pecoraro and Calvello 2016). Among the reviewed systems, only 
in Liguria and Marche two thresholds are combined: intensity-duration 
(A1) and antecedent conditions (B). On the other hand, one threshold is 
applied in 16 circumstances, equally distributed between intensity-duration 
(A1) and others (C). Among the latter, in six systems (Campania, Lazio, 
Lombardy, Sardinia, Sicily, and Umbria) rainfall precursors are related to 
returns period estimated on the basis of probabilistic analyses of historical 
rainfall. The values obtained for each type of precursor correspond to a 
different risk scenario, i.e. level of warning. A peculiar example of 
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thresholds definition is represented by the system operational in Emilia-
Romagna. The model employed is called SIGMA, whose name reflects the 
central role assumed by standard deviations in the proposed methodology. 
The areas of the region susceptible to landslide events has been subdivided 
into territorial units, each one associated to a reference rain gauge. The 
time series of cumulated rainfall from 1 to 365 days have been derived for 
each rain gauge and the cumulative rainfall series are approximated by a 
standard Gaussian distribution. Proceeding in the same way for the 
number of cumulative rainfalls between 1 and 365 days, it is possible to 
build the precipitation curves (σ curves) associated with various 
probabilities of non-exceedance. Multiples of the standard deviation (σ) 
are used as thresholds to discriminate between ordinary and extraordinary 
rainfall events. In Aosta Valley, multiparametric thresholds have been 
defined by combining 30-day antecedent rainfall with quantitative weather 
forecasts (average and peak rainfall intensity, and snowmelt). In the 
remaining 3 cases, information on rainfall thresholds employed is not 
available. 
 

 
Figure 3.10 a) Classification (following the schematization by Guzzetti et al. 2007) 
and b) number of thresholds employed in the 21 regional LEWS operational in 
Italy 

 

Segoni et al. (2018a) stated that the rainfall thresholds for landslide 
occurrence are characterized by three relevant features: source of landslide 
data, variables or parameters employed and methods used.  
Regarding the landslide databases, 44% of the reviewed systems makes use 
of two or more sources of information, trying to compile a database as 
much complete as possible. As an instance, local newspapers usually 
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report with good temporal precision landslides that had a relevant impact 
on human infrastructures but very rarely provide reliable 
technical/scientific information (e.g., landslide type). On the contrary, 
scientific reports may be rich of details but sometimes they may not state 
clearly the exact moment or day of landslide occurrence. Figure 3.11a 
reports the distribution of landslide information source. The most used 
sources of information are reports (used in 19 cases), which can have 
various different origins: fire brigades, civil protection, local 
administration, technical offices, and scientific reports. News found in 
newspapers archives (14 cases) and/or on internet (5) are another relevant 
source of information. Furthermore, 12 systems make use of official 
databases released by different organizations, mainly governmental 
organizations, local authorities, or research institutions. Remote sensing 
can be a valuable tool to compile post-event catalogs or to constantly 
update large inventories, indeed surveys performed by remote sensing 
techniques were used in 5 circumstances. Historical records of various 
origin were taken into account for 3 systems, while in 2 cases are used 
datasets prepared for previous works. In 3 circumstances, the source of 
landslide data is not clearly defined. 
The methods adopted for the definition of the thresholds in Te-LEWS 
reported by Segoni et al. (2018a) can be grouped into two classes: manual 
and statistical (Figure 3.11b). The former are applied in 55.6% of the cases 
in which the thresholds are actually drawn manually in several ways: 
delimiting the lower bound of the point cloud representing the triggering 
rainfall conditions, searching the best fit of the lower part of the cloud, or 
adopting a regression. The latter are used in 37.7% of the cases through 
the following approaches: frequentist analysis, partial duration series, 
return time calculations, or point density analysis. The methods are not 
clearly specified in 6.6% of the cases. Further proposals of thresholds 
using different methods have been presented in the literature, yet not 
employed in any operational or prototypal Te-LEWS. Among them, it is 
worth mentioning the probabilistic models based on Bayesian analyses 
tested by Berti et al. (2012) in the Emilia-Romagna region (Italy) and by 
Robbins (2016) in Papua Nuova Guinea. 
Figures 3.11c,d display that three combinations of rainfall parameters are 
more commonly implemented into the reviewed systems: intensity-
duration (A1), antecedent conditions (B), and others (C). The most used 
combination is intensity-duration (21 cases), whose definition follows a 
consolidated tradition which dates back to Caine (1980). The second most 
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used approach relies on antecedent conditions (11 cases), which can be 
derived using several combinations of rainfall measures, such as: daily 
rainfall and 15-day antecedent rainfall, 3- and 30-day antecedent rainfall, 
daily and 3-day cumulated rainfall. In some cases, rainfall measures are not 
used directly but processed to calculate antecedent rainfall indexes, in 
order to better account for the degree of saturation of the soil (e.g., Jaiswal 
and van Westen 2010). In 6 cases intensity-duration and antecedent are 
combined. Out of these categories, 7 systems employ a wide variety of 
parameters to define rainfall thresholds. As instance, the abovementioned 
regional system operational in Emilia-Romagna uses the standard 
deviation from the mean rainfall amount accumulated during 
progressively increasing time steps. 
 

 
Figure 3.11 a) Information sources used to define the thresholds, b) methods used 
for drawing or defining the thresholds, c) classification (following the 
schematization by Guzzetti et al. 2007) and d) number of thresholds employed in 
the 45 Te-LEWS operational worldwide (modified from Segoni et al. 2018a). 
Legend: n.s.: not specified 
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3.3 OPEN ISSUES 

The literature contributions reported herein describe many landslide early 
warning systems (LEWS) deployed to address weather-induced landslides 
both at regional and slope scale all around the world. The efficiency of a 
LEWS strongly depends on the monitoring strategies adopted and the 
method developed for the definition of the warning model. As already 
mentioned, monitoring strategies play a central role, both in the design 
and in the operational phase of a LEWS, as suitable parameters for 
monitoring must be identified and the most appropriate monitoring 
instruments selected according to a set of criteria, such as simplicity, 
robustness, reliability, and cost. On the other hand, the definition of the 
warning model also represents a crucial issue for scientists and managers 
involved in landslide risk management. In particular, there are no standard 
procedures indicating steps that cannot be neglected in order to ensure 
objectivity and reproducibility of the implemented method.    
Warning models developed for weather-induced landslides are mainly 
based on correlation laws, for which thresholds are defined considering 
one or more combinations of the monitored parameters that have led (or 
not lead) to slope movements. Thresholds are drawn either by delimiting 
triggering and non-triggering conditions in cartesian planes or by 
statistically analyzing historical data. These methods do not typically 
include a quantitative assessment of the uncertainties correlated to the 
results, that may be due to incomplete or inadequate: input data, 
knowledge on the physical process, and reconstruction of the rainfall 
events (Berti et al. 2012, Robbins 2016). 
The reliability of a warning model does not depend solely on the applied 
method, but also on the quantity and quality of the input data, i.e. historical 
landslide records and rainfall measurements (or other meteorological 
parameters). A landslide catalog that is regularly updated and as much 
complete as possible—not only in terms of number of events reported, 
but also in terms of information to be used in the analyses—is critical for 
supporting the calibration and the validation of a warning model (Battistini 
et al. 2013, Kirschbaum et al. 2015). Unfortunately, in many cases data on 
landslide occurrence are either not available or accessible only to a 
restricted number of scientists, technicians, and insiders (Segoni et al. 
2018a).  
Regarding rainfall measurements, the most used monitoring instruments 
are by far rain gauges, whose spatial density varies significantly from case 
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to case. Overall, decrease in gauge density leads to increased 
underestimation of rainfall, which in turn leads to large underestimation 
of the thresholds, especially in those based on the correlation between 
intensity and duration (Nikolopoulos et al. 2014, 2015). 
As already mentioned, in almost all the cases only meteorological 
parameters are included within the warning model. However, 
meteorological monitoring does not allow to take into account critical soil 
properties controlling the initiation of the triggering process. Depending 
on these conditions, landslides may be triggered in response to a large 
variety of rainfall combinations. Therefore, although the integration of 
geotechnical parameters (e.g., pore water pressure, soil water content, 
ground deformation) within warning models for weather-induced 
landslides may be very challenging for some types of landslides, they can 
provide additional information to determine the likelihood of rainfall 
events actually triggering landslides (Baum and Godt 2010, Stähli et al. 
2015, Calvello 2017). 
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4 THE PROPOSED METHODOLOGIES 

In this Chapter the main elements to be considered in the development of 
a warning model for weather-induced landslides are summarized in a 
conceptual framework (Section 4.1). In particular, the influence of the 
input data and the necessary activities needed for obtaining reliable results 
are highlighted. Considering the proposed framework as well as the 
relevant aspects according to Section 3.3, two procedures are defined for 
the development of a probabilistic warning model (Section 4.2) and a 
multi-scalar warning model (Section 4.3). Their application to specific case 
studies is presented in Chapters 6 and 7, respectively. 

4.1 CONCEPTUAL FRAMEWORK 

The definition of a warning model for weather-induced landslides presents 
some critical issues, thus there are important steps that cannot be 
neglected. Figure 4.1 displays a conceptual framework that summarizes 
the main elements of the process: (i) input data, (ii) activities, and (iii) 
output. 
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Figure 4.1 Conceptual framework highlighting the main elements needed for the 
definition of a warning model for weather-induced landslides 

 
Input data 
The reliability of a warning model significantly depends on the quantity 
and the quality of the input data, which can be derived by three different 
sources of information: thematic maps, landslide databases, and 
monitoring data. In addition, these details are also important in order to 
determine the most appropriate methodology and to assess the feasibility 
of a possible application to other case studies. Thematic maps can be used 
to highlight the main features of the study area, such as the areal extension 
and the geomorphological context (e.g., lithology, land use, and slope). 
The former provides an indication on the spatial scale of analysis, which 
in turn influences both the spatial extension of the landslide database and 
the choice of the most suitable monitoring methods. The latter is related 
to the types of landslides that may potentially occur within the study area 
and the mechanics of the triggering processes (Stähli et al. 2015, Calvello 
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2017, Segoni et al. 2018a). Regarding the landslide database, using a high 
and well-distributed number of recorded events (i.e., representative of a 
wide range of different triggering conditions) is recommended for the 
calibration of a warning model. In addition, landslide catalogs should be 
populated constantly and timely in order to allow a recalibration of the 
model when new data are available (Kirschbaum et al. 2015, Rosi et al. 
2015, Battistini et al. 2017). Finally, monitoring data to be employed within 
warning models are typically represented by meteorological parameters, 
investigated through two different monitoring methods: in-situ 
monitoring and remote sensing (Pecoraro et al. 2018, Piciullo et al. 2018, 
Segoni et al. 2018a). Meteorological instruments deployed in-situ measure 
directly and continuously the monitored parameter (e.g., rain gauges for 
monitoring rainfall), thus they provide robust and reliable local 
observations. It should be stressed that the highest possible density of 
measurements is desirable, to better account for the spatial variability of 
the monitored parameters. The selection of the most representative local 
instrument(s) for a certain landslide event is not a trivial matter, therefore 
the design of the monitoring network for local observations should be 
based on quantitative and objective elements. On the other hand, recent 
technological advances in remote sensing methods (i.e. weather radars and 
satellite estimates) are encouraging their deployment for early warning 
purposes. In particular, they allow enhancing the spatial and the temporal 
resolution of the measurements (e.g., spatial resolution of weather radars 
can arrive to few km2). They are particularly helpful in areas where reliable 
meteorological monitoring networks are not available. Furthermore, other 
monitoring data available in the study area (e.g., monitoring of 
geotechnical parameters) may provide fruitful information on the 
landslides under surveillance, thus they can be profitably used to 
complement the monitored meteorological parameters. 
 
Activities 
The main activities needed for the delimitation of the warning zones, the 
analysis and the correlation of the input data, and the definition and the 
validation of the warning model are herein described. 
Partition into warning zones. A warning zone is the portion of territory alerted 
with the same warning level and it can be seen as the spatial discretization 
adopted for warnings (Calvello and Piciullo 2016). The aim is to divide the 
study area into territorial units characterized by meteorological and 
hydrogeological homogeneity. The criteria adopted for the definition of 
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the warning zones generally consider the hydro-geomorphological 
conditions of the area to be warned as well as the characteristics of the 
employed monitoring network, including factors like: number of 
monitoring instruments per unit area, climatic homogeneity, geology and 
geomorphology (Calvello 2017). In addition, some authors (Jaiswal and 
van Westen 2010, Segoni et al. 2014, Zhuang et al. 2014, among others) 
state that in large study areas characterized by heterogeneous climatic 
regimes and geomorphological characteristics each warning zone should 
be independently analyzed for the definition of a specific threshold. 
Identification of landslide events. Landslide events necessary for the calibration 
of the warning model are retrieved from a landslides database according 
to data, classification, spatial and temporal characteristics of the landslide 
records. In some cases, the numerosity of the landslides triggered by the 
same weather conditions can be also considered, thus the landslide events 
can be differentiated into single landslide events and areal landslide events 
(Calvello and Pecoraro 2018). In particular, single landslide events refer to 
the occurrence of one landslide; areal landslide events are defined as a 
series of landslides grouped on the basis of their characteristics, so as to 
implicitly evaluate and classify the magnitude of a set of multiple 
phenomena occurring in a given area within a given time period. 
Regarding the types of landslides considered for the analyses, two different 
approaches can be followed. If the adopted landslide catalog reports a 
small number of records, all the weather-induced landslides that occurred 
in the study area in the analyzed time frame may be included to increase 
the number of landslides available for the analyses. Conversely, if a wide 
number of landslides is reported in the database, landslides triggered or 
favored by similar contour conditions (e.g., shallow landslides in loose 
soils) may be grouped and considered separately for the calibration of the 
thresholds in order to enhance the accurateness of the predictions. Finally, 
only landslides for which information on cause and on spatial and 
temporal characteristics is adequate should be considered, as a high degree 
of uncertainty in the dataset could result in a significant decrease in the 
performance of the warning model. 
Selection of warning parameters. The monitoring data are processed and 
analyzed in order to determine the most suitable warning parameters, i.e. 
combinations of meteorological measurements that can provide an 
adequate description of the triggering event (e.g., a combination of rainfall 
intensity and duration for characterizing a rainfall event). Several aspects 
should be taken into account in order to select the warning parameters: 
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the types of landslides under surveillance, the geoenvironmental 
conditions of the study area, and the climatic regime. As an example, 
antecedent rainfall conditions would be more appropriate than rainfall 
intensity for systems dealing with deep-seated landslides in low-
permeability soils. 
Spatial-temporal correlation. The correlation between the landslide events and 
the warning parameters is based on their spatial and temporal 
characteristics. In particular, each landslide event occurring in a certain 
warning zone within a given time period is associated to a set of warning 
parameters, which are derived from the monitoring data collected in the 
same warning zone and can be considered representative of the weather 
conditions that triggered the landslide event. The reconstruction of the 
conditions responsible for landslides initiation is not a trivial matter as it 
can be characterized by a relevant degree of subjectivity and uncertainty 
(Segoni et al. 2018a). For this reason, a standard criterion should be set in 
advance to get objective and fully reproducible measures. To this aim, it 
could be useful to implement an algorithm that reconstructs the triggering 
and non-triggering conditions according to a reduced set of parameters to 
account for different physical settings and operational conditions (Melillo 
et al. 2015). 
Definition of warning model. A warning model for weather-induced landslides 
can be defined using a variety of methods, classifiable into three main 
categories: heuristic, statistical, and probabilistic. Heuristic methods are 
based on the identification of the conditions which lead to the triggering 
of the landslides through a visual comparison between monitoring data 
and landslide occurrences. In these cases, threshold values are typically 
defined manually by expert judgment, without any statistical, mathematical 
or physical criterion. Statistical methods comprise a wide variety of 
techniques, such as: frequentist method, partial duration series, and point 
density analysis. Thresholds are typically drawn as the lower-bound limit 
to the conditions which resulted in slope instability plotting two 
representative variables (e.g., rainfall intensity and duration) in Cartesian, 
semi-logarithmic or logarithmic coordinates. In some cases, the thresholds 
are refined by considering also the rainfall events that did not results in 
landslides. Probabilistic approaches are aimed at identifying the 
probability of landslide occurrence associated to each combination of 
warning parameters. They provide objective and reproducible results 
which can be easily updated when new data become available. 
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Validation of warning model. In general terms, validation can be defined as 
“the process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses 
of the model” (Corominas and Mavrouli 2012). Validation is one of the 
most important issues in the definition of a warning model, as the 
assessment of the predictive capability needs to be adequately analyzed 
and supported by data (Calvello and Piciullo 2016, Piciullo et al. 2017b, 
Segoni et al. 2018a). Depending on the availability of data, validation can 
be performed either against the same dataset used to define the model (i.e., 
calibration and validation sets are not separated) or against a different 
dataset that can be separated spatially, temporarily or randomly from the 
calibration set. Different statistical methods have been developed and 
applied for performance evaluation; they are based on the computation of 
tools such as: contingency matrices, receiver operating characteristic 
(ROC) curves, and duration matrices. A contingency matrix is compiled 
to define true negatives (TN), true positives (TP), false negatives (FN), 
and false positives (FP) and to derive a series of statistical indicators, such 
as: efficiency index, threat score, odds ratio. A ROC analysis is devised to 
assess the overall performance of the model by computing the area under 
a curve drawn in the true positive rate vs false positive rate space, and 
other parameters (Metz 1978). A duration matrix takes into account the 
overlapping durations of warning levels and landslides events with the aim 
of determining, within a given time frame, the amount of time of adequate 
and inadequate behavior of the warning model (Calvello and Piciullo 
2016). Alternative approaches adopted to quantify the performance of a 
warning model include: a quantitative comparison with other models 
aimed at demonstrating that the developed model is the best one for a 
specific case study; comparison between model outputs and real data 
counting only one or two statistical parameters (e.g., hits) and without 
building a contingency matrix; visual and qualitative assessments (e.g. 
visual comparison with landslide inventories). 
 
Output 
Warning events (i.e. the warning model output) are generated by 
evaluating appropriately defined warning criteria (i.e. the decision-making 
procedures required for issuing the warnings), in turn based on 
correlations between the warning parameters (i.e. the triggering factor) and 
the landslide events (i.e. the hazard for which warnings are issued). They 
are represented by a set of warning levels issued within each warning zone, 
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according to the magnitude of the expected impact. The number of 
warning levels can vary from a minimum of two (i.e., warning, no warning) 
to five or more (i.e., states with an increased probability of landslides). It 
is worth mentioning that the adoption of a high number of levels requires 
an adequate calibration of the thresholds as well as clear statements about 
the meaning of the issued warnings. Indeed, each warning level is 
associated to a series of characteristics of the landslide event, to a series of 
potential consequences and, thus, to a series of appropriate actions to be 
undertaken from relevant stakeholders (Calvello and Piciullo 2016, 
Calvello 2017, Pecoraro et al. 2018). 
The proposed conceptual framework could be used as a reference for the 
development of a warning model for weather-induced landslides. Anyway, 
it should be stated that a warning model needs to be constantly evaluated, 
updated and upgraded to maintain or to increase its forecasting 
effectiveness. Sections 4.2 and 4.3 present two warning models developed 
according to the proposed framework and taking into account some of 
the issues highlighted in Chapter 3. 

4.2 PROBABILISTIC WARNING MODEL 

As highlighted in Section 3.3, warning models implemented within 
operational LEWS addressing weather-induced landslides are mainly 
based on heuristic and statistical methods. Some literature contributions 
(Berti et al. 2012, Robbins 2016) propose alternative approaches based on 
the adoption of probabilistic techniques to evaluate the probability of 
occurrence of landslides in a given area. However, a standardized 
procedure does not exist and these models have not yet been implemented 
within LEWS operational at real scale. 
Figure 4.2 describes a methodology for the definition of a probabilistic 
warning model, following the conceptual framework introduced in Section 
4.1. In particular, a probabilistic analysis is performed to assess the 
probability of landslide occurrence associated to each combination of the 
warning parameters within a certain study area. The proposed procedure 
includes: the identification of the main characteristics of the study area and 
the collection of the input data (Phase I), the correlation between the 
landslide events and the warning parameters (Phase II), and the 
application of the probabilistic methodology (Phase III). 
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Figure 4.2 Flowchart of the proposed methodology for the definition of a 
probabilistic warning model for weather-induced landslides 

 

In Phase I, information on the areal extension and on the geological, 
geomorphological, hydrogeological and geotechnical features of the area 
of interest is derived from thematic maps. The information is then used 
to determine the scale of analysis of the model and to define homogeneous 
warning zones based on the hydro-geomorphological conditions of the 
warned area, such as climatic regime, geology, and geomorphology. 
Moreover, input data to be employed within the warning model are 
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derived from landslide catalogs and monitoring networks available and 
accessible within the study area in the period of analysis. In Phase II, 
landslide events addressed by the warning model are selected from the 
available database and eventually grouped according to their 
characteristics. Records of questionable quality as well as landslides not 
clearly triggered by weather changes should not be considered. Besides, 
monitoring data are analyzed in order to identify combinations of warning 
parameters representative of the conditions which may lead to the possible 
initiation of the landslides. After the weather events have been defined, 
the landslide events that occurred within each warning zone are associated 
to the adopted combinations of warning parameters, and the weather 
events that resulted or did not results in landslides are identified. In Phase 
III, a probabilistic analysis is developed to compute the probability of 
landslide occurrence for each possible combination of warning parameters 
within the study area. This methodology allows to explicitly take into 
account information from all input data and to highlight the weather 
conditions corresponding to critical states of the system, i.e. conditions 
that are likely to trigger landslides. Finally, a validation of the model is 
performed in order to assess the predictive capability of the model so that, 
if necessary, some parameters can be modified when new data become 
available. 

4.3 MULTI-SCALAR WARNING MODEL 

Almost all the warning models presented and described in Chapter 3 are 
based on meteorological monitoring, typically employing a network of rain 
gauges for measuring rainfall in order to predict weather-induced 
landslides by investigating their triggering factor. However, mechanisms 
that lead to slope instability are often influenced by numerous factors (e.g. 
slope gradient, soil properties, land use), thus there is not always a direct 
relationship between meteorological parameters and landslide initiation. 
Therefore, some authors (Baum and Godt 2010, Stähli et al. 2015, Calvello 
2017) propose to integrate monitoring of geotechnical parameters within 
the warning model, to obtain additional information useful to determine 
rainfall events actually triggering landslides. 
Figure 4.3 presents a methodology for the definition of a multi-scalar 
warning model that combines monitoring data collected at regional and 
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slope scale. The main aim is to improve the performance of the regional 
warning model by integrating information from local observations. The 
proposed procedure can be schematized into three successive steps: 
collection of the input data and classification of the warning zones (Phase 
I), application of the regional warning model (Phase II), and integration of 
local observations (Phase III). 
 

 

Figure 4.3 Flowchart of the proposed methodology for the definition of a multi-
scalar warning model for weather-induced landslides 
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In Phase I, information on landslides that occurred within the area of 
analysis are retrieved from available landslide catalogs in order to select 
the types of landslides of interest for the warning model (i.e., landslide 
events). The most appropriate monitoring data, in terms of widespread 
meteorological measurements and local observations, are also collected in 
this phase. The area of analysis is divided into territorial units of 
appropriate areal extension (i.e. the warning zones adopted in the model) 
considering the scale of analysis, intermediate between regional scale and 
slope scale, so that information from widespread monitoring and local 
observations may be profitably combined. The territorial units are 
classified considering two criteria: the occurrence of landslide events in 
the period of analysis and the availability of relevant information from 
monitoring instruments in the proximity of the landslide source areas. 
Following this classification, the most representative territorial units are 
identified. In Phase II, the regional warning model developed employing 
only meteorological data is applied. The performance of the issued 
warning events (i.e., combinations of warning parameters exceeding pre-
defined thresholds) is then evaluated through a comparison with the 
landslide events that occurred in the period of analysis. In Phase III, the 
regional warning events are assessed by using the information derived 
from the local observations within each warning zone. The multi-scalar 
warning model is validated by means of statistical indicators and, if 
necessary, it is recalibrated. The obtained results can be also extended to 
other areas, identified as similar to the warning zones used for the 
development of the multi-scalar warning model. 
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5 APPLICATIONS OF PROBABILISTIC 
WARNING MODEL 

This Chapter presents the application of the probabilistic warning model 
defined in Section 4.2 aimed at determining the rainfall conditions critical 
for landslide initiation. Firstly, Section 5.1 summarizes the main steps 
necessary for the development of the model. Then, Section 5.2 and 5.3 
describe the open-access data employed for this research, coming from a 
non-conventional landslide inventory and a rainfall satellite monitoring 
mission. A two-dimensional Bayesian methodology for the definition of 
rainfall probabilistic thresholds is proposed in Section 5.4. Finally, the 
results carried out applying this procedure to Emilia-Romagna and 
Campania regions (Italy) are presented and discussed (Sections 5.5 and 5.6, 
respectively). 
 

