Translational Medicine @ UniSa - ISSN 2239-9747

2019, Special Issue 1(40): 40

P20. OX-A-INDUCED ENHANCEMENT OF 2-AG LEVELS IN DIFFERENT BRAIN AREAS OF OBESE ob/ob MICE

<u>I. Mavaro</u>^{1,2}, R. Imperatore^{2,3}, N. Forte², L. Tunisi^{1,2}, A.C. Fernández-Rilo^{2,4}, C. Lucini¹, L. Avallone¹, M. Paolucci³, L. Palomba⁵, V. Di Marzo^{2,6}, and L. Cristino²

¹Department of Veterinary Medicine and Animal Productions, University of Naples, Federico II, Italy; ²Endocannabinoid Research Group; Institute of Biomolecular Chemistry of CNR, Pozzuoli, Italy; ³Department of Sciences and Technologies, University of Sannio, Benevento, Italy; ⁴University of Campania "Luigi Vanvitelli" Naples, Italy;

⁵Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; ⁶Canada Excellence Research Chair, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada

Orexin-A (OX-A) is a neuropeptide expressed by a small number of neurons of the lateral hypothalamus (LH), a key regulatory center of feeding and sleep-wake functions in the brain. According to the involvement of OX-A in the control of arousal, stress- and reward-related behaviors, OX-A projections are widely distributed throughout the central nervous system including hypothalamic nuclei [arcuate (ARC), supra-chiasmatic (SCN), ventro-medial, (VMN), dorsomedial (DMN) and periventricular (PVN)], cortex, nucleus accumbens, hippocampus, ventrotegmental area (VTA) and different locus in the brainstem. An endocannabinoidmediated disinhibition of OX-A expressing neurons occurs in the brain of leptin signaling-defective obese ob/ob mice, concurrently with elevation of OX-A trafficking and release to the different LH target areas. By binding OX-1R receptors, OX-A has been found to promote the synthesis of 2-arachidonoylglycerol (2-AG), the main endocannabinoid regulating synaptic transmission in a retrograde manner by inhibiting the release of GABA or glutamate at presynaptic cleft. Here we provide morphological and anatomical evidence showing enhancement of OX-A trafficking into fibers projecting to many different LH target areas in concurrence with elevation of 2-AG content by biochemical LC-MS quantification of endocannabinoid levels in obese ob/ob mice compared to wild-type mice. These effects result in a change of excitatory/inhibitory balance in different brain regions of obese mice, with functional outcomes on the synaptic plasticity of neuronal network regulating stress-, reward-, sleep-wake- and arousal-related behaviours, which were prevented by i.p. injection of leptin and reversed by antagonism of OX-1R with SB334867 in ob/ob mice.

