
 

 





Abstract

Computational science is an ever-expanding research field. It com-
bines technologies, modern computational methods, and simulations
to address problems too complex to be effectively predicted by theory
alone or too expensive or dangerous to be reproduced in the labora-
tory. This scientific domain is a multidisciplinary field and impacts
several sciences, engineering, and humanities problems. The success
of the computational science approach has resulted in an increasing de-
mand for computing resources to improve the performance of solutions
and enable the growth of models, both in size and quality. For these
reasons, parallel and distributed computing paradigms and exploiting
Cloud Computing have become essential in computational scientists’
everyday lives. Cloud provides a huge amount of computational power,
easily accessible to everyone in a price-aware manner. As a result,
the notion of “scalability” of an application, running over parallel or
distributed systems, has become central in computational science. In
a nutshell, an application is scalable if it can efficiently exploit an in-
creasing amount of computational power (e.g., number of nodes or
processors). In this domain, a relevant research challenge is to provide
scalability at different levels, from software libraries to frameworks
and tools for helping the solution of scientific problems. Providing
scalability permits scientists to face massive and complex problems
in a transparent and easy as possible way. This dissertation discusses
frameworks and parallel languages that allow scientists to approach
computational science problems under the lens of the extreme scalabil-
ity requirement. Contributions of this work can be summarized in three
principal categories: languages and tools, Agent-based Model (ABM)
and simulation, and Optimization via Simulation (OvS).
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Many real-world scientific applications consist of orchestrating
several different independent tasks or methods for accomplishing a
particular workload. These workflows are usually computationally and
time demanding, thus exploiting parallel and distributed techniques
became essential. This dissertation presents FLY, a domain-specific
language for scientific applications, which aims at reconciling Cloud
and High-Performance Computing paradigms. FLY adopts a multi-
cloud approach by providing a powerful, effective, and pricing-efficient
tool for developing scalable workflow-based scientific applications.
FLY exploits different and at the same time Function-as-a-Service
cloud providers as computational backends in a transparent manner.
This dissertation describes the programming model of FLY, its language
definition, and the FLY source-to-source compiler. Furthermore, it is
discussed a performance evaluation of FLY on a popular benchmark
for distributed computing frameworks, along with a collection of case
studies with an analysis of their performance results and costs. Finally,
a real use case scenario is shown that implements an Optimization via
Simulation process using FLY for carrying out a distributed evaluation
of simulations on an AWS backend.

ABM is a bottom-up modeling approach, where independent decision-
making agents model a complex system. Large-scale emergent behavior
in ABMs is affected by the dimension of the population and the com-
plexity of each agent’s behavior. However, the computational cost of
the simulation grows together with the increasing of model details.
This dissertation presents the architecture and the implementation of
an open-source library for developing Agent-Based Models using the
Rust language. Rust-AB is able to exploit both sequential and parallel
computing platforms. An investigation on the ability of Rust to develop
ABM simulations are discussed, as well as several models developed
with Rust-AB are described. Finally, a performance comparison against
the well-known Java ABM toolkit MASON is also presented.

OvS refers to techniques for discovering the parameters of a com-
plex model by optimizing one or more objective functions, which can
only be computed by running a simulation. Due to the high dimen-
sionality of the search space, the heterogeneity of the parameters, and
the stochastic nature of the objective evaluation function, optimizing
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such a simulation is extremely computational demanding. This dis-
sertation discusses methods for exploiting parallel/distributed systems’
computational power to improve the efficiency and effectiveness of
OvS strategies. Specifically, three frameworks are presented that differ
for their underlying computing system architecture adopted: i) hetero-
geneous – where CPU and GPU are used to execute simulations in
a distributed system composed of a heterogeneous node in terms of
hardware and software, ii) homogeneous – the computing system is
composed of homogeneous nodes where are used MASON (simula-
tion library) and ECJ (optimization library) software for elaborate the
OvS process, and iii) cloud computing – the computing system is a
MapReduce cluster running over the cloud.
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Chapter 1

Introduction

1.1 Computational Science

Over the past decades, the scientific methodological approach has
changed. In science, physics, social sciences, biomedical, engineering
research, defense, national security, and especially in industrial inno-
vation, problems are increasingly approached from a computational
perspective. Computational science [1], also known as Scientific Com-
puting (SC), is an established and growing field that uses advanced
computing and data analysis to study complex real-world problems.
SC aims to address problems using the predictive capability to support
traditional experimentation and theory using a computational approach
to problem-solving. This discipline combines computational thinking,
modern computational methods, hardware, and software to address
problems, overcoming the limitations of traditional methods. Advances
in SC allow R&D scientists and engineers to tackle problems that
are too complex to be reliably predicted from a theoretical standpoint
and/or too dangerous or expensive to reproduce in the laboratory. The
Figure 1.1 shows the definition of SC by dividing it into three main
areas:

1. Algorithms (numerical and non-numerical) and modeling and
simulation software developed to solve science (e.g., biological,
physical, and social), engineering, and humanities problems;
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2. Computer and information science that develops and optimizes
the advanced system hardware, software, networking, and data
management components needed to solve computationally de-
manding problems;

3. Computing infrastructure that supports both the science and en-
gineering problem solving and the developmental computer and
information science.

Figure 1.1: Computational Science areas.

A fundamental aspect of Computational Science is that it allows
the analysis and study of complex real systems through mathematical
models and simulations. A class of models particularly interesting takes
the name of Agent-based Models (ABM). These models are useful in
the simulation of actions and interactions of autonomous agents (both
individual or collective entities such as organizations or groups) with a
view to assess their effects on the system as a whole. An ABM consists
of three components: agents, relations, and rules. The agents model
a population; the relations define potential interactions among agents;
the rules describe the behaviour of an agent as a result of an interaction.
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The enormous success obtained by these models led to the realization
of several tools for agent-based simulations, but the only requirement
that never changed was the need to perform experiments increasing:

• the number of people in the population;

• the complexity of the simulation model and humans behaviors;

• the geographical areas in analysis;

• the complexity of the social interaction between the individuals.

The rapid growth of ABM models has led to a growing need for
computational resources. As a result, parallelization techniques and
computation distribution on HPC or Cloud systems had to be exploited.
Further increasing the need for additional computational power was the
need to optimize these ABM simulations. One feature of simulation
is that one can easily change the parameters of a simulation model
and observe the system performance under different sets of parameters.
Therefore, it is natural to find the set of parameters that optimizes the
system performance to produce results as close to reality. The Opti-
mization via Simulation (OvS) process allows optimizing an objective
function (which maps the real behavior of the complex system) by
executing a large number of simulations. The OvS was immediately
shown to be a non-trivial process that required both a high number of
computational resources and high execution time. From the Computer
Science point of view, in the SC field, the challenge is to improve
the current status of methods, algorithms, and applications to enhance
support for SC in terms of efficiency and effectiveness of the solutions.

As described in [1], the most important goal that should guide our
research is Scalability. Our solutions, software, models, algorithms,
systems should be scalable according to the problem itself. This require-
ment is not only at the level of software development of architectures
and frameworks but also includes design solutions for a problem in the
SC domain. Scalability is a frequently-claimed attribute of a system or
solution to face complex problems using computer systems. Despite
the centrality of Scalability in software development, its definition is
not generally accepted, as described in [2]. Nevertheless, we can use
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some of its principles to design scalable solutions for the SC field better.
According to this idea, it is possible to state that Computational Science
should be scalable at different software and hardware levels.

From the point of view of computational scientists, the realization
of correct and high-performance applications is very complicated and
challenging [3]. This is also emphasized in [4], a survey on the prac-
tice of SC at Princeton University. The survey reveals the difficulty
that computational scientists have in interfacing with combinations of
numerical, general-purpose, and scripting languages. The survey also
reveals the difficulty of computational scientists in developing high-
performance applications due to the absence of specific skills in parallel
and distributed programming. Finally, the survey also shows the need
for high-performance tools to optimize models to improve the quality
of the solutions.

The purpose of all the contributions presented in this dissertation is
to simplify the work of computational scientists by providing languages
and tools that allow them to write effective and efficient applications
taking full advantage of the scalability offered by modern computing
techniques. These contributions fall into several areas of SC:

1. Scalable scientific workflow. The development of a Domain-
Specific language for exploiting the computational power of
Multi-Cloud Computing systems.

2. Efficient Parallel Agent-based Simulation. Software solutions to
develop massive Agent-Based Simulations.

3. Scalable Optimization via Simulation. Software solutions to
develop distributed OvS processes on High-Performance Com-
puting (HPC) as well as cloud infrastructures.

A detailed description of the contributions of this thesis will be provided
in Section 1.4.

To better understand the rest of the thesis, the next section intro-
duces the concept of Scalability, some basics of parallel and distributed
computing until we get to answer the question: “How to measure the
scalability of an application?”
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1.2 Scalability
The scalability requirement measures the capability of the system to
react to the computational resources used. Scalability can be seen
in several forms: speed, efficiency, high reliable applications, and
heterogeneity [5]. The system scalability requirement also refers to
the application of very large compute clusters to solve computational
problems. A compute cluster is a set of computing resources that work
and collaborate to solve a problem. In the following, we denote a system
with a large number of nodes and dedicated hardware architecture as a
supercomputing system. The availability of supercomputing systems
has become much affordable day by day. Also, Cloud Computing
systems, which offer many high-performance resources at a low-cost,
are an attractive opportunity in the SC field. As described in [6] there
are different types of system scalability:

1. Load scalability. A system is load scalable if it is able to exploits
the available resources in heavy loads conditions. This is affected
by the scheduling of the resources and the degree of parallelism
exploitation.

2. Space scalability. A system is space scalable when it is able to
maintain the memory requirements under some reasonable levels
(also when the size of the input is large). A particular application
or data structure is space scalable if its memory requirements
increase at most sub-linearly with the problem input size.

3. Space-time scalability. A system is space-time scalable when it
provides the same performance, whether the system is moderate
or large. For instance, a search engine may use a hash table
or balanced tree data structure to index pages to be space-time
scalable, while using a list is not space-time scalable. Often the
space scalability is a requirement to ensure space-time scalability.

4. Structural scalability. A system is structurally scalable if its
implementation or architecture does not limit the number of
resources or data input. For instance, we can consider North
American’s telephone numbering scheme, which uses a fixed
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number of digits. This system is structurally scalable if the
number of objects to assign is significantly lower than the number
of possible telephones numbers.

The Scalability of a system can be analyzed according to different
properties:

• speed: an increasing number of processing resources provides an
increasing speed;

• efficiency: the efficiency remain unchanged when the processors
and the problem size increases;

• size: the maximum number of computational resources that a
system can accommodate;

• application: a software is scalable when it provides better perfor-
mance when it is executed on a larger system;

• generation: a scalable system should achieve better performance
according to the generation of components used;

• heterogeneous: a scalable system should be able to exploit differ-
ent hardware and software components.

To measure how efficient an application is, we can analyze how the
application behaves when using increasing numbers of computational
resources (cores, processors, threads, machines, CPUs, etc.). Before dis-
cussing how to measure a parallel or distributed application’s efficiency,
it is necessary to briefly discuss parallel and distributed background.

1.2.1 Parallel and distributed background
An accepted classification of the state of the art of computing divides
the history of computing into four eras: batch, time-sharing, desktop,
and network [7]. Today, computing is to discard expensive and special-
ized parallel machines in favor of the more cost-effective clusters of
workstations and cloud services. Anyway, the following concepts may
be the same also for this novel system.
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Figure 1.2: Flynn’s Taxonomy

To understand parallel computing, the first concept that is essential
to know is the classification of computer architectures. An important
and well know classification scheme is the Flynn taxonomy. Figure 1.2
shows the taxonomy defined by Flynn in 1966. The classification relies
on the notion of a stream of information. A processor unit could accept
two types of information flow: instructions and data. The former is the
sequence of instructions performed by the processing unit, while the
latter is the data given in input to the processing unit from the central
memory. Both the streams can be single or multiple.

Flynn’s taxonomy comprises four categories:

• SISD, Single-Instruction Single-Data streams: operations are
performed sequentially. This is the classic von Neumann archi-
tecture;

• SIMD Single-Instruction Multiple-Data streams: architectures
composed of many processing units that simultaneously execute
the same instruction but work on different data sets. SIMD sys-
tems are primarily used to support specialized parallel computing.
The most famous examples is the vector supercomputers, used for
particular applications (where mainly work on large matrices);

• MISD Multiple-Instruction Single-Data streams: multiple instruc-
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tion streams (processes) work simultaneously on a single data
stream;

• MIMD Multiple-Instruction Multiple-Data streams: multiple
instructions are executed simultaneously on several different data
items. Computer clusters fall under this classification.

Figure 1.3: The number of transistors on integrated circuit chips from
1971 to 2018

Moore’s law. Historically, the way to achieve better computing per-
formances has depended on hardware advances. Now, this trend is
permanently changed, and parallel and distributed computing is the
only way to achieve better performance. The Figure 1.3 depicts Moore’s
Law, 1965, which clearly explains this idea. Moore’s Law shows that
the count of CPU and RAM transistor doubled each year. Nonetheless,
due to physical limits and heat emission, this trend has ended around
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2008, stabilizing the speed processors. The actual trend of CPU vendors
is to increase the number of cores to have better performance. In other
words, this means that each science has to face problems exploiting
parallel and distributed computing to increment the complexity of the
problems or improve the performances.

Parallel computing architecture

This section describes different approaches to do parallel and distributed
computing, depending on system architectures. Parallel computing
architectures are historically categorized into two main groups: shared
memory and distributed memory. However the actual trend on parallel
computing architectures is to design different architectures combining
these two models. Today, three main architectures are considered:

• Symmetric multiprocessing (SMP), In this model, multiple pro-
cessors use the same memory. This is the easiest and common ap-
proach for parallelism but is also the most expensive for vendors.
Sharing the same memory enables to synchronize the processors
using shared variables. The limit of this architecture is the bus
bandwidth that may represent a performance bottleneck.

• Multi-core. This is the model adopted by modern processors that
employ multiple cores in a single processor. This architecture
allows using a single processor as an SMP machine.

• Multi-computers. This architecture is basically the distributed
computing architecture. The computers are connected across
a network, and the single processor can access only its local
memory space while interactions are based on messages. This
architecture is the architecture for clusters and supercomputing
machines. Multi-computers is the architecture used for the con-
struction of large parallel machines.

Computational models

This section describes two theoretical computational models that are
independent on the parallel computing architectures used. These mod-
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els aim to measure the quality of a solution using a parallel computing
approach. Starting from these two models, it is also possible to de-
scribe the concept of scalability for the parallel computing architectures
described before.