5.1 PROBABILISTIC WARNING MODEL: WORKFLOW 

Two probabilistic warning models have been developed and tested in two 
different Italian regions, Emilia-Romagna and Campania, following the 
procedure described in Section 4.2. Although some differences exist 
between the two applications, the flowchart showed in Figure 5.1 
summarizes the main common steps: delimitation of the warning zones 
and collection of the input data (Phase I), correlation between landslides 
and rainfall events (Phase II), calibration and validation of the probabilistic 
warning model (Phase III). 
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Figure 5.1 Flowchart of the proposed methodology for the definition of the 
probabilistic warning models for rainfall-induced landslides applied to the 
Emilia-Romagna and Campania case studies 

 

In Phase I, the weather warning zones defined by the regional civil 
protection agency are considered as the most appropriate territorial units 
in relation to the scale of analysis and a series of homogeneity criteria. The 
analyses are conducted using open-access input data: landslide records 
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from a catalog of Italian landslides retrieved from online news; and rainfall 
measurements from satellite monitoring. 
In Phase II, shallow rainfall-induced landslides in loose soils are selected 
from the database. Moreover, rainfall measurements are processed in 
order to reconstruct the rainfall events considering duration and 
cumulated rainfall as variables. To this aim, two different procedures are 
employed for the two case studies. Landslides and rainfall events are 
analyzed in order to define spatial-temporal correlations within each 
territorial unit and to differentiate between triggering and non-triggering 
rainfall conditions. 
In Phase III, a probabilistic approach based on a two-dimensional 
Bayesian analysis is developed to calculate the landslide probability 
associated to the different types of rainfall events recorded in the database. 
Following this methodology, the rainfall conditions more likely to trigger 
landslides are identified, allowing to highlight critical levels of rainfall and 
to determine probabilistic thresholds for landslide initiation. Finally, the 
thresholds are validated employing two different procedures for the two 
case studies. 

5.2 LANDSLIDE DATABASE: THE “FRANEITALIA” PROJECT 

(based on Calvello and Pecoraro 2018) 

5.2.1 Methodology 

“FraneItalia” is a geo-referenced open access catalog of recent landslides 
affecting the Italian territory. The catalog has been developed consulting 
online news sources from 2010 onwards and includes both fatal landslide 
events and events that did not produce physical harm to people. Landslide 
events are classified considering two numerosity categories and three 
consequence categories. The numerosity categories are: single landslide 
events (SLE), for records only reporting one landslide; and areal landslide 
events (ALE), for records referring to multiple landslides triggered by the 
same cause in the same geographic area. Both SLEs and ALEs are divided 
in three consequence classes according to whether the event produced 
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victims and/or missing people (C1, very severe), injured persons and/or 
evacuations (C2, severe), or did not cause any physical harm to people (C3, 
minor). The “FraneItalia” catalog supplement already existing landslide 
catalogs and inventories in Italy, including landslide inventory maps 
produced by river basin authorities and databases of recent landslides 
developed using news articles as sources of information. 
Information retrieved from online news sources on landslides that occur 
in Italy have been collected and organized within the new national 
landslide catalog, following a methodology organized in seven successive 
steps. 
(i) Selection of sources. A certain number of online news media, published in 
Italian language, were preliminarily screened in order to compare the 
consistency and the quality of the outcomes. As a result of this activity, 
the following two news aggregators were selected as sources of 
information for the catalog: 1) Google Alert, GA 
(http://www.google.com/alerts), a web service that sends daily emails 
when it finds web pages or news articles that match users’ search term(s); 
2) the Italian Civil Protection press review, CP 
(http://ilgiornaledellaprotezionecivile.it/), a selection of articles available 
in pdf format collected daily from national, regional and local press. 
(ii) Identification of effective keywords. Both the selected news aggregators may 
be searched employing a Boolean keyword approach. Key landslide 
terminology was assessed to select the terms that are more commonly used 
in Italian language to deal with landslide events. As a result of this activity, 
the two keywords selected for the searches are: “frana” (the Italian word 
for “landslide”) and “frane” (the Italian word for “landslides”). 
(iii) Collection of relevant news articles. When one of the two search terms 
appears in daily searches conducted on the two information sources, the 
related online article is flagged as a potential entry for the landslide catalog. 
If the article refers to a new landslide event a record is added to the 
landslide database. If the article refers to a landslide event already existing 
in the database, the relative record is updated. 
(iv) Identification of landslide categories. Landslide events are classified 
considering two numerosity categories and three consequence categories. 
The two numerosity categories are: single landslide events (SLE), for 
records only reporting one landslide; and areal landslide events (ALE), for 
records referring to multiple landslides triggered by the same cause in the 
same geographic area (at most coincident with an administrative 
Province). The latter category is used to simplify collection and reporting 
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of the landslide records for the numerous cases when many landslides are 
mentioned together in the news. The consequence classification is based 
on the severity of the effects to human life, not considering other 
consequence measures (e.g., economic loss, environmental damage). The 
three categories are: very severe consequences (C1), for landslide events 
with victims and/or missing people; severe consequences (C2), for events 
with injured persons and/or evacuations; minor consequences (C3), for 
landslide events that did not cause physical harm to people. 
(v) Definition of other fields of database. Information on the landslide events 
collected in the catalog always include: data on the spatial location of the 
event, day of occurrence of the landslide(s), source(s) of information, and 
number of landslides in case of ALEs. Additional information may 
include: onset and duration of the landslide event, landslide characteristics, 
phase of activity, details on the consequences. 
(vi) Mining of information from the articles. For each record of the database, i.e. 
for each inventoried landslide event, as much information as possible is 
obtained from the articles in relation to each field. 
(vii) Geo-referencing of the events. A single set of geographic coordinates 
(WGS84 datum) is assigned to each record of the database, both for single 
and areal landslide events. The following categories of spatial positions are 
considered for SLEs: i) certain, if the news source clearly specifies the 
position of the landslide; ii) approximated, when the position of the 
landslide can be inferred, although it is not clearly indicated; iii) unknown, 
when the only information reported is the name of the municipality 
affected by the landslide. In the latter case, the geographic coordinates of 
the town hall are assigned. For ALEs, the assigned geographic coordinates 
are only meant to represent a point within the area affected by the 
landslide event and are thus useful only for maps drawn at national scale. 

5.2.2 Database structure 

The FraneItalia catalog was constructed adopting PostgreSQL version 9.6, 
an open source Relational DataBase Management System, with the 
PostGIS extension version 2.3. Tables, fields and relationships—designed 
in a logical model—were translated into PostgreSQL physical tables, 
fields, and one-to-one relationships. Figure 5.2 shows all the fields of the 
database. Each reported landslide event is characterized by 40 unique 
fields, which are grouped in 9 thematic tables: main info; spatial 
information; temporal information; landslide characteristics; 
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consequences to people, structures, infrastructures, cars and other 
elements; and source. Not all fields are mandatory. 

 

 

Figure 5.2 Structure of the “FraneItalia” landslide database (Calvello and 
Pecoraro 2018) 

 
Inspection of Figure 5.2 reveals that the core of the catalog structure is the 
main info table, that maintains a unique hierarchical relation with tables 
containing information on the landslides, their consequences and the 
sources of information, i.e. links to online articles. The tables are 
connected through the identification code (ID), which is unique for each 
record and whose format is designed to highlight the landslide event 
category and the initial date of the event. The name of the landslide event 
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is not a compulsory entry and, when possible, it quotes the terms most 
commonly used to refer to the event. The landslide categories, as already 
mentioned, are based on landslide numerosity and on the consequences 
to human life of the landslide event. Both SLEs and ALEs are divided in 
three consequence classes. Further compulsory information for each 
record are the geographical coordinates of the landslide event and the 
source(s) of data. When the GA service is used, the references are the web 
addresses of the online news articles. When the CP press review is used, 
the references include the day (the press review is published each working 
day), the type (5 daily reviews are published in relation to the geographical 
location of the source: national, northern Italy, central Italy, southern Italy, 
main islands) and the pages of the PDF documents reporting the 
information. Finally, data visualization and editing in the FraneItalia 
database are allowed through a specific procedure that exploits QGIS 
software (QGIS Development Team, 2018) as a client, and a dedicated 
data visualization web interface. 
According to many authors (e.g., Guzzetti 2000, Kirschbaum et al. 2010, 
among others), characterizing landslide events from news reports and 
other text-based sources is challenging, as information varies widely in 
terms of both accuracy and availability, resulting in possible biases and 
uncertainties affecting the catalog. Compulsory information in the 
FraneItalia catalog include the geographical coordinates and the date of 
each landslide event, as well as the number of landslides of ALEs. If, for 
a given record of the database, the needed data are not directly reported 
in any news, the operator is requested to compile the related fields using 
his/her own judgement to infer from the available sources. The 
uncertainty of the position of SLEs is specified by means of three 
confidence descriptors associated to the geographical coordinates of the 
landslide event, named: certain (Sd1); approximated (Sd2); municipality 
(Sd3). In the latter case, the operator has to identify the municipality 
wherein the landslide event occurred and assign to the event the 
geographical coordinates of the town hall. The geographic coordinates 
attributed to ALEs are always indicative (Sd4) and are only meant to 
approximately identify the geographical region affected by the mentioned 
landslides. A second source of uncertainty may result from lack of detailed 
information on the time of the event. In the vast majority of cases, the day 
of the landslide event is reported in the news; quite often, a general 
indication of the time of occurrence (e.g., “in the morning”) is also 
available; sometimes, the date of the event is not reported and the news 
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article only generically refers to the event as a past occurrence (e.g., “few 
days ago”). The temporal uncertainty related to the occurrence of the 
landslide events is specified by means of two confidence descriptors, 
named: certain (Td1), when the news sources report at least the day of the 
event; estimation (Td2), when the operator has to interpret the news 
reports to assign a date to the event. In the first case, if more information 
on the time of the event is reported the “time” field is also filled, either by 
inserting the hour of the event or by specifying a time range (e.g., “in the 
morning”). In both cases, if the landslide event lasts longer than one day, 
the final day of the event is also reported. Finally, the uncertainty 
associated to the number of landslides in ALEs is specified by means of 
two descriptors, named: reported (Nd1), when the news reports that 
number; and estimation (Nd2), when the operator has to infer from the 
news to assign it. Most typically ALEs are due to extreme weather 
conditions triggering, in one or more days, multiple landslides over wide 
areas. In these cases, the news typically identifies the area affected by the 
events and highlights the landslide(s) that produced the highest 
consequences, only rarely reporting a number that can be considered 
representative of all the landslides occurring during the areal event. 
Four types of constraints are adopted to guarantee the correctness and 
semantic integrity of the inserted records. A first group of constraints is 
adopted to ensure the appropriateness of the information related to the 
landslide numerosity class (SLE or ALE) and to the number of landslides 
within a landslide event (i.e. the number of landslides must be equal to one 
for SLEs and higher than one for ALEs). A second constraint limits the 
values of the possible choices of the confidence descriptors that quantify 
the uncertainties related to the number of landslides, their location and 
their time of occurrence. Next, geographical data are validated by means 
of a dictionary valid for Italy (first level for the regions, second level for 
the counties, and third level for the municipalities). Finally, lists of pre-
identified values are adopted to standardize and harmonize the following 
characteristics of the landslide events: typology, areal dimensions, trigger, 
material, and activity phase. 
Table 5.1 reports how the two selected news aggregators, GA and CP, 
were used to populate the FraneItalia catalog from January 2010, i.e. the 
beginning of the survey, to December 2017, i.e. the end of the period 
reported herein. The CP was predominantly used for a series of reasons. 
The daily press reviews from the Civil Protection are stored as an online 
archive accessible at a later date. When the study started, at the end of 
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2012, it was thus possible to go back in time and set January 2010, the 
month of first available CP press reviews, as starting date. On the contrary, 
the daily GA service has to be activated from a user. Therefore, GA was 
fully operational for the FraneItalia catalog only from January 2013. To 
overcome this limitation, the Google News search engine was also used 
to look for landslide news published in the year 2012. Yet, the search 
results were conditioned by the availability of the original online news 
when the searches were performed, i.e. first few months of 2013. 
Moreover, it has been empirically found that GA results depend on the 
location of the user as well as on its “habits” when using the Google search 
engine. The same GA search queries may thus generate different sets of 
online news articles for different users. Another important advantage of 
CP over GA is that the searches and the data entries performed using CP 
are less time-consuming. Indeed, the daily press reviews are already 
organized in 5 searchable PDF documents: one document collecting news 
of national relevance, mainly from countrywide news sources; the other 
four documents referring to news from Northern Italy, Central Italy, 
Southern Italy and the main Islands, respectively. This aspect of the CP, 
i.e. non-automatic pre-processing of online news from personnel of the 
civil protection, which may be considered a time-saving asset of this news 
aggregator, turned into a drawback when the civil protection agency either 
did not provide the press reviews (end of 2014) or performed limited 
reviews (November 2015). In summary, the CP was used to populate the 
FraneItalia catalog throughout the considered time period whenever 
available, whereas GA was only used in 2013, from September 2014 to 
February 2015, in November 2015 and, by means of the Google News 
search engine, from January 2011 to December 2012. 
 

Table 5.1 News aggregators used to populate FraneItalia from January 2010 to 
December 2017 (Calvello and Pecoraro 2018) 

News aggregator Period 

Civil protection daily press review 
(CP) 

From January 2010 to August 2014; from January 2015 
to December 2017 

Google Alert service (GA) 

From January 2011 to December 2012 (via Google 
News search engine); year 2013; from September 2014 

to February 2015; November 2015 
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5.2.3 Database contents 

The FraneItalia catalog currently spans from January 2010 to December 
2017, containing a total of 8931 landslides, grouped in 4231 SLEs and in 
938 ALEs (Table 5.2). About 2% of the 5169 landslide events had very 
severe consequences to human life (C1), 14% of the records refer to 
events with severe consequences to human life (C2), while the vast 
majority of records deals with landslide events that had minor 
consequences to human life (C3). 
 

Table 5.2 Landslides inventoried in the “FraneItalia” catalog from 2010 to 2017 

Year 

Single Landslide Events 
(SLE) 

Areal Landslide Events 
(ALE) Number of 

landslides 
C1 C2 C3 TOT C1 C2 C3 TOT 

2010 12 100 498 610 2 36 171 209 1584 

2011 16 60 302 378 4 20 68 92 821 

2012 9 51 393 453 2 14 85 101 949 

2013 12 77 538 627 1 39 114 154 1503 

2014 15 111 844 970 3 36 144 183 1936 

2015 9 63 377 449 2 17 58 77 801 

2016 5 43 368 416 1 5 59 65 801 

2017 3 45 280 328 1 13 43 57 536 

TOT 81 550 3600 4231 16 180 742 938 8931 

 
Figure 5.3 reveals that the sites affected by landslides are not equally 
distributed in Italy. SLEs are abundant in many regions and, as expected, 
there is a clear evidence of a correlation between an increasing density of 
landslide events and the location of the main Italian mountain chains, the 
Alps and the Apennines. ALEs are more common in the eastern sectors 
of the Alps (Lombardy and Veneto regions) and in the central and 
northern sectors of the Apennines (Tuscany, Liguria, Emilia-Romagna, 
and Marche regions). Among the southern regions, the one most affected 
by both single and areal events are Campania, Calabria and Sicily. The 
highest number of landslides reported in the database occurred in 
Toscana, mainly as a consequence of a series of major areal events 
triggered by heavy rainstorms. The lowest number of events is recorded 
in Puglia, whose territory mainly comprises plains. Most of the other 
regions experiencing a large number of landslides are located in northern 
Italy (Veneto, Lombardy, Emilia-Romagna and Liguria). In particular, 
Lombardy is the region most affected by SLEs, mainly occurring in the 
Alpine area where the presence of high relative relief and outcropping 
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rocks, such as granite, metamorphic rocks, massive limestone and 
dolomite, facilitate rock falls, rock slides and rock avalanches (Guzzetti, 
2000). 
 

 

Figure 5.3 The “FraneItalia” landslide catalog for the period 01/01/2010–
31/12/2017: (a) SLE records; (b) ALE records (Calvello and Pecoraro 2018). 
Legend: #L = Number of landslides 

 

Figure 5.4 reports that in several regions (Lombardy, Veneto and 
Piedmont) a non-negligible number of events occurred in the summer, 
possibly in relation to extreme rainfall events or snowmelt processes in the 
Alpine environment. On the contrary, in most parts of central and 
southern Italy (e.g., Emilia-Romagna, Campania, and Sicily) a considerable 
number of landslides occurred during the autumn and winter seasons. 
These findings are consistent with the different seasonal failure scenarios 
reported by Cascini et al. (2014) for the Campania region: distributed or 
widespread first-time shallow slides triggered by frontal rainfall and 
propagating as debris flows or debris avalanches between November and 
May; local erosion phenomena and small first-time shallow slides triggered 
by isolated convective storms between June and August; widespread 
erosion phenomena triggered by hurricane-like rainfall, often turning into 
hyperconcentrated flows, between September and October. 
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Figure 5.4 Number of landslides inventoried in the 20 Italian regions, 
differentiated per season (Calvello and Pecoraro 2018) 

5.3 SATELLITE RAINFALL MEASUREMENTS 

5.3.1 Global Precipitation Measurement (GPM) mission 

Precipitation data have been derived from the satellite-based Global 
Precipitation Measurement (GPM) mission, co-led by the National 
Aeronautics and Space Administration (NASA) and the Japan Aerospace 
Exploration Agency (JAXA). GPM mission aims at improving the 
knowledge of Earth's water and energy cycles, improving the forecasting 
of extreme events that cause natural disasters, and extending current 
capabilities of using satellite precipitation information to directly benefit 
society (Hou et al. 2014). The GPM Core Observatory is designed to work 
with and anchor a constellation of satellites and ground systems from 
partner agencies located in the United States, Japan, Europe, and India 
(Figure 5.5). 
 

0

200

400

600

800

1000

1200

1400

1600

A
br

u
zz

o

B
as

ili
ca

ta

C
al

ab
ri

a

C
am

p
an

ia

Em
ili

a-
R

o
m

ag
n

a

Fr
iu

li-
V

e
ne

zi
a 

G
iu

lia

La
zi

o

Li
gu

ri
a

Lo
m

b
ar

di
a

M
ar

ch
e

M
o

lis
e

P
ie

m
o

n
te

P
ug

lia

Sa
rd

e
gn

a

Si
ci

lia

To
sc

an
a

Tr
en

ti
n

o
-A

lt
o

 A
d

ig
e

U
m

b
ri

a

V
al

le
 d

'A
o

st
a

V
e

n
et

o

N
u

m
b

er
 o

f 
la

n
d

sl
id

es

Regions

Winter Spring Summer Autumn



5. Applications of probabilistic warning model 

 

91 

 

Figure 5.5 Constellation of satellites and international partners participating in 
the GPM mission (https://pmm.nasa.gov/GPM) 

 

The mission was launched on 27 February 2014 and was a successor of 
the Tropical Rainfall Measuring Mission (TRMM), which provided data 
on heavy to moderate rainfall in Earth’s tropics and subtropics from 1997 
to 2015. TRMM data were used to obtain multiyear sets of tropical and 
subtropical rainfall observations; develop a better understanding of the 
interactions between sea, air, and land masses and their influence on global 
rainfall and climate, improve the modelling of tropical rainfall processes, 
and enhance satellite rainfall measurement techniques. GPM improves on 
TRMM’s capabilities in a number of aspects. Although GPM employs only 
two instruments—a Dual-frequency Precipitation Radar (DPR) and a 
radiometer called GPM Microwave Imager (GMI)—versus the five 
instruments on TRMM, they are some of the most advanced instruments 
for monitoring precipitation from the space. Therefore, their combination 
provides an increased sensitivity to light rain rates as well as more reliable 
information on particle drop size distribution. One of the most significant 
evolutions in GPM data is its broader global coverage. While TRMM 
collected data in tropical and subtropical regions between roughly 35˚ 
north and south latitude, GPM collects data between approximately 60˚ 
north and south latitude. This allows GPM’s instruments to collect data 
on storms as they form in the tropics and move into the middle and high 

https://pmm.nasa.gov/GPM
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latitudes. A significant GPM data enhancement over TRMM is its design 
as a Core Observatory that coordinates data collection from a 
constellation of partner satellites, rather than as a single satellite. The GPM 
Core Observatory calibrates the data from almost a dozen orbiting U.S. 
and international satellites that observe precipitation, ensuring a uniform 
structure to the data collected from these satellites. The number of partner 
satellites in the constellation will change over time as new satellites are 
launched and older satellites are decommissioned (Kirschbaum et al. 
2017). 
GPM provides a wide variety of products retrieved combining data from 
active and passive instruments in the Integrated Multisatellite Retrievals 
for GPM (IMERG). This algorithm intercalibrates, merges, and time-
interpolates “all” satellite microwave precipitation estimates in the GPM 
constellation, then incorporates microwave-calibrated satellite estimates 
and precipitation gauge analyses (Huffman et al. 2018). IMERG uses the 
GPM Combined Instrument precipitation estimate to intercalibrate all 
available microwave data, similar to the TMPA approach, yet an advanced 
time-interpolation scheme is employed in order to follow the estimated 
motion of the precipitation systems. Precipitation datasets are available at 
a variety of levels which denote the amount of data processing, from raw 
data (level 1) to model outputs mathematically derived using the raw data 
as input (level 3). Precipitation data used in this research have been derived 
from the IMERG version 5 (v05b), which includes gridded precipitation 

data collected every 30 min at a 0.1° × 0.1° (∼10km × 10km) spatial 
resolution, currently covering the latitude band 60°N–60°S (Table 5.3). 
 

Table 5.3 Technical characteristics of the GPM products used in this research 
(Huffman et al. 2018) 

Integrated Multi-satellite Retrievals for GPM 

Basic acronym IMERG 

IMERG version 05b 

GPM Level 3 

Spatial resolution 0.1° × 0.1° 

Temporal resolution 30 minutes 

Coverage Gridded, 60°N–60°S 

Latency 4 h (NRT/Early run) 
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5.3.2 Analysis of rainfall data 

Satellite rainfall data retrieved from GPM database have been analyzed 
through Google Earth Engine (GEE), a cloud-based platform for 
planetary-scale environmental data analysis. GEE allows users to 
download and upload global satellite imagery as well as to carry out the 
analysis of large datasets (Gorelick et al. 2017). The data catalog hosts a 
large repository of publicly available geospatial datasets, including 
observations from a variety of satellite and aerial imaging systems, 
environmental variables, weather and climate forecasts, land cover, 
topographic and socio-economic datasets. Users can access and analyze 
data from the public catalog as well as their own private data. The remote 
sensing datasets required for large scale analyses are downloaded via a 
web-based application programming interface (API) instantly using 
Google’s high-performance parallel computation service. Analysis is 
performed using an interactive development environment Earth Engine 
(EE) Code Editor, which enables rapid prototyping and visualization of 
results (Figure 5.6). 
 

 

Figure 5.6 Components of the Earth Engine Code Editor at 
https://code.earthengine.google.com/   

 

Code is typed by the user through the JavaScript code editor, which 
formats and highlights the code, underlines code with problems, and 
offers code completion hints for Earth Engine functions. Above the code 
editor are buttons for running the script, saving the script, resetting the 
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output map and console, and getting a link to the script. Asset manager in 
the left panel is used to upload and manage user’s own image assets in 
Earth Engine. The Map panel in the API returns the geographic region 
visible in the Code Editor; customizations are available for this display 
using the Map functions. Console output allows to print and export 
something for the script, such as text, objects, or charts. 
Figure 5.7 displays the methodology developed for analyzing the IMERG 
version 5 (v05b) GPM-Level 3 Final Run products available from the 
Earth Engine Weather catalog.  
 

 

Figure 5.7 Methodology developed for analyzing the GPM rainfall data using 
GEE   

 
To this aim, a script has been created and run through the Earth Engine 
Code Editor. Firstly, the rainfall dataset has been imported in the script 
and visualized in the map. Once the study area is partitioned into territorial 
units (TU), a Fusion Table containing geometry and other thematic 
information is created and imported in the script. Rainfall data have been 
filtered taking into account spatial (i.e., the areal extension of each 
territorial unit) and temporal (i.e., the period of analysis) criteria. 
Subsequently, a “reducer” has been applied in order to calculate statistics 
over each territorial unit. Reduction is a function which aggregates all the 
information derived from the pixels included in each territorial unit into a 
compact representation of the pixel data (e.g., “min”, “max”, “mean”). 

GEE INPUTS:
▪ IMERGv05b
▪ Studyareamap

Definition of TU and 
period of analysis

GEE OUTPUTS:
▪ Histograms
▪ CSV files

Filter based on 
space and time

Reduction over 
each TU

Extraction of rainfall 
time series
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Finally, plots are generated using the chart function, which allows viewing 
and exporting them in multiple formats (e.g., comma-separated values, 
portable network graphics). 

5.4 BAYESIAN PROBABILISTIC ANALYSIS 

The probabilistic analysis is aimed at highlighting the critical levels of 
rainfall corresponding to different probabilities of landslide occurrence, in 
order to provide a quantitative assessment of the threshold reliability. The 
definition of the probabilistic model is based on the Bayesian theory and 
on the computation of conditional probabilities. The conditional 
probability can be defined as the probability of an event (i.e., a landslide 
event) given that (by assumption, presumption, assertion or evidence) 
another event has occurred (i.e., a rainfall event characterized by a certain 
magnitude, expressed in terms of rainfall parameters). 
In principle, the Bayes’ approach is suited to handle multidimensional 
analysis with n-variables, for example, the combined effect of rainfall 
duration, rainfall intensity and antecedent precipitation on landslide 
triggering. However, multidimensional data are difficult to visualize and 
analyze, therefore it is often more efficient to restrict the analysis to the 
two-dimensional cases. In such cases, the posterior landslide probability 
can be evaluated considering the joint probability of two rainfall 
parameters appropriately identified, as follows: 

𝑃(𝐿|𝐴, 𝐵) =
𝑃(𝐿)×𝑃(𝐴,𝐵|𝐿)

𝑃(𝐴,𝐵)
 (5.1) 

where: P(L|A,B) is the posterior landslide probability, i.e. the conditional 
probability of a landslide event L given the joint probability of the two 
rainfall parameters A and B; P(L) is the prior probability, i.e. the 
probability of a landslide event L; P(A,B|L) is the likelihood, i.e. the 
conditional probability of A and B given the occurrence of a landslide 
event L; P(A,B) is the marginal probability, i.e. the joint probability of A 
and B. 
Bayesian probabilities are usually based on relative frequencies, which can 
be computed by: 

𝑃(𝐿) =
𝑁𝐿

𝑁𝑅
 (5.2) 
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𝑃(𝐴, 𝐵) =
𝑁(𝐴,𝐵)

𝑁𝑅
 (5.3) 

𝑃(𝐴, 𝐵|𝐿) =
𝑁(𝐴,𝐵|𝐿)

𝑁𝐿
 (5.4) 

where: NL is the total number of landslide events that occurred in the 
period of analysis; NR is the total number of rainfall events recorded in the 
period of analysis; N(A,B) is the number of rainfall events characterized by 
specific values of A and B; N(A,B|L) is the number of rainfall events 
characterized by specific values of A and B that resulted in landslides. The 
frequency distributions for specific classes of rainfall events that resulted 
in landslides and did not result in landslides can be converted into 
probabilities using this approach. 
Figure 5.8 shows an application of equation (5.1) to a sample dataset, 
considering duration (D) and cumulated rainfall (E) as rainfall parameters. 
All the thirty rainfall events are plotted in the duration-cumulated rainfall 
plane, which is divided into four regions delimited by the D and E values 
(Figure 5.8a). Equation (5.1) is then computed separately for each region 
obtaining probabilistic information in the DE plane (Figure 5.8b).  
 

 

Figure 5.8 Example of two-dimensional Bayesian analysis. (a) Rainfall intensity-
duration plot showing rainfall that did and did not result in landslides. (b) 
Histogram of conditional landslide probability for four different combinations of 
duration and cumulated rainfall   

 
For example, in the upper-left cell 3 rainfall events out of 6 resulted in 

landslides, which means that 𝑃(𝐷, 𝐸|𝐿) = 3/10 = 0.30 and 𝑃(𝐷, 𝐸) =
6/30 = 0.20. The prior landslide probability is 𝑃(𝐿) = 0.33 and the 

posterior landslide probability is 𝑃(𝐿|𝐷, 𝐸) = 3/6 = 0.50  (Figure 5.8b). 
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Any pair of parameters can be considered in two-dimensional Bayesian 
analysis (e.g., peak rainfall intensity, total event rainfall, antecedent 
rainfall), and their significance can be assessed by comparing the 
computed posterior landslide probability with the prior landslide 
probability. 
The Bayesian method described herein is similar to that used by Berti et 
al. (2012) in the Emilia-Romagna region (Italy). However, some 
differences exist between the two methodologies when applied to real case 
studies. These differences are related to the source of the rainfall data, the 
reconstruction of the rainfall events, the algorithm adopted for processing 
the data, and the computation of the final probabilities (see Sections 5.5 
and 5.6 for further details). 

5.5 CASE STUDY 1: EMILIA-ROMAGNA REGION, ITALY 

5.5.1 Study area 

The Emilia-Romagna region in northern Italy is bordered by the 
Apennines mountains on the south and on the west, by the Adriatic Sea 
on the east and by the Po River on the north. The northern and eastern 
portions of its territory are dominated by a wide flat area constituted by 
the alluvial plain of the Po, the largest Italian river. The southern and 
western portions of the region are occupied by the Apennines Chain, with 
a maximum altitude of 2165 m a.s.l. (Segoni et al. 2018b). The very 
complex geological setting of the study area is directly related to the 
formation of the Apennines, whose evolution began in the Cretaceous 
when two separated continental blocks (the European plate and the Adria 
microplate) collided. The bedrock geology is constituted by three main 
rock types: clastic rocks, flysch, and clays units (Martelloni et al. 2012). 
The study area is characterized by a typical Mediterranean climate with 
two distinct periods: warm and dry summers (approximately from May to 
October) and mild/cool and wet winters (approximately from November 
to April). The average annual precipitation is 1300-1400 mm, varying from 
a minimum of 500-600 mm in the foothills to more than 2000 mm in areas 
along the Po River. The mountainous part of the Emilia-Romagna region 
is strongly affected by landslides, especially rotational–translational slides, 
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slow earth flows, and complex movements. However, the frequency of 
rapid shallow landslides is markedly increasing in the last few years (Berti 
et al. 2012). This can be explained considering that shortest and more 
intense rainfalls, typically the main triggering factor of shallow landslides 
and debris flows in the Emilia-Romagna region, became more frequent in 
the Mediterranean area due to climate change (Floris et al. 2010). 
The operative warning system for flood and landslide risk is currently 
based on the division of the region in eight districts, called warning zones 
(Figure 5.9); these areas have been defined following homogeneity criteria, 
including: physiography, lithology, precipitation regime, and 
administrative boundaries. The mean extension of the warning zones is 
about 3000 km2, resulting in a medium scale approach that represents a 
compromise between operational and scientific constraints (Martelloni et 
al. 2012). The warning zones that include up to 20 municipalities can be 
further subdivided, obtaining a more detailed partitioning during 
operational phases (Pecoraro and Calvello 2016). The model employed for 
the rainfall thresholds definition is called SIGMA, whose name reflects the 
central role assumed by standard deviations in the proposed methodology. 
The areas of the region susceptible to landslide events has been subdivided 
into territorial units, each one associated to a reference rain gauge. The 
time series of cumulated rainfall from 1 to 365 days have been derived for 
each rain gauge. Precipitation curves (σ curves) associated with various 
probabilities of non-exceedance are built and the multiples of the standard 
deviation (σ) are used as thresholds to discriminate between ordinary and 
extraordinary rainfall events (Martelloni et al. 2012). 
 

 
Figure 5.9 The eight warning zones of the Emilia-Romagna region. The elevation 
map is also reported 
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5.5.2 Territorial units and available datasets 

The most appropriate territorial units for the spatial-temporal analyses can 
be considered the eight weather warning zones defined by the regional 
civil protection agency (see Figure 5.9), as they represent a good 
compromise between the purposes of this study and the spatial 
discretization of the input data (i.e., landslide records and rainfall 
measurements). Indeed, weather warning zones are deemed to be 
significantly homogeneous areas for the expected meteorological and 
hydrogeological events that may occur within them. On the other size, the 
geographical accuracy of the landslide records is affected by a certain 
degree of uncertainty. In particular, the location of SLEs is usually 
approximated (e.g., in some cases only the municipality where the 
landslide occurred is known), whereas for ALEs it is only indicative of the 
geographical area interested by multiple landslides (see Section 5.2.2 for 
further details). Therefore, adopting wide weather warning zones as 
territorial units may reduce the effect of biased spatial information on the 
reliability of model outputs. Finally, weather warning zones also represent 
appropriate territorial units for the rainfall analyses, considering the spatial 
resolution of the satellite rainfall estimates employed in this work (i.e., 0.1° 

× 0.1°, corresponding to ∼10km × 10km).  
The dataset used to analyze this case study includes information on 
landslide occurrences and satellite rainfall measurements from March 2014 
to December 2015. The FraneItalia database reports 115 landslide events 
occurred in Emilia-Romagna in the period of analysis. However, 13 
landslides have been not included in the dataset: nine of them cannot be 
considered rainfall-induced landslides, as they are reported as human- or 
earthquake-induced landslides or landslides for which the trigger is not 
known; the remaining four are classified as landslides in rock, for which 
the correlations with rainfall could be weak or inexistent. Among the 102 
landslide events included in the dataset, 78 are classified as SLEs and the 
remaining 24 as ALEs (Figure 5.10). Almost all the reported records are 
concentrated in the south-western part of the region (especially in warning 
zones Emil-A, Emil-B, and Emil-E). In addition, Emil-G was affected by 6 
major ALEs triggered by heavy rainstorms. Conversely, only a small 
number of SLEs occurred in the northern part. This distribution was 
expected, as in Emilia-Romagna landslide prone areas are mainly 
concentrated in the southern and western portions dominated by steep 
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slopes, while the northern and eastern areas are widely flat (see Section 
5.5.1 for further details). 
Satellite rainfall estimate products used for this research were derived from 
the NASA Global Precipitation Measurement (GPM) mission. In 
particular, precipitation data from the last current version (IMERG 05b) 
have been acquired from public satellite imagery datasets available on 
Google Earth Engine. For the purposes of this study, precipitation 
measurements have been aggregated at hourly temporal resolution and the 
mean values over each territorial unit have been calculated. 
 

 

Figure 5.10 Shaded relief map of the eight warning zones of the Emilia-Romagna 
region showing the 102 rainfall-induced “FraneItalia” landslide records from 
March 2014 to December 2015, differentiated in single (red circles) and areal 
landslide events (blue squares). The inset shows the location of the Emilia-
Romagna region in Italy 

5.5.3 Correlation between landslides and rainfall events 

The definition of the correlation between landslides and rainfall events in 
Emilia-Romagna required the reconstruction of the rainfall events in order 
to pass from a series of hyetographs to a point cloud in a graph reporting 
triggering and non-triggering combinations of rainfall parameters (Segoni 
et al. 2018a). Duration (D) and cumulated rainfall (E) have been identified 
as the most appropriate rainfall parameters. Indeed, as demonstrated by 
Berti et al. (2012) they are representative of the triggering conditions for 
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shallow rainfall-induced landslides in Emilia-Romagna, characterized by a 
predominance of fine-grained soils in the shallow soil layers. D is 
represented by the time between the moment, or period, of landslide 
initiation (rainfall end time, TE) and the time when the rainfall event started 

(rainfall start time, TS), i.e., 𝐷 = 𝑇𝐸 − 𝑇𝑆 (Rossi et al. 2017). TE coincides 
with the end of the rainfall event in case the landslide occurs after the end 
of the rainfall events (Brunetti et al. 2010). The definition of TS is often 
difficult particularly when rainfall is not continuous, as a dry period (i.e., a 
period without rainfall or with rainfall below a predefined threshold) 
between two successive rainfall values needs to be identified to separate 
different rainfall events. To this aim, Figure 5.11 shows the “standard” 
detection algorithm adopted for this case study. The procedure needs 
three main steps to define a rainfall event based on its attributes (i.e., D 
and E). In the first step, all the isolated rainfall events have been detected 
considering a minimum period without rain (Figure 5.11a). To account for 
different meteorological regimes in Italy, two minimum periods have been 
considered: a two-day (48 h) interval for the “warm” spring-summer 
period (April-September) and a four-day (96 h) interval for the “cold” 
period (October-March). Successively, isolated rainfall measurements that 

did not exceed a minimum value 𝐸𝑅 = 1 𝑚𝑚 have been excluded, 
because they have been considered not relevant for possible landslide 
initiation (Figure 5.11b). The triggering and non-triggering rainfall 
conditions have been identified according to the two aforementioned 
standards (Figure 5.11c,d). Regarding triggering rainfall conditions, 
landslides typically occur before the end of the rainfall event, thus the 
rainfall after the landslide occurrence cannot be considered relevant for 
the initiation of the slope failure. On the contrary, when landslides fail 
after the end of the rainfall period, the rainfall associated to the landslide 
corresponds to the cumulated rainfall of the entire event.    
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Figure 5.11 Example of the application of the standard algorithm for the 
reconstruction of rainfall events. a) Detection of rainfall events (highlighted by 
blue-shaded areas) grouping hourly rainfall measurements (blue bars). b) 
Exclusion of irrelevant rainfall events (red bars). c) Identification of landslide 
events (highlighted by the warning sign). d) Differentiation between triggering 
and non-triggering rainfall events (highlighted by green-shaded areas) 

 
Following this approach, 1029 rainfall conditions (D,E) have been 
reconstructed and plotted in log-log coordinates (Figure 5.12). The 102 
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rainfall conditions responsible for the triggering of the 78 SLEs (red circles 
in Figure 5.12) and the 24 ALEs (blue squares in Figure 5.12) are in the 

range of duration 1 ≤ 𝐷 ≤ 67 ℎ and in the range of cumulated rainfall 

1.1 ≤ 𝐸 ≤ 969 𝑚𝑚. Of course, the non-triggering rainfall conditions 
reconstructed in the same period are 927 (grey circles in Figure 5.12). 

These rainfall events are in the ranges of 1 ≤ 𝐷 ≤ 79.5 ℎ and 1 ≤ 𝐸 ≤
963.5 𝑚𝑚. The graph does not show a clear distinction between 
triggering and non-triggering rainfall events, thus the application of 
conventional methods for the definition of a rainfall threshold is extremely 
difficult and a probabilistic approach seems to be more appropriate. The 
probabilistic analyses have been performed grouping SLEs and ALEs in a 
unique dataset (ALEs affecting several territorial units have been 
preliminarily separated and distributed among the territorial units where 
they occurred). 
 

 
Figure 5.12 Rainfall duration (D) vs. cumulated rainfall (E) in Emilia-Romagna 
from March 2014 to December 2015. Red circles are 78 ED rainfall conditions 
associated with the triggering of SLEs. Blue squares are the 24 ED rainfall 
conditions associated with the triggering of ALEs. Grey circles are 927 ED rainfall 
conditions for which information on triggered landslides is not available. Data are 
in log-log coordinates 
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5.5.4 Calibration of the model 

The definition of the probabilistic warning model is based on a two-
dimensional Bayesian analysis to evaluate the conditional probability of 
landslide occurrence given the joint probability of two rainfall parameters 
(D and E). Following the procedure described in Section 5.4, equation 
(5.2) has been applied in order to compute the prior landslide probability, 
P(L) using the data reported in Section 5.5.3: 

𝑃(𝐿) =
𝑁𝐿
𝑁𝑅
=
102

1029
= 0.10 

Then, the DE plane reported in Figure 5.12 has been divided in 6x10 cells, 
a reasonable compromise between the resolution of the rainfall parameters 
and the numerosity of the rainfall events in each class. Figure 5.13 displays 
the posterior landslide probabilities, P(L|D,E) calculated applying 
equation (5.1). 
 

 
Figure 5.13 Histogram of posterior landslide probability, P(L|D,E) as a function 
of duration (D) and cumulated rainfall (E) 

 
The rainfall conditions that resulted in landslides (i.e., posterior probability 
greater than zero) are concentrated in groups of cells. In particular, the 
landslide probability generally increases with both duration and cumulated 
rainfall. Indeed, the maximum value (0.50) is reached for rainfall events 

represented by the highest classes of both duration (1.8 ≤ 𝑙𝑜𝑔(𝐷) ≤ 2) 
and cumulated rainfall (2.5 ≤ 𝑙𝑜𝑔(𝐸) ≤ 3). However, a secondary peak 
can also be observed for rainfall events characterized by short-duration 



5. Applications of probabilistic warning model 

 

105 

and high-accumulation (0.4 ≤ 𝑙𝑜𝑔(𝐷) ≤ 0.8;  2.5 ≤ 𝑙𝑜𝑔(𝐸) ≤ 3). The 
“no landslides” combinations (dark blue cells in Figure 5.13) embed all the 

rainfall conditions for which 𝑃(𝐿|𝐷, 𝐸) = 0, because no landslide events 

are reported in the FraneItalia catalog (𝑁(𝐷,𝐸) = 0). Moreover, a number 

of rainfall conditions (mainly short-duration, high-accumulation and very 
long-duration, low- to moderate-accumulation) have never been recorded 
(white cells in Figure 5.13). 
Successively, the posterior landslide probabilities have been interpolated 
onto a 2D plot so that the probabilities across the log-log plane can be 
better visualized. Figure 5.14 confirms that long-duration, high-
accumulation rainfall events show the highest landslide probabilities 

(𝑃(𝐿|𝐷, 𝐸) = 0.2). Besides, three secondary peaks (𝑃(𝐿|𝐷, 𝐸) > 0.2) 
can be also observed: two of them in the proximity of the main peak and 
another in correspondence of short-duration, middle-accumulation 
rainfall events. This could suggest that two different types of rainfall 
events are more likely to trigger landslides.  
 

 
Figure 5.14 Posterior landslide probabilities obtained considering the rainfall 
events reported in Figure 5.12. Lines of equal probability are also drawn 

 
Landslide probabilities have been further processed in order to draw lines 
of roughly equal landslide probability (i.e., isolines) in the log-log plane. 
They represent rainfall events characterized by different duration and 
magnitude, which result in the same probability of landslide occurrence 
and can be used as thresholds for early warning purposes. To this aim, 
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Berti et al. (2012) stated that a reasonable criterion for setting the threshold 
would be the observation of an abrupt increase in the probability of failure, 
which indicates a radical change in the state of the system. In this case, 

(𝑃(𝐿|𝐷, 𝐸) = 0.15) can be considered as an appropriate threshold, 
because above this line the landslide probability rapidly increases for 
different ranges of duration and cumulated rainfall. 

5.5.5 Comparison with other regional thresholds in Emilia-
Romagna 

For validation purposes, the new probabilistic rainfall threshold obtained 
has been quantitatively compared with other ED rainfall thresholds 
defined for the same region: the environmental thresholds defined by 
Peruccacci et al. (2017) and the regional threshold derived by the 
probabilistic model developed by Berti et al. (2012).  
Peruccacci et al. (2017) defined regional thresholds for Italy considering 
environmental subdivisions based on topography, lithology, land-use, land 
cover, climate, and meteorology. Threshold curves are represented by 
power law equations linking E (in mm) to D (in h): 

𝐸 = (𝛼 ± ∆𝛼) × 𝐷(𝛾±∆𝛾) (5.5) 

where α is a scaling parameter (the intercept), γ is the slope (the scaling 
exponent) of the power law curve, and Δα and Δγ are the uncertainties 
associated to α and γ, respectively. Table 5.4 reports the main 
characteristics of the environmental thresholds determined for Emilia-
Romagna, calculated at 5% exceedance probability. 
 

Table 5.4 Environmental ED thresholds for the Emilia-Romagna region defined 
by Peruccacci et al. (2017) 

Environmental information Code Threshold Label 

Topographic provinces P4 𝐸 = (8.6 ± 0.5) × 𝐷(0.36±0.01) 𝑇5,𝑃4 

Lithological complexes PO 𝐸 = (8.2 ± 0.7) × 𝐷(0.35±0.02) 𝑇5,𝑃𝑂 

Lithological complexes TC 𝐸 = (9.0 ± 0.8) × 𝐷(0.37±0.02) 𝑇5,𝑇𝐶  

Pedological regions B 𝐸 = (8.3 ± 0.9) × 𝐷(0.38±0.02) 𝑇5,𝐵 

Pedological regions C 𝐸 = (14.8 ± 3.2) × 𝐷(0.26±0.05) 𝑇5,𝐶 

CORINE Land Cover classes FA 𝐸 = (6.9 ± 0.5) × 𝐷(0.45±0.02) 𝑇5,𝐹𝐴 

Köppen-Geiger climate regions Cfa 𝐸 = (7.8 ± 0.7) × 𝐷(0.41±0.02) 𝑇5,𝐶𝑓𝑎 

Mean annual precipitation (MAP) regions LO 𝐸 = (7.9 ± 0.4) × 𝐷(0.37±0.01) 𝑇5,𝐿𝑂 

Mean annual precipitation regions HI 𝐸 = (8.9 ± 1.3) × 𝐷(0.43±0.03) 𝑇5,𝐻𝐼 
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← Legend: P4: Apennine mountain system; PO: Post-orogenic sediment; TC: Terrigenous complex; B: 
Soil of the Apennines with temperate climate; C: Soil of the hills of northern Italy; FA: Forested and 
semi-natural area; Cfa: Temperate climate without dry season and with hot summer; LO: Low, 800 < 
MAP ≤ 1200 mm; HI: High, 1600 < MAP ≤ 2000 mm 

 
Moreover, by analyzing the outputs of the probabilistic model developed 
by Berti et al. (2012), Peruccacci et al. (2017) derived an additional ED 
threshold (T5,R) described by the following power law: 

𝐸 = (12.6 ± 1.1) × 𝐷(0.38±0.05) (5.6) 

Figure 5.15 displays in a log-log plane the rainfall conditions occurred in 
the period of analysis, the probabilistic thresholds defined in Section 5.5.4 
(T15,P) and the regional thresholds reported in literature. For the 
environmental thresholds defined by Peruccacci et al. (2017) only the 
lower (T5,LE) and the upper envelope (T5,UE) are reported. It should be 
stressed that the direct comparison of these regional thresholds is not 
appropriate, as they were defined using different methods and techniques, 
different landslide and rainfall information, and adopting different criteria 
to identify rainfall conditions that resulted in landslides. Considering these 
limitations, a back analysis has been carried out using the same rainfall and 
landslide datasets employed for the calibration phase in order to perform 
a quantitative comparison of the three approaches. To this aim, thresholds 
have been considered as binary classifiers of rainfall conditions that may 
result (or not result) in landslides. Adopting this assumption, a set of 
contingencies scores derived by standard contingency tables has been 
considered (Wilks 1995). A “true positive” (TP) refers to a (D,E) pair 
located above the threshold and resulted in (at least) one landslide; a “true 
negative” (TN) is a (D,E) point below the threshold that did not result in 
landslides; a “false positive” (FP) occurs when a (D,E) rainfall condition 
exceeded the threshold and landslides did not occur; a “false negative” 
(FN) occurs when a (D,E) rainfall condition were below the threshold and 
landslides occurred. Table 5.5 summarizes the four contingencies scores 
(TP, TN, FP, FN) for the different thresholds defined for Emilia-
Romagna. The probabilistic threshold (T15,P) allows maximizing the 
number of TP (78), concurrently not increasing excessively the number of 
FP (217) with respect to the other thresholds. Although (T5,UE) and T5,R 
show the lowest values of FP (203 and 212, respectively), they miss a 
relevant number of landslide events (65 and 64, respectively). On the 
contrary, T5,LE results in a relevant number of FP (about 50% higher than 
the probabilistic threshold). 
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Concluding, the overall good performance of T15,P can be explained taking 
into account that it is more flexible than conventional thresholds typically 
represented by linear classifiers. This feature could be extremely useful in 
areas where slope response to rainfall is quite complex, i.e., when 
landslides are triggered by different rainfall conditions. Moreover, the 
probabilistic threshold can be easily updated as new landslide and rainfall 
data become available. 
 