Equal duration model. These models measure the quality of a so-
lution in terms of its execution time. Consider a given task that can
be decomposed into n equal sub-tasks, each executable on a different
processor. Let ts (resp. tm ) be the execution time of the whole task on
a single processor unit (resp. concurrently on n processors). Since this
model consider that all processors execute their task concurrently, we
have tm = ts

n
. So, it is possible to compute the speedup factor (S(n))

of a parallel system, as the ratio between the time to execute the whole
computation on a single processor (ts) and the time obtained exploiting
n processors unit (tm).

S(n) =
ts
tm

=
ts
ts
n

= n (1.1)

The previous definition is not enough to describe the speed obtained.
One needs to consider the communication overhead introduced by
the parallel or distributed computation. Let tc be the communication
overhead. The total parallel time is given by tm = (ts/n) + tc, and the
speedup becomes:

S(n) =
ts
tm

=
ts

ts
n

+ tc
=

n

1 + n
(

tc
ts

) (1.2)

This value normalized by n is named efficiency ξ and can be seen as
the speedup per processor.

ξ =
S(n)

n
=

1

1 + n
(

tc
ts

) (1.3)

The value of the efficiency ranges between 0 and 1. Again, this
model is not realistic because it assumes that a given task can be
divided, in “equal” sub-tasks, among n processors. On the other hand,
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real algorithms contain some serial parts that cannot be divided among
processors. Furthermore, a parallel algorithm is also characterized by
some sub-tasks that cannot be executed concurrently by processors.
These sub-tasks includes synchronization or other special instructions
and are named critical sections. This consideration is the main idea of
the next model, Parallel Computation with Serial Sections Model.

Parallel computation with serial sections model. This model as-
sumes that a fraction f of the given task is not dividable into concurrent
sub-tasks and the remaining fraction 1−f is assumed to be dividable in
concurrent sub-task. Like the previous model, the total time to execute
the computation on n processors is tm = f × ts + (1− f)×

(
ts
n

)
. In

this case, the speedup becomes:

S(n) =
ts

fts + (1− f)
(
ts
n

) =
n

1 + (n− 1)f
(1.4)

As in the equal duration model, the speedup factor considering the
communication overhead is given by:

S(n) =
ts

fts + (1− f)
(
ts
n

)
+ tc

=
n

f(n− 1) + 1 + n
(

tc
ts

) (1.5)

Considering the limit of the number of processors used, we have that
the maximum speedup factor is given by n.

lim
n→inf

S(n) = lim
n→inf

n

f(n− 1) + 1 + n
(

tc
ts

) =
1

f +
(

tc
ts

) (1.6)

According to equation 1.6, it is worth noticing that the maximum
speedup factor depends on the fraction of the computation that cannot
be parallelized and on the communication overhead. In this model, the
efficiency is given by

ξ =
1

1 + (n− 1)f
(1.7)
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without considering the communication overhead, while taking into
account the communication overhead we have,

ξ =
1

f +
(

tc
ts

) (1.8)

This last equation shows that it is difficult to maintain a high-efficiency
level as the number of processors increases.

Parallel computation laws

This section introduces two laws that aim to describe the benefits of
using parallel computing.

Figure 1.4: Power-cost relationtship according to Grosch’s Law.

Grosch’s law. H. Grosch, in the 1940s, postulated that the power
of a computer system P increases in proportion to its cost C, P =
K×Cs where s and K are positive constant. Grosch postulated further
that the value of s would be close to 2. The Figure 1.4 depicts the
relationship between the power and the cost of a computer system.
Today this law is clearly abrogated while the research communities and
computational scientists are looking for strategies to make most HPC
and heterogeneous distributed systems.
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Amdahl’s law. Starting from the definition of Speedup, it is possible
to study the maximum speed achievable independently from the number
of processors involved in a given computation.

According to equation 1.4, also known as Amdahl’s law, the poten-
tial speedup, using n processors, is defined by the size of the sequential
fraction of the code f . Amdahl’s principle states that the maximum
speedup factor is given by:

lim
n→inf

S(n) =
1

f
(1.9)

Nevertheless there are real problems that have a sequential part f
that is a function of n, such that limn→inf f(n) = 0. In this cases, the
speedup limit is

lim
n→inf

S(n) = lim
n→inf

n

1 + (n− 1)× f(n)
= n (1.10)

This contradicts Amdahl’s law considering that it is possible to achieve
linear speedup, increasing the problem size. This statement has been
verified by researchers at the Sandia National Laboratories, which show
a linear speed up factor can be possible for some engineering problems.

1.2.2 Measuring parallel performance
There are two basic ways to measure the parallel performance of a given
system, depending on whether or not one is cpu-bound or memory-
bound. These are referred to as Strong and Weak scalability, respec-
tively.

Strong Scalability (SS). The Strong Scalability aims to study the
number of resources needed for a given application to complete the
computation in a reasonable time. For this reason, the problem size
stays fixed, but the number of processing elements is increased. An
application scales linearly when the speedup obtained is equal to the
computational resources used, n, but it is harder to obtain linear scala-
bility due to the communication overhead, which typically increases in
proportion to n. Given the completion time of a single task, t1, and tm
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the completion time of the same task on n computational resources, the
Strong Scalability is given by:

SS =
ts

(n× tm)
× 100 (1.11)

Weak Scalability (WS). The Weak Scalability aims to define the
efficiency of an application fixing the problem size for each compu-
tational resource. This measure is useful for studying the memory or
resource consumption of an application. In weak scaling, linear scal-
ing is achieved if the run time stays constant while the workload is
increased in direct proportion to the number of computational resources.
Given the completion time of a single work unit, t1, and tm the com-
pletion time of n works unit on n computational resources, the Weak
Scalability is given by:

WS = (
t1
tn

)× 100 (1.12)

1.3 The State of Art of Scalability in Compu-
tational Science

The SC field has been massively studied in the last decades to find more
and more effective and efficient solutions in solving complex real-world
problems by exploiting the concept of high-performance computing. In
the following, a state-of-art of parallel languages and scalable tools in
the field of SC is shown.

1.3.1 Parallel language for computational science
Parallel and distributed languages have been actively investigated for
decades. The results are commonly concentrated on parallel machines,
high-performance systems, and distributed computing infrastructures,
as described in [8]. In the following, several languages and frameworks
that are suitable for developing scalable applications in the SC research
area were presented:
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• Fortran is a programming language designed for numeric com-
putation and scientific computing. It is widely used in scientific
fields (such as numerical weather prediction, computational fluid
dynamics, and computational physics) and quite popular for high-
performance computing applications.

• R [9], and its libraries implement a wide variety of statistical
and graphical techniques, including linear and nonlinear model-
ing, classical statistical tests, time-series analysis, classification,
clustering, and others.

• Python [10] is an interpreted high-level programming languages
for general-purpose programming. Python features a dynamic
type system and automatic memory management. Python is most
used in SC thanks to the following libraries: SciPy, a collection of
mathematical algorithms and convenience functions built on the
Numpy extension of Python; scikit-learn for machine learning;
scikit-image for image manipulation; Pandas for DataFrames.

• Julia [11] is a high-level, high-performance dynamic program-
ming language for numerical computing. Julia provides a so-
phisticated compiler as well as distributed parallel execution,
numerical accuracy, and an extensive mathematical function li-
brary.

• Limbo [12] is a programming language intended for applications
running distributed systems on small computers. Limbo supports
modular programming, concurrent programming, strong type-
checking at compile- and run-time, inter-process communication
over typed channels, automated garbage collection, and simple
data type.

• Chapel [13] is a portable programming language designed for
productive parallel computing on large-scale systems. Its design
and implementation have been undertaken with portability in
mind, enabling Chapel to run on different environments like
multicore desktops and laptops as well as commodity clusters,
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and the cloud, in addition to the high-end supercomputers for
which it was designed.

• Cilk [14] is a C/C++ extension designed for multithreaded par-
allel computing. Cilk is a C/C++ extension that supports nested
data and task parallelism. The principle behind the design of the
Cilk is that the programmer is responsible for exposing the paral-
lelism while the run-time environment decides how to actually
divide the work between processors.

• Swift [15] is a featured data-flow oriented coarse-grained script-
ing language, which is designed for scientists, engineers, and
statisticians that need to execute domain-specific application pro-
grams many times on large collections of file-based data. Swift
is written on top of Java Virtual Machine in such a way that
each Swift program (or workflow) is automatically parallelized
at compilation time and executed concurrently. Swift is primarily
used to manage calls of external functions written in C, C++,
Fortran, Python, R, Tcl, Julia, Qt Script, or executable programs.
Swift/T [16] is the high-performance computing version of Swift
languages, in which the Swift programs are translated into MPI
based programs to be executed on HPC systems. Swift and
Swift/T provide set-up on cloud IaaS1.

• OpenMole [17] offers tools to run, explore, diagnose and optimize
numerical models, taking advantage of distributed computing
environments. OpenMOLE comes with a graphical user interface
(GUI) to write scripts around your model. These scripts will use
OpenMOLE methods to explore your model and distribute its
executions on High Performing Computing (HPC) environments,
with only a few lines of code. OpenMOLE built-in methods are
designed to explore your model and answer several questions
regarding optimization, sensitivity, robustness, and diversity of
your model capabilities. Multiple environments are available to
delegate your workload. The Multi-thread permits you to execute
the tasks concurrently on your machine, the SSH one to execute

1swift-lang.org/tutorials/cloud/tutorial.html

http://swift-lang.org/tutorials/cloud/tutorial.html
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tasks on a remote server through SSH. You can also access a
wide variety of clusters like PBS/Torque, SGE, Slurm, Condor,
or OAR. You can also use EGI to execute tasks on the EGI grid.

1.3.2 Agent-based simulation
In the following are presented several existing tools - commonly de-
signed either as a framework or a library (or both) - for developing and
running ABM simulations with a particular emphasis on their peculiar-
ities, as described in [18]. According to the underlying architecture,
ABM software tools can be easily classified into two categories: soft-
ware for sequential computing architectures and software for distributed
computing architectures.

ABM
tool

Source
Language

Applications
Language

Computing
Platform

Application
Domain License

SWARM [19]
Java,

Objective-C

Objective-C,
Swarm code,

Java

Personal computer,
Workstation,

Large-scale scientific
computing clusters and

HP supercomputers

Simulation of complex
adaptive systems in

social or biological sciences

Open source, GPL,
Free

StarLogo [20] Java / YoYo StarLogo scripting Desktop computer
Simulation in social
and natural sciences,

education

Closed source,
Clearthought Software

License version 1.0,
Free

NetLogo [21] Scala NetLogo language Desktop computer

2D/3D simulation
in social and

natural science,
teaching/research

Open source,
GPL, Free

REPAST [22] Java / C#
Java; C#, C++, Lisp, Prolog

Visual Basic.Net,
Python scripting

Desktop and vast-scale
distributed computing

clusters

Simulation of social networks
and integrates support for GIS,

genetic algorithms

Open source,
BSD, Free

MASON [23] Java Java
Desktop computer,

Workstation
General multi-purpose

2D/3D simulation

Open source,
Academic Free

License version 3.0

FLAME [24] C
Graphical user interface,

visualiser and
validation tools

Laptop,
Workstation,

HPC
supercomputers

General multi-pupose
simulation

Open source,
GNU Lesser General

Public License,
Free

REPAST-HPC [25]
C++ with

MPI
Standard or Logo-style

C++

Large-scale distributed
clusters and HP
supercomputer

Simulations in computational
social sciences,

cellular automata,
complex adaptive system

Open source,
BSD, Free

D-MASON [26] Java Java

Desktop computer,
Workstation,

Clusters,
Cloud architectures

General multi-purpose
2D/3D simulation

Open souce,
Apache License

version 2.0

FLAME-GPU [27]
C for CUDA

OpenGL
C-based scripting and
optimized CUDA code

Laptop,
Workstation,

HPC

3D simulation for emergent
complex behaviours in

biology/medical domains
with multi-massive amount

of agent on GPU

Open source,
FLAME GPU Licens

Agreement,
Free

Table 1.1: ABM frameworks/software comparison.

Table 1.1 describes the most important frameworks and libraries
for ABM simulations according to the simulation engine programming
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language, user programming language, computing platform, application
domain, and release license. The first six rows of Table 1.1 summarise
as many frameworks suitable for sequential computing simulations and
that are fully described by [18].

• SWARM [19] is a multi-agent software platform for the simula-
tion of complex adaptive systems. In the SWARM system, the
basic unit of simulation is the swarm, a collection of agents exe-
cuting a schedule of actions. SWARM provides object-oriented
libraries of reusable components for building models and analyz-
ing, displaying, and controlling experiments on those models.

• StarLogo [20] is an agent-based simulation language. It is an
extension of the Logo programming language [28] designed for
education. StarLogo Nova is the latest version, and this version
is under development by the MIT Scheller Teacher Education
Program.

• NetLogo [21] is a multi-agent programmable modeling environ-
ment. NetLogo is designed for education, and it is used by
students, teachers, and researchers worldwide. NetLogo is built
on top of Logo programming language [28]. NetLogo offers an
extension, called BehaviorSpace, that can exploit the parallelism
of the machine by running more simulations at the same time
with different parameter settings.

• Repast [22] is a free and open-source agent-based modeling
toolkit. Repast offers an extremely flexible hierarchically nested
definition of space, including the ability to do point-and-click
and modeling and visualization of 2D environments, 3D envi-
ronments, networks including full integration with the JUNG
network modeling library, and geographical spaces including full
Geographical Information Systems (GIS) support. Repast offers
a concurrent multi-threaded discrete event scheduler.

• MASON [23] is an open-source agent-based modelling simula-
tion toolkit. MASON is designed to be general-purpose, to be
efficient, and flexible. MASON models are fully separated from
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visualization and are entirely serializable to disk. MASON mod-
els are duplicable (run several instances of the simulation with
exactly the same parameters produce exactly the same results,
even on different machines). MASON includes a high-quality
random number generator and supports GIS simulation.

• FLAME [24] is a framework to create agent-based models that can
be run on high-performance computers (HPCs). The philosophy
of FLAME is to specify an agent-based model as you would
specify software behavior, as ultimately, the execution of the
model will be in software. The behavior model is based upon
state machines, which are composed of a number of states with
transition functions between those states. There is a single start
state, and by traversing states using the transition functions, the
machine executes the functions until it reaches an end state.

Several frameworks are devoted to developing large-scale simu-
lations and provide good performance exploiting parallel/distributed
computing architectures. The bottom part of Table 1.1 shows three
frameworks for developing ABM simulations in distributed and parallel
computing architecture.