 
Figure 5.15 Comparison between the probabilistic threshold (T15,P) and the other 
rainfall thresholds reported in the literature for Emilia-Romagna in the log-log 
DE plane. Triggering and non-triggering rainfall conditions are also reported 

 

Table 5.5 Contingencies scores calculated for the probabilistic threshold (T15,P) 
and for the other thresholds proposed in the literature for Emilia-Romagna. Best 
values are shown in italics  

Threshold Label TP FN FP TN 

Probabilistic  
threshold 

𝑇15,𝑃 78 24 217 710 

Environmental thresholds – LE  
(Peruccacci et al. 2017) 

𝑇5,𝐿𝐸 58 44 320 607 

Environmental thresholds – UE  
(Peruccacci et al. 2017) 

𝑇5,𝑈𝐸  37 65 203 724 

Regional threshold  
(Berti et al. 2012) 

𝑇5,𝑅 38 64 212 715 
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5.6 CASE STUDY 2: CAMPANIA REGION, ITALY 

5.6.1 Study area 

The Campania region in southern Italy extends from the Tyrrhenian Sea 
to the Southern Apennine Chain, covering about 13,500 km2 and including 
551 municipalities. The orographic setting is characterized by the presence 
of a central mountain ridge made up mainly of Mesozoic carbonates, 
elongated for more than 200 km in a NW–SE direction, with maximum 
peaks reaching 2000 m a.s.l. Strong volcanic activity was registered in the 
coastal plain with the growth of the Somma–Vesuvius and the Campi 
Flegrei volcanoes in the late Quaternary. Therefore, the landscape of the 
western portion of Campania is characterized by a wide flat area with 
isolated volcanic reliefs and islands. On the eastern side of the region, the 
carbonate ridges transition to hilly landscapes of lower elevation, mainly 
formed by Miocene and Pliocene flysch successions. In the remaining hilly 
part, stream catchments present lower mean longitudinal profiles, and 
wide alluvial plains linked to perennial river systems prevail (Vennari et al. 
2016). The climatic regime is humid temperate with mean annual 
precipitation ranging from 1000 to 2000 mm (Longobardi et al. 2016). Due 
to the rugged topography of the region, severe storms are frequent in the 
region and result in abundant flash floods, debris flows and shallow 
landslides (Cascini et al. 2008), which may result in severe casualties as well 
as serious damage to urban areas and infrastructures (Piciullo et al. 2017b). 
Indeed, in the 50-year period 1950–2017, 288 persons were killed or went 
missing, 408 were injured, and more than 23,000 people were evacuated 
due to landslides in the region (http://polaris.irpi.cnr.it). 
In Campania, a regional landslide early warning system has been designed 
and managed by the regional civil protection agency to deal with 
“hydraulic and geo-hydrological risks” (DPGR 299/2005). The strategy 
implemented within the system can be schematized into two main phases: 
wheatear forecast and environmental monitoring (Pecoraro and Calvello 
2016). The first phase consists in issuing warnings based on the evaluation 
of possible consequences of hazardous hydrogeological phenomena, 
whose occurrences is predicted via numerical rainfall forecasts. To this 
aim, the Campania region is subdivided into eight warning zones for 
weather forecast and early warning purposes, according to homogeneity 
criteria, considering the following factors: hydrography, morphology, 

http://polaris.irpi.cnr.it/
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precipitation regime, geology, land-use, hydraulic and hydrogeological 
events, and administrative boundaries. The second phase includes (i) the 
evaluation of meteorological and hydrological events and (ii) the 
hydrological and weather forecast at time intervals of 6 hours, through 
nowcasting techniques and rainfall-runoff modelling using real-time 
parameters. The environmental monitoring network encompasses 154 
weather stations—14 of them located outside the boundaries of the 
Campania region—and a meteorological radar (Figure 5.16). 
 

 
Figure 5.16 Warning zones and weather stations of the Campania region 

5.6.2 Territorial units and available datasets 

The eight weather warning zones defined by the regional civil protection 
agency (see Figure 5.16) have been identified as the most appropriate 
territorial units for the Campania region. This can be justified by the same 
reasons already reported for the Emilia-Romagna region in Section 5.5.2 
(i.e., meteorological and hydrogeological homogeneity of weather warning 
zones, spatial accuracy of landslide records, and spatial discretization of 
rainfall measurements). 
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The dataset used for the Campania region includes data on landslide 
occurrences and satellite rainfall estimates from March 2014 to December 
2017, derived from the same sources of information used for the Emilia-
Romagna region. 
Regarding landslide events, the FraneItalia database lists 151 events in 
Campania in the period of analysis. Eight records have not been included 
in the dataset: five of them were not triggered by weather conditions and 
the remaining three are classified as landslides in rock. Figure 5.17 reports 
the 143 rainfall-induced landslides considered for the analyses, 
differentiated between SLEs (124) and ALEs (19).  
 

 
Figure 5.17 Shaded relief map of the eight warning zones of the Campania region 
showing the 143 rainfall-induced “FraneItalia” landslide records from March 2014 
to December 2017, differentiated in single (red circles) and areal landslide events 
(blue squares). The inset shows the location of the Campania region in Italy 

 
Camp-3 was the most affected warning zone, both in terms of single (38) 
and areal landslide events (11). This area is highly susceptible to shallow 
rainfall-induced landslides and debris flows, due to the presence of 
pyroclastic soil deposits mantling the carbonatic bedrock (Cascini et al. 
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2008). Indeed, it suffered some of the most catastrophic rainfall-induced 
landslide events in Europe, e.g., the events that occurred on 4–5 May 1998 
over the slopes of the Pizzo d’Alvano massif (Piciullo et al. 2017b). Camp-
1 also experienced a significant number of landslide events (29 SLEs and 
3 ALEs), mainly in the southern part characterized by the same geological 
context of Camp-3. Besides, a number of SLEs occurred over the slopes 
of the Apennines Chain in the north-eastern part of the region (Camp-2 
and Camp-4) and in correspondence of the Cilento mountains in the 
southern part (Camp-6, Camp-7, and Camp-8). The 143 rainfall-induced 
landslides in Campania have been divided into two subsets: (i) a calibration 
set, listing 98 landslide events that occurred between March 2014 and 
December 2016, used to define the probabilistic warning model, and (ii) a 
validation set, listing 45 landslide events that occurred in 2017, used to 
validate the model. 
Regarding the satellite rainfall measurements, the IMERG precipitation 
data have been acquired from the database available in Google Earth 
Engine and the mean values at hourly temporal resolution have been 
calculated over each territorial unit of the Campania region, following the 
same procedure adopted for the Emilia-Romagna region. 

5.6.3 Correlation between landslides and rainfall events 

The methodology adopted for the definition of the correlation between 
landslides and rainfall events in Campania is similar to that described for 
Emilia-Romagna (see Section 5.5.3) and can be schematized into two main 
phases: the reconstruction of the rainfall events and the identification of 
triggering and non-triggering rainfall events. Duration (D) and cumulated 
rainfall (E) have been identified again as the most appropriate rainfall 
parameters, taking into account the types of landslides considered as well 
as the temporal accuracy of both the landslide and the rainfall datasets. 
The “algorithmic” approach developed by Melillo et al. (2015) has been 
applied to reconstruct the rainfall events and to identify triggering and 
non-triggering rainfall conditions. A reduced set of parameters to account 
for different physical settings and operational conditions has been 
considered. In particular, all the parameters are differentiated considering 
the “warm” springer-summer period, CW, and the “cold” autumn-winter 
period, CC (Table 5.6). 
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Table 5.6 Parameters used for the application of the algorithm developed by 
Melillo et al. (2015) 

Step 
Parameter 

name 

Parameter value 
Unit 

CW CC 

S0 GS 0.2 0.2 mm 

S1 ER 0.2 0.2 mm 

S1 P1 3 6 h 

S2 P2 6 12 h 

S3 P3 1 1 mm 

S4 P4 48 96 h 

Parameters GS, ER and P3 correspond to cumulated rainfall quantities, which are removed from the 
rainfall series under specific conditions described in the text. Parameters P1, P2 and P4 are time intervals 
used to remove irrelevant amount of rain and to reconstruct the rainfall sub-events and rainfall events. 
The parameters in the algorithm depend on the climate period. Two climate periods are considered: CW, 
a “warm” spring–summer period, and CC, a “cold” autumn–winter period 

 
The automated procedure employs the R open-source software 
(http://www.r-project.org) and is based on several steps. In the pre-
processing step (S0), the rainfall records lower than a predefined threshold 

GS are considered noise and are set to 𝐸𝐻 = 0.0 𝑚𝑚. The remaining steps 
are differentiated into two main logical blocks. The first block performs 
the automatic reconstruction of the rainfall events and can be schematized 
in the following four steps: S1) detection of the isolated rainfall events 
considering a dry interval, P1 and exclusion of irrelevant events that do not 
exceed a predefined threshold ER (Figures 5.18a,b); S2) identification of 
rainfall sub-events proceeded and followed by dry periods with no rain, P2 
(Figure 5.18c); S3) exclusion of irrelevant sub-events, whose cumulated 
(total) rainfall, ES is lower than a given threshold P3 (Figure 5.18d); S4) 
identification of rainfall events, constituted either by a period of 
continuous rainfall or by an ensemble of periods considering a minimum 
dry period, P4 (Figure 5.18e). Successively, in the second block the 
algorithm combines information on temporal occurrence of rainfall events 
and landslide events, performing three additional steps: S5) selection of 
triggering and non-triggering rainfall events (Figure 5.19a); S6) 
reconstruction of multiple aggregations of rainfall sub-events that are 
likely to trigger landslides (Figure 5.19b); S7) reconstruction of multiple 
aggregations of rainfall sub-events that did not trigger landslides (Figure 
5.19c). All the triggering and non-triggering sub-events identified by the 
algorithm are equally possible. The second block has been slightly 
modified in order to reconstruct also the multiple aggregations of non-
triggering rainfall sub-events, not provided in the original algorithm. 

http://www.r-project.org/
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Figure 5.18 Example of the application of the automated algorithm for the 
reconstruction of rainfall events. a) Collection of hourly rainfall measurements 
(blue bars). b) Exclusion of the irrelevant isolated rainfall events (red bars). c) 
Identification of the rainfall sub-events (highlighted by blue-shaded areas). d) 
Selection of irrelevant sub-events (red bars). e) Identification of rainfall events 
(highlighted by green-shaded areas) 
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Figure 5.19 Example of the application of the automated algorithm for the 
reconstruction of rainfall events. a) Rainfall measurements (blue bars) and rainfall 
events identified by the first logical block of the algorithm (highlighted by green-
shaded areas). b) Identification of landslide events (highlighted by the warning 
sign). c) Identification of the possible rainfall combinations for a triggering 
rainfall event (highlighted by green-shaded area). d) Identification of the possible 
rainfall combinations for two non-triggering rainfall events (highlighted by green-
shaded areas) 

 
Following this approach, 3431 rainfall conditions (D,E) have been 
reconstructed and plotted in log-log coordinates (Figure 5.20). The 479 
rainfall conditions responsible for the triggering of 124 SLEs (red circles 
in Figure 5.20) and the 76 rainfall conditions responsible for 19 ALEs 

(blue squares in Figure 5.20) are in the range of duration 1 ≤ 𝐷 ≤ 748 ℎ 

and in the range of cumulated rainfall 0.26 ≤ 𝐸 ≤ 1916.74 𝑚𝑚. Of 
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course, the non-triggering rainfall conditions reconstructed in the same 

period are 2876 (grey circles in Figure 5.20). They are in the ranges of 1 ≤
𝐷 ≤ 1433 ℎ and 0.20 ≤ 𝐸 ≤ 2096.98 𝑚𝑚. Due to the absence of a 
clear distinction between triggering and non-triggering rainfall conditions, 
also in this case a probabilistic analysis has been carried out to highlight 
rainfall conditions critical for landslide occurrence. To this aim, SLEs and 
ALEs have been grouped in a unique dataset (ALEs affecting several 
territorial units have been preliminarily separated and distributed among 
the territorial units where they occurred). 
 

 
Figure 5.20 Rainfall duration (D) vs. cumulated rainfall (E) in Campania from 
March 2014 to December 2017. Red circles are 479 rainfall conditions associated 
with the triggering of SLEs. Blue squares are the 76 rainfall conditions associated 
with the triggering of ALEs. Grey circles are 2876 rainfall conditions for which 
information on triggered landslides is not available. Data are in log-log 
coordinates 

5.6.4 Calibration of the model 

The definition of the probabilistic warning model for this case study has 
been developed considering the calibration dataset defined in Section 5.6.2 
comprising 98 landslide events and 824 rainfall events from Mach 2014 to 
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December 2016. According to the available data, the prior landslide 
probability, P(L) has been calculated as follows (equation 5.2): 

𝑃(𝐿) =
𝑁𝐿
𝑁𝑅
=
98

824
= 0.12 

By applying the automated procedure described in Section 5.6.3, 431 
triggering and 2255 non-triggering rainfall conditions have been identified. 
Once again, a Bayesian approach aimed at estimating the conditional 
landslide probability for different classes of D and E has been adopted. 
The marginal probability, P(D,E) and the likelihood, P(D,E|L) have been 
determined considering that the triggering and non-triggering rainfall 
conditions are expressed in terms of multiple combinations: 

𝑃(𝐷, 𝐸) =
∑ 𝑛𝑖,(𝐷,𝐸)×𝑓𝑖𝑖

𝑁𝑅
 (5.3’) 

𝑃(𝐷, 𝐸|𝐿) =
∑ 𝑛𝑖,(𝐷,𝐸|𝐿)×𝑓𝑖𝑖

𝑁𝐿
 (5.4’) 

where: 𝑛𝑖,(𝐷,𝐸) is the number of possible rainfall conditions characterized 

by specific values of D and E; ni,(D,E|L) is the number of rainfall events 
characterized by specific values of D and E that resulted in landslides; fi is 
the relative frequency, defined as the inverse of the total number of 
possible aggregations of sub-events for a given rainfall event, nse; NR and 
NL are the total numbers of rainfall and landslide events, respectively. 
Successively, the log-log plane represented in Figure 5.20 has been divided 
in 10x10 cells and the posterior landslide probability, P(L|D,E) has been 
calculated applying the equation (5.1) to each class. The 2D plot reported 
in Figure 5.21 highlights two main peaks of landslide probability, with 
maximum values higher than 0.70 in both the cases. This could suggest 
that two types of rainfall conditions are more likely to trigger landslides: 

long-duration (2 ≤ 𝑙𝑜𝑔(𝐷) ≤ 3) high-accumulation (2.5 ≤ 𝑙𝑜𝑔(𝐸) ≤
3.5); and short-duration (0 ≤ 𝑙𝑜𝑔(𝐷) ≤ 1) high-accumulation (−0.5 ≤
𝑙𝑜𝑔(𝐸) ≤ 0). This is probably due to the heterogeneity of the calibration 
dataset. Indeed, although all the records refer to shallow rainfall-induced 
landslides, they significantly differ in terms of triggering mechanism 
(different rainfall conditions lead to landslide initiation) and magnitude 
(both single and areal events have been grouped in the dataset). The 
duration of the rainfall events recorded in the period of analysis varies 

from 1 h (𝑙𝑜𝑔(𝐷) = 0) to 1000 h (𝑙𝑜𝑔(𝐷) = 3). This could indicate a 
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specific range of duration for possible landslide initiation, although more 
observations are needed to support this statement. 
Figure 5.21 also displays a series of isolines (i.e., lines of roughly equal 
posterior probability), which allows better identifying relevant variations 
in the landslide probabilities. Indeed, as demonstrated in Section 5.5.4, a 
reasonable criterion for setting a probabilistic threshold could be an abrupt 
increase in landslide probability. Following this criterion, six possible 
thresholds have been proposed corresponding to posterior landslide 
probabilities varying from 0.05 to 0.5. 
Threshold values higher than 0.5 have been not considered because they 
would result in a relevant number of missed events, a significant drawback 
for thresholds employed in an operative LEWS. 
 

 
Figure 5.21 Posterior landslide probabilities obtained considering the rainfall 
events reported in Figure 5.20. Lines of equal probability are also drawn 

5.6.5 Validation of the model 

The probabilistic thresholds defined in this study have been validated 
using 45 landslide events and 311 rainfall events, from which 118 
triggering and 621 non-triggering rainfall conditions have been identified 
(see Sections 5.6.2 and 5.6.3). For validation purposes, the method 
proposed by Gariano et al. (2015) that exploits a contingency table, a 
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receiver operating characteristic (ROC) analysis (Metz 1978) and the 
related skill scores has been adopted. 
The contingencies scores (TP, TN, FP, FN) have been derived by standard 
contingency tables similarly to the procedure adopted in Section 5.5.5. 
Usually, the four possible outcomes of the contingency tables are 
computed aggregating the (D,E) data points by comparing the event 
occurrences and the model predictions. Conversely, for this case study the 
rainfall conditions used for computing the contingency table are 
characterized by a certain probability of occurrence (varying from 0 to 1 
depending on the number of possible aggregations), thus the 
contingencies scores have been calculated aggregating their relative 
frequencies. 
By combining TP, TN, FP, and FN, four skill scores have been calculated, 

namely: (i) the probability of detection score, 𝑃𝑂𝐷 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, (ii) the 

probability of false detection score, 𝑃𝑂𝐹𝐷 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
, (iii) the probability 

of false alarm score, 𝑃𝑂𝐹𝐴 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
, and (iv) the Hanssen and Kuipers 

(1965) skill score, 𝐻𝐾 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
−

𝐹𝑃

𝐹𝑃+𝑇𝑁
= 𝑃𝑂𝐷 − 𝑃𝑂𝐹𝐷.  

The ROC analysis has been performed constructing a ROC plot that 
shows POD against POFD. In the ROC plane, each point represents the 
predictive capability of a single probabilistic threshold and the ROC curve 
is obtained varying the landslide probability associated to the rainfall 
threshold. The best prediction performance corresponds to the upper left 
corner of the ROC plot (perfect classification). A meaningful indicator for 

describing the threshold performance is the Euclidean distance δ between 
the point representing the threshold on the ROC curve and the perfect 
classification point. A random guess would give a point along the “no 
gain” line, the diagonal line from the left bottom to the top right corners 

of the ROC plot. In particular, the shorter the distance δ, the more reliable 
is the threshold and, consequently, the higher the warning model 
prediction skill. 
Figure 5.22 shows the ROC curve for the 6 considered thresholds. Each 
blue dot represents a threshold determined for a different posterior 
landslide probability. For the 6 (POD, POFD) pairs, the Euclidean distance 

𝛿 from the perfect classification (red dot in Figure 5.22) has been 
calculated. Table 5.7 summarizes the four contingencies (TP, FP, FN, TN) 
and the four skill scores (POD, POFD, POFA, HK) for the six probabilistic 
thresholds. Among them, T5,P exhibits the highest POD (i.e., a low number 



Chapter 5 

 

120 

of FN), yet it also shows the highest POFD and POFA (i.e., a significant 

number of FP). On the contrary, thresholds defined with 𝑃(𝐿|𝐷, 𝐸) ≥
0.2 are characterized by a low number of TP (i.e., values from 13.67 to 
3.50). In general, the highest value for HK and the lowest values for POFA 

and 𝛿 were obtained by T10,P that can be considered the optimal threshold, 
representing the best compromise between the minimum number of 
incorrect landslide predictions (FP, FN) and the maximum number of 
correct predictions (TP, TN). It is worth mentioning that a further 
improvement for the probabilistic warning model developed herein can 
be achieved by combining more than one threshold in a multi-level 
warning model, in relation to the scope and the operational characteristics 
of the LEWS. 
 

 
Figure 5.22 ROC curve drawn considering the 6 employed thresholds. Each 
POFD-POD pair (blue dot) corresponds to a threshold defined considering a 
given probability (label value). The “no gain” line and the perfect classification 
point (red dot, upper left corner) are also shown 
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Table 5.7 Contingencies (TP, FP, FN, TN) and skill scores (POD, POFD, POFA, 
HK, δ) calculated for the probabilistic thresholds defined herein. Best scores are 
shown in italics 

Label P(L|D,E) TP FN FP TN POD POFD POFA HK δ 

𝑇5,𝑃 0.05 36.58 8.42 114.21 151.79 0.81 0.43 0.76 0.38 0.47 

𝑇10,𝑃 0.10 32.58 12.42 12.61 253.39 0.72 0.05 0.28 0.68 0.28 

𝑇20,𝑃 0.20 13.67 31.33 7.51 258.49 0.30 0.03 0.35 0.28 0.70 

𝑇30,𝑃 0.30 10.00 35.00 7.18 258.82 0.22 0.03 0.42 0.20 0.78 

𝑇40,𝑃 0.40 7.08 37.92 3.65 262.35 0.16 0.01 0.34 0.14 0.84 

𝑇50,𝑃 0.50 3.50 41.50 2.32 263.68 0.08 0.01 0.40 0.07 0.92 
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6 APPLICATION OF MULTI-SCALAR 
WARNING MODEL 

The Chapter focuses on the application of the multi-scalar warning model 
proposed in Section 4.3, which integrates widespread monitoring data and 
local observations collected at local scale in order to improve the 
performance of a warning model for weather-induced landslides in 
Norway. Firstly, Section 6.1 summarizes the main steps necessary for the 
development of the model. Section 6.2 provides a description of the study 
area as well as the main characteristics of the Norwegian national LEWS. 
Section 6.3 presents the 30 test areas selected for the analyses and Section 
6.4 shows the results obtained applying the regional warning model. 
Finally, the calibration and the validation of the multi-scalar warning 
model are reported in Sections 6.5 and 6.6, respectively. 
 

6.1 MULTI-SCALAR WARNING MODEL: WORKFLOW 

The methodology presented in Section 4.3 for the definition of a multi-
scalar warning has been specifically adapted to the case study. To this aim, 
Figure 6.1 presents a flowchart organized in three successive steps: 
identification of the test areas (Phase I), application of the warning model 
employed in the Norwegian national LEWS (Phase II), calibration and 
validation of the multi-scalar warning model (Phase III). 
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Figure 6.1 Flowchart of the proposed methodology for the definition of a multi-
scalar warning model for weather-induced landslides applied to the Norwegian 
case study 

 
In Phase I, the Norwegian hydrological basins have been identified as the 
most appropriate territorial units for the purpose of this study. They have 
been classified according to two main criteria: the occurrence of weather-
induced landslides in soils and the availability of a relevant number of pore 
water pressure observations in the shallow soil layers in the proximity of 
the landslide source areas. Data on landslide occurrences have been 

FIGURE 6.1

Area of interest: 
NORWAY

MULTI-SCALAR 
WARNING MODEL

Classification 
of  basins

WATER SUPPLY &
SOIL WATER CONTENT

Collection of 1-km2

gridded data

Trend analysis
(SMA)

P
h

as
e 

II
Ph

as
e 

I
P

h
as

e 
III

REGIONAL 
WARNINGS

PWP LOCAL 
OBSERVATIONS

Identification of 
landslide types

WEATHER-INDUCED 
LANDSLIDES IN SOILS

Application of 
regional model

TEST 
AREAS

Identification of 
territorial units

Validation of 
warning model

HYDROLOGICAL 
BASINS MAP

NATIONAL LANDSLIDE 
CATALOG

Collection of 
local data

Calibration of   
warning model WARNING 

EVENTS



6. Application of multi-scalar warning model 

 

125 

retrieved from a National landslide catalog containing more than 60,000 
entries. The pore water pressure measurements have been collected at 
local scale from boreholes installed by the Norwegian Geotechnical 
Institute (NGI) for a variety of geotechnical projects. According to these 
criteria, 30 territorial units have been selected as potentially useful for the 
analyses. 
In Phase II, the warning model employed in the Norwegian national 
LEWS has been applied to the 30 selected test areas. The daily 
combinations of relative water supply and relative soil water content, 
available as 1-km2 gridded data, have been compared to the warning levels 
employed by the regional model. Therefore, for each test area the days 
with warnings have been identified and, in these cases, the level of warning 
has been defined. 
In Phase III, the warning events issued by applying the regional model 
have been used for the calibration and validation of the multi-scalar 
warning model. For calibration purposes, the pore water pressure 
observations have been preliminarily analyzed in order to determine 
potential trends adopting a simple moving average (SMA) calculation. 
Then, the most appropriate indicators have been identified. Finally, the 
model has been validated using statistical indicators derived from 
contingency tables. 

6.2 CASE STUDY: NORWAY 

6.2.1 Physical setting 

Norway is divided into 18 counties and 422 municipalities and covers an 

area of ∼ 385,000 km2 on the western and northern part of the 
Scandinavian Peninsula. The mainland is characterized by a very elongated 
shape which stretches from latitude 58°N to more than 71°N (Svalbard 
north to 81°N), including more than 490,000 km of rivers and streams and 
about 450,000 lakes. Rivers are relatively short and steep in Western 
Norway, whereas they are long and gently sloping further south. 
Approximatively 30% of the land area consists of mountains (with an 
average elevation of 460 m a.s.l.) and 6.7% of the country is covered by 
steep slopes. Large areas from the southern tip to the Russian border are 
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dominated by the Scandinavian Mountains, whose highest peaks reach 
2500 m.a.s.l. (Jaedicke et al., 2009). Caledonian orogenesis and later 
recurring glaciations have created an alpine fjord landscape along most of 
the Norwegian Atlantic coast. The overall development of the 
geomorphology can be summarized as erosion process during the late 
Palaeozoic and Mesozoic, major uplift during the Cenozoic with 
maximum uplift in the western areas and glacial erosion during the 
Pleistocene (Etzelmüller et al. 2007). However, the Norwegian landscape 
has been largely determined by surface processes occurred during the 
Quaternary era, especially by the action of glaciers, which eroded a lot of 
bedrock and transported sediments, forming deep valleys, steep 
mountains and glacial fjords. The country is commonly divided into four 
physiographic regions: Eastern and Southern Norway (containing 
extensive areas with forest, gentle valleys and rich arable land); Western 
Norway (characterized by deep fjords penetrating 200 km inland or more); 
Central Norway (comprising a gentle landscape with rounded hills and 
mountains); Northern Norway (consisting of a mixture of valleys, 
numerous fjords, alpine mountains extending all the way to the coast and 
many large islands). In geological terms, Norway is situated along the 
western margin of the Baltic shield covered by Caledonian nappes in the 
west. The bedrock of the Baltic shield is dominated by Precambrian 
basement rocks (e.g., granites, gneisses, amphibolites, and meta-
sediments) in the southern and south-eastern part of the country (Fredin 
et al. 2013). Continuous till deposits cover large areas of the valley sides 
and floors, although fluvial and glaciofluvial deposits as well as marine 
clays are widespread (Figure 6.2). 
The latitudinal elongation, the rugged topography and the exposure to the 
Atlantic lead to large climatic differences throughout the country. Along 
the coast, the climate is kept much milder than in other regions by the 
warm North Atlantic Current of the Gulf Stream. Conversely, inner 
regions are characterized by a more continental climate. According to the 
Köppen climate classification, three different climate types can be 
identified in Norway: warm temperate humid climate (southern regions), 
cold temperate humid climate (mid and northern regions), and polar 
climate (northern coastal areas and mountainous regions). Precipitation 
types can be classified into three main categories: frontal, orographic, and 
showery. The average annual precipitation is about 1400, yet the 
distribution is non-uniform throughout the country. In Western Norway, 
annual precipitation may exceed 5000 mm, mainly concentrated in autumn 
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and early winter, whereas some valleys in the eastern part receive less than 
300 mm per year, mainly in terms of showery precipitation during 
summer. 
 

 
Figure 6.2 Overview of quaternary deposits in Norway. Source: www.ngu.no 

 
Steep slopes, various soil and climatic properties, and the presence of 
loose sediments provide a basis for the triggering of several types of 
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weather-induced landslides in soils, including slides in various materials, 
debris flows, debris slides, slush flows, and shallow landslides (Figure 6.3). 
 

 
Figure 6.3 Examples of weather-induced landslides in Norway. a) Debris slides 
and debris flows. Veikledalen, Kvam, June 2011. b) Debris flow. Mjåland, 
Rogaland, June 2016. c) Flash flood. Notodden, Telemark, July 2011. d) Slushflow. 
Troms, May 2010 (Krøgli et al. 2018) 

 
Weather-induced landslides are typically triggered by rainfall and 
snowmelt, or their combination, resulting in intense or long-duration 
water supply and high soil water content. In these conditions soil cohesion 
decreases significantly, increasing the probability of landslide occurrence. 
Steep slopes covered by Quaternary loose sediments are highly exposed 
to landslide risk, yet landslide may also occur in gentle slopes covered by 
snow as well as in embankments along roads and railways. In addition, 
some events are triggered from or initiated as rockfalls or slush flows, 
developing into, for example, debris flows as they propagate downslope 
(Piciullo et al. 2017a). Although shallow landslides constitute a substantial 
threat to Norwegian society, there are limited comprehensive estimates of 
human and economic losses (Krøgli et al. 2018). According to Furseth 

(a) (b)

(c) (d)
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(2006), at least 230 fatalities can be associated to such slope failures over 
the last 500 years. A recent report prepared by Haque et al. (2016) showed 
that 12 people died in Norway in the period 1995-2016 because of 
weather-induced landslides (slush flows in 7 cases and debris flows or 
debris avalanches in the remaining 5 cases). Economic consequences are 
mainly associated to disruption of road and railway networks, although 
there are no reliable estimates of the total cost to society of weather-
induced landslides. Furthermore, according to the Intergovernmental 
Panel on Climate Change (Hanssen-Bauer et al. 2017) the number of 
annual landslide events in Norway is expected to increase as the Northern 
Europe will probably experience higher intensity and frequency of heavy 
precipitation in the future. 

6.2.2 The national LEWS 

In 2009, the Norwegian Water Resources and Energy Directorate (NVE) 
started developing a national LEWS as part of a national programme for 
landslide risk management. The main aim of the system is to analyze and 
forecast extreme hydro-meteorological conditions, in order to warn 
appropriately and in time the authorities about the possible occurrence of 
catastrophic shallow landslides, such as debris flows, debris slides, debris 
avalanches and slush flows. The system was officially launched in the 
autumn of 2013, as a joint initiative across public agencies between NVE, 
the Norwegian Meteorological Institute (MET), the Norwegian Public 
Road Administration (NPRA), and the Norwegian Rail Administration 
(Bane NOR). The service is operative year-round performing daily a 
landslide hazard assessment at a regional level (i.e., for a county and/or 
group of municipalities). Predictions of the systems are based on the 
forecasting of hydro-meteorological conditions responsible for landslides 
initiation. Because of the sparse monitoring network and the relative short 
measurement periods, a distributed version of the hydrological HBV 
model (Beldring et al. 2003) has been employed to describe the water 
balance on a national scale. Therefore, Norway has been divided into more 
than 385,000 1-km2 grid cells and each cell is treated as a separate basin in 
order to simulate water balance. In particular, the model uses rainfall and 
temperature as input data and simulates a number of hydro-meteorological 
parameters, such as: runoff, snowmelt, groundwater, soil saturation, and 
frost depth. In the development phase of the EWS, hazard threshold levels 
were calibrated through a statistical analysis of historical landslides and 
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different hydro-meteorological conditions. The thresholds currently 
adopted in the EWS were proposed by Colleuille et al. (2010), by 
combining simulations of water supply (rainfall and snowmelt) and soil 
water content (both expressed as relative values normalised to annual 
averages and maxima over a 30-year reference period, respectively). 
Thresholds were statistically derived from empirical tree classification 
considering 206 landslides events from different parts of the country 
(Figure 6.4). Piciullo et al. (2017a) analyzed the warnings issued in Western 
Norway in the period 2013–2014, confirming an overall good 
performance of the adopted thresholds. However, in the last years NVE 
has been conducting a revision and an update of the adopted thresholds 
in collaboration with NGI, using statistical analysis of various hydro-
meteorological data for registered and dated landslide events (Devoli et al. 
2018). 
 

 
Figure 6.4 Hydrometeorological hazard thresholds used in the Norwegian 
national LEWS (Colleuille et al. 2010) 

 
Decision-making procedures are not only based upon hazard threshold 
levels, but are also supported by hydro-meteorological and real-time 
landslide observations as well as landslide inventory and susceptibility 
maps (Figure 6.5). Real-time observations of rainfall, air temperature, 
water discharge, and ground water level are used in the daily landslide 
hazard assessment to check the performance of the hydrological model 
and to avoid overestimation or underestimation of hydro-meteorological 
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conditions in certain regions and in certain seasons. Real-time discharge 
data are used to automatically assimilate and correct the modelled streams 
discharge in order to provide more reliable information about debris flow 
hazards. The landslide inventory provides information for different types 
of analyses, such as: definition of the thresholds, calibration of the warning 
model, and evaluation of warning system performance. Event information 
is reported by roads/railways authorities or municipalities and obtained 
from media and from a real-time database (maintained by NVE and other 
public agencies). The database contains more than 65,000 events from 
early 1900s onwards, yet about 70% of the registrations are recorded after 
2000. Two susceptibility maps covering the whole country are also used 
as supportive data for setting warning levels. The first map displays the 
first-order catchments more susceptible to landslides in soil (e.g., debris 
avalanches, debris flows, shallow soil slides, clay slides and quick-clay 
slides) combining several variables (e.g., cover map, land cover, and 
average annual rainfall). Forecasters use this map in the initial phase to 
perform a more accurate assessment (Bell et al. 2014). The second map 
indicates the modelled potential source and runout areas for debris 
avalanches and small debris flows at 1:50,000 scale (Fischer et al. 2012). 
At least two times a day, a landslide expert on duty (as member of a 
rotation team) uses the aforementioned information to qualitatively 
perform a nationwide assessment of landslide warning levels: green (1), 
yellow (2), orange (3), and red (4). Warning levels also indicate the 
recommended awareness, providing information on the severity of the 
predicted landslide events (i.e., numerosity and areal extension) and on the 
mitigation measures that should be initiated or undertaken by the users. 
Assessment and updates of warning levels are published on the warning 
portal http://www.varsom.no/ for the three coming days. In case yellow, 
orange, or red warning levels are exceeded, warning messages are also sent 
to emergency authorities (regional administrative offices, roads and 
railways authorities) and media. Warning zones are not static warning 
areas, as their extent and position are dynamic and can change from day 
to day, depending on current hydro-meteorological conditions. 
 

http://www.varsom.no/
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Figure 6.5 Conceptual framework of the national LEWS. Red arrows indicate 
quantitative processes; blue arrows indicate qualitative processes (modified from 
Krøgli et al. 2018) 

6.3 TERRITORIAL UNITS AND AVAILABLE DATASETS 

The Norwegian hydrological basins have been considered as the most 
appropriate minimum territorial units for applying the multi-scalar 
warning model. Indeed, the catchment scale is an intermediate scale of 
analysis between small areas (e.g., single slopes) and very wide areas (e.g., 
a municipality, a region or a nation). Within these units, both the 
widespread meteorological monitoring data employed in the national 
EWS and local pore water pressure observations may provide meaningful 
information for the definition of the warning model. In addition, at 
catchment scale the whole process area of the landslides is automatically 
considered. This allows reducing the uncertainty related to the location of 
the considered landslides. The national catchment database REGINE, 
compiled by the Norwegian Mapping Authority, displays the delimitation 
and classification of the Norwegian hydrological basins. The Norwegian 
water system is divided into 22,545 basins, defined as polygons which 
cover the whole country. The shape and the size of each unit is determined 
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by watersheds and intersections in the water system, e.g., tributary river 
junctions, lakes, and reservoirs. The subdivisions of the water system areas 
form a hierarchy, as each territorial unit may be characterized by a different 
structure. Indeed, the drainage area may vary by orders of magnitude, 
ranging from less than 10-4 km2 for basins draining a well-defined small 
torrent (e.g., the Vasstøylsåni basin in the south-eastern part of Norway) 
to more than 104 km2 for large river basins (e.g., the Pasvikelva basin in 
the proximity of the Russian border). However, only 554 basins out of 
22,545 (2.46%) cover an area larger than 100 km2. Conversely, the 
extension of the large majority of the basins (57.40%) is smaller than 10 
km2, whereas the remaining part of them (40.14%) drain an area between 
10 and 100 km2. Therefore, the extension of the majority of the basins 
seem to represent an appropriate scale of analysis for the purpose of this 
study. 
The test areas have been identified according to two main criteria: the 
occurrence of shallow landslides in loose soils and the availability of a 
relevant number of pore water pressure measurements. The data on 
landslide occurrences were retrieved from the national landslide database 
(www.skrednett.no), which contains more than 60,000 entries 
(represented by point locations) covering the whole country over the last 
five hundred years (Figure 6.6). A relevant number of registrations 
(16,346) are recorded in the period of analysis, i.e. from January 2013 to 
June 2017, among which 1481 can be considered weather-induced 
landslides in loose soils. 658 of these records (44.43%) are categorized as 
landslides in soil, not otherwise specified due to lack of further 
documentation; 654 (44.16%) are classified as debris flows, debris 
avalanches or mudslides; 113 (7.63%) are reported as soil slides in artificial 
slopes (cuts and fillings along road and railway lines); 43 (2.90%) are slush 
flows and the remaining 13 (0.88%) are clay slides. Registrations recorded 
by road and railway authorities are usually reported as points where 
landslides affect transportation networks, thus often far away from the 
source area. In addition, further uncertainties may result from: errors in 
classifying the type of landslide event, lack of spatial and/or temporal 
information, and double registrations. Because of these limitations, 
landslide records characterized by a questionable quality were removed 
from the dataset used herein. 

 

http://www.skrednett.no/
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Figure 6.6 Landslides reported in the national landslide catalog (landslide 
occurred in the period of analyses are marked in red) 

 
The pore water pressure measurements were collected at local scale 
analysing data from 41,706 boreholes installed by NGI for a variety of 
geotechnical projects throughout Norway not specifically aimed at early 
warning purposes, such as: geotechnical site characterization of soils; slope 
stability analysis; efficiency evaluation of surface drainage works; 
monitoring of road and railway embankments. The piezometers 
considered representative of conditions which led to the triggering of the 
landslides have been selected taking into account their spatial proximity to 
the landslides that occurred in the period of analysis, and the installation 
in the shallow soil layers or in areas characterized by the presence of loose 
sediments, according to a quaternary deposit map at 1:50,000 scale 
(www.ngu.no). It should be mentioned that data from only electric 
piezometers have been considered, as they provide longer and more 
reliable data series. 
According to the criteria of selection, 30 Norwegian hydrological basins 
have been identified as potential useful for the analyses. Figure 6.7 displays 
that the majority of them (16 out of 30) are distributed along the western 
coast of Norway: three are situated in the southern part (SW in Figure 6.7), 
twelve in the central part (CW1 and CW2 in Figure 6.7), and one in the 
northern part (NW in Figure 6.7). All of them are dominated by narrow 
fjords and steep mountainsides and are characterized by the presence of 
shallow marine deposits covering weathered and altered bedrock. The 
remaining 14 basins are concentrated in the south-eastern part of Norway 
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(SE in Figure 6.7), an area highly prone to landslides due to long-term 
infiltration from large amounts of rain and/or snow in autumn and winter 
and presence of various shallow Quaternary deposits (especially moraine 
materials). The main characteristics of the study areas are summarized in 
Table 6.1. 
 

 
Figure 6.7 Location of the 30 test areas 
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Table 6.1 Name, area, loose sediments, landslides occurred, and piezometers 
available within the 30 test areas 

ID Name 
Area 
[km2] 

Loose 
sediments 

[%] 

Weather-induced 
landslides 

Piezometers 

980 
Fykanåga/Glomfjorden, 

Gåsværfjorden og Sørfjorden 
5.58 23 3 7 

1002 Horvereidelva 14.04 55 4 6 

2018 Simoa/Drammensvassdraget 3.69 65 4 8 

3170 Numedalslågen 64.00 38 3 10 

3789 Glommavassdraget 27.13 59 5 8 

5329 Senja Vest 136.66 17 6 8 

5371 Skiensvassdraget 18.21 52 4 9 

5539 Skiensvassdraget 38.88 53 5 8 

5794 TrondheimsfJorden Vest 8.08 63 3 6 

6232 Namsen 26.48 31 4 7 

6427 
Ytre Trondheimsfjorden:  
Agdenes Fyr-geitaneset 

30.02 22 4 7 

6460 Namsen 56.51 47 3 7 

7045 
Fykanåga/Glomfjorden, 

Gåsværfjorden og Sørfjorden 
65.47 29 3 6 

7971 Hareidlandet og Gurskøya 269.15 7 3 8 

8580 
Vestre Svartisen og Rødøy 

kommune 
23.08 19 4 8 

8922 Skiensvassdraget 104.55 51 6 12 

9585 
Vegårsvassdraget og 
Gjerstadvassdraget/ 

kyst Kragerø-Tromøya 
2.45 52 4 7 

9962 
Leira/Nitelva/ 

Glommavassdraget 
57.76 62 7 13 

10095 Numedalslågen 10.09 39 3 8 

10566 Drammensvassdraget 14.38 66 4 8 

11922 
Vikna og Kyst  

Foldfjorden-Bindalsfjorden 
7.64 72 3 7 

13678 Hareidlandet og Gurskøya 307.18 10 4 6 

13702 kyst Utskarpen-nesna-tonnes 33.45 17 3 8 

13913 Horvereidelva 10.58 41 5 7 

14371 Simoa/Drammensvassdraget 9.43 69 5 6 

15645 
Oselvvassdraget/Flora 

kommune 
15.25 27 3 6 

17074 TrondheimsfJorden Vest 9.83 78 3 6 

18957 Mossevassdraget 51.39 36 6 10 

19897 
Vestfosselva/ 

Drammensvassdraget 
25.08 30 5 9 

19903 Glommavassdraget 43.46 46 6 14 
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The majority of the basins situated in the south-eastern part of Norway 
(10 out of 14) cover an area smaller than 50 km2; on the contrary, three 
out of the four basins with an area higher than 100 km2 are distributed 
along the western coast. The shallow soil layers are significantly 
characterized by the presence of Quaternary loose deposits highly prone 
to landslides, which cover more than half of surface in 11 cases out of 30. 
A total of 125 weather-induced landslides in soils occurred in the 30 test 
areas between January 2013 and June 2017: in the majority of them (25 
out of 30) the number of landslides varies between 3 and 5, yet four basins 
were interested by 6 landslides and the remaining one by 7 landslides. 
Finally, pore water pressure measurements recorded in the period of 
analysis were derived from 240 boreholes, whose numerosity within the 
test areas varies between 7 and 14. 

6.4 APPLICATION OF THE REGIONAL WARNING MODEL 

The regional warning model employed within the Norwegian EWS has 
been applied to the 30 test areas identified in Section 6.3. However, the 
model has been slightly modified because several aspects need to be taken 
into account, including: the scale of analysis, the definition of the regional 
warning events, and the meaning of the warning levels. Indeed, the 
Norwegian EWS employs variable minimum territorial units, varying from 
a small group of municipalities (hundreds or thousands of km2) to several 
administrative regions (tens of thousands of km2). Thus, extent and 
position of warning zones are dynamic and may change day by day, 
depending on hydrometeorological conditions. Conversely, the minimum 
territorial units adopted herein are the Norwegian hydrological basins, 
which are predefined static warning areas ranging from few km2 to more 
than 100 km2. In the Norwegian EWS, relative water supply (rain and 
snowmelt) and relative soil saturation/groundwater conditions are 
combined for the definition of a hydro-meteorological index, which is 
compared with statistically-defined thresholds. Then, a qualitatively daily 
assessment of landslide warning levels is performed by an expert on duty 
supported by susceptibility maps and real-time observations. On the 
contrary, in this study the hydrometeorological index is directly compared 
with the warning thresholds and a refinement of the model is performed 
by using local monitoring data, as it will be described in Sections 6.5 and 
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6.6. In both the cases four warning levels are adopted: green (WL1), yellow 
(WL2), orange (WL3), and red (WL4), although the classification criteria are 
rather different. In the Norwegian EWS, the principle behind the criteria 
is that rare hydrometeorological conditions are expected to cause more 
landslides and possibly higher damages. In addition, the criteria contain 
information on the expected number of landslides per area, as well as 
hazard signs indicating landslide activity. On the other hand, the 
classification criteria adopted in this study are not correlated to the 
number of expected landslides and the extension of the hazardous area in 
each territorial unit, but provide an indication on the probability of 
landslide occurrence, i.e. null (WL1), moderate (WL2), high (WL3), and very 
high (WL4). 
The assessment of the warning events resulting from the application of 
the regional warning model within any territorial unit can be schematized 
into two phases. Figure 6.8 reports an example of application referring to 
the Horvereidelva basin. Firstly, the daily forecasts of water supply and 
relative soil water content are retrieved from the open-access web portal 
www.xgeo.no, where they are displayed as raster data at 1-km2 resolution. 
Successively, hydro-meteorological indexes are evaluated calculating the 
average values of all the grid cells comprised within each territorial unit. 
Finally, the daily average values are compared with the warning levels 
employed by the regional model, in order to identify the days with 
warnings as well as to define, in these cases, the level of the warning. 
 

 
Figure 6.8 Example of application of the regional warning model to the 
Horvereidelva basin: a) collection of 1-km2 meteorological gridded data and b) 
comparison of daily hydrometeorological indexes with the regional warning 
thresholds 
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The results are reported in a correlation matrix, which lists the landslide 
events occurred in relation to warning events. Table 6.2 reports a 2x4 
correlation matrix related to the four levels of warning (WL1, WL2, WL3, 
and WL4) and to the presence or absence of a landslide. Twenty-six of the 
125 landslide events which affected the test areas between January 2013 
and June 2017 occurred when the warning model was in level 1, i.e. when 
no warnings were issued. For the other 99 occurrences the warning model 
was in level 2 in 57 cases, in level 3 in 37 cases and in level 4 in the 
remaining 5 cases. In the period of analysis, 695 daily warnings have been 
issued: the majority being level 2 “moderate warnings” (560 events), 130 
events being level 3 “severe warnings”, with the rest of them being level 4 
“very severe warnings” (5 events). 
 

Table 6.2 Results obtained applying the regional warning model employed in the 
national LEWS to the 30 test areas 

 WL1 WL2 WL3 WL4 

Landslides 26 57 37 5 

No landslides 41622 503 93 0 

 
The 695 warnings issued by applying the regional model were divided into 
two subsets: (i) a calibration set used to define the multi-scalar model, 
listing 457 warnings issued within 20 territorial units, and (ii) a validation 
set used to validate the model, listing 238 warnings issued within the 
remaining 10 territorial units. The two subsets have been defined with 
similar characteristics in terms of: areal distribution of the territorial units, 
numerosity of landslides, and availability of piezometers.  

6.5 CALIBRATION OF THE MULTI-SCALAR WARNING 

MODEL 

6.5.1 Definition of the model 

The pore water pressure observations collected at local scale have been 
used to assess the warning events issued by applying the regional model. 
In particular, pore water pressure variations have been analyzed in order 
to determine significant upward (and downward) trends indicating local 
conditions which may lead (or not lead) to the triggering of a landslide 
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within a territorial unit in response to a given weather event. However, the 
records are typically characterized by a significant short-term variability. 
Therefore, before being used, they have been statistically processed in 
order to smoot the short-term fluctuations and to make the identification 
of potential trends possible. Moving averages are simple and common 
smoothing techniques widely used in time series analysis. They are used to 
determine new series, whose values are comprised of the average of a 
given number of observations in the original time series. A fundamental 
parameter is the time period (i.e., the window length) of the moving 
average, as it defines the number of observations to be used to calculate 
the values of the new time series. The “moving” part in the moving 
average is due to the fact that the window defined by the window length 
slides along the time series in order to calculate the average values. Several 

types of moving averages⎯e.g., simple moving average (SMA), 
cumulative moving average (CMA), weighted moving average (WMA), 

and exponential moving average (EMA)⎯can be used, depending on the 
purpose of the analysis, the types of data, and the time periods. 
In this study, the simple moving average of the recorded pore water 
pressures at a given day (ui) has been calculated, over the number of days 
of a specified time period (n), as follows: 

𝑢𝑖 = ∑
𝑝𝑘

𝑛

𝑖
𝑘=𝑖−𝑛+1  (6.1) 

where pk is the pore water pressure recorded at day k. Then, two indicators 
of pore water pressure variations have been defined, as follows: 

𝛥𝑢𝑖 = 𝑢𝑖 − 𝑢𝑖−𝑛 (6.2) 

𝛥𝑢𝑖
∗ =

∆𝑢𝑖

∆𝑢𝑖𝑚𝑎𝑥
 (6.3) 

where Δui is the difference between the simple moving averages calculated 

considering a length equal to 𝑛 days and referring to days i and i–n; and 
Δui

* is the same difference normalized by the maximum difference 
observed in the dataset, Δuimax. Figure 6.9 displays an example of 
application of this technique considering a time period (n) equal to 2 days. 
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Figure 6.9 Example of application of simple moving average to a pore water 
pressure data series considering a time period of 2 days 

 
The multi-scalar warning model is based on a 2-step procedure developed 
using the above-defined indicators (Figure 6.10). In the first step, the 

differences between the simple moving averages referring to days i and i–
n are evaluated. In case they do not show a clear trend, the warning level 
issued by the regional model (WL0) is maintained. Otherwise, a second 
step is performed wherein the normalized simple moving average 
differences are compared with predefined thresholds (i.e., a lower 
threshold, LT and an upper threshold, UT). 

 

 
Figure 6.10 Scheme of the methodology developed for analyzing pore water 
pressure observations. The numbers to the right indicate the change from the 
original warning level (WL0) of the new warning model 
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Three final outcomes are possible: the confirmation of the same warning 
level issued by the regional warning model, an increase of the warning 
level, a decrease of the warning level. No more than two warning level 
variations are allowed. 

6.5.2 Calibration of the model parameters 

The multi-scalar warning model presented in Figure 6.10 has been 
calibrated using the 457 warnings issued when the regional warning model 
is applied. To this aim, two parametric analyses have been carried out, 
respectively for identifying the most appropriate time period (n) for 
calculating the simple moving average indicators, and for setting the values 
of the two thresholds (LT and UT) to be adopted in the second step of 
the procedure. 
In the first parametric analysis, the possible trends of Δui have been 
evaluated over time periods (n) of 1, 2, 3, 4, 5, 6, 7, and 14 days. Short time 
periods have been considered because pore water pressure variations 
representative of possible landslide initiation in shallow loose sediments 
are typically recorded few days before a landslide event. Besides, a short-
term moving average allows identifying possible significant trends without 
any significant temporal lag between the original and the average data 
series caused by longer window lengths. Tables 6.3 and 6.4 show, 
respectively, the comparison between the moving average trends 
considering the 69 warning events during which landslides occurred 
(Table 6.3) and the 388 warning events that are not associated to known 
landslides (Table 6.4). It is worth highlighting that in the first case an 
“uptrend” can be considered as a correct indicator (i.e., a trend suggesting 
that an increase of the warning level may be appropriate), whereas in the 
second case a “downtrend” is a sign of coherence with the data (i.e., a 
trend suggesting that a decrease of the warning level or a withdraw of the 
warning may be appropriate). In both the cases, “no trend” indicates that 
the moving average differences do not show a clear trend. Regarding 
“severe” (WL3) and “moderate” (WL2) warning events associated to 
landslides, a number of moving average differences (i.e., Δu4, Δu5, Δu6, 
Δu7, and Δu14 for WL3; Δu3, Δu4, Δu5, Δu6, and Δu14 for WL2) provide 
similar results, with a percent difference between correct and incorrect 
indicators greater than 50%. On the other size, considering both “severe” 
(WL3) and “moderate” (WL2) warning events not associated to landslides, 
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the best performance has been clearly obtained using Δu14, as this time 
period produces the maximum number of downtrends (41 for WL3 and 
206 for WL2) as well as the minimum number of uptrends (17 for WL3 
and 80 for WL2). “Very severe” warning events (WL4) cannot be evaluated 
in this case because only two events were issued in the considered time 
frame, both of them associated to the occurrence of a landslide. 
Successively, the trends of each moving average difference have been 
grouped according to the correctness of the indication provided, 
regardless of the warning level issued from the regional model. On this 
issue, correct indicators are represented by uptrends associated to warning 
events issued when landslides occurred and downtrends associated to 
warning events issued when landslides did not occur. Conversely, 
incorrect indicators are represented by uptrends associated to warning 
events issued when landslides did not occur and downtrends associated to 
warning events issued when landslides occurred. “No trend” indicators 
refer again to moving average differences that do not show a clear trend. 
Figure 6.11 highlights that the percent difference between correct and 
incorrect indicators increases with the length of the time period. Indeed, 

∆𝑢14 shows the highest value of this difference (42%), as 66% are correct 
indicators (301 out of 457), 24% are incorrect indicators (110), and the 
remaining 10% (46) do not show any trend. 