• Repast HPC [25] is the HPC version of Repast that uses sched-
ulers on each independent processes. It is written in cross-
platform C++ and can be used on workstations, clusters, and
supercomputers. The execution model of Repast HPC requires a
complex cluster configuration that provides the MPI ecosystem.

• DMASON [26] is a distributed implementation of MASON de-
signed to run over clusters and/or cloud-computing architectures.
DMASON provides facilities to execute simulations in distributed
environments. However, it introduces complexity in the simula-
tion execution.

• FLAME GPU [27] is a high-performance Graphics Processing
Unit (GPU) extension to the FLAME framework. It provides
a mapping between a formal agent specification with C-based
scripting and optimized CUDA code. FLAME GPU requires to



20 1. Introduction

be executed a powerful Nvidia GPU with CUDA support, that
often is not available.

1.3.3 Distributed optimization via simulation

In the literature, there are many works that use Optimization via Simula-
tion, and most of the results found present ad-hoc solutions to solve the
problem. Such solutions require optimization algorithms. Evolutionary
algorithms and related stochastic optimization algorithms are well-
established approaches to optimizing many kinds of models and have
been used to tune models of neuron behavior [29, 30], agriculture [31]
and textile folding [32].

Some general-purpose evolutionary algorithm frameworks exist that
offer massively distributed algorithms and configuration options useful
for Optimization via Simulation.

• ParadisEO [33], published under a non-commercial license, are
libraries for combinatorial optimization that can deal with parallel
metaheuristics methods.

• ECJ [34] is an open-source system for evolutionary computation.
ECJ can be used for developing evolutionary algorithms and gen-
eral integration of simulation code on massively parallel systems.
ECJ is integrated with Java-based simulation code (for instance,
written in MASON).

Only a handful of software tools are available that allow researchers
to apply Optimization via Simulation techniques to simulations without
needing to implement their framework from scratch.

• EMEWS [35], uses the general-purpose parallel scripting lan-
guage Swift/T to generate highly concurrent simulation work-
flows. These workflows enable the integration of external param-
eter space exploration (PSE) algorithms to coordinate the running
and evaluation of large numbers of simulations. These also allow
implementing simulation optimization (SO) process easily.
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• OpenMOLE [17], provides an execution platform that distributes
simulation experiments on HPC environments using a domain-
specific language (DSL) that is an extension of the Scala pro-
gramming language.

• MEME [36], is based on virtual hosts specially prepared for
simulation experiments, deployed on the cloud computing infras-
tructure Amazon AWS.

• OptTek [37] offers several proprietary tools for metaheuristic
optimization. OptTek optimization engine is also directly inte-
grated into a number of ABM and simulation tools, for instance,
AnyLogic.

• SOF [38] is a cloud-based OvS framework focused on NetLogo
and MASON simulations, providing a generic simulator interface
for other types of simulations. The focus is on Hadoop clusters,
although other distributed architectures appear to be able to be
supported.

• Dakota [39] combines a number of optimization, design of ex-
periment, and uncertainty quantification libraries developed by
Sandia National Laboratories. Dakota can be used on several
machines, from desktops to HPC systems.

1.4 Dissertation Structure

This dissertation discusses Frameworks and Parallel Languages for SC.
Chapter 2 provides the results about FLY Language, a novel Domain-
Specific Language that aims to exploit the computation power of multi-
cloud infrastructures in a simple way for domain experts that doesn’t
have a strong parallel and distributed background. Chapter 3 describes
Rust-AB, a discrete events simulation engine designed to be a ready-to-
use ABM simulation library suitable for the ABM community. Chap-
ter 4 presents three tools for the implementation of OvS processes that
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exploit different computing system architecture: heterogeneous, homo-
geneous, and cloud computing. Finally, Chapter 5 presents a summary
of the results.

Parallel language for computational science

Chapter 2 describes the FLY Language, a Domain-Specific Language
for Scientific Computing on Multi-Cloud environment. FLY is a parallel
workflow scripting imperative language inspired by functional language
peculiarities. FLY provides implicit support for parallel and distributed
computing paradigms. FLY perceives a cloud computing infrastructure
as a parallel computing architecture on which it is possible to execute
some parts of its execution flow in parallel. Thanks to this feature, with
FLY it is possible to write SC workflows and run portions of them on
different cloud infrastructures and SMP architectures simultaneously,
achieving extreme scalability without the complexity of managing all
the underlying computing infrastructures and computing distribution.

The FLY Language is presented in the following two papers:

[40] Cordasco G., D’Auria M., Negro A., Scarano V., Spagnuolo
C. (2020) “FLY: A Domain-Specific Language for Scientific
Computing on FaaS”. In: Schwardmann U. et al. (eds) EuroPar
2019: Parallel Processing Workshops. Euro-Par 2019. Lecture
Notes in Computer Science, vol 11997. Springer, Cham.

[41] Cordasco, G, D’Auria, M, Negro, A, Scarano, V, Spagnuolo, C.
“Toward a domain-specific language for scientific workflow-based
applications on multicloud syste”. Concurrency Computat Pract
Exper. 2020.

Chapter 2 also presents a methodology to realize OvS processes ex-
ploiting the computational power provided by the Function-as-a-Service
(FaaS) models of cloud providers. This methodology allows execut-
ing concurrently the massive number of simulation execution (needed
by the OvS process) over a multi-cloud system straightforwardly and
transparently using the FLY Language.
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Agent-based simulation
High-performance ABM simulations are built upon performance-critical
operation, and interactions exhibit multiple levels of concurrency. Im-
plementing an efficient framework for the development of ABM simu-
lations is extremely challenging, and the choice of the implementation
language is a crucial aspect to consider. Chapter 3 presents Rust-AB,
an ABM simulation library using the Rust Language. Rust is a multi-
paradigm system programming language with performance comparable
with C. Its main feature lies in its memory model, designed to be both
memory and thread-safe. This feature makes it extremely interesting
in the development of a parallel library for ABM simulations. The
Rust-AB simulation library is presented in the following paper:

[42] Antelmi A., Cordasco G., D’Auria M., De Vinco D., Negro A.,
Spagnuolo C. (2019) “On Evaluating Rust as a Programming
Language for the Future of Massive Agent-Based Simulations”
In: Tan G., Lehmann A., Teo Y., Cai W. (eds) Methods and
Applications for Modeling and Simulation of Complex Systems.
AsiaSim 2019. Communications in Computer and Information
Science, vol 1094. Springer, Singapore.

However, the Rust-AB library presented in [42] is sequential. Chap-
ter 3 also shows its parallel version, highlighting the changes made and
the performance achieved.

Distributed optimization via simulation
Chapter 4 describes Heterogeneous Simulation Optimization (HSO), a
framework for developing OvS process in a heterogeneous computing
system. The HSO architecture is based on the Master/Worker paradigm.
It was designed to exploit the computational power of several hardware
architectures, for instance, General-purpose CPUs and/or GPUs, as
well as exploiting different programming languages available on the
heterogeneous system. HSO is presented in the following paper:

[43] Cordasco G., D’Auria M., Spagnuolo C., Scarano V. (2018)
“Heterogeneous Scalable Multi-languages Optimization via Sim-
ulatio”. In: Li L., Hasegawa K., Tanaka S. (eds) Methods and
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Applications for Modeling and Simulation of Complex Systems.
AsiaSim 2018. Communications in Computer and Information
Science, vol 946. Springer, Singapore.

Chapter 4 also present a way to implement automated and dis-
tributed ABM parameters and agents behavior calibration. This method-
ology marries two tools popular in their respective fields: the MASON
agent-based simulation toolkit [23], and the ECJ evolutionary optimiza-
tion library [34]. This methodology is presented in the following two
papers:

[44] Matteo D’Auria, Eric O. Scott, Rajdeep Singh Lather, Javier
Hilty, and Sean Luke. 2020. “Distributed, Automated Calibration
of Agent-based Model Parameters and Agent Behaviors”. Pro-
ceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC,
1828–1830.

[45] D’Auria M., Scott E.O., Lather R.S., Hilty J., Luke S. (2020) “As-
sisted Parameter and Behavior Calibration in Agent-Based Mod-
els with Distributed Optimization”. In: Demazeau Y., Holvoet T.,
Corchado J., Costantini S. (eds) Advances in Practical Applica-
tions of Agents, Multi-Agent Systems, and Trustworthiness. The
PAAMS Collection. PAAMS 2020. Lecture Notes in Computer
Science, vol 12092. Springer, Cham.

Finally, Chapter 4 shows an implementation of an OvS process
that uses the SOF framework [38, 46] to solve the Cruise Itinerary
scheduling problem, an attractive real logistic problem. This use case
is presented in the following paper:

[47] M. Carillo, M. D’Auria, F. Serrapica, C. Spagnuolo, C. Cali-
garis and M. Fabiano, “Large-scale Optimized Searching for
Cruise Itinerary Scheduling on the Cloud,” 2019 5th International
Conference on Optimization and Applications (ICOA), Kenitra,
Morocco, 2019, pp. 1-6.



Chapter 2

FLY: A Domain-Specific
Language for Scientific
Computing on Multi-cloud
Systems

2.1 Introduction
The cloud computing paradigm [48], since the beginning, has reshaped
the horizon of computing systems. It becomes the skeleton of modern
computing systems by offering subscription-based services that follow
a pay-as-you-go model. Various service models have followed, starting
from IaaS, which provides the ability to request virtual machines, to
Software-as-a-Service, which allows you to take advantage of applica-
tions hosted on the cloud. In recent years, a new service model called
Function-as-a-Service (FaaS) has been emerging, allowing small snip-
pets of code to be executed transparently on the cloud infrastructure
without knowing where and when the code is executed.

From the beginning of Cloud Computing, it was clear that it would
represent an opportunity in the SC field. It allows us to develop and run
extremely scalable applications while maintaining a low cost compared
to HPC applications, as presented in [49].

Commonly, the development of computational science applications
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requires a combination of general-purpose languages or parallel lan-
guages/frameworks (see Section 1.3.1 for more details). However, com-
putational science applications are typically computationally expensive
and require the computational power of distributed systems (clusters or
HPC). Recently cloud companies are providing specialized services that
are of fundamental importance in realizing high-performance scientific
applications. An example can be the MapReduce [50] programming
paradigm formed as a cluster of machines on which the Apache Hadoop
framework is present. Although cloud providers provide highly scalable
solutions, migrating scientific applications to IaaS or PaaS architec-
ture is a huge and complex task that can hide serious cost considera-
tions. These preclude scientific application developers from taking full
advantage of cloud computing’s scalability and affordability in their
application domain.

Nowadays, the need for several simple requirements such as avail-
ability, cost reduction, or special functionality has led to the shift from
single-user private clouds to multi-tenant clouds [51]. The main advan-
tage of adopting multi-cloud strategies in application development is
undoubtedly to take advantage of the huge amount of computing re-
sources provided simultaneously by multiple cloud providers. However,
there is an additional level of management complexity, which requires
specific skills.

This work aims to reconcile Cloud and High-Performance Com-
puting by providing a powerful, effective, and pricing-efficient tool
for the development of scalable workflow-based scientific computing
applications [52, 53, 46], on different FaaS platforms, eventually, at
the same time (as a multi-cloud system), through the design and im-
plementation of the FLY Domain-Specific Language (DSL). FLY is
powerful because it enables to exploit the computing capabilities of
different cloud providers at once, in a single application, and, then,
the most efficient solutions can be merged together. FLY is effective
because it consists of a user-friendly programming language that frees
the programmer from the management and configuration of several
complex computation systems. Finally, FLY is pricing-efficient be-
cause the programmer becomes conscious of the maximum computing
costs based on the prices provided by various cloud providers. In this
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way, the programmer also has the possibility to choose the service that
provides the best value for money, based on the characteristics of the
computation that is going to perform.

The next section contains a brief discussion about Domain-Specific
language.

2.1.1 Domain-specific languages
Domain-Specific Languages (DSLs) provides a notation tailored toward
an application domain based only on the concepts and features relevant
to the domain. DSLs enable to express solutions at the same level of
abstraction of the problem domain. This abstraction can help shift the
development of applications from software developers to a broader
group of domain experts, who have a deeper understanding of the
domain while having less technical expertise. Furthermore, DSLs are
much easier to learn, given their limited scope. DSLs have specific
design goals that contrast with general-purpose languages: DSLs are
much more expressive in their domain and should exhibit minimal
redundancy. A well-designed DSL should exhibit the following three
peculiarities [54]:

• Provides a direct mapping to the artifacts of the problem domain.

• Uses the problem domain’s vocabulary to improve communica-
tion between developers and domain experts.

• Abstracts the underlying implementation. A DSL must not con-
tain accidental complexities that deal with implementation de-
tails.

There are many discussions about the advantages and disadvantages
of DSL:

• Pro. Domain-specific languages have different expressive power
compared to general-purpose languages, but they can significantly
shorten the time for the development of an application. DSLs
improve the correctness of the developed application and the
communication between the domain expert and the programmer.
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DSL can be used as a mechanism to protect software systems
as intellectual property and be a powerful tool for creating self-
documented code. DSL allows combining multiple programming
paradigms and lowering syntactic noise.

• Cons. Regardless of the lower final cost of the overall develop-
ment, a higher starting price of the application development is
often pointed out as a disadvantage. Developing an application
that involves building an appropriate DSL is a hard process that
requires programmers to be language experts. In such cases, the
creation of DSL requires complete knowledge of domain con-
straints. Debugging and unit testing is hard to perform when
using a DSL. DSLs can lead to language cacophony. Proper
selection of DSLs and fair usage is crucial.

DSLs can be categorized as external or internal [55]. An External
DSL is like making a completely new language from beginning to end.
The language itself is separate from the development language and
requires many programming concepts found in developing a general-
purpose, high-level language. Typical examples of External DSL are
languages like SQL, CSS, and HTML. Most of them are bound to a
particular technology or infrastructure. Often External DSLs are inter-
preted or translated through code generation tools into GPL code. The
advantages of external DSLs include loose specification and minimal
or no following of common standards. In such a way, developers can
express the domain artifacts in a compact and useful form. An internal
DSL is embedded in the main language. Internal DSLs are a particular
way of using GPL providing domain friendly syntactic sugar to the
existing API, using underlying programming language constructs.