 

Table 6.3 Number of uptrends (up), downtrends (down), and no trends per each 
moving average difference considering warning events that resulted in landslides. 
The number of warning events issued for each warning level is reported in round 
brackets 

Indicator 
WL2 (37) WL3 (30) WL4 (2) 

up down no trend up down no trend up down no trend 

Δp1 25 7 5 17 8 5 0 1 1 

Δu2 26 8 3 19 7 4 0 2 0 

Δu3 25 8 4 22 5 3 0 1 1 

Δu4 27 6 4 23 4 3 0 2 0 

Δu5 29 5 3 21 5 4 0 2 0 

Δu6 29 4 4 21 4 5 0 2 0 

Δu7 28 4 5 20 6 4 0 2 0 

Δu14 30 6 1 24 5 1 0 2 0 
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Table 6.4 Number of uptrends (up), downtrends (down), and no trends per each 
moving average difference considering warning events that did not resulted in 
landslides. The number of warning events issued for each warning level is 
reported in round brackets 

Indicator 
WL2 (327) WL3 (61) WL4 (0) 

up down no trend up down no trend up down no trend 

Δp1 138 120 69 25 25 11 0 0 0 

Δu2 133 126 68 22 29 10 0 0 0 

Δu3 127 130 70 27 28 6 0 0 0 

Δu4 130 130 67 27 28 6 0 0 0 

Δu5 118 141 68 26 30 5 0 0 0 

Δu6 117 147 63 24 31 6 0 0 0 

Δu7 100 171 56 22 29 10 0 0 0 

Δu14 80 206 41 17 41 3 0 0 0 

 

 
Figure 6.11 Simple moving average differences calculated using time periods (n) 
of 1, 2, 3, 4, 5, 6, 7, and 14 days 

 
The second parametric analysis has been conducted using exclusively Δu14 
in order to identify the two thresholds to be employed in the second step 
of the procedure. In particular, six combinations have been defined, 
considering three values of the lower threshold, LT (i.e., ± 5%, ± 10% 
and ± 15%) and two values of the upper threshold, UT (i.e., ± 25% and 
± 30%). Table 6.5 summarizes the correlation matrices obtained 
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considering the six thresholds combinations and the regional warning 
model. 
Firstly, the analysis reveals that the model is extremely sensitive to 
variations of LT, resulting in large differences among the three pairs of 

combinations Δu14,5,25
*–Δu14,5,30

*, Δu14,10,25
*–Δu14,10,30

*, and Δu14,15,25
*–

Δu14,15,30
*. This can be explained considering that the large majority of the 

level transitions in the period of analysis are 1-level transitions caused by 
the exceedance of LT. 
Therefore, each pair of combinations employing the same LT have been 
compared with the regional warning model. The best-performing 

combination is Δu14,10,25
*–Δu14,10,30

*, which allows to significantly increase 
the number warning levels concurrent with landslides (a total of 22 
between WL3 and WL4, issued in both cases), both minimizing the number 
of WL4 and significantly reducing the number of WL3 and WL2 in absence 
of landslides. As expected, the highest number of level transitions has been 

observed for Δu14,5,25
*–Δu14,5,30

*, resulting in a significant number of 
relocations from WL2 to WL3 and WL4 in case of landslide occurrences 
and in an increase of withdraws when landslides did not occur (WL1). 
However, the large amount of WL3 and WL4 in absence of landslides (a 
total of 66 in both the cases) is a sign of a relevant number of severe model 

errors. Regarding Δu14,5,25
*–Δu14,5,30

*, the low number of correct level 
transitions is due to the high value of the LT, although the thresholds 
combinations show an overall good performance. 
 

Table 6.5 Correlation matrices computed for the regional warning model (RM) 
and for six thresholds combinations 

Label 
Landslides No landslides 

WL1 WL2 WL3 WL4 WL1 WL2 WL3 WL4 

RM 13 37 30 2 27,191 327 61 0 

Δu*
14,5,25 17 9 27 29 27,349 164 54 12 

Δu*
14,5,30 16 10 30 26 27,347 166 57 9 

Δu*
14,10,25 16 11 30 25 27,318 221 36 4 

Δu*
14,10,30 15 12 33 22 27,316 223 39 1 

Δu*
14,15,25 15 19 31 17 27,279 250 46 4 

Δu*
14,15,30 14 20 34 14 27,277 252 49 1 

 
Further analyses have been carried out on the best-performing 

combinations (i.e., Δu14,10,25
*–Δu14,10,30

*) in order to determine correct (i.e., 
an increase of the warning level in presence of a landslide or a decrease of 
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the warning level in absence of a landslide) and incorrect level transitions 
(i.e., a decrease of the warning level in presence of a landslide or an 
increase of the warning level in absence of a landslide). Figure 6.12 shows 
that the differences between the two thresholds combinations are minor. 
On the other hand, Δu14,10,25

* shows a higher number of correct 2-level 
transitions (13), whereas no incorrect 2-level transitions occur employing 
Δu14,10,30

*. 
 

 
Figure 6.12 Comparison between Δu*

14,10,25 (a) and Δu*
14,10,30  (b) considering 

number and level of transitions with respect to the regional warning model 

6.6 VALIDATION OF THE MULTI-SCALAR WARNING MODEL 

6.6.1 Performance criteria and indicators 

The validation of the warning model has been developed using statistical 
indicators derived from contingency tables, following a procedure widely 
adopted in literature. In a preliminary phase, the warnings issued and the 
landslides occurred have been retrieved from the validation dataset and 
reported in a correlation matrix. It is worth mentioning that the relative 
importance assigned to the different types of errors by the system 
managers is a key issue to consider to properly validate the model. Figure 
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6.13 reports a graphical representation of a more comprehensive analysis 
of the correlation matrix based on a set of two performance criteria, both 
of them assigning a meaning to all the elements of the matrix. 
 

 
Figure 6.13 Alert classification (a) and grade of correctenss (b) performance 
criteria used for the analysis of the correlation matrix (modified from Calvello and 
Piciullo 2016) 

 
The “alert classification” criterion (Figure 6.13a) employs an alert 
classification scheme derived from a standard contingency table, and 
identifies correct alerts (CA), false alerts (FA), missed alerts (MA), and 
true negatives (TN). The issuing of one of the three highest levels of 
warning (WL2, WL3, and WL4) concurrently with the occurrence of at least 
one landslide is assumed as CA. FA and MA are incorrect predictions of 
the system: the first is related to the issuing of one of the three highest 
levels of warning (WL2, WL3, and WL4) and the simultaneous absence of 
a landslide; the second refers to the occurrence of a landslide without any 
warning. TN represent the absence of both landslides and warning 
occurrences. The “grade of accuracy” criterion (Figure 6.13b) assigns a 
colour code to the components of the correlation matrix in relation to the 
agreement between a given warning event and a given landslide event. For 
instance, if one of the two highest WL is issued (i.e. WL3 or WL4) and no 
landslides occur, this could be considered a significant error of the warning 
model. Using this criterion, the elements are classified in three colour-
coded classes, as follows: green (Gre) for the elements which are assumed 
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to be representative of the best model response, yellow (Yel) for elements 
representative of minor model errors, red (Red) for elements representative 
of a significant model error. Starting from the two performance criteria, 
several performance indicators can be derived (Piciullo et al. 2017b). Table 
6.6 lists the indicators considered in this study. 
 

Table 6.6 Performance indicators used for the analysis (modified from Calvello 
and Piciullo 2016) 

Performance indicator Symbol Formula Criterion Range Best value 

Efficiency index Ieff (CA + TN)/Σijdij  a [0, 1] 1 

Hit rate HRL CA/(CA + MA) a [0, 1] 1 

Positive predictive power PPW CA/(CA + FA) a [0, 1] 1 

Odds ratio OR (CA + TN)/(MA + FA) a [1, +∞[ +∞ 

Missed alert rate RMA 1 – HRL a [0, 1] 0 

False alert rate RFA 1 – PPW a [0, 1] 0 

Error rate ER (Yel + Red)/Σijdij b [0, 1] 0 

Probability of serious mistakes PSM Red/Σijdij b [0, 1] 0 

6.6.2 Performance evaluation 

The results of the multi-scalar warning model have been validated 
considering the validation dataset (i.e., 238 regional warning events) in 
order to determine the optimal combination of thresholds. Table 6.7 
shows the results obtained for the six combinations and the regional 
warning model considering the elements of each duration matrix in terms 
of alert classification and grade of accuracy. Once again, the model 
demonstrates a low sensitivity to the UT, thus the results have been 

analyzed considering the three pairs Δu14,5,25
*–Δu14,5,30

*, Δu14,10,25
*–Δu14,10,30

*, 

and Δu14,15,25
*–Δu14,15,30

*, which differ only for the LT. The combination 

Δu14,5,25
*–Δu14,5,30

* shows the best performance for 4 indicators out of 7 
(i.e., TN, FA, Gre, and Yel). However, looking at the remaining three 
indicators (i.e., CA, MA, and Red) the values are minor than those of the 
regional warning model. Therefore, the best-performing pair of thresholds 

combinations seems to be Δu14,10,25
*–Δu14,10,30

*, for which TN, FA, Gre, and 

Yel slightly differ from the pair Δu14,5,25
*–Δu14,5,30

* and which improves the 
performance of the regional warning model considering CA, MA, and Red, 
three relevant indicators for an operative LEWS. 
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Table 6.7 Values of the correlation matrix elements in terms of “alert 
classification” (a) and “grade of accuracy” (b) criteria (Figure 6.13). Best values 
are shown in italics 

Element Criterion RM Δu*
14,5,25 Δu*

14,5,30 Δu*
14,10,25 Δu*

14,10,30 Δu*
14,15,25 Δu*

14,15,30 

CA a 30 27 27 30 30 30 30 

TN a 14,431 14,538 14,536 14,519 14,517 14,485 14,483 

MA a 13 16 16 13 13 13 13 

FA a 208 113 115 120 122 154 156 

Gre b 14,613 14,636 14,636 14,633 14,633 14,620 14,620 

Yel b 22 2 2 8 8 19 19 

Red b 34 40 40 28 28 30 30 

 
Table 6.8 and Figures 6.14 and 6.15 show the results in terms of 
performance indicators for the six different threshold combinations and 
the regional warning model. Success (Figure 6.14) and error (Figure 6.15) 
performance indicators are plotted separately.  
Among the success indicators, the efficiency index (Ieff) is very high (slightly 
lower than 100%) for all the thresholds combinations and also for the 
regional warning model. However, the value slightly increases by applying 
the multi-scalar warning model, due to a higher number of TN. Regarding 
the hit rate (HRL), it is worth mentioning that the application of the multi-
scalar warning model cannot increase the total number of CA, thus in turn 
it cannot increase the value of HRL. Therefore, it could be considered 

satisfactory that two pairs of combinations (i.e., Δu14,10,25
*–Δu14,10,30

*, and 

Δu14,15,25
*–Δu14,15,30

*) show the same value of the regional warning model. 

On the other hand, the low values of the pair Δu14,5,25
*–Δu14,5,30

* are due to 
the transitions of three CA in MA. Although the application of the multi-
scalar warning model leads to an increase of the positive predictive power 
(PPW) in all the cases, the values are relatively low (i.e., about 20% for the 

best-performing pair Δu14,10,25
*–Δu14,10,30

*), because in all the cases FA 
remain sensitively higher than CA. The odds ratio (OR), which can be 
considered as a rate between correct and predictions, is higher for the pair 

Δu14,5,25
*–Δu14,5,30

* as a function of the reduction of FA and MA and the 
significant increment of TN, which balances the reduction of CA. 
Concerning the error indicators, the very low values of the error rate (ER) 
and the probability of serious mistakes (PSM) in all the cases are principally 
dependent on the high values assumed by TN. The variations of the 
missed alert rate (RMA) and of the false alert rate (RFA) can be exactly related 
to those of the hit rate (HRL) and the positive predictive power (PPW), as 
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the former are the one’s complement of the latter following the 
performance criteria defined in Section 6.1. 

Concluding, the validation process confirms that Δu14,10,25
*–Δu14,10,30

* are 
the optimal thresholds combinations and highlights that according to the 
available data and the criteria adopted herein the overall performance of 
Δu14,10,25

* is slightly better. 
 

Table 6.8 Performance indicators obtained for each the regional warning model 
(RM) and for each combination of thresholds. Best values are shown in italics 

Indicator Criterion RM Δu*
14,5,25 Δu*

14,5,30 Δu*
14,10,25 Δu*

14,10,30 Δu*
14,15,25 Δu*

14,15,30 

Ieff a 0.9849 0.9912 0.9911 0.9909 0.9908 0.9886 0.9885 

HRL a 0.70 0.63 0.63 0.70 0.70 0.70 0.70 

PPW a 0.126 0.193 0.190 0.200 0.197 0.163 0.161 

OR a 65 113 111 109 108 87 86 

MAR a 0.30 0.37 0.37 0.30 0.30 0.30 0.30 

FAR a 0.874 0.807 0.810 0.800 0.803 0.837 0.839 

ER b 0.0047 0.0039 0.0039 0.0033 0.0033 0.0042 0.0042 

PSM b 0.002 0.003 0.003 0.002 0.002 0.002 0.002 

 

 
Figure 6.14 Bar chart showing the values of success indicators for each 
combination of thresholds. Efficiency index (Ieff), hit rate (HRL), and positive 
predictive power (PPW) values are shown as percentages (green bars). The 
absolute values for the odds ratio (OR) are also reported (brown bars, on 
secondary vertical axes in reverse order) 
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Figure 6.15 Bar chart showing the percentage values of error indicators for each 
combination of thresholds: missed alert rate (RMA), false alert rate (RFA), error rate 
(ER) and probability of serious errors (PSM). The latter two are reported on 
secondary vertical axes in reverse order 
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7 CONCLUSIONS 

The risk associated to weather-induced landslides cannot be mitigated only 
by means of structural mitigation measures, thus landslide early warning 
systems (LEWS) are being increasingly implemented in many parts of the 
world. LEWS differ widely depending on: the type of landslides, their 
predisposing and triggering factors, the scale of analysis—i.e., the size of 
the area covered by the system. The main aim of this PhD thesis was the 
definition of innovative methodologies for improving the performance of 
warning models employed in LEWS for weather-induced landslides. 
Firstly, the main features of the landslides addressed in this work and the 
possible consequences for local communities, structures, and 
infrastructures were introduced. Information on systems operational both 
at local and regional scale were retrieved from literature contributions and 
their main characteristics were analyzed considering a structure based on 
a clear distinction among landslide model, warning model, and warning 
system. The monitoring strategies implemented within the reviewed 
LEWS were classified in terms of monitored parameters and monitoring 
instruments in relation to the types of landslides under surveillance. Many 
relevant aspects of the warning models were analyzed, including: the 
methods for the definition of the model, the warning parameters, the 
monitoring networks, and the number of warning levels. Warning models 
are typically based on empirical rainfall thresholds, defined by analyzing 
past rainfall events that have resulted or not in slope failures. However, 
these methods do not typically include a quantitative assessment of the 
uncertainties correlated to the results. Indeed, a questionable quality of the 
input data (i.e., historical landslide records and rainfall measurements) may 
significantly affect the outputs of the model. Moreover, meteorological 
monitoring does not allow to take into account critical soil properties 
controlling the initiation of the triggering process. Finally, despite the 
relevant number of recent applications, standard requirements for the 
definition of a reliable warning model do not still exist, thus some relevant 
aspects are often neglected by systems developers and managers, such as: 
reliability and completeness of the landslide catalog; adequate coverage 
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and spatial resolution of the monitoring network; robust and quantitative 
validation of the model. 
To overcome these issues, a conceptual framework was introduced in 
order to highlight the main steps to be addressed for the definition of a 
reliable warning model for weather-induced landslides: 

• collection of input data appropriate for the analyses to be carried 
out (i.e., landslide records, monitoring data, thematic maps of the 
study area); 

• partition of the study area into territorial units characterized by 
hydrogeological and meteorological homogeneity; 

• identification of the landslide events addressed by the warning 
model; 

• selection of appropriate warning parameters depending on several 
factors, including the types of landslides, the geomorphological 
context, and the climatic regime; 

• spatial-temporal correlation between landslides and weather 
events; 

• calibration of the warning model using the most appropriate 
method on the basis of the available input data and the expected 
outputs; 

• validation of the warning model in order to assess its predictive 
capability. 

Following the general framework introduced, two innovative procedures 
were proposed for the definition of: 

1. a probabilistic warning model, in order to obtain objective and 
reproducible probabilistic rainfall thresholds to consider the 
uncertainty of the input data as well as to quantitatively estimate 
the reliability of the results; 

2. a multi-scalar warning model, whose main innovation is the 
integration between widespread meteorological monitoring data 
and pore water pressure observations collected at local scale. 

Other innovations introduced by the procedures developed in this study, 
in relation to the warning models commonly adopted in LEWS described 
in the scientific literature, were: the use of “FraneItalia”, a landslide 
inventory retrieved from online news, for defining correlations between 
landslides and rainfall events at regional scale; and the employment of 
rainfall measurements derived from satellite monitoring. 
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Probabilistic warning model 
The probabilistic warning model was developed and tested in two 
different Italian regions, highly affected by weather-induced landslides: 
Emilia-Romagna and Campania. Although the two applications differ for 
a series of aspects, some common steps were developed. In a preliminary 
phase, the weather warning zones were identified as the most appropriate 
territorial units for the two case studies, considering the spatial uncertainty 
of the landslide records and the spatial resolution of the rainfall 
measurements. Then, a new landslide catalog was developed searching 
online news, and populated with landslide records since January 2010. To 
this aim, a series of constraints were adopted to ensure the appropriateness 
of the information, and the outputs were validated through a comparison 
with other landslide inventories already existing in Italy. Then, satellite 
rainfall measurements derived from the NASA Global Precipitation 
Measuring (GPM) mission and available from March 2014 onwards were 
collected and analyzed over the territorial units. Duration (D) and 
cumulated rainfall (E) were identified as the most appropriate rainfall 
parameters. Finally, the probabilistic warning model was developed by 
applying a Bayesian probabilistic approach, aimed at highlighting the 
critical levels of rainfall corresponding to different probabilities of 
landslide occurrence. 
In Emilia-Romagna, the analyses were conducted using landslide records 
and monitoring data from January 2014 to December 2015. Rainfall events 
were reconstructed setting in advance some standards depending on the 
climatic characteristics of the study area. Then, a spatial-temporal 
correlation considering the landslides occurred in each territorial unit was 
developed to differentiate between triggering and non-triggering rainfall 
events. The Bayesian probabilistic analysis allowed to identify the highest 

value of landslide probability (𝑃(𝐿|𝐷, 𝐸) = 0.5) as well as three 

secondary peaks (𝑃(𝐿|𝐷, 𝐸) > 0.2). Therefore, two different rainfall 
conditions more likely to trigger landslides were identified and a 

probabilistic threshold was defined in correspondence of 𝑃(𝐿|𝐷, 𝐸) =
0.15. For validation purposes, a back analysis was conducted by 
comparing the new probabilistic threshold with other regional thresholds 
reported in the literature. A quantitative analysis was performed 
considering the thresholds as binary classifiers and using a set of 
contingency indicators. The overall good performance of the probabilistic 
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threshold showed that its flexibility can be extremely useful in areas where 
landslides are triggered by different rainfall conditions. 
In Campania, the analyses were carried out between March 2014 and 
December 2017. Differently from Emilia-Romagna, rainfall events were 
reconstructed by adopting an “algorithmic” procedure. This allowed to 
explicitly account for the uncertainty in the reconstruction of the rainfall 
events, by assigning a relative frequency based on the number of possible 
aggregations for each rainfall event. The results indicated that two 
different rainfall conditions are more likely to trigger landslides. This can 
be explained considering the heterogeneity of the landslide dataset, in 
terms of types of movements and magnitude of the events. Following the 
same criterion adopted for Emilia-Romagna, six possible thresholds were 
identified for probability values varying from 0.05 to 0.50. Successively, 
the probabilistic thresholds were validated using a well-established 
procedure employing a ROC analysis and the related skill scores. In this 
case study, the parameters most affecting the results and crucial for the 
identification of the optimal threshold were: i) the probability of false 
alarm score, POFA; ii) the Hanssen and Kuipers (1965) skill score, HK; iii) 

the Euclidean distance, δ. They showed that T10,P is the best-performing 
threshold, representing a compromise between the minimization of 
incorrect landslide predictions and the maximization of the correct 
predictions. On the other hand, the high number of the landslide events 
detected considering higher thresholds (i.e., T20,P and T30,P) seems to 
indicate that the model could be further improved by adopting a multi-
level warning model combining different threshold values. 
 
Multi-scalar warning model 
The multi-scalar warning model was developed and applied considering 
Norway as the test area and the Norwegian hydrological basins as the most 
appropriate territorial units. The latter indeed represent an intermediate 
scale of analysis, where both widespread meteorological data and local 
pore water pressure observations may provide fruitful information. 
According to a set of criteria, 30 territorial units were selected for analyses. 
The regional warning model currently employed in the Norwegian 
national LEWS was applied, and the warnings issued were assessed 
considering local observations. The data series were preliminary analyzed 
in order to determine potential trends adopting a simple moving average 
(SMA) calculation. Two Indicators derived from these analyses (i.e., Δui 
and Δui

*) were employed in a 2-step procedure for the definition of a new 
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multi-scalar warning model. In the calibration phase, two parametric 
analyses were performed for identifying the most appropriate time period 
(n) for calculating the simple moving average indicators, and for setting 
the values of the two thresholds to be adopted in the second step of the 
procedure (i.e., a lower threshold, LT for 1-level transition and an upper 
threshold, UT for 2-level transitions). Firstly, time periods varying from 1 
to 14 days were evaluated and the best results were achieved considering 
a period of 14 days, as it produced the maximum number of correct 
predictions as well as the minimum number of incorrect predictions. 

Among the different combinations of thresholds evaluated, Δu14,10,25
*–

Δu14,10,30
* provided the best results. It should be mentioned that the model 

demonstrated a low sensitivity to the upper threshold, due to the small 
number of 2-level transitions recorded in the period of analysis. Two 
performance criteria employing statistical indicators derived from 
contingency tables were considered for validation purposes. The most 
useful indicators for determining the best-performing thresholds were: the 
efficiency index, Ieff; the false alert rate, RFA; and the error rate, ER. They 

confirmed that Δu14,10,25
*–Δu14,10,30

* are the optimal combinations of 
thresholds, and that slight differences can be observed among them. On 
the other hand, it is worth mentioning that all the considering thresholds 
allowed to enhance the performance of the currently adopted regional 
warning model, demonstrating that pore water pressure trends can 
provide useful indications for early warning purposes at regional scale. Of 
course, the results of the performed analysis should be considered specific 
for the regional warning model employed in Norway, although the 
proposed methodology can be applied to other case studies, upon 
adequately considering differences related to the regional warning model 
adopted, the geomorphological context, and the types of landslides under 
surveillance. 
 
Concluding remarks and future perspectives 
Concluding, some specific requirements and potential practical issues that 
LEWS managers would have to take into consideration when designing a 
warning model for weather-induced landslides, can be mentioned. 

• The definition of a reliable warning model is strictly connected to 
the availability of rainfall and landslide datasets and to the accuracy 
of the information therein contained. 
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• Weather measurements alone can be not sufficient for a reliable 
prediction of landslide occurrence in complex geomorphological 
contexts. In these cases, geotechnical data collected at local scale 
can provide additional information, although the parameters need 
to be appropriately selected depending on the types of landslides 
under surveillance. 

• Multi-level thresholds combinations can be adopted as a solution 
to be employed in a warning model. 