Developing a DSL means developing a compiler that can read text
written in that DSL, parse it, process it, and eventually interpret it
and generate/translate the code. With more details, DSL development
requires the following phases:

• lexical analysis, in which the code is partitioned in token, where
each token is a single atomic element of language;

• syntactic analysis, which checks that the identified tokens form a
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valid statement in the language. This phase produces the Abstract
Syntax Tree (AST), which is a representation of the syntactic
structure of the programs;

• semantic analysis, which checks that the assignment of values
is between compatible data types (type checking). This phase
keeps track of identifiers, their types and expressions, and checks
whether identifiers are declared before their use;

• code generation, which generates the machine code or code in
another language.

DSL developers may benefit by using a DSL development frame-
work, which helps them to develop each implementation phase. One
of these is JetBrains MPS [56], which is a tool for designing domain-
specific languages based on language-oriented programming. It uses
projectional editing, which enables overcoming the limits of language
parsers and building DSL editors.

Another popular tool is also Xtext [57], it is a framework for the de-
velopment of programming languages and domain-specific languages.
With Xtext, the DSL developers need only to provide a grammar spec-
ification for the novel language. Xtext, starting from this definition,
provides a full infrastructure, including lexer, parser, the AST model,
linker, type-checker, compiler, and editing support for Eclipse and
other editors that supports the Language Server Protocol as well as web
browsers. However, every single aspect can be customized by the DSL
developer.

2.1.2 Cloud computing service models

Cloud computing enables companies to use computing resources as a
service (like electricity) rather than buy, set-up, and maintain com-
puting infrastructures in-house. Several cloud computing service-
models [58] well known as Software-as-a-Service (SaaS), Platform-
as-a-Service(PaaS) and Infrastructure-as-a-Service(IaaS) have been
proposed during the last two decades.
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• Software-as-a-Service (SaaS): is a software distribution model
in which applications are hosted by cloud providers and made
available on the web. SaaS offers implicit scalability provided
by the cloud infrastructure. The users use the software, and the
application is able to scale according to the cloud computing
provider capacity.

• Platform-as-a-Service(PaaS): A paradigm for delivering applica-
tions frameworks on the Internet without downloads or installing
it. This service-model allows the user to build their cloud appli-
cations on top of systems running over the cloud infrastructures.

• Infrastructure-as-a-Service(IaaS): is the outsourcing of comput-
ing power required by the customers. These resources involve
disk space, hardware, and networking components. Using this
model-service is possible to execute: virtual machines over the
cloud infrastructure and our databases or messaging services.

The Scientific Computing community may get advantages from
cloud computing adoption in their compute-intensive applications and
workflows. First of all, it is possible to use IaaS for executing ap-
plications on high-performance machines or huge machine clusters.
Moreover, a cloud computing provider can offer SaaS or PaaS dedi-
cated domain specific services for scientific and data analysis purposes,
as machine-learning services, MapReduce frameworks, data-mining
services, and so on. Nevertheless, these kinds of service models do not
allow the users to deploy easily functional-partitioning applications, or
moreover, write ad-hoc applications that can exploits in their executions
the cloud computing high scalability.

In the last years, a new service model named Function-as-a-Service
(Faas) [67, 68, 69] is established. This service model answers the need
for a new scalable price-effective cloud applications era, providing an
easy framework for deploying Extreme-scalable functional-partitioning
applications. FaaS allows the developers to not care about administering
and installing their servers running their backend applications. FaaS

1Amazon AWS Lambda pricing. 2Microsoft Azure Function pricing. 3Google
Function pricing. 4IBM Bluemix pricing.

https://aws.amazon.com/it/lambda/pricing/
https://aws.amazon.com/it/lambda/pricing/
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://console.bluemix.net/openwhisk/learn/pricing
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Cloud
Infrastructure

FaaS Service API
Languages

FaaS
Languages

Pricing and Limitations

Amazon Web
Services [59]

AWS Lambda
Function

Java, .NET,
Node.js,
PHP,
Python,
Ruby, Go,
C++, REST

JavaScript,
Java,
Python, Go,
C#.

1 M functions and 400.000
GB/s of execution time free
per month1.
The execution time of a sin-
gle function is limited at
300s.

Microsoft Azure
[60]

Azure Function .NET, Java,
Python, Go,
Node.js,
REST

C#, F#,
JavaScript,
Java

1 M functions and 400.000
GB/s of execution time free
per month2.
The execution time of a sin-
gle function is limited at
300s.

Google [61] Google Function REST, RPC JavaScript 2 M functions, 1 M sec-
onds of execution and 5
GB of network traffic free
per month3. The execution
time of a single function is
limited at 540s

IBM Bluemix/A-
pache Open-
Whisk [62]
[63]

Action REST JavaScript,
Python,
Java, PHP,
Swift,
Docker
and native
binaries,
Go

5 M of functions and
400.000 GB/s of execution
time free per month4.
The execution time of a
single function is limited at
600s.

Fission [64] Fission function REST C#, Go,
JavaScript,
PHP,
Python

Fn Project [65] Fn Function REST Java,
Go,Ruby,
Python,
PHP,
JavaScript

kubeless [66] Kubeless Func-
tion

REST Python,
JavaScript,
Ruby, PHP,
Go, .NET,
Ballerina

Table 2.1: Cloud Computing infrastructures API and FaaS programming
languages fragmentation.

could be seen as another application on PaaS. The main difference
between these models is the scalability feature of FaaS. FaaS is an
implicit scalable framework. It allows the user to execute functions
written in different languages over the cloud infrastructure without care
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which server is running the code. The second advantage of FaaS is the
price-effective feature. Each function execution has associated a price
proportionally to the time e and computation resources need to execute
the function.

Commonly, a FaaS service-model architecture is event-triggered,
which means users must deploy functions on the cloud infrastructure
before they can execute them. A function is executed in response to
a new event on the cloud infrastructure (a new record in a database, a
message on a queue, etc.). Table 2.1 shown the most famous Cloud
Computing infrastructures (open-source and private companies) that
provide the FaaS service-model. Table 2.1 presents the supported pro-
gramming languages for the cloud API and FaaS backend for each
cloud infrastructure. Furthermore, the last column describes the exe-
cution limitations for each function and the price plan provided by the
cloud company (if it is present).

2.2 FLY Language
FLY has been designed in order to enable the domain developers (i.e.,
domain experts with limited knowledge about complex parallel and dis-
tributed systems) to develop their applications exploiting data and task
parallelism on a FaaS architecture. This is achieved by a rich language
that provides domain-specific constructs that allow the developers to
easily interact with different FaaS computing backends, using an ab-
straction of the cloud provider’s services. FLY has been designed from
the scientific computing community perspective in which scientists
are interested in exploiting cloud computing easily, rather than rely
on a general purposes language or dedicated languages API. The FLY
principal design goals are:

• expressiveness, in deploying large-scale scientific workflow-based
applications;

• programming usability, writing programs for FLY should be
straightforward for domain experts, while the interaction with the
cloud environment should be completely transparent; the users
do not need to know the cloud providers services;
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Figure 2.1: FLY compilation workflow.

• scalability, either on SMP architectures or cloud computing in-
frastructures that support FaaS.

FLY provides implicit support for parallel and distributed comput-
ing paradigms and memory locality, enabling the users to manage and
elaborate data on a cloud environment without the effort of knowing all
the details behind cloud providers API. A FLY program is executable
either on an SMP or a Cloud infrastructure (supporting FaaS) without a
deep knowledge of the underlying computing resources. FLY is trans-
lated in Java code and is able to automatically exploit the computing
resources available that better fit its computation requirements. The
main innovative aspect of FLY is represented by the concept of FLY
function. A FLY function can be seen as an independent block of code
that can be executed concurrently. FLY is designed as an enhanced
scripting language. It is a sequence of instructions and a number of
FLY functions invocations. FLY functions can be executed in sequen-
tial mode, parallel on an SMP, or on a FaaS backend. The language
provides programming constructs for function definition, execution,
synchronization, and communication. Communication among different
environments/backends is obtained through some virtual communica-
tion path named channels. Along these lines, FLY has been designed as
an enhanced scripting language and is composed of a sequence of stan-
dard instructions integrated with a number of FLY functions invocation,
which communicates via channels.

Figure 2.1 depicts the FLY compilation workflow. On the left side,
the FLY program is given in input to the compiler (written using XText).
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Figure 2.2: FLY execution workflow.

The intermediate AST representation is translated into a Java program.
Each FLY function is translated into different executable codes (one
for each backend). Therefore FLY provides compiled functions code
that can be executed on each cloud infrastructure backend (see the right
side of Figure 2.1).

In detail, in Figure 2.2 we show a general execution flow of a FLY
program along the execution time. First of all, the program initializes
all the backends required by the FLY code, and deploys the generated
code on the corresponding backend. We notice that the FLY functions
are already compiled when the main FLY program is executed, thereby
avoiding run-time compilation overheads. After these initialization
steps, the main program is executed following the FLY code instructions.
Each time the fly keyword is used, the program generates events on
the corresponding SMP and/or FaaS backend, in order to execute the
FLY functions. FLY supports synchronous and asynchronous execution
models.

Before presenting the FLY language design, Listing 2.1 shows a
simple example of a FLY program, which computes the PI estimation
through the Montecarlo Method on Amazon AWS Lambda backend.
Briefly, the PI Monte Carlo estimation algorithm generates random
points and counts the number of points inside a circle of diameter 1.0.
Given the sum of points, it computes the estimation of PI as S∗4.0

N
,

where S is the number of points inside the circle and N is the total



2.2. FLY Language 35

number of generated random points.

Listing 2.1: PI Montecarlo Estimation on Amazon AWS

1 var local = [type="smp",threads=4]
2 var aws = [type="aws",profile="default", access_key="

...",secret_key="...",region="us-east-2",language="
python3.6",concurrency=1000,memory=128,seconds=300]

3 var ch = [type="channel"] on aws
4 func hit(i){
5 var r = [type="random"]
6 var x = r.nextDouble()
7 var y = r.nextDouble()
8 var msg=0
9 if((x*x)+(y*y)<1.0){msg=1}

10 ch!msg on aws
11 }
12 func estimation(){
13 var sum = 0
14 var crt = 0
15 for i in [0:10000] {
16 sum += ch? as Integer
17 crt += 1
18 }
19 println "pi estimation: "+ (sum*4.0)/crt
20 }
21 fly hit in [0:10000] on aws thenall estimation

The FLY PI code defines, at line 1, a new SMP environment, and
line 2, a new Amazon AWS FaaS backend. An important aspect to
note is that an SMP environment must always be declared since a
part of a program’s execution takes place locally. Line 3 declares
a new channel on the environment aws that allows the program to
communicate with FLY functions and also FLY functions with other
functions. At line 4, a FLY function hit is defined, it uses a pseudo-
random generator (initialized using the clock time) to estimate a point
inside the circle of diameter 1.0. While at line 10, a new message is
sent on the channel ch, the message value is 1 if the point is inside
the circle and 0 otherwise. Moreover, at line 12, a second function
estimation reads a sequence of integers number from the channel
ch and write on the standard output the estimation of PI, computed
according to the sum of the messages. At line 21, 10000 hit functions
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are executed synchronously on the aws backend. When all functions
terminate, the function estimation is called on the SMP backend.
It should notice that each FLY functions cannot use variables declared
outside the function scope, excepts for variables of type channel (see
Section 2.2.1).

2.2.1 Language definition
FLY is a parallel workflow scripting imperative language inspired by
functional language peculiarities. FLY has a statically checked type
system, however, it allows the users not to use types during variable
declaration. FLYconsiders that variable types cannot change during the
program execution. Types are automatically inferred when the variable
is first assigned. For this reason, FLY enables runtime type casts as in
Java or C#, programmers can not care about types until it is not used in
particular cases (for instance, when a variable is a function parameter or
a message on a channel, see paragraph 2.2.2 and 2.2.1). FLY supports
inter-process (and inter-FLYfunctions) communications using channels
according to communicating sequential processes (CSP) definition. The
FLY syntax and concepts are a fusion of different languages such as
Java, JavaScript, Python, and R, it ensures familiarity with the most
powerful and famous general purposes/data science languages.

FLY provides what a programmer expects from a scripting lan-
guage: expressions, relational expressions, boolean operations, and
code comments as in Java (using the // or /* block comments

*/). Moreover, FLY is DSL for scientific computing it provides sev-
eral domain-specific constructs for parallel/distributed task/data-based
parallelism, in the next sections are explored the FLY concepts, types,
constructs, executions models, and libraries extensions that we have
defined for our scientific scalable computing language.

Data models and types. FLY provides a rich set of data-types, inher-
ited by Java. From booleans, integers and reals (double point precision
floats) to strings are named basic types. Table 2.2 shows the FLY
types, together with their literal notations. Variables and functions are
identified by an ID literal. To define a new variable, the user has to
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Type Name Description
ID (a..z|A..Z|$) (a..z|A..Z|$|_|0..9)*

literal definition for instance variable name or function name.
Basic Types

Integer (..9)+
Float (..9)+ '.' (..9)+
Boolean 'true' | 'false'
String " ( \\ . | !( \\ | " ) " )* |

' ( \\ . | !( \\| ') ' )*
Array Collection of homogeneous basic types.

Domain Types
Object Collection of basic types elements.
Environment SMP (local) or FaaS backends.
Channel CSP structure for communicate between functions and main pro-

cess.
Random Generator of pseudo-random numbers.
File I/O operations on files.

Table 2.2: FLY Literates and Types

use the word var and provide the variable name, eventually assigning
the variable an initial value. Variable type is automatically inferred at
the first assignment (when a variable is declared, it is not needed to
initialize them, FLY can assign the type when it is used). Notice that
variable type cannot change during the execution time, differently from
other languages like JavaScript.

var ID = Integer|Float|String|Object|File|Array|
Environment

FLY defines the notion Range, it is a range of values between two
integers values in natural numbers ordered. Ranges are useful in loops
and FLY functions executions model.

[Integer|ID:Integer|ID]

A FLY Array is a collection of homogeneous basic types laid on a
tabular form having one, two, or three dimensions. The declaration of
an array is described in the following:

var ID = Integer|Float|Boolean|String[N] // array
declaration
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var ID = Integer|Float|Boolean|String[N][M] // 2-D
Matrix declaration

var ID = Integer|Float|Boolean|String[N][M][K] // 3-D
Matrix declaration

where N, M, and K denotes the length (i.e. number of elements) of each
array dimension.

The language provides several domain types shown in the second
half of the Table 2.2. Six domain types are defined that allow the users
to access the memory and interact with computing backends easily.

Object domain type. A FLY object is a heterogeneous collection of
basic and/or domain types elements, it is a map able to store key-value
couple elements.

var ID={ID=VALUE,ID=VALUE,...} (e.g., var m={i=0,s="
text"})

FLY objects can work as an array or a map. The value of an element
can be access by using two different notions the key or the position.
Obviously, it is admitted to use both methods to access the structure.
However, it is forbidden access by position to an element added by
key and vice versa. When the user valorizes a key/position not present
in the structure, a new element is created to assign the value to the
key/position.

name.ID //where name is the Object variable name
name[Integer|ID]
name.ID = VAL // if ID it is not available, it is

create a new key ID with value VAL.

Environment domain type. This is the most important FLY domain
type. It is an abstraction of an execution environment. It provides the
ability to interact with a FaaS cloud provider or SMP system. For exam-
ple, when FLY functions are executed on a particular backend, we need
a mechanism to refer to the execution environment on which execute
the functions, environment object allow to specialize the execution of
several backends.
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For declaring a new environment, is used a syntax like an object
definition, but using the square brackets ([. . .]). Additionally, the user
has to define several parameters that characterize a backend.

var ID = [type=("smp"), threads=Integer] //
declaration for a SMP environment

var ID = [type=("aws|aws-debug|azure"),(cloud-
provider-access-parameters), region=String,
language=String,

concurrency= Integer, memory=Integer(MB), seconds=
Integer(s)] //declaration for a FaaS environment

The first parameter is type that defines the supported backend. The
most simple backend is smp, and it allows the user to exploit SMP archi-
tecture. The second parameter is threads, an integer value that defines
the number of the concurrent threads used for the parallel evaluation of
the FLY functions. Instead, the declaration of a FaaS environment has a
series of further parameters. The declaration of a FaaS environment, on
the other hand, is a bit more articulated. First of all, it provides the defi-
nition of the various parameters for access to the cloud provider. Since
these parameters are different depending on the chosen cloud provider,
they have been categorized into (cloud-provider-access-parameters).
The region parameter defines the geographic region relative to the data
center of the cloud provider used. The language parameter defines the
language in which the serverless functions must be used. The concur-
rency parameter indicates the number of concurrency functions that you
want to use. The memory and seconds parameters respectively define
the maximum amount of memory and the maximum execution time of
the single serverless function.

Communication statement. The Channel type allows the synchro-
nization and communication between FLY functions and/or the main
program. Channel follows the Communicating sequential processes
(CSP) definition. A new channel is defined on an environment and
can be used for the communication between functions executing on
the same backend or with the main program. Channels are blocking
message queues. When the program sends a message on a channel,
the routine immediately ends. Instead, when it receives a message,
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the execution is blocked until a new message has not arrived on the
channel.

var ID = [type="channel"] on ID //the second ID
refers and environment variable name.

In order to send a message on a channel it is used the character ‘!’,
ch!VAL this instruction send a message V AL on the channel ch, while
for reading a message is used the character ‘?’, x=ch? this instruction
read a message from the channel ch and assign the value to the variable
x.

In detail, channels use the network to communicate with cloud
environments. For this reason, for sending/receiving messages, a seri-
alization mechanism is used. FLY defines the serialization for objects,
files, and basic types. It is not allowed to send messages containing
environment, channel, and random objects. However, it is not conve-
nient to send a message containing a file, but it can be more efficient
to elaborate the file locally and send only portions to FLY functions.
In this version of the language definition, the serialization mechanism
uses a simple algorithm that transforms objects, files, and basic types
in formatted string easily to be deserialized using the JSON format.

Randomness statement. The Random type is a pseudo-random num-
ber generator object. A random object allows the user to generates a
sequence of pseudo-random number calling the functions nextInt()
and nextDouble(), that respectively return a random integer and
a double-precision real between 0 and 1. The random object can be
initialized by an integer value (the random seed), given as parameters to
the object constructor. We plan to provide an initialization mechanism
that allows the user to use a defined sub-sequence of a random number
given by a particular random number sequence (this can help write
programs that do not have statistical error).

var ID = [type="random"]
var ID = [type="random", seed=Integer]

File object. The File object is the abstraction of a file in FLY. The
language supports two file formats identified by the type parameter. The
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first supported file type is “dataframe” which refers to the CSV format,
while the second is “file” which refers to the format TXT. Moreover,
the file object is defined by the parameter path, the file system path
or reference to the file, and by the separator sep, which is an optional
parameter defined for CSV files.

The language provides two access methods to file, depending on
where the file is stored: local and remote. When a file is accessed in
local memory, it is available locally, and the parameter path defines the
local file system path. FLY also allows access to a remote file, available
on the cloud infrastructure, providing an environment object where the
file is available. For instance, consider that a file is stored on Amazon
S3 service1 the path parameters defines the Amazon bucket URL. An
interesting feature of the language is that it allows the automatic upload
of a local file to a cloud provider storage mechanism. This is possible
simply by declaring a file with a local path but specifying that you want
to use it on the cloud through the on clause.

var ID = [type="file|dataframe", path=String, sep=
String] \\local access

var ID = [type="file|dataframe", path=String, sep=
String] on ID \\remote access

FLY provides particular attention to the CSV data managing them
as a Dataframe (similar to R language dataframe). The memory is seen
as a matrix structure, allowing the user to access to row and columns
and used dedicated operations as querying, filtering, random access,
etc...

2.2.2 Control structures

Conditional control. FLY provide the if-else statement. The behav-
ior of this statement is the same of other languages as Java.

if (Boolean Expression)
BlockExpression/Expression

else
BlockExpression/Expression

1Amazon AWS Simple Storage Service

http://aws.amazon.com/s3
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Iterative controls. FLY provides the foreach and while loop state-
ment. In many languages, the loops syntax, and semantics are not
natural and require useless complexity. We have simplified the FLY
loops, providing a simple behavior according to the data structure used.
Two kinds of foreach loops can be used in FLY. The former used the
Range definition and allows the user to loops in a range of integer
values. The second mode allows the user to iterate over a FLY object
or file. Iterate over an object allows the user to access each element of
an object. At each loop, the value of the iteration variable is updated
with a new FLY object contains two fields: the key (or position) of
the object, identified by the ID key, and the value, identified by the ID
value. While iterate over a File Object, create a new FLY object that
contains a portion of the file.
for ID in Range

BlockExpression/Expression

for ID in Object|File
BlockExpression/Expression

The while statement loop behavior is the same of others languages as
Java.
while (Boolean Expression)
BlockExpression/Expression

Execution control structures
Functions. The FLY language core concept. Functions are quite
different from other scripting languages and follow a functional pro-
gramming inspired definition. We named functions as FLY function,
and it is defined as a code block that can be executed concurrently. A
FLY function and can be seen as a task or independent job of our pro-
gram. For declaring a function is used the word func. Each function can
specify a set of input parameters by defining the IDs of the parameters
(omitting parameter types). Functions may return a value using the
word returns, if a function does not return any value, the value of the
last instruction is used as the return value.
func ID (ID, ID, ID, ..)
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BlockExpression

FLY functions have a private scoping, which means that only func-
tion parameters and local variables are visible in the body of the func-
tion. The state of the parameters is passed by copying the value, and it
is considered immutable. However, functions can avoid this limitation
using channels. An outside declared channel can be directly used in the
function. This also applies to environment objects. Notice that the FLY
language does not ensure that operations are admitted: if a function is
executing on a backend B, the function must use only channels defined
on the backend B. Functions called by passing parameters values are
sequentially executed where they are called. For instance, it is possible
to invoke a function in other functions that are executing on a backend,
and the execution is made on the same backend. In order to execute
functions concurrently FLY provide the fly statement described later
(this statement it is not admitted in the body functions), see paragraph
2.2.2.

Types casting. FLY provides support for types casting as in Java and
C#. Several cases need the casting operation. For instance, if we need
to use a function parameter in the function body, it is required a type
casting operation. Types casting operation is admitted on basic and
domain types, but it is forbidden on environment and channels. This
has to do with the fact that the environment and channel objects cannot
be a parameter of functions and cannot be sent on a channel.
ID as TYPES

Parallel/distributed statement. The definition of FLY functions is
the consequence of the explicit parallel execution model of FLY. The
language provides the word fly that allow the user to execute concur-
rently a set of functions (the number of concurrently functions is defined
by the backend support and by the user needs, see paragraph 2.2.1).
The fly statement can be seen as a loop iteration, in which iterations
concurrently run. As described before, for the foreach iteration control
statement, in FLY is possible to iterate over a range of integer values,
an Object, a File, or an Array and for the fly statement is the same (by
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using the word in is possible define that). To be used in the fly construct,
functions must take only one input parameter (the iteration value) that
is automatically passed to the function execution.
fly ID in Range|Object|File|Array on Environment then

ID thenall ID

In the second part of the fly statement, an execution environment is
defined using the word on. Finally, the fly statement support two kinds
of function callbacks, declared using the word then and thenall. The
then callback is executed for each FLY function executions, instead the
thenall callback is executed after all FLY function execution.

The above FLY execution model uses FLY functions, which take
only one parameter (the iteration value). FLY also supports a single
execution mode, in which the FLY function can be called by passing
parameter values and executed on an environment.
fly ID(VAL,VAL,..) on Environment then ID thenall ID

Moreover, FLY explores synchronous and asynchronous execution
models. The previous construct defines the synchronous mode, in which
the main program waits for all functions termination. It is possible to
execute functions asynchronously using the word async before the fly
construct.
var ID = async fly ID in Range|Object|File|Array on

Environment then ID thenall ID
ID.wait()
ID.waitall()

The async statement returns a special FLY object, named async-
object, that allows the user to control and interact with the asynchronous
execution. The async fly constructor invocation immediately returns
the control to the main program and the execution can continue. The
user can control the status of the asynchronous functions invoking the
method status() on the async-object and can wait the termination
of all functions using the method waitall() or wait the termination
of the first function by invoking the method wait().

Other features. FLY is a language for Java Virtual Machine language
(because it is translated in Java code), and for this reason, it inherits all
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String and Math operations allowed in the Java language. However, FLY
functions can be executed on several backends that may not support
Java code. FLY compiler is able to translate these operations also in
other languages supported by the different backends. The language
documentation provides the complete list and description of math and
string operations.

FLY also provides timing operation. The user can compute the
execution time using the method time(). The method returns the
clock time expressed in milliseconds. Notice that it is allowed to call the
time operation only to compute interval of time in the same environment
(for instance, in a function or in the main program).

FLY provides the native statement, defined by the keyword native,
that enables the programmers to invoke directly native code (Python or
Node.js code) in the FLY functions.

2.2.3 FLY compiler
FLY source-to-source compiler is available on a public GitHub reposi-
tory1. An implementation of the language grammar and code generators
for the SMP and Amazon AWS and Microsoft Azure FaaS backends
have been developed. FLY has been developed in order to generate
a Java program, which is able to support several backends. The FLY
language compiler is developed using Xtext [57] framework, which
enables the user to create JVM based DSL. The FLY code is trans-
lated in a pure Java program that exploits cloud APIs in order to use
FaaS services. Xtext leverages the powerful ANTLR parser, which
implements an LL parser. In compiler development, it is known that
LL-parsing has some drawbacks: LR parsers are more general than LL
parsers, which do not allow left recursive grammars. Moreover, LR
parsers are, in general, more efficient. On the other hand, LL parsers
have significant advantages over LR algorithms concerning readability,
debuggability, error recovery, and as well as they are much simpler
to understand. Xtext provides an initial grammar specification, a full
infrastructure including lexer, parser, AST model, linker, type-checker,
compiler, as well as editing support for Eclipse and/or any editor that

1github.com/spagnuolocarmine/FLY-language

https://github.com/spagnuolocarmine/FLY-language


46 2. FLY Language

Computing Environments/Backends
Name SMP FaaS

JavaScript Python
Integer java.lang.Integer Number Numbers
Float java.lang.Double Number Numbers
Boolean java.lang.Boolean Boolean Boolens
String java.lang.String String String
Object java.util.HashMap <String,String> Object Dict
Environment java.util.concurrent.

ScheduledThreadPoolExecutor;
com.amazonaws.auth.*;
com.amazonaws.services.s3.*;
com.amazonaws.services.lambda.*;
com.amazonaws.services.
indentitymanagement.*;
com.microsoft.azure.
AzureEnvironment;
com.microsoft.azure.management.*;
com.microsoft.azure.credentials.*;

Channel java.util.concurrent.
LinkedTransferQueue<String>
com.amazonaws.services.sqs.*;
com.microsoft.azure.storage.queue.*;

aws-sqs
azure-storage-
queue

aws-boto3-sqs
azure-storage-
queue

Random java.util.Random Math.random() Random package
File java.io.FileInputStream File I/O File I/O
Dataframe tech.tablesaw.api.Table [70] dataframe-js [71] Pandas Library

Table 2.3: Code generation mapping of FLY types.

supports the Language Server Protocol as well as web browsers. The
LL grammar for FLY language, which provides the complete language
definition, is presented in Cordasco et al. [40]. Xtext has also been used
to develop a code generator that, given the intermediate AST program
representation (the output of the first compilation phase), generates a
FLY Java program. The FLY Java program execution flow is shown in
Figure 2.2. The code generation phase is the core of our compiler, and
it generates different codes according to the backend where the FLY
code has to be executed.

The code generation phase is designed to be specialized according
to the considered backend:

1. SMP backend. A Java Thread Pool is used to implement the
backend for the SMP architecture. The FLY main program is
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executed as Java code on a JVM, which also executes the SMP
backend. Only one assumption has been made about the un-
derlying hardware, and it is that it provides at least 2 physical
cores, one to run the main program, and one that acts as an SMP
backend. Therefore, the FLY functions are translated in pure Java
code. In details, all FLY types are mapped on a particular Java
type, as described in Table 2.3, while the FLY functionalities are
provided exploiting the Java language.

2. FaaS backends. The FaaS computing backends have been devel-
oped using the API of each cloud provider, as shown in Table 2.3
exploiting a particular cloud service, according to each provider
and computing language API, for each type and functionality of
FLY. Our FLY compiler translates each FLY function in Java,
JavaScript, or Python languages, automatically according to the
computing backend where the function will be executed during
the workflow. For each backend and each FLY function, the
compiler generates a deploying package containing: the source
code and libraries structured according to the destination backend.
The FLY deploying phase on each cloud backends exploits the
cloud client command-line interface (CLI): AmazonAWS CLI1

and Microsoft Azure CLI 2. An important aspect to notice is that
we invoke (or trig) the functions by using asynchronous HTTP
POST requests, which, according to experimental results, ensures
the shortest invoking latency.

Finally, the compiler produces a Java Maven project including all
dependencies, the FLY Java class program (named as the FLY source
code), and the code of functions. The command mvn package,
which generates am executable JAR file, is used to build the project.