• A continuous collection of data, an update of the adopted 
thresholds and periodic performance assessments are necessary to 
maintain the reliability of a warning model. 

The results of this thesis raise new questions on future refinements for 
improving the prediction capabilities of warning models for weather-
induced landslides. In the following, potential improvements are 
presented, and the prospects for applying the developed early warning 
applications in general are also discussed. 
Both warning models developed in this study offer a huge potential for 
applications to other study areas. In particular the probabilistic warning 
model can be easily applied to other areas where the weather-induced 
landslides pose a significant risk. To this aim, the availability of landslide 
inventories and widespread monitoring data is crucial for the calibration 
and the validation of the model. Regarding the landslide inventory, the 
methodology adopted to define and populate the “FraneItalia” catalog 
from online news is deemed to be general and can be used to develop 
similar initiatives in other countries in order to supplement existing 
landslide inventories. On the other hand, the advances in satellite and 
ground-based radar technology are providing a great support to the 
development of reliable warning models, especially in areas where land-
based monitoring networks are not available or their spatial resolution is 
not adequate. Of great benefit to future application of the multi-scalar 
warning model to other case studies could be a comprehensive 
investigation on the landslides under surveillance in order to define the 
most suitable parameters to be monitored for early warning purposes. In 
addition, the availability of a significant number of local observations is 
also crucial for the definition of a reliable warning model. 
The methodologies proposed in this work are aimed at improving the 
efficiency of the warning models adopted within warning systems for 
weather-induced landslides. It must be noted, however, that they do not 
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tackle other aspects that are critical for the effectiveness of a LEWS, such 
as: communication strategies, public education, emergency action, and risk 
perception. Therefore, their design and operation necessarily require an 
interdisciplinary collaboration as well as the collaboration of hazard 
management officers, communities and other relevant stakeholders 
involved in the process of landslide risk management. 
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APPENDIX 

A) LANDSLIDE EVENTS OCCURRED IN EMILIA-ROMAGNA 

AND CAMPANIA REGIONS 

This Appendix reports the areal landslide events (ALEs) and the single 
landslide events (SLEs) categorized as weather-induced landslides in the 
FraneItalia database and used for the analyses carried out in Emilia-
Romagna (Section 5.5) and Campania (Section 5.6). A total of 102 
weather-induced landslide events occurred in Emilia-Romagna from 
March 2014 to December 2015, 24 of them classified as ALEs (Table A.1) 
and 78 as SLEs (Table A.2). On the other hand, Campania was affected 
from 143 weather-induced landslide events from March 2014 to 
December 2017, differentiated between 19 ALEs (Table A.3) and 124 
SLEs (Table A.4). 
The information reported for each ALE are: the identification code (ID), 
whose format is designed to highlight the landslide event category and the 
initial date of the event; the number of landslides; the confidence 
descriptor Ndi to differentiate between records for which the number of 
events is reported in the news reports or estimated by the operator; the 
county(-ies) affected from the landslides; the warning zone interested by 
the ALE. 
Regarding the SLEs, the following information are included: the 
identification code (ID); the geographic coordinates (WGS84 datum); the 
confidence descriptor Sdi associated to the accuracy of the geographic 
coordinates: certain, approximated, and municipality; the warning zone 
interested by the SLE. 
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Table A.1 Main information on ALEs occurred in Emilia-Romagna between 
March 2014 and December 2015 

ID Number Ndi County(-ies) 
Warning 

zone 

2014-04-03_ALE_C2_001 2 reported Modena Emil-E 

2014-04-04_ALE_C3_001 3 reported Reggio nell'Emilia Emil-F 

2014-04-28_ALE_C3_001 2 reported Forlì-Cesena Emil-B 

2014-05-03_ALE_C3_002 9 reported Parma Emil-G 

2014-05-16_ALE_C3_001 4 reported Reggio nell'Emilia Emil-E 

2014-07-09_ALE_C3_002 4 estimation Rimini Emil-B 

2014-10-13_ALE_C3_001 3 estimation Piacenza Emil-G 

2014-10-15_ALE_C3_001 5 estimation Parma Emil-G 

2014-11-17_ALE_C3_001 2 estimation Forlì-Cesena Emil-A 

2015-02-25_ALE_C2_001 9 reported Forlì-Cesena, Ravenna Emil-A 

2015-02-26_ALE_C2_001 2 reported Parma Emil-G 

2015-02-26_ALE_C3_001 2 reported Forlì-Cesena Emil-A 

2015-03-03_ALE_C3_001 2 reported Modena Emil-E 

2015-03-05_ALE_C3_002 3 reported Forlì-Cesena Emil-A 

2015-03-07_ALE_C3_001 3 reported Rimini Emil-B 

2015-03-18_ALE_C3_001 2 reported Rimini Emil-B 

2015-03-18_ALE_C3_002 2 estimation Bologna Emil-C 

2015-03-20_ALE_C2_001 4 reported Reggio nell'Emilia Emil-F 

2015-03-20_ALE_C3_001 2 estimation Piacenza Emil-G 

2015-03-26_ALE_C3_003 5 estimation Modena Emil-E 

2015-03-28_ALE_C3_001 4 reported Rimini Emil-B 

2015-04-28_ALE_C3_001 4 reported Modena Emil-E 

2015-09-14_ALE_C3_001 5 estimation Piacenza Emil-G 

2015-11-20_ALE_C3_001 2 reported Modena Emil-E 
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Table A.2 Main information on SLEs occurred in Emilia-Romagna between 
March 2014 and December 2015 

ID Latitude Longitude Sdi 
Warning  

zone 

2014-03-19_SLE_C3_002 44.2140 11.2364 A Emil-C 

2014-04-02_SLE_C3_001 44.2693 10.9470 M Emil-E 

2014-04-04_SLE_C3_004 44.4982 10.4641 A Emil-E 

2014-04-04_SLE_C3_005 44.6488 10.9201 M Emil-E 

2014-04-26_SLE_C3_001 44.3762 10.5625 M Emil-E 

2014-05-02_SLE_C3_006 44.8747 9.3844 M Emil-H 

2014-05-09_SLE_C2_001 44.0064 11.9434 A Emil-A 

2014-05-12_SLE_C3_001 44.0444 12.1463 A Emil-B 

2014-05-14_SLE_C3_003 44.4796 11.0375 M Emil-E 

2014-05-15_SLE_C3_001 44.2140 11.2364 M Emil-C 

2014-05-20_SLE_C3_001 44.4843 10.3393 M Emil-E 

2014-06-02_SLE_C3_002 44.4839 10.3375 C Emil-E 

2014-06-09_SLE_C3_001 43.9565 12.1971 M Emil-A 

2014-06-26_SLE_C3_002 44.4372 10.6916 C Emil-E 

2014-07-30_SLE_C3_002 44.4548 10.5196 M Emil-E 

2014-08-03_SLE_C3_002 44.6676 10.8982 C Emil-F 

2014-09-19_SLE_C3_001 44.2904 11.8737 C Emil-B 

2014-10-10_SLE_C3_004 44.6114 9.3188 C Emil-G 

2014-10-13_SLE_C3_004 44.4340 10.2285 A Emil-E 

2014-11-11_SLE_C3_001 44.5370 10.4810 C Emil-E 

2014-12-15_SLE_C3_001 44.8377 10.0111 C Emil-G 

2015-02-04_SLE_C2_001 43.9833 12.4215 C Emil-B 

2015-02-06_SLE_C3_001 44.1333 12.2333 C Emil-B 

2015-02-07_SLE_C3_003 44.3533 11.7141 C Emil-D 

2015-02-07_SLE_C3_004 44.1041 11.9850 C Emil-A 

2015-02-11_SLE_C3_001 44.2225 12.0408 A Emil-B 

2015-02-14_SLE_C3_001 44.4333 10.4000 C Emil-E 

2015-02-19_SLE_C3_002 44.2154 11.2329 M Emil-C 

2015-02-21_SLE_C3_004 44.0794 11.7436 M Emil-A 

2015-02-21_SLE_C3_005 44.2994 11.6809 A Emil-C 

2015-02-24_SLE_C3_004 44.2303 10.6528 M Emil-E 

2015-02-24_SLE_C3_005 44.3463 10.9935 M Emil-C 

2015-02-24_SLE_C3_006 44.5403 10.7827 M Emil-E 

2015-02-26_SLE_C3_001 44.2128 11.5046 M Emil-C 

2015-02-27_SLE_C2_002 44.4995 10.7739 A Emil-E 

2015-02-27_SLE_C3_002 44.1131 11.9794 A Emil-A 
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2015-02-27_SLE_C3_004 43.9862 11.7724 C Emil-B 

2015-02-27_SLE_C3_005 44.2146 11.6190 A Emil-C 

2015-02-28_SLE_C2_001 43.9863 12.4377 A Emil-B 

2015-02-28_SLE_C3_001 44.6009 10.5460 A Emil-F 

2015-02-28_SLE_C3_002 44.5262 10.6093 A Emil-E 

2015-03-02_SLE_C3_002 44.4547 10.5198 M Emil-E 

2015-03-02_SLE_C3_003 44.5092 9.9895 M Emil-G 

2015-03-04_SLE_C3_003 44.3459 10.9960 A Emil-C 

2015-03-04_SLE_C3_004 44.3336 10.8140 A Emil-E 

2015-03-05_SLE_C3_003 44.2689 10.9484 M Emil-E 

2015-03-05_SLE_C3_004 44.1368 12.2425 M Emil-B 

2015-03-08_SLE_C3_001 44.4146 10.6845 A Emil-E 

2015-03-17_SLE_C2_001 44.0499 12.2024 A Emil-B 

2015-03-18_SLE_C3_002 43.8958 12.6307 A Emil-B 

2015-03-19_SLE_C3_003 44.2427 10.9200 C Emil-E 

2015-03-26_SLE_C3_002 43.81773 12.2650 M Emil-A 

2015-03-26_SLE_C3_006 44.1333 12.2247 M Emil-B 

2015-03-26_SLE_C3_007 44.4372 10.6916 M Emil-E 

2015-03-27_SLE_C2_001 44.5772 10.6549 A Emil-E 

2015-03-27_SLE_C3_003 44.4372 10.6916 M Emil-E 

2015-03-27_SLE_C3_004 44.3651 11.2154 A Emil-C 

2015-03-27_SLE_C3_005 44.2962 11.7992 C Emil-B 

2015-03-30_SLE_C3_002 44.5032 10.9431 M Emil-E 

2015-04-02_SLE_C3_001 44.6200 10.4680 A Emil-C 

2015-04-09_SLE_C3_003 44.2600 10.9390 C Emil-E 

2015-04-11_SLE_C3_001 44.8000 10.3270 A Emil-G 

2015-04-15_SLE_C3_001 44.5100 11.8200 C Emil-D 

2015-04-20_SLE_C3_001 44.2695 10.9445 A Emil-E 

2015-04-20_SLE_C3_002 44.2383 12.2655 C Emil-B 

2015-04-21_SLE_C3_001 44.0980 12.1973 A Emil-A 

2015-04-22_SLE_C3_001 44.3447 10.9963 C Emil-C 

2015-05-04_SLE_C3_001 44.2355 10.7498 A Emil-E 

2015-05-12_SLE_C3_001 44.0069 11.9383 M Emil-A 

2015-05-29_SLE_C2_001 44.0878 12.2077 C Emil-B 

2015-10-01_SLE_C3_003 44.5167 10.6940 C Emil-E 

2015-10-29_SLE_C2_001 44.1493 12.1924 A Emil-B 

2015-11-16_SLE_C3_003 44.5388 10.5833 C Emil-E 

2015-11-22_SLE_C3_001 44.2073 10.7972 A Emil-E 

2015-12-01_SLE_C3_001 43.8391 11.9656 C Emil-A 
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2015-12-07_SLE_C3_001 44.7487 10.9760 A Emil-E 

2015-12-15_SLE_C3_001 44.9212 10.6544 C Emil-F 

2015-12-15_SLE_C3_002 43.8261 11.9589 A Emil-A 
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Table A.3 Main information on ALEs occurred in Campania between March 2014 
and December 2017 

ID Number Ndi County(-ies) 
Warning 

zone 

2014-06-15_ALE_C2_001 1 reported Avellino Camp-3 

2014-06-16_ALE_C3_001 2 estimation Salerno Camp-5 

2014-07-30_ALE_C1_001 5 reported Avellino, Napoli, Salerno Camp-3 

2014-09-01_ALE_C3_001 5 reported Avellino Camp-3 

2014-09-12_ALE_C3_002 4 estimation Salerno Camp-6 

2015-10-07_ALE_C3_001 3 estimation Avellino Camp-3 

2015-10-11_ALE_C2_001 4 reported Napoli Camp-1 

2015-10-19_ALE_C2_001 5 reported Benevento Camp-4 

2015-10-20_ALE_C3_001 3 estimation Salerno Camp-3 

2015-12-04_ALE_C3_001 8 estimation Salerno Camp-3 

2015-12-04_ALE_C3_002 5 estimation Salerno Camp-5 

2016-03-12_ALE_C3_002 5 estimation Avellino Camp-3 

2017-09-02_ALE_C3_001 2 estimation Salerno Camp-3 

2017-09-11_ALE_C3_001 5 estimation Avellino, Salerno Camp-3 

2017-09-11_ALE_C3_001 5 estimation Caserta Camp-1 

2017-11-07_ALE_C2_001 3 estimation Napoli Camp-1 

2017-11-07_ALE_C3_002 5 estimation Salerno, Napoli Camp-3 

2017-11-07_ALE_C3_003 2 estimation Salerno Camp-7 

2017-11-07_ALE_C3_001 3 estimation Napoli Camp-3 
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Table A.4 Main information on SLEs occurred in Campania between March 2014 
and December 2017 

ID Latitude Longitude Sdi 
Warning  

zone 

2014-04-09_SLE_C3_002 40.7974 14.0438 C Camp-1 

2014-05-05_SLE_C3_006 40.6329 15.3813 M Camp-7 

2014-06-15_SLE_C3_001 41.0035 14.9268 C Camp-4 

2014-06-15_SLE_C3_002 40.6332 15.3652 M Camp-7 

2014-06-18_SLE_C3_001 41.0305 14.6173 M Camp-3 

2014-06-19_SLE_C3_001 40.6644 15.1065 M Camp-5 

2014-07-22_SLE_C2_001 40.8518 14.2681 M Camp-1 

2014-07-30_SLE_C3_001 40.8232 14.7085 C Camp-1 

2014-09-07_SLE_C3_002 41.1200 14.3584 C Camp-2 

2014-09-11_SLE_C3_002 40.6857 14.5844 C Camp-3 

2014-09-11_SLE_C3_003 40.7935 14.0542 C Camp-1 

2014-09-13_SLE_C3_001 40.7170 14.6165 C Camp-3 

2014-09-21_SLE_C3_001 40.7389 15.0534 C Camp-5 

2014-11-14_SLE_C3_004 40.6594 14.4174 C Camp-3 

2014-11-22_SLE_C3_001 40.5462 14.2371 C Camp-1 

2014-12-04_SLE_C3_004 41.4653 14.1469 A Camp-2 

2014-12-28_SLE_C3_001 40.6112 14.5346 C Camp-3 

2014-12-29_SLE_C3_002 40.2114 15.4273 A Camp-8 

2015-01-03_SLE_C3_001 40.4375 15.0532 A Camp-6 

2015-01-24_SLE_C3_002 40.1400 15.1857 A Camp-6 

2015-01-26_SLE_C3_002 40.6697 14.7091 C Camp-3 

2015-01-27_SLE_C3_001 40.1764 15.4258 C Camp-8 

2015-02-01_SLE_C3_002 40.6277 14.3736 C Camp-3 

2015-02-01_SLE_C3_003 40.1500 15.6166 C Camp-8 

2015-02-02_SLE_C3_001 40.6500 14.6166 C Camp-3 

2015-02-04_SLE_C3_003 40.8410 14.2276 C Camp-1 

2015-02-04_SLE_C3_004 40.7500 14.5000 C Camp-3 

2015-02-04_SLE_C3_005 41.1333 14.7833 C Camp-4 

2015-02-04_SLE_C3_006 40.8702 14.2378 C Camp-1 

2015-02-05_SLE_C3_003 40.1000 15.5833 A Camp-8 

2015-02-09_SLE_C3_002 40.2833 15.2166 C Camp-6 

2015-02-10_SLE_C3_001 40.6214 14.5718 A Camp-3 

2015-02-10_SLE_C3_003 40.6666 14.4333 C Camp-3 

2015-02-11_SLE_C3_002 40.7000 14.9833 C Camp-5 

2015-02-12_SLE_C3_004 40.0223 15.3292 A Camp-8 

2015-02-19_SLE_C3_001 40.5480 14.2466 C Camp-1 
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2015-02-25_SLE_C1_001 40.7244 13.9310 A Camp-1 

2015-03-02_SLE_C3_004 40.7369 13.8566 A Camp-1 

2015-03-05_SLE_C3_002 40.8345 14.2289 A Camp-1 

2015-04-01_SLE_C3_001 40.8067 14.1985 A Camp-1 

2015-04-24_SLE_C3_001 40.6633 14.4254 M Camp-3 

2015-04-27_SLE_C3_001 40.6985 14.9715 C Camp-5 

2015-05-12_SLE_C3_002 40.5813 15.1838 M Camp-6 

2015-07-27_SLE_C3_001 40.5414 14.2249 A Camp-1 

2015-08-10_SLE_C1_001 40.0220 15.3287 C Camp-8 

2015-09-28_SLE_C3_002 40.0943 15.4050 M Camp-8 

2015-10-12_SLE_C3_001 40.0957 15.4005 A Camp-8 

2015-10-19_SLE_C3_001 41.1442 14.7733 A Camp-4 

2015-10-20_SLE_C2_001 41.1951 14.6665 M Camp-4 

2015-11-13_SLE_C3_001 40.9303 14.3498 A Camp-1 

2015-11-29_SLE_C2_001 41.0441 14.9947 A Camp-4 

2016-02-11_SLE_C3_001 40.0705 15.6326 C Camp-8 

2016-02-11_SLE_C3_003 40.4658 15.1499 A Camp-6 

2016-02-14_SLE_C3_001 40.6842 14.7220 A Camp-3 

2016-02-14_SLE_C3_002 40.6679 14.7278 M Camp-3 

2016-02-14_SLE_C3_003 40.8225 14.0743 C Camp-1 

2016-02-14_SLE_C3_004 40.8228 14.0765 C Camp-1 

2016-02-29_SLE_C3_004 41.2033 14.4655 A Camp-2 

2016-03-06_SLE_C3_001 40.4242 15.4368 C Camp-7 

2016-03-08_SLE_C3_003 40.6974 14.7768 C Camp-3 

2016-03-25_SLE_C3_002 40.0087 15.3398 C Camp-8 

2016-04-08_SLE_C3_001 41.4002 14.8106 A Camp-4 

2016-04-24_SLE_C3_001 40.7753 14.7293 A Camp-3 

2016-04-26_SLE_C3_001 41.2067 14.7366 A Camp-4 

2016-04-27_SLE_C3_002 40.4163 15.2319 A Camp-6 

2016-05-11_SLE_C3_001 40.9359 14.7290 C Camp-3 

2016-05-11_SLE_C3_002 41.2979 14.6951 A Camp-4 

2016-07-25_SLE_C3_002 40.9433 14.9396 A Camp-3 

2016-08-02_SLE_C3_003 41.3621 14.8339 M Camp-4 

2016-08-02_SLE_C3_004 40.6468 14.7006 M Camp-3 

2016-09-11_SLE_C3_002 41.2497 15.2491 M Camp-4 

2016-09-18_SLE_C3_001 41.0708 15.0597 M Camp-4 

2016-09-18_SLE_C3_002 40.9152 14.7897 M Camp-3 

2016-09-19_SLE_C2_001 40.8052 14.0491 A Camp-1 

2016-09-20_SLE_C3_001 40.7000 14.7055 M Camp-3 
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2016-09-27_SLE_C3_001 40.7593 14.0232 A Camp-1 

2016-10-03_SLE_C3_001 40.6666 14.4333 M Camp-3 

2016-10-05_SLE_C3_001 40.8533 14.5579 A Camp-3 

2016-10-10_SLE_C3_001 40.5558 14.2514 A Camp-1 

2016-10-19_SLE_C3_001 40.3499 14.9914 M Camp-6 

2016-10-24_SLE_C3_001 41.0113 14.0646 M Camp-1 

2016-10-30_SLE_C3_001 40.6957 14.7250 A Camp-3 

2016-11-13_SLE_C3_001 41.3666 14.3833 M Camp-2 

2016-12-06_SLE_C3_001 40.0800 15.3300 A Camp-8 

2016-12-10_SLE_C3_001 40.6282 14.4788 A Camp-3 

2016-12-21_SLE_C3_001 40.6825 14.5363 C Camp-3 

2017-01-03_SLE_C3_001 40.3486 14.9912 M Camp-6 

2017-01-18_SLE_C3_003 41.1333 14.7833 M Camp-4 

2017-01-20_SLE_C3_001 41.3500 14.8166 M Camp-4 

2017-02-25_SLE_C3_001 41.1902 14.7405 A Camp-4 

2017-02-26_SLE_C3_001 41.1599 15.0999 C Camp-4 

2017-03-08_SLE_C3_004 40.1785 15.4410 A Camp-8 

2017-03-09_SLE_C3_002 41.1564 15.0925 A Camp-4 

2017-04-04_SLE_C3_002 40.6352 14.4185 A Camp-3 

2017-05-22_SLE_C3_001 40.4586 15.5664 A Camp-7 

2017-07-13_SLE_C3_001 40.0462 15.3264 C Camp-8 

2017-07-21_SLE_C3_001 40.7593 14.0233 C Camp-1 

2017-07-26_SLE_C2_001 40.4342 15.4637 M Camp-7 

2017-07-31_SLE_C3_002 40.6333 14.4000 M Camp-3 

2017-08-03_SLE_C3_001 40.4333 15.4666 A Camp-7 

2017-08-17_SLE_C3_001 41.0805 14.3576 A Camp-2 

2017-08-18_SLE_C3_001 40.8590 14.2017 A Camp-1 

2017-09-02_SLE_C2_001 41.3388 14.5086 M Camp-2 

2017-09-08_SLE_C2_001 40.5505 14.2425 A Camp-1 

2017-09-08_SLE_C2_002 40.5488 14.2370 A Camp-1 

2017-09-12_SLE_C3_001 40.6887 14.4664 C Camp-3 

2017-09-19_SLE_C3_004 40.5562 14.2486 C Camp-1 

2017-09-20_SLE_C3_003 40.0529 15.6326 A Camp-8 

2017-09-22_SLE_C3_001 40.8127 14.2018 A Camp-1 

2017-09-26_SLE_C3_002 40.4361 15.0578 A Camp-6 

2017-09-27_SLE_C2_001 40.6445 14.6084 A Camp-3 

2017-10-01_SLE_C3_001 40.5556 14.2528 C Camp-1 

2017-10-17_SLE_C3_001 40.8221 14.7571 C Camp-3 

2017-10-22_SLE_C3_002 40.8224 14.7563 A Camp-3 
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2017-10-23_SLE_C3_001 40.7626 14.6980 A Camp-3 

2017-11-10_SLE_C3_001 40.7980 14.0502 A Camp-1 

2017-11-10_SLE_C3_003 40.3789 15.3781 A Camp-6 

2017-11-10_SLE_C3_004 40.7617 14.6936 A Camp-3 

2017-11-11_SLE_C2_001 40.6960 14.4816 A Camp-3 

2017-11-12_SLE_C3_001 40.7872 14.3680 M Camp-1 

2017-11-30_SLE_C3_001 40.6894 14.6179 C Camp-3 

2017-11-30_SLE_C3_003 40.8293 14.8270 M Camp-3 

2017-12-17_SLE_C3_001 41.3833 14.0833 C Camp-2 

2017-12-18_SLE_C3_001 40.6111 14.5333 A Camp-3 
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B) EXAMPLE OF A GOOGLE EARTH ENGINE SCRIPT FOR 

ANALYZING THE SATELLITE RAINFALL DATA 

A script has been created and run through the Earth Engine Code Editor 
(https://code.earthengine.google.com/) in order to analyze the satellite rainfall 
data over each territorial unit (see Section 5.3.2). An example referring to 
the weather warning zone Camp-8 in Campania region is reported herein:  
 
// import the ImageCollection containing the satellite rainfall data from the GPM 
mission 
var rain = ee.ImageCollection("NASA/GPM_L3/IMERG_V05"); 
 
// import the FeatureCollection derived from the shapefile of the weather warning zones 
of the Campania region 
var Campania = 
ee.FeatureCollection('ft:1uguZfrRtmXZidhFpbzEL23v0xFcKLNLKhJ
M_5xDQ', 'geometry'); 
 
// select the weather warning zone Camp-8 
var warningzone = Campania.filterMetadata('COD_AREA', 'equals', 
'Camp-8'); 
 
// visualization options 
Map.setCenter(13, 40, 7); 
Map.addLayer(warningzone, {'color': 'FF0001'}); 
print (warningzone); 
 
// filter the rainfall data by specifying the date and the rainfall variable 
var rain = ee.ImageCollection("NASA/GPM_L3/IMERG_V05") 
    .filterDate('2014-03-12', '2018-01-01') 
    .select('precipitationCal'); 
 
// create and print a chart including the mean of the satellite rainfall data over the 
territorial unit 
var mean = ui.Chart.image.series(rain, warningzone, ee.Reducer.mean(), 
200); 

https://code.earthengine.google.com/
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print(mean); 
 
// visualization options 
Map.addLayer(rain, {opacity: 0.5, min: [0], max: [1], palette: 'FFFFFF, 
0000FF'}, 'precipitationCal') 
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C) FACT SHEETS OF THE 30 NORWEGIAN HYDROLOGICAL 

BASINS 

The multi-scalar warning model described in Chapter 6 has been calibrated 
and validated considering as test areas 30 Norwegian hydrological basins. 
A series of fact sheets have been prepared in order to provide a description 
of the test areas considered in this study. Each fact sheet can be divided 
into 5 main parts: 

• main characteristics, showing a Quaternary deposit map of the 
shallow soil layers where the weather-induced landslides occurred 
and the piezometers available are also reported as well as a map 
indicating in which part of Norway the hydrological basin is 
situated (i.e., SE: southeast; SW: southwest; CW: central west; 
NW: northwest); 

• shallow soil layers, indicating the surface of each hydrological basin 
and the soil profile in the shallow layers (i.e., loose sediments, no 
landslide materials, or bare rocks); 

• weather-induced landslides, reporting the main features of the weather-
induced landslides occurred within each basin: the date of 
occurrence of the landslide, a code indicating the type of landslide 
in the National landslide database (i.e., 133: slush flows: 140: 
landslides in soils, not specified: 141: clay slides; 142: debris flows: 
143: mudslides: 144: debris avalanches: 160: soil slides in artificial 
slopes); the spatial accuracy of the landslide record (n.r.: “not 
reported” indicates that this information is not available in the 
database for some records);  

• pore water pressure data series, representing the pore water pressure 
measurements available in the period of analysis for each 
hydrological basin. The depth of installation of the piezometers is 
also indicated; 

• correlation matrices, listing the landslide events occurred in relation 
to the warning events issued by applying the regional warning 
model applied in the national LEWS and the multi-scalar warning 
model developed in Chapter 6. 

 



Appendix 

190 

FYKANÅGA basin (ID: 980) – CW2 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 5.58 
Loose sediments [%]: 23 
No landslide materials [%]: 14 
Bare rocks [%]: 63 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/11/16 140 exact 
L02 2014/03/12 160 exact 
L03 2017/01/25 160 n.r. 

    
    
    
    

CW2

L01

980

L02

L03

P58322

km
0 0.5 1 2

P58261

980

P58319

P8385

P58460
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P58257
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FYKANÅGA basin (ID: 980) – CW2 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 3 0 0 0  

 No landslides 959 0 0 0  

 

 Multi-scalar 
Warning Model 

WL1 WL2 WL3 WL4  

 Landslides 3 0 0 0  

 No landslides 959 0 0 0  
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HORVEIDELVA basin (ID: 1002) – CW1 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 14.04 
Loose sediments [%]: 55 
No landslide materials [%]: 18 
Bare rocks [%]: 27 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/02/26 144 n.r. 
L02 2014/10/30 140 10 m 
L03 2015/10/03 140 exact 
L04 2016/12/04 144 n.r. 

    
    
    

CW1

1002

km

P16346
P26815 P26708

L04

L02

L02

L03

P26771

P25762
P26721

0 0.5 1 2
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HORVEIDELVA basin (ID: 1002) – CW1 

Pore water pressure data series: 

 

Correlation matrices: 

 

 Regional 
Warning Model 

WL1 WL2 WL3 WL4  

 Landslides 2 2 0 0  

 No landslides 1525 16 7 0  

 

 Multi-scalar 
Warning Model 

WL1 WL2 WL3 WL4  

 Landslides 2 0 1 1  

 No landslides 1536 7 5 0  
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SIMOA basin (ID: 2018) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 3.69 
Loose sediments [%]: 65 
No landslide materials [%]: 0 
Bare rocks [%]: 35 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/05/22 142 10 m 
L02 2014/11/23 142 100 m 
L03 2015/01/15 142 10 m 
L04 2016/01/27 140 100 m 

    
    
    

L01

2

SE
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SIMOA basin (ID: 2018) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 2 2 0 0  

 No landslides 1187 24 1 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 2 1 1 0  

 No landslides 1199 13 0 0  
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NUMEDALSLÅGEN basin (ID: 3170) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 64.00 
Loose sediments [%]: 38 
No landslide materials [%]: 9 
Bare rocks [%]: 53 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/04/17 140 250 m 
L02 2014/11/23 140 5000 m 
L03 2016/03/28 144 n.r. 
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NUMEDALSLÅGEN basin (ID: 3170) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 3 0 0  

 No landslides 1250 9 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 2 1 0  

 No landslides 1256 3 0 0  
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GLOMMAVASSDRAGET basin (ID: 3789) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 27.13 
Loose sediments [%]: 59 
No landslide materials [%]: 1 
Bare rocks [%]: 40 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2014/10/11 143 n.r. 
L02 2014/10/28 143 n.r. 
L03 2015/09/17 143 n.r. 
L04 2016/01/29 141 n.r. 
L05 2017/02/27 143 250 m 

    
    

L01

km
0 0.5 1

2

SE 3789

2

P4401

L02

L03

L04

L05

P8718

P8721

P8717

P4402

P8716

P4399

P8723



Appendix 

 

199 

GLOMMAVASSDRAGET basin (ID: 3789) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 Regional 
Warning Model 

WL1 WL2 WL3 WL4  

 Landslides 0 4 0 1  

 No landslides 1580 44 13 0  

 

 Multi-scalar 
Warning Model 

WL1 WL2 WL3 WL4  

 Landslides 0 1 2 2  

 No landslides 1604 22 11 0  
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SENJA VEST basin (ID: 5329) – NW 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 136.66 
Loose sediments [%]: 17 
No landslide materials [%]: 19 
Bare rocks [%]: 64 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/01/27 160 50 m 
L02 2013/11/15 133 50 m 
L03 2014/03/09 133 exact 
L04 2014/12/03 140 exact 
L05 2015/11/01 160 10 m 
L06 2015/11/03 142 n.r. 

    

NW

L01

5329

L02
L03

P65555

P34658

5329

P34632

P65442

P34699

P34637

km
0 2 4 8

L05

L04

L06

P65492

P34689



Appendix 

 

201 

SENJA VEST basin (ID: 5329) – NW 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 4 2 0 0  

 No landslides 1626 10 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 4 0 2 0  

 No landslides 1629 7 0 0  
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SKIENSVASSDRAGET basin (ID: 5371) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 18.21 
Loose sediments [%]: 52 
No landslide materials [%]: 2 
Bare rocks [%]: 46 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2014/02/26 140 50 m 
L02 2014/03/03 140 50 m 
L03 2015/09/15 140 50 m 
L04 2016/03/14 140 50 m 

    
    
    

L01

2

SE

5371

5371

L02

L03

L04

P29744

km
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SKIENSVASSDRAGET basin (ID: 5371) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 Regional 
Warning Model 

WL1 WL2 WL3 WL4  

 Landslides 0 4 0 0  

 No landslides 1224 17 2 0  

 

 Multi-scalar 
Warning Model 

WL1 WL2 WL3 WL4  

 Landslides 0 2 2 0  

 No landslides 1228 12 3 0  
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SKIENSVASSDRAGET basin (ID: 5539) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 38.88 
Loose sediments [%]: 53 
No landslide materials [%]: 2 
Bare rocks [%]: 45 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2014/02/15 140 50 m 
L02 2014/11/23 140 exact 
L03 2015/09/15 140 50 m 
L04 2015/09/17 140 exact 
L05 2016/02/08 140 exact 

    
    

L01

2

SE

5539
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L04

L05
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SKIENSVASSDRAGET basin (ID: 5539) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 3 2 0  

 No landslides 1432 24 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 2 1 2  

 No landslides 1449 7 0 0  
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TRONDHEIMSFJORDEN VEST basin (ID: 5794) – CW1 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 8.08 
Loose sediments [%]: 63 
No landslide materials [%]: 34 
Bare rocks [%]: 3 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/11/26 141 n.r. 
L02 2014/12/30 140 10 m 
L03 2015/12/06 140 exact 

    
    
    
    

CW1

5794

L01

5794

L02

L03 P73071

P73032
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TRONDHEIMSFJORDEN VEST basin (ID: 5794) – CW1 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 3 0 0 0  

 No landslides 1411 1 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 3 0 0 0  

 No landslides 1411 1 0 0  
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NAMSEN basin (ID: 6232) – CW1 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 26.48 
Loose sediments [%]: 31 
No landslide materials [%]: 35 
Bare rocks [%]: 34 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/12/02 140 10 m 
L02 2015/02/08 140 10 m 
L03 2016/12/04 160 n.r. 
L04 2017/02/18 140 10 m 

    
    
    

CW1

L01

6232

L02
L03
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P27111

P27139

P27125
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NAMSEN basin (ID: 6232) – CW1 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 3 1 0  

 No landslides 1439 4 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 1 3 0  

 No landslides 1439 4 0 0  
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YTRE TRONDHEIMSFJORDEN basin (ID: 6427) – CW1 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 30.02 
Loose sediments [%]: 22 
No landslide materials [%]: 8 
Bare rocks [%]: 70 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/02/28 143 n.r. 
L02 2013/11/15 142 500 m 
L03 2016/01/15 140 exact 
L04 2016/12/04 141 exact 

    
    
    

CW1
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YTRE TRONDHEIMSFJORDEN basin (ID: 6427) – CW1 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 4 0 0 0  

 No landslides 1638 0 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 4 0 0 0  

 No landslides 1638 0 0 0  
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NAMSEN basin (ID: 6460) – CW1 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 56.51 
Loose sediments [%]: 22 
No landslide materials [%]: 8 
Bare rocks [%]: 70 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/12/02 140 10 m 
L02 2015/02/10 140 10 m 
L03 2015/10/01 142 10 m 

    
    
    
    

CW1
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6460
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P27095
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NAMSEN basin (ID: 6460) – CW1 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 3 0 0  

 No landslides 761 5 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 2 0 1 0  

 No landslides 763 3 0 0  
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FYKANÅGA basin (ID: 7045) – CW2 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 65.47 
Loose sediments [%]: 29 
No landslide materials [%]: 2 
Bare rocks [%]: 69 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/12/11 140 500 m 
L02 2015/01/02 140 exact 
L03 2017/01/25 144 exact 
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FYKANÅGA basin (ID: 7045) – CW2 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 2 1 0 0  

 No landslides 1294 0 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 2 0 1 0  

 No landslides 1294 0 0 0  
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HAREIDLANDET OG GURSKØYA basin (ID: 7971) – SW 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 269.15 
Loose sediments [%]: 7 
No landslide materials [%]: 16 
Bare rocks [%]: 77 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2015/11/27 144 10 m 
L02 2016/11/25 140 exact 
L03 2017/01/19 140 exact 
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HAREIDLANDET OG GURSKØYA basin (ID: 7971) – SW 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 0 3 0  

 No landslides 1473 27 4 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 2 0 1  

 No landslides 1485 15 3 1  
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VESTRE SVARTISEN basin (ID: 8580) – CW2 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 23.08 
Loose sediments [%]: 19 
No landslide materials [%]: 0 
Bare rocks [%]: 81 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/12/11 160 exact 
L02 2014/03/13 160 exact 
L03 2017/01/25 140 exact 
L04 2017/01/26 142 n.r. 

    
    
    

CW2

L01
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km
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VESTRE SVARTISEN basin (ID: 8580) – CW2 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 1 2 1 0  

 No landslides 513 1 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 1 0 1 2  

 No landslides 514 0 0 0  
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SKIENSVASSDRAGET basin (ID: 8922) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 104.55 
Loose sediments [%]: 51 
No landslide materials [%]: 2 
Bare rocks [%]: 47 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/05/22 143 n.r. 
L02 2014/01/06 140 exact 
L03 2014/11/23 144 n.r. 
L04 2015/09/01 140 50 m 
L05 2015/09/02 144 n.r. 
L06 2015/09/17 140 50 m 
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SKIENSVASSDRAGET basin (ID: 8922) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 Regional 
Warning Model 

WL1 WL2 WL3 WL4  

 Landslides 0 4 2 0  

 No landslides 1609 26 1 0  

 

 Multi-scalar 
Warning Model 

WL1 WL2 WL3 WL4  

 Landslides 0 0 4 2  

 No landslides 1616 20 0 0  
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VEGÅRSVASSDRAGET basin (ID: 9585) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 2.45 
Loose sediments [%]: 52 
No landslide materials [%]: 0 
Bare rocks [%]: 48 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/05/15 140 exact 
L02 2014/10/18 144 n.r. 
L03 2016/03/15 143 100 m 
L04 2016/11/05 160 500 m 
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VEGÅRSVASSDRAGET basin (ID: 9585) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 3 0 1  

 No landslides 1560 35 12 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 1 2 1  

 No landslides 1579 23 5 0  
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LEIRA basin (ID: 9962) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 57.76 
Loose sediments [%]: 62 
No landslide materials [%]: 25 
Bare rocks [%]: 13 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/12/24 140 100 m 
L02 2013/12/27 143 50 m 
L03 2014/04/17 140 100 m 
L04 2014/10/23 140 100 m 
L05 2015/02/19 140 100 m 
L06 2015/09/17 140 100 m 
L07 2016/04/30 140 100 m 
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LEIRA basin (ID: 9962) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 1 4 2 0  

 No landslides 1589 31 15 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 1 1 3 2  

 No landslides 1608 20 7 0  
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NUMEDALSLÅGEN basin (ID: 10095) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 10.09 
Loose sediments [%]: 39 
No landslide materials [%]: 7 
Bare rocks [%]: 54 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2014/02/15 140 exact 
L02 2015/01/15 140 50 m 
L03 2016/03/28 160 50 m 
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NUMEDALSLÅGEN basin (ID: 10095) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 2 1 0  

 No landslides 1366 34 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 1 2 0  

 No landslides 1386 14 0 0  
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DRAMMENSVASSDRAGET basin (ID: 10566) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 14.38 
Loose sediments [%]: 66 
No landslide materials [%]: 8 
Bare rocks [%]: 26 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2014/02/12 144 10 m 
L02 2014/02/15 142 10 m 
L03 2015/09/02 142 10 m 
L04 2016/03/15 140 100 m 

    
    
    

L01

2

SE 10566

10566

L02

L03

P54053

P6404

P54057

P23035

km
0 1 2 4

L04

P23036

P54056

P6406

P6407



Appendix 

 

229 

DRAMMENSVASSDRAGET basin (ID: 10566) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 1 2 1 0  

 No landslides 1363 17 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 1 1 1 1  

 No landslides 1367 13 0 0  
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VIKNA OG KYST FOLDFJORDEN basin (ID: 11922) – CW1 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 7.64 
Loose sediments [%]: 72 
No landslide materials [%]: 0 
Bare rocks [%]: 28 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/02/26 140 10 m 
L02 2013/12/11 140 500 m 
L03 2014/12/31 144 n.r. 
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VIKNA OG KYST FOLDFJORDEN basin (ID: 11922) – CW1 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 0 3 0  

 No landslides 1234 16 4 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 0 2 1  

 No landslides 1234 16 4 0  
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HAREIDLANDET OG GURSKØYA basin (ID: 13678) – SW 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 307.18 
Loose sediments [%]: 10 
No landslide materials [%]: 3 
Bare rocks [%]: 87 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2015/11/27 141 50 m 
L02 2016/12/30 140 10 m 
L03 2017/01/19 140 exact 
L04 2017/01/20 142 n.r. 

    
    
    

L01
2

13678
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HAREIDLANDET OG GURSKØYA basin (ID: 13678) – SW 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 1 3 0  

 No landslides 1441 19 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 0 4 0  

 No landslides 1447 13 0 0  
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KYST UTSKARPEN basin (ID: 13702) – CW2 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 33.45 
Loose sediments [%]: 17 
No landslide materials [%]: 12 
Bare rocks [%]: 71 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/12/10 140 10 m 
L02 2015/02/09 160 exact 
L03 2017/01/26 142 n.r. 

    
    
    
    

CW2

L01
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L03

P1459

P1460
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km
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KYST UTSKARPEN basin (ID: 13702) – CW2 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 0 2 1  

 No landslides 1618 13 8 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 1 1 1  

 No landslides 1622 10 7 0  
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P1460 (z=5.0 m) P8367 (z=7.5 m)



Appendix 

236 

HORVEREIDELVA basin (ID: 13913) – CW1 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 10.58 
Loose sediments [%]: 41 
No landslide materials [%]: 9 
Bare rocks [%]: 50 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/12/11 160 10 m 
L02 2013/12/12 140 exact 
L03 2014/12/30 140 10 m 
L04 2014/12/31 144 n.r. 
L05 2015/01/01 140 exact 

    
    

CW1

L01

13913

L02L03
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km
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HORVEREIDELVA basin (ID: 13913) – CW1 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 1 4 0  

 No landslides 1617 18 2 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 0 1 4  

 No landslides 1623 13 1 0  
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DRAMMENSVASSDRAGET basin (ID: 14371) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 9.43 
Loose sediments [%]: 69 
No landslide materials [%]: 3 
Bare rocks [%]: 28 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/05/21 144 10 m 
L02 2013/05/22 133 50 m 
L03 2013/05/24 140 10 m 
L04 2014/07/07 133 n.r. 
L05 2016/05/22 144 1000 m 

    
    

L01

2

SE
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L04

km
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DRAMMENSVASSDRAGET basin (ID: 14371) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 1 2 2  

 No landslides 1604 29 4 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 0 2 3  

 No landslides 1616 14 6 1  
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OSELVVASSDRAGET basin (ID: 15645) – SW 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 15.25 
Loose sediments [%]: 27 
No landslide materials [%]: 0 
Bare rocks [%]: 73 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/11/19 143 exact 
L02 2014/10/28 133 exact 
L03 2015/12/24 140 exact 

    
    
    
    

L01

2
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OSELVVASSDRAGET basin (ID: 15645) – SW 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 1 2 0 0  

 No landslides 1273 1 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 1 1 1 0  

 No landslides 1273 1 0 0  

 

 
 
 

0
10
20
30
40
50
60
70
80
90

2
0
1
3
/

0
1
/

0
1

2
0
1
3
/

0
4
/

0
1

2
0
1
3
/

0
7
/

0
1

2
0
1
3
/

1
0
/

0
1

2
0
1
4
/

0
1
/

0
1

2
0
1
4
/

0
4
/

0
1

2
0
1
4
/

0
7
/

0
1

2
0
1
4
/

1
0
/

0
1

2
0
1
5
/

0
1
/

0
1

2
0
1
5
/

0
4
/

0
1

2
0
1
5
/

0
7
/

0
1

2
0
1
5
/

1
0
/

0
1

2
0
1
6
/

0
1
/

0
1

2
0
1
6
/

0
4
/

0
1

2
0
1
6
/

0
7
/

0
1

2
0
1
6
/

1
0
/

0
1

2
0
1
7
/

0
1
/

0
1

2
0
1
7
/

0
4
/

0
1

2
0
1
7
/

0
7
/

0
1

P
o

re
 w

at
er

 p
re

ss
u

re
 [

k
P

a]

P23118 (z=8.5 m) P23119 (z=6.0 m) P23123 (z=6.0 m)

P23120 (z=2.5 m) P23127 (z=2.5 m) P23124 (z=8.5 m)



Appendix 

242 

TRONDHEIMSFJORDEN VEST basin (ID: 17074) – CW1 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 9.83 
Loose sediments [%]: 78 
No landslide materials [%]: 13 
Bare rocks [%]: 9 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/11/15 160 n.r. 
L02 2015/02/08 140 exact 
L03 2015/10/22 160 n.r. 
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17074

L01

17074

L02

L03

P73098

P73059

P73089

P73099

km
0 0.5 1 2

P73097

P73063



Appendix 

 

243 

TRONDHEIMSFJORDEN VEST basin (ID: 17074) – CW1 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 2 1 0 0  

 No landslides 1260 0 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 2 1 0 0  

 No landslides 1260 0 0 0  
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MOSSEVASSDRAGET basin (ID: 18957) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 51.39 
Loose sediments [%]: 36 
No landslide materials [%]: 34 
Bare rocks [%]: 30 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2014/02/13 143 exact 
L02 2014/02/14 143 exact 
L03 2014/02/15 143 10 m 
L04 2015/02/28 143 10 m 
L05 2016/02/08 140 10 m 
L06 2016/02/20 143 n.r. 
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MOSSEVASSDRAGET basin (ID: 18957) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 2 4 0  

 No landslides 1576 24 5 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 1 2 3  

 No landslides 1581 19 4 1  
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VESTFOSSELVA basin (ID: 19897) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 25.08 
Loose sediments [%]: 30 
No landslide materials [%]: 1 
Bare rocks [%]: 69 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/05/22 140 exact 
L02 2014/01/02 143 10 m 
L03 2014/01/03 144 n.r. 
L04 2014/03/06 144 10 m 
L05 2015/09/17 144 10 m 
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VESTFOSSELVA basin (ID: 19897) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 5 0 0  

 No landslides 1620 17 0 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 1 3 1  

 No landslides 1623 13 1 0  
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GLOMMAVASSDRAGET basin (ID: 19903) – SE 

Main characteristics: 

 

Quaternary deposits 

 Moraine material, thick  Marine and fjord deposits, continuous 

 Moraine material, thin  Marine and fjord deposits, thin 

 Terminal moraine  Marine and fjord deposits, thick 

 Glaciofluvial deposits  No landslide materials 

 Weathered material  Bare rocks 

Legend 

 xgeo grid 

 Weather-induced landslides in soils (2013/01 – 2017/06) 

 Piezometers 
 

Shallow soil layers: 

Area [km2]: 43.46 
Loose sediments [%]: 46 
No landslide materials [%]: 13 
Bare rocks [%]: 41 

Weather-induced landslides: 

ID Date Type Spatial accuracy 
L01 2013/04/16 140 100 m 
L02 2013/04/18 140 100 m 
L03 2014/12/14 140 100 m 
L04 2015/01/16 140 100 m 
L05 2015/04/12 143 100 m 
L06 2016/02/08 143 n.r. 
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GLOMMAVASSDRAGET basin (ID: 19903) – SE 

Pore water pressure data series: 

 

Correlation matrices: 

 

 
Regional 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 2 4 0  

 No landslides 1580 39 17 0  

 

 
Multi-scalar 

Warning Model 
WL1 WL2 WL3 WL4  

 Landslides 0 0 4 2  

 No landslides 1596 32 8 0  
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D) MAIN VARIABLES AND ACRONYMS USED IN THE TEXT 

Table A.5 Main variables and acronyms used in the text 

Acronym Description 

ALE Areal Landslide Event 

C1 Very severe consequences class 

C2 Severe consequences class 

C3 Minor consequences class 

CA Correct Alert 

D Duration 

E Cumulated rainfall 

ER Elements at risk 

ER Error Rate 

FA False Alert 

FN False Negative 

FP False Positive 

GPM Global Precipitation Measurement 

Gre Green class 

H Hazard 

HK Hanssen and Kuipers (1965) skill score 

HRL Hit Rate 

Ieff Efficiency Index 

L Landslide event 

LEWS Landslide Early Warning System 

Lo-LEWS Local Landslide Early Warning System 

LT Lower Threshold 

MA Missed Alert 

n Time period 

N(D,E) Rainfall events characterized by specific values of D and E 

N(D,E|L) Rainfall events that resulted in landslides 

Ndi Numerousness confidence descriptor 

NL Total number of landslide events 

NR Total number of rainfall events 

OR  Odds Ratio 

P(D,E) Marginal probability 

P(D,E|L) Likelihood 

P(L) Prior probability 
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P(L|D,E) Posterior landslide probability 

pk Pore water pressure recorded at day k 

POD Probability of detection score 

POFA Probability of false alarm score 

POFD Probability of false detection score 

PPW Positive Predictive Power 

PSM Probability of Serious Mistakes 

R Landslide risk 

Red Red error 

RFA False Alert Rate 

RMA Missed Alert Rate 

ROC Receiver Operating Characteristic 

Sdi Spatial confidence descriptor 

SLE Single Landslide Event 

SMA Simple Moving Average 

Tdi Temporal confidence descriptor 

Te-LEWS Territorial landslide early warning system 

TN True Negative 

TP True Positive 

TRMM Tropical Rainfall Measuring Mission 

ui Simple moving average of pore water pressure data series 

UT Upper threshold 

V Vulnerability 

WL Warning Level 

WZ Warning Zone 

Yel Yellow error 

δ Euclidean distance from perfect classification in the ROC plane 

Δui Simple moving average difference 

Δui
* Normalized simple moving average difference 

Δuimax Maximum simple moving average difference 

 
 
 