1aws.amazon.com/cli
2docs.microsoft.com/en-us/cli/azure

https://aws.amazon.com/cli
https://docs.microsoft.com/en-us/cli/azure
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2.3 Debugging FLY Applications
The FLY language is a workflow language that enables the execution
of functions on remote/distributed backends. The programmers have
no control over the execution and memory of the remote computing
backend. For this reason, debugging FLY applications is very complex,
considering that to analyze functions logs, the programmers have to
access each cloud provider used in the computation using specific
API of Web portals. Moreover, a possible incorrect execution has a
considerable cost. Indeed, assuming that a FLY application generates
errors only in some rare cases (i.e., memory requirements or index out
of bounds), then according to the FaaS execution model, all incorrectly
executed functions must be paid as correct executed ones.

For the reasoning above, FLY provides a particular debugging back-
end for the Amazon AWS cloud provider. By using this backend, the
programmer is able to execute and test the code on a local virtual
environment that emulates the Amazon AWS ecosystem. The program-
mer has to define the AWS backend using a particular environment
type aws-debug. We developed the AWS debugging environment
using Local Stack [72], which provides an easy-to-use test/mocking
framework for developing Cloud applications. In particular, the AWS
debugging environment enables the programmers to test FLY applica-
tions onto the local machine using the same functionality and APIs as
the real AWS cloud environment. Local Stack framework exploits the
containers virtualization technology to emulate the AWS environment,
and for this reason, in order to exploit the AWS debugging environment,
the Docker1 application needs to be installed on the local machine.

2.4 Language Evaluation
We evaluated FLY efficiency analyzing the performance of FLY on the
Word Count problem, a popular benchmark for distributed workflow
computing framework, which consists of listing the frequencies of
different words in a set of text files.

1www.docker.com
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Listing 2.2: Word Count on Amazon AWS

1 var local = [type="smp",threads=4]
2 var aws = [type ="aws",user="default", access_key="k1",

secret_key="k2", region="us-east-2", language="
python3.6", threads=1000,memory=128, seconds=300]

3 var ch = [type="channel"] on aws
4 var dir = [type="file", path="data"]
5 for f in dir{
6 var file = [type="file", path=f] on aws
7 }
8 func count(files){
9 var counts = {}

10 for f in files{
11 var file = [type="file", path=f]
12 for strs in file{
13 var words = strs.split(" ")
14 for w in words{
15 var word = w.v as String
16 if(not counts.containsKey(word))
17 counts[word] = 1
18 else
19 counts[word]=counts[word]+1
20 }}}
21 ch!counts on aws }
22 func reduce(){
23 var total_counts = {}
24 for i in [0:1000]{ //this values depends on the

number of concurrent functions requested
25 var res = ch? as Object
26 for w in res{
27 var word = w.k as String
28 var tmp = w.v as Integer
29 if(not total_counts.containsKey(word))
30 total_counts[word] = tmp
31 else
32 total_counts[word] = total_counts[

word] + tmp
33 }
34 }
35 for value in total_counts{
36 println value.k+ " "+ value.v
37 }
38 }
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39 var t_start = time()
40 fly count in dir on aws thenall reduce
41 println time(t_start)

Listing 2.2 shows the FLY code for the Word Count problem. Ini-
tially, the input files are loaded on an AWS S3 bucket (lines 5 − 7).
Lines 8− 21 show the code of the count function, which takes as a
parameter a list of string (files path), which are the AWS endpoint of
the input files on the S3 bucket, and iteratively counts the number of
occurrences of each word. Then, a message containing the FLY object
that maps each word with the corresponding frequency is sent on the
channel ch (line 21). Lines 22− 38 provide a reduce function that
will be executed on the local machine. The reduce function reads
from the channel ch the words frequencies, computed by the FLY func-
tions, and generates a single occurrences list. Finally, line 40 shows
the FLY construct to execute the process on the backend AWS, which
executes at most 1000 concurrent count functions on AWS. Each
function receives a balanced subset of the files contained in the local
directory data. When all FLY functions are completed, the reduce
function will be executed (synchronization is obtained thanks to the
synchronous FLY construct, line 41).

We performed several benchmarks of the Word Count program to
explore FLY capabilities in terms of performance and cost-effectiveness.
Table 2.4, shows the results obtained running nine different input size
(rows) and varying the execution backends (columns). Specifically, we
tested three files size: 125, 250 and 500MB, with three cardinalities of
files: 500, 1500 and 2000. Therefore we analyzed, in the worst-case,
approximately 1 Terabyte of data.

We compared the performance of the sequential executions (FLY
Java) against two parallel executions, using 4 (SMP-4) and 64 (SMP-64)
cores, and a distributed execution using 1000 concurrent FLY functions
at the time (AWS-64). Furthermore, we evaluated the performances
of the previous configuration of FLY compared to the execution of
the same task on Apache Hadoop1, a well-know big data analytic
framework (H-16). We used the Amazon AWS cloud as computing

1hadoop.apache.org

https://hadoop.apache.org/
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environment, in particular AW-64 exploits a m4.16xlarge EC2 instance1,
which provides 64 virtual cores. We measured the total computation
time (in hours) without considering the time required to load the files
on the computing environment.

We also performed the same experiment using an m4.xlarge EC2
instance, which provides 4 virtual cores, obtaining similar results in
terms of computational time and cost. There are several possible ex-
planations for this outcome. First of all, the computing time for FLY
functions is the same in both configurations. Moreover, the greatest
number of cores of AWS-64 are exploited only for the reduce functions,
which is not a computationally intensive task for this task.

The H-16 configuration refers to the same task executed on an
Apache Hadoop cluster machine, running exploiting the Amazon AWS
EC2 and Elastic Map Reduce (EMR) services. We used a cluster of 16
computing nodes and one master node for a total of 128 virtual cores.
Each node is a m4.xlarge EC2 instance, which costs 0.80$ hourly plus
the cost of EMR running on it that is 0.24$ hourly, hence the total cost
of the cluster is 16.64$ hourly. We notice that this cluster configuration
requires, on average, about 20 minutes of cold starting time. For this
reason, we added to the cost of each experiment the price to start the
cluster, but we present, in Table 2.4, only the time for running the
experiment, also without considering the time to load the file on the
HDFS.

Table 2.4 shows the obtained speed-up concerning the sequential
execution and the total cost (in dollars) considering the cost of the FLY
functions and the cost of the EC2 instance machine running the FLY
main program. As highlighted in the table, the best performance has
been obtained by the backend that exploits FaaS (AWS-64). On the
other hand, H-16 is the most expensive experiment, while SMP-4 results
as the cheaper execution configuration. As shown, the performance of
the FaaS backend is the most effective, compared to the parallel backend
and the Apache Hadoop, also considering their cost for running on the
Amazon AWS. It is important to notice that we adjust the number of
nodes composing the Hadoop cluster machine to be comparable in cost
to the configuration execution using FaaS.

1aws.amazon.com/ec2/instance-types

https://aws.amazon.com/ec2/instance-types
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FLY as a distributed computing framework It is worth mentioning
that our experiments on H-16 are consistent with the complete anal-
ysis presented in [73]. The authors detail the performance of several
benchmarks (such as Word Count, K-means, and so on), on several
cloud-based cluster machines. In particular, they exploited an Amazon
EC2 cluster composed by 8 r5.24xlarge instance type, where each ma-
chine is equipped with 96 cores and 768GB of memory. The described
results provide a good comparison for our purposes. As described by
the authors, Hadoop spends about 0.3 hours (18.3 minutes) for counting
1.6TB of data. Analyzing the cost for this experiment, we have that
each EC2 instance cost 6.048$ per hour, while the Elastic MapReduce
service, running on this kind of instance, costs 0.26$ per hour, hence
the total cluster cost for 0.3 hours is about 14.60$. We can compare
this data with our results on FLY, which computes the word count
on 1 TB of data with a cost of 3.8$. Moreover, our system is a clear
advance in terms of performance by also considering the opportunity to
exploit multi-cloud, which enables the programmer to easily increase
the amount of computational resources by exploiting different cloud
providers in the same application. Moreover, the paid price for our
solution is extremely cheaper (about 4 times less). We plan to investi-
gate a more detailed comparison by running this benchmark, varying
the computing backends on different cloud providers, like Microsoft
Azure, and comparing the cost and performance of Apache Hadoop and
Apache Spark running on the same cloud provider.

2.4.1 Use cases

In the following, we provide two well-known scientific computing use
cases developed in FLY: supervised machine learning classification and
sequence alignment. For both the problems, we identified a well-known
algorithm that has been developed and tested using FLY. With more
details, we developed a FLY implementation of the linear k-Nearest
Neighbors (k-NN) algorithm, which is one of the most used learn-
ing algorithms, as well as the Smith-Waterman algorithm, a dynamic
programming algorithm for determining the optimal local alignment
between two strings according to a gap-scoring scheme.
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We tested the performance of k-NN algorithm using the 20 News-
groups (20NG) [74] data set, which comprises a collection of approx-
imately 20000 newsgroup documents. The data is organized into 20
different newsgroups, each corresponding to a different topic. The
data set is composed of 19300 instances, described by 1006 attributes.
We used 9000 instances for the training set, while a combination of
instances in the data set plus some synthetic instances has been used
for the test sets. For the Smith-Waterman algorithm, we performed the
alignment of several synthetic protein sequences using the BLOSUM50
matrix as a gap-scoring scheme.

The experimental case studies evaluation has been performed using
six computing environments, as described in Section 2.4. Five envi-
ronments exploit FLY: Java, SMP-4, SMP-64, AWS-4, and AWS-64.
Moreover, we considered a baseline environment represented by a pure
Java implementation, running on a single thread machine. In order
to perform a cost comparison of each environment, we executed all
the tests on AWS using AWS EC2 instances. In particular, we used
the r5.large (2 vCPU, 16GB RAM), r5.xlarge (4 vCPU, 32GB RAM)
and m4.16xlarge (64 vCPU, 256GB RAM) instances to run respec-
tively the tests that requires 1, 4 and 64 threads. FLY functions have
been deployed on AWS Lambda, configured with 3GB of memory. It
is worth mentioning that tests performed on different environments
always provide the same result (this was expected since we did not
modify the algorithms).

k-NN algorithm

We developed several experiments varying the number of testing in-
stances and the computing environment. For each test, we compute the
total computation time and its cost. Figure 2.3 presents the performance
in terms of strong scalability on the 20NG data set for each computing
environment (series). It is worth mentioning that the implementation of
the algorithm in Pure Java and FLY provide the same accuracy. There-
fore in the following, we compare the different configurations only in
terms of computation time. The total computing times are shown in
milliseconds (y-axis, log scale), varying the number of instances in the
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Figure 2.3: FLY Scalability on k-NN.

test set (x-axis, log scale) from 4000 to 24000. As shown in the figure,
the best performance is always achieved by the configurations that use
the FaaS backend. The pure Java code is slightly better than the SMP
using 1 thread (this slow-down represents the overhead due to FLY), but
it is outperformed by the SMP configuration with 4 threads. The overall
billing cost for the larger test set ranges from ≈ 0.35$ for the SMP-4
configuration (i.e., the cost of the r5.xlarge instance) to ≈ 0.85$ for
the AWS-64 configuration (i.e., the cost for the m4.16xlarge instance
plus the cost for the AWS Lambda functions). We also notice that the
pure Java implementation is more expensive (≈ 0.37$) than the SMP-4
configuration.

Smith-Waterman algorithm

Similarly to the k-NN evaluation, we developed several experiments
using the Smith-Waterman Algorithm, varying the length of the se-
quences to be aligned. Figure 2.4 presents the performance in terms
of scalability on the synthetic protein sequences for each computing
environment (series). As for the previous case, the best performance is
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Figure 2.4: FLY scalability on Smith-Waterman.

k-NN Smith-Waterman
4k 8k 12k 24k ≈12k ≈16k ≈19k ≈23k

SMP-4 1.76 2.61 1.96 6.46 22.21 15.49 20.12 14.30
SMP-64 1.06 3.22 3.70 14.55 138.29 149.23 131.19 154.47
AWS-4 0.34 1.91 3.48 21.85 60.85 76.46 83.28 92.46
AWS-64 0.72 3.46 6.66 63.58 56.26 78.26 76.26 94.88

Table 2.5: Speed−up
Cost

Comparison.

always achieved by the configurations that exploit the FaaS backend
but in this experiment, the capability of the machine that executes the
FLY main program does not affect the performance. Moreover, the
overhead of FLY with respect pure Java code is negligible. The overall
billing cost for the larger test set ranges from ≈ 0.18$ for the SMP-4
configuration to ≈ 1.56$ AWS-64 one. The Java pure implementation
cost is ≈ 1.12$. Overall the FaaS backend always provides a speed up
to the performance that ranges from 17× (k-NN with 4000 instances)
to 160× (k-NN with 24000 instances).
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Speed-up vs cost comparison

Table 2.5 provides a comparison in terms of the ratio between the speed-
up obtained and its extra cost, respect to the cost of the environment
used for the pure Java implementation. The table shows that, except for
a small number of instances, the ratio is always greater than 1 meaning
that the benefit of using FLY in terms of speed-up is always greater
than their extra costs.

2.5 Exploring Function-as-a-Service for Op-
timization via Simulation using FLY

Simulation models are the most used and expressive way to analyze real-
world systems that are too complex to be studied analytically or too risky
and expensive to be tested experimentally [38]. A simulation model is a
complex mathematical model characterized by several parameters that
define its characteristics and behaviors. One of the significant problems
in model design is finding the configuration of parameters that makes
the simulation execution as meaningful and realistic as possible. Over
the years, the scientific community studied different techniques and
methodologies to face-off this problem. Optimization via Simulation
(OvS) is enjoying the most success, both in terms of performance and
accuracy. OvS is a computationally expensive process because both the
number of parameters and the values each parameter may assume are
generally vast. Moreover, for each configuration, a simulation must be
run, resulting in tons of executions.

This work aims to present a methodology that allows to fully exploit
Serverless Computing, also called FaaS, in the OvS processes, claiming
to be flexible, easy to use, and cost-efficient. The approach stems from
the OvS process’s subdivision into two main phases: parameters opti-
mization and simulation execution. According to this, we identified two
fundamental components that are the optimizer and the executor. While
the optimizer takes care of the optimization process, the executor is
responsible for the simulation execution, which can be largely improved
using FaaS. One of the key benefits of the proposed methodology is
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the simplified pattern that it uses. Identifying different components
allows us to use the most appropriate based on the context and the
application. Moreover, the integration of Serverless Computing inside
the OvS process removes the need to configure the system that runs the
simulation, speed-up the execution, and facilitates the developer’s job.

We show the advantages of the proposed methodology through a real
case study. Specifically, we used OvS techniques to solve the Customer
Allocation (CA) problem. The CA problem consists of planning a
distribution network that maximizes customer satisfaction and, at the
same time, minimizes the cost and the time of a product’s transportation.
To solve this problem, we used the simulation optimization OPTNet
framework [75], developed by ACTOR company [76] as the optimizer
and an SC workflow written in FLY language [40, 41] as the executor.

2.5.1 Serverless computing methodology for optimiza-
tion via simulation

OvS consists of an iterative process that starts with the execution of
a simulation with some initial parameters. A specific function evalu-
ates the results obtained by this execution, and then the process uses
the feedback to tune the parameters or select new ones for the next
simulations. The entire OvS process can be divided into two principal
phases: the parameters optimization and the simulation execution. The
latter is a compute-intensive and time-spending task because of the high
number of configurations generated in each iteration, along with the
time needed for the execution itself.

The optimization model views the simulation as a black box and
only provides them the parameter values. Then it uses the simulation
results for the optimization phase. [77].

In this work, we propose a methodology that stems from the division
mentioned above, identifying two main components: the optimizer
and the executor. The optimizer handles the optimization process, it
generates the input parameters for the simulation execution based on
the previous iteration results and manages the termination. On the other
hand, the executor takes care of the execution of the simulation. It uses
the configuration provided by the optimizer as the parameter values
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Figure 2.5: Optimization via Simulation process over Function-as-a-
Service architecture

and then collects the results. The first advantage of our methodology is
that the two components do not need to communicate directly. Instead,
the data is exchanged using simple files avoiding any compatibility
and dependability issues. Specifically, the optimizer writes several
simulation configurations on the input file. The executor reads the
input file, uses it to set up the simulations, and writes the results on the
output file. The optimizer reads the output file using the data for the
optimization phase and starts another iteration if needed. The entire
cycle is shown in 2.5.

The components’ independence makes the methodology flexible
and adaptable, allowing any technology for its implementation. The
choice is totally based on the context, and the only needed characteristic
is the ability to read and write files, clearly a trivial one.

Workflow distribution approach

The critical part of an OvS process is the simulation phase because
each configuration requires a simulation, demanding many computing
resources and time. The executions’ independence permits to paral-
lelize the workflow to decrease the time needed but, on the other hand,
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involves the necessity of a powerful computing system. The integration
of Serverless Computing removes this necessity and fully devolves
the management to the cloud provider [78]. Figure 2.5 depicts the
parallelization technique used. The optimizer provides several con-
figurations, and the executor can run multiple simulations in parallel,
assigning a function to each configuration. The function-based devel-
opment model allows to increase the system scalability, optimize the
workload, the execution time, and the costs. However, building an
application using Serverless Computing is not that simple, especially
when the developer is a domain expert and not a computer scientist.
The development of the executor component using FLY permits to over-
come these difficulties. First of all, as specified by Section 2.2.1, FLY
abstracts any interactions with the cloud provider, providing an easy
and effective language independent from the specific cloud provider. In
the second place, the FLY program structure makes simple the manage-
ment of the different simulation functions and file reading and writing.
Specifically, a FLY program is composed of the main program and one
or more FLY functions. The main program takes care of the whole
orchestration managing the initialization of the cloud environments,
functions deployment, and the functions’ invocations together with re-
sults collection. File reading and writing happens here. A FLY function
corresponds to a Serverless function and can implement the simulation
logic. The proposed methodology offers even more benefits using FLY
as the language for the executor. Indeed the simulator designer does
not need to have high programming or cloud computing experience.
Instead, he can quickly write its simulation with a simple programming
language. FLY Language allows the designer to focus on the application
logic besides the technicalities needed to execute the application on the
cloud, granting to exploit the Serverless Computing power. Even more,
a FLY program can be run on several cloud providers, in a multi-cloud
manner, with minimal changes to the code.

2.5.2 Use case: Customer Allocation problem

In this section, we describe an implementation of an OvS process for
solving the Customer Allocation problem using the methodology de-
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scribed in Section 2.5.1. The use case aims to explain, evaluate, and
demonstrate the use and the benefits of our approach. Specifically, we
implemented an architecture composed by the SO framework OPT-
Net [75], developed by ACTOR company [76], as the optimizer and
a Serverless workflow written using the FLY language [40, 41] as the
executor. We tested it using Amazon Web Services (AWS) as the cloud
environment to evaluate scalability, efficiency, and costs obtained using
our methodology.

OPTNet - simulation optimization framework. OPTNet is a flexi-
ble Simulation Optimization framework written in Java and developed
by the ACTOR company in 2006. It allows the design, the simula-
tion, and the analysis of a supply chain, its flows, and inventory for
cost-cutting purposes. OPTNet aims to maximize computational per-
formances reducing hardware costs. OPTNet can deal with large cor-
porations’ business complexity, but it can also scale down for mid-size
companies’ needs. The design of OPTNet is specific to manage large
quantities of data, easily integrated with ERP systems. It can be in-
stalled on both on-premise or on a cloud environment, implementing the
Software as a Service model. The core of OPNet is a math-optimization
engine for transport planning, fleet scheduling, and vehicle routing that
provides different supply chain and transportation solutions. Some
examples are distribution from a single warehouse, last-mile, and door-
to-door distribution for postal and many others. It is also user-friendly,
including a web-based and mobile user interface [75].

Customer Allocation problem. One of the most critical activities
in logistics is the planning of the product distribution network. The
objective is to minimize the total logistical cost, expressed as the sum
of activation and deactivation, storage, transport, and customer service
costs. The logistics network can be seen as a network of nodes that
are production and distribution sites and customer areas, connected
by edges, describing idealized transport routes between pairs of nodes.
The solution is represented by defining the customer nodes that each
production or distribution node must serve. The entire process is called
Customer Allocation (CA) problem [79] and represents one of the most
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important applications of optimization, in which the goal is to find the
best routes for a fleet of vehicles visiting a set of locations, where the
best means routes with the least total distance or cost.

Given the CA problem’s inherent difficulty, the approach taken is to
divide it into several instances of the well-known Capacitated Vehicle
Routing Problem (CVRP), each of which includes only one production
or distribution site. Once the CVRP solutions are obtained, they are
used to reconstruct the complete CA solution. The Capacitated Vehicle
Routing problem involves several vehicles with a limited carrying
capacity that need to pick up or deliver items at various locations. The
items have a quantity, such as weight or volume, and the vehicles have
a maximum capacity that they can carry. The problem is to pick up or
deliver the items for the least cost while never exceeding the vehicles’
capacity. CVRP is known to be an NP-hard problem, so it is difficult to
solve this problem directly when the problem size is large.

Implementation details. The solution for the Customer Allocation
problem is built using a Simulation Optimization approach. Specifically,
a Genetic Algorithm (GA) is implemented. Initially, the algorithm
generates naive solutions without optimizations and tries to improve
them at each iteration through casual modifications.

Clearly, the mechanism described above is well suited to be imple-
mented with the proposed methodology exploiting the possible subdi-
vision in optimization and execution phases. In detail, the optimizer
generates different solutions, i.e., a group of parameter values, and
writes them on the input file. The executor reads the input file and uses
the parameters to run the simulations. Then the results are collected
and written on the output file. The optimizer uses the output file to tune
the parameters and start a new iteration.

The implementation uses OPTNet as the optimizer while a FLY
program plays the role of the executor. FLY main program takes care
of the orchestration part: reads the input file and launches a specified
number of functions using the configurations read. A FLY function
implements the simulation logic, i.e., the CVRP program. Upon func-
tions’ completion, the main program collects all the results and writes
the output file. Figure 2.6 shows the CVRP FLY program execution’s
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Figure 2.6: FLY execution workflow for Capacitated Vehicle Routing
problem.

workflow at a very high level.
The FLY Language characteristics provide many advantages to this

kind of workflow because the initialization of the cloud environment,
the deployment of the function, and the actual concurrent functions
invocations are transparent from the user point of view or, at least,
easily implemented thanks to specific language features.

Listing 2.3: CVRP FLY Program.

var local = [type="smp", nthread=4]
var aws = [type="aws", profile="default", access_key =

"", secret_key="",
region="", language="python3.6", concurrency=1000,

memory=3000, seconds=300]
/* omitted code for space reasons */
func vrpc(data) {

/* omitted code for space reasons */
for instance in data {

for d in demands_it {
if (d.v > vehicle_capacity){

split_demands[d.k] = instance[3] as
Integer + j

j++
}

}
/* omitted code for space reasons */
for d in demands_it {
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native <<<
if d['k'] in split_demands.keys():

demands[i] = vehicle_capacity
demands[split_demands[d['k']]]=(d['v']-

vehicle_capacity)
else:

demands[i] = d['v']
>>>
i++

}
/* omitted code for space reasons */

func estimate() {
for i in [0:1000] {

var e = ch ? as Object
for r in e{

println("Instance Name: "+r.k)
println(r.v)

}
}

}
/* omitted code for space reasons */
fly vrpc in test on aws thenall estimate

The functions developed in FLY are based on the CVRP algorithm
provided by the Google Optimization tool [80], written in C++ but
also supplied with a Python wrapper used in our experiment. A brief
snippet of the CVRP FLY program can be seen in Listing 2.3, while the
complete code is available on GitHub [81].

Evaluation

Experiment settings. The approach described above, composed of
OPTNet as the optimizer and a FLY program as the executor, is being
tested using AWS services to evaluate scalability, efficiency, and costs.
A benchmark is proposed between the proposed methodology and the
sequential version of the same solution, developed using only OPTNet.
Specifically, we tested several GA configurations using one iteration
loop with 10 facilities and 15000 customers, varying the number of
CVRP instances generated, starting from 2468 up to 12340. All the
experiments have been performed on an AWS EC2 m4.16xlarge ma-
chine with 64 cores and 256GB of memory. The FLY program has been
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Figure 2.7: OPTNet vs OPTNet & FLY running time and price compar-
ison.

configured to execute 1000 concurrent functions, each with at most
3GB of memory using Lambda functions, the AWS SC service. It is
important to note that we used the same AWS EC2 instance for running
both the experiments.

Results. Figure 2.7 depicts the obtained performance in our experi-
ments, varying the number of CVRP instances computed. The x-axis
shows the number of CVRP instances, while the y-axis shows the to-
tal running time in milliseconds. Furthermore, near each point, the
corresponding price in dollars ($) is shown.

The benchmark analysis reveals that the proposed methodology
provides better performance, i.e., the shortest execution time, as ex-
pected. However, the most relevant outcome regards scalability. Indeed,
as the number of CVRP instances increases, the total execution time
undergoes minimal growth. On the contrary, looking at the performance
of the solution implemented with the sequential version of OPTNet,
the line rises steeply. This result demonstrates that the methodology
allows to fully exploit the computational power provided by Serverless
Computing, granting high scalability.

Concerning the costs, the use of AWS Lambda service makes our
approach more expensive, as we expected because of the Cloud billing
model.
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Wrapping up, the combined use of OPNet and FLY results in a
speed-up consistently greater than ×5 with respect to the sequential
version of OPTNet, while the price increases at most 3 times. We
can assert that solving the CA problem using our methodology pro-
vides scalability and efficiency, significantly reducing the whole OvS
process’s computational time. Furthermore, the integration of FLY
Language for the development of the executor component brings even
more advantages in terms of usability and ease of use.



Chapter 3

Agent-based Simulation

3.1 Introduction

SC uses computer simulation to investigate solutions and study com-
plex real-world problems. Identifying fundamental rules that govern
complex systems and developing predictive models to describe the
evolution of real phenomena are challenging tasks that can improve
the design of approaches and methodologies in many research fields
from social sciences to the life sciences, from economics to artificial
intelligence [82]. The analysis of real systems has revealed several
interesting emergent behaviors both in terms of structural features [83]
and dynamic behaviours [84]. However, a full understanding of the
dynamic behavior generated by complex systems is extremely hard
and requires innovative study methodologies. Computational scientists
have proposed the analysis of these phenomena through the exploitation
of simulations based on Agent-Based Model (ABM). The success of
computational sciences has led to increasing demand for computation-
intensive software implementations. Hence, the need to improve the
performance of ABMs simulations - successfully adopted in many
sciences [85] - in terms of both size (number of agents) and quality
(complexity of interactions). Complex ABMs very often require the
continuous computation of global data during the simulation [86]. In
such cases, the problem consists of ensuring good performance and a
high-level of effectiveness in simulation modeling.
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However, frameworks for distributed simulations are not able to com-
pute global information efficiently (for instance, the total number of
agents that satisfy a given property) [53]. The computation of a global
parameter represents a bottleneck for distributed simulations, which
jeopardizes the performance due to the communication overhead. In
such cases, the use of a parallel and/or sequential simulation framework
provides better performances [87]. Moreover, to achieve performance,
distributed simulations often require expensive hardware that is us-
able only by distributed computing experts. Providing efficient and
effective software for developing ABM simulations in sequential com-
puting allows the user to effortlessly execute simulations. This makes
simulations more suitable for a “what-if” scenario, where the user
needs to frequently change the simulation parameters and rapidly ob-
serve the results. High-performance ABM simulations are built upon
performance-critical operation, and interactions exhibit multiple levels
of concurrency. Implementing an efficient framework for the devel-
opment of ABM simulations is extremely challenging, and the choice
of the implementation language is a crucial aspect to consider. It is
common to use a language like C to gain performance, as it enables the
programmer to exploit low-level memory operations (e.g., deallocating
memory) thanks to its low level of abstraction (e.g., no object-oriented
support). On the other hand, the usage of such languages turns out to
be quite difficult, especially for domain experts with limited knowledge
of computer programming and systems.
In this work, we exploit Rust as a programming language for the next
generation of ABM simulation. Rust is a multi-paradigm system pro-
gramming language with performance comparable to C. Its main feature
lies in its memory model, designed to be both memory and thread-safe.
This aspect can be recognized as the core advantage of using Rust over
languages like C++ and Java as it allows the user to write correct code,
particularly in the presence of concurrency and parallelism. We will
describe Rust’s key concepts in Section 3.1.2.
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3.1.1 Agent-based models
Agent-based models are a class of computer models in which entities
(referred to as agents) interact with each other and their local environ-
ment to observe the rising of complex macro-phenomena.

There is no universal definition of agents. The diversity of their
application makes it difficult to extract characteristics common to all
possible types of agents. From the modeling standpoint, some features
are common to most agents. These are briefly presented:

• autonomy: can make independent decision processing informa-
tion and exchanging it with other agents;

• heterogeneity: it is possible to have different agents in the same
ABM. For example, if we are modeling a city, we can have agents
representing people and other agents representing cars, buildings,
animals, and all other objects that we can imagine. Obviously,
each of these types of agents has it’s characteristics and behavior;

• active: because agents exert independent influence in a simula-
tion.

This list is not exhaustive or exclusive because agents may possess dif-
ferent characteristics within an application, and for some applications,
some characteristics are more important than others. Each agent in an
ABM has rules that affect their behavior and relationship with others
and/or their environment. These rules are typically based around if-else
conditions with agents carrying out an action once a specified condition
has been satisfied. More generally, rules can be any algorithm that
expresses an agent’s response in terms of other agents and the surround-
ing environment. In ABM, as the agents, also the environment plays a
critical role. The environment defines the space in which agents oper-
ate, serving to support their interaction with the environment and other
agents. An environment can be abstract (empty space) or a Geographic
Information System (GIS) layer representing real geographic informa-
tion. It is common to find ABMs with more than one environment
to map several layers of information related to the real environment.
Environments can be static or dynamic, changing during time.
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There are three claimed advantages of the agent-based approach:

• ABMs capture emergent phenomena in a bottom-up approach.

• ABMs provide a natural environment for the study of certain
systems.

• ABMs are flexible, particularly to the development of GIS mod-
els.

3.1.2 Rust background
Rust is a multi-paradigm system programming language, designed
initially at Mozilla Research in 2009. Rust first stable release was
launched in 2015, and since 2016 it figures as the most loved program-
ming language in the yearly Stack Overflow Developer Survey. The
Rust compiler is a free and open-source software dual-licensed under
the MIT License and Apache License 2.0. The reasons why Rust is so
widely used must be sought in its design principles. Rust, in fact, guar-
antees both memory and thread safety, thanks to its rich type system
and its ownership model.

Ownership. Ownership is Rust’s central feature: memory is managed
through a system of ownership that the compiler checks at compile time.
This means that there is no need for a garbage collector that constantly
looks for no longer used memory. In addition, Rust programmers do
not have to explicitly allocate and free the memory. Ownership is
translated into practice with the following concept: each value in Rust
has a variable called its owner. The owner is unique, and when it goes
out of scope, the value is dropped.

References and borrowing. These two concepts are strictly related
to Rust’s ownership model. As in other programming languages, a
given variable x can be passed either by value or by reference. When
a value is passed by reference, it can be passed either by immutable
reference using &x or by mutable reference using &mut x. The &x
syntax creates a reference that refers to the value of x but does not own
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it. For this reason, the value it points to will not be dropped when the
reference goes out of scope. Similarly, the signature of the function
uses & to indicate that the type of the parameter x is a reference. Using
references as function parameters is known as borrowing. References,
as Rust variables, are immutable by default. If a reference to a variable
x needs to be modified, it has to be declared as mutable using &mut x.
The benefit of having this restriction is that Rust can prevent data races
at compilation time.

Furthermore, the Rust compiler guarantees that dangling references,
i.e., a pointer that references a location in memory that may have been
given to someone else, will never happen. Every reference in Rust has
a lifetime, which is the scope for which that reference is valid. Most of
the time, lifetimes are implicit and inferred, but they must be annotated
when the lifetimes of references could be related in a different way. The
main aim of lifetimes is to prevent dangling references.

Rust object-oriented programming Rust is a programming lan-
guage influenced by many programming paradigms, including object-
oriented (OO) programming (OOP). Therefore it shares certain common
characteristics with OO languages:

• Rust Objects. Rust enables the definition of objects using struc-
tures, enums, and impl blocks. A struct is a custom data
type that packs together multiple related values that make up a
meaningful group. As it happens with structs, enums can be
defined to hold generic data types in their variants. The impl
keyword is primarily used to define implementations on types.

• Encapsulation means that the implementation details of an object
are not accessible to code using that object. Rust defines the pub
keyword to let the programmer decide which modules, types,
functions, and methods should be public. By default, anything
else is private.

• Inheritance is a mechanism whereby an object can inherit from
another object’s definition, thus gaining the parent object’s data
and behavior without having to define them again. Rust does not
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allow the user to define a struct that inherits the parent struct’s
fields and method implementations.

• Polymorphism means that your multiple objects can be substituted
for each other at running time if they share certain characteristics.
In Rust, this feature is enabled through traits. A trait tells
the Rust compiler about functionalities a particular type has and
can share with other types. Traits can be used to define shared
behaviors in an abstract way, in which a type’s behavior is defined
by the methods we can call on that type.

3.2 Rust-AB: Programming Agent-based Mod-
els in Rust

Rust-AB is a discrete events simulation engine designed to be a ready-
to-use ABM simulation library suitable for the ABM community. To
reduce the learning curve and simplify its usage, we adopted the same
modular and standard architectural layout of the Java library MASON,
based on the Model-View-Controller design pattern.

More in detail, a MASON simulation is made up by three funda-
mental players:

• the simulation agents, specified by the Java interface Steppab
le;

• the simulation scheduler, defined by the Scheduler object;

• the simulation state, represented by the SimState object.

The implementation of a MASON simulation has to extend the Sim
State object, while its agents are represented through a Java class,
which implements the Steppable interface.

Even though Rust-AB resembles MASON in its architecture, we
have re-engineered the simulation engine to exploit Rust’s peculiarities.
Furthermore, Rust-AB has been designed to provide the programmers
an easy and standard simulation framework for developing ABM, thus
enabling easier adoption of a new language as Rust.
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The current version of the Rust-AB simulation engine library is
released under MIT license on a public GitHub repository [88]. Sec-
tion 3.2.1 describes Rust-AB architectural concepts and functionalities.

3.2.1 Rust-AB architecture

Agent. An Agent is the most important concept of Rust-AB. Ac-
cording to the OO model of Rust, an agent is a trait of a Rust stru
ct, which means that every Rust struct implementing the trait Agent
is considered a simulation agent. Similarly to the MASON toolkit, the
Agent implementation must provide a step method where the agent
logic should be placed.

Schedule. Being Rust-AB a discrete event simulation engine, the Sc
hedule is its core object as it provides all functionalities to manage a
simulation according to event-based scheduling. It provides the same
interface defined by MASON.

The simulation proceeds by scheduling the agents time-by-time. A
schedulable agent is a Rust struct that implements the Rust-AB trait Ag
ent and the Rust trait Clone. To obey the Rust programming model,
the scheduler has to mandatory clone the agents before each simulation
step.

The scheduler works as a priority queue (FIFO), where the agents
are sorted according to their scheduled time and a priority value - an
integer. The simulation time - a real value - starts from the scheduling
time of the first agent. At each discrete simulation step, all agents
scheduled in the current simulation time perform a simulation step
according to their scheduling priority. The scheduler provides two
scheduling options:

• schedule once inserts an agent in the schedule for a specific
simulation step. The scheduling time and the priority are given
as parameters. The priority is used to sort all agents within the
same simulation time.
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• schedule repeating acts like schedule once, with the dif-
ference that the agent will be scheduled for all subsequent simu-
lation steps.

The schedule provides the step method, which allows executing
one simulation step. In this way, the programmer can easily design
his/her simulation by looping for a certain number of steps or for a
given amount of CPU time.

Location2D. Location2D is a Rust-AB trait, defining a Rust
struct exposing a position in a 2-D space. An agent can be placed in
a field struct, thus enabling the programmer to easily model agents’
neighborhood interactions. Every Rust struct that implements this trait
can be placed in a Rust-AB field. A position in a 2-D space is modeled
as a Rust-AB struct Real2D. A given Location2D implementation
must provide two functionalities: i) get location, that provides
the current position in the space - a Real2D, and ii) set location,
which allows to move an object.

Field2D. Field2D is a sparse matrix structure modelling agent
interactions on a 2-D space. The Field2D structure is parameterized
on a given type implementing: Location2D Rust-AB trait, and Rust
Clone, Hash, and Eq (equivalence relation) traits. Location2D
defines the structure on which the field operates, while the remaining
traits allow a more efficient implementation of the field functionalities.

It is worth mentioning that the field structure is useful not only
for the agents but for any kind of Rust type that implements the de-
scribed traits. This designing aspect allows the programmer to model
interactions with any kind of simulation environment easily.

The Field2D structure provides the following methods:

• set object location inserts/updates an object in a field in
a given position.

• get neighbors within distance, returns a vector of
objects contained in the circle centered at a given position with



3.2. Rust-AB: Programming Agent-based Models in Rust 75

a radius equal to the distance parameter. An optimized radial
searching method is used to compute the neighborhood.

• get object location, returns the position of a Location2D
object.

• get objects at location, returns a vector of objects
stored in a given position.

• num objects, returns the total number of objects stored in the
field.

• num objects at location, returns the number of objects
at a given Real2D object position.

Simulation state. SimulationState is the state of a Rust-AB
simulation. A Rust-AB simulation is composed of an agent definition
(i.e., a Rust struct that implements the trait Agent), a Rust-AB scheduler
instance (declared for the agent implementation), and a set of fields
and variables. The simulation logic is implemented in the step function
of the agent. For this reason, the programming environment must
provide a mechanism to access the simulation state from the agent’s
step function.

The simulation state is defined using a Rust struct, containing all
fields and variables. The simulation state is defined using a Rust struct,
containing all fields and variables. To access this struct, the programmer
must declare the struct itself as a local variable inside the simulation’s
main() function and give it as an argument to the agents’ step function.
This procedure is better described in Section 3.2.2.

Limitations. The main design limitations of Rust-AB are due to the
basic Rust OOP model and its memory model.

The first limitation concerns the multi-agents capabilities of Rust-
AB: the current version of Rust-AB does not support multiple defi-
nitions of an agent. Nevertheless, it is still possible to implement a
multi-agents model by defining different behaviors in the same agent
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definition. The second limitation lies in the fact that the field envi-
ronment can only accommodate objects of the same type. To model
interactions between objects of a different type, it is necessary to use
multiple field environment instances (one for each type).

3.2.2 A case study: the Boids simulation
To analyze the effectiveness and efficiency of Rust-AB, we implemented
a well-known ABM on which we performed several benchmarks vary-
ing the model scale parameters. The performance of Rust-AB has been
compared against the MASON toolkit running the same ABM.

We developed the Boids model [89] by C. Raynolds (1986), which
is a steering behavior ABM for autonomous agents simulating the
flocking behavior of birds. The agent behavior is derived by a linear
combination of three independent rules:

• Separation: steer in order to avoid crowding local flock-mates;

• Alignment: steer towards the average heading of local flock-
mates;

• Cohesion: steer to move towards the average position (centre of
mass) of local flock-mates.

We developed the Rust-AB Boids model following the same strat-
egy adopted for the Flocker MASON simulation, which implements
the same model. First, we defined the agent code and its logic by im-
plementing the Agent trait. Then, we defined the simulation state by
providing the simulation parameters and the environment definitions.
Finally, the main simulation function is defined, where the scheduling
policy for agents and the fields initialization are provided.

Agent definition

A Rust-AB agent is a struct containing all the local agent data. For
our purposes, we defined a new struct named Bird that emulates the
concept of a bird in a flock. As stated in Section 3.2.1, a Rust-AB agent
has to implement the traits Agent, Eq and Hash.
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According to the model specification, at each simulation step, every
agent has to compute three steering rules according to the position of
its neighboring agents. For this reason, all the agents are placed in a
Rust-AB Field2D environment. As a consequence, the agent definition
must implement the trait Location2D, as well as the traits Clone and
Copy (that can be automatically computed using the Rust macro #d
erive[( )]). The steering behavior model can be implemented by
storing the position of the agent in the previous and current simulation
steps. The agent position can be modeled using a Real2D Rust-AB
struct. To easily develop the trait Hash, a unique identifier is stored in
the agent. Listing 3.1 shows the Rust-AB agent struct definition.

Listing 3.1: Rust-AB Agent.

1 #[derive(Clone, Copy)]
2 pub struct Bird{
3 pub id: u128,
4 pub pos: Real2D,
5 pub last_d: Real2D,
6 }

The agent logic is defined in the step function. We designed the
agent logic using three sub-functions defined in the agent implemen-
tation. Listing 3.2 shows the agent implementation code. Lines 1− 8
define the object Bird by providing a constructor and three functions:
avoidance, cohesion, and consistency, which implement
the steering model rules. Each function takes as input parameter a
reference to a vector of agents (the current agent neighbourhood) and
returns a new Real2D, which is the force computed according to the
position of flock-mates. Lines 10 − 13 show the implementation of
the Location2D trait, which enables to place the agent in the Fie
ld2D environment. Lines 15 − 24 define the implementation of the
traits Hash and Eq. Lines 29− 51 implement the agent step function
describing the agent logic, which simulates the steering behavior of
the model. The agent computes its neighborhood (line 30) and, using
the sub-functions, evaluates its new position. The computed position is
then used to update the status of the environment (line 50).
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Listing 3.2: Rust-AB Agent Implementation.

1 impl Bird {
2 pub fn new(id: u128, pos: Real2D, last_d: Real2D)

-> Self {
3 Bird {id, pos, last_d}
4 }
5 pub fn avoidance (self, vec: &Vec<Bird>) -> Real2D

{..}
6 pub fn cohesion (self, vec: &Vec<Bird>) -> Real2D

{..}
7 pub fn consistency (self, vec: &Vec<Bird>) ->

Real2D {..}
8 }
9

10 impl Location2D<Real2D> for Bird {
11 fn get_location(self) -> Real2D { self.pos }
12 fn set_location(&mut self, loc: Real2D) { self.pos

= loc; }
13 }
14

15 impl Hash for Bird {
16 fn hash<H>(&self, state: &mut H) where H: Hasher,
17 { self.id.hash(state); }
18 }
19

20 impl Eq for Bird {}
21

22 impl PartialEq for Bird {
23 fn eq(&self, other: &Bird) -> bool { self.id ==

other.id }
24 }
25

26 impl Agent for Bird {
27 type SimState = BoidsState;
28

29 fn step(&mut self, state:&BoidsState) {
30 let vec = state.field1.

get_neighbors_within_distance(self.pos,
10.0);

31

32 let avoid = self.avoidance(&vec);
33 let cohe = self.cohesion(&vec);
34 let rand = self.randomness();
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35 let cons = self.consistency(&vec);
36 let mom = self.last_d;
37

38 let mut dx = COHESION * cohe.x + AVOIDANCE *
avoid.x + CONSISTENCY * cons.x + RANDOMNESS

* rand.x + MOMENTUM * mom.x;
39 let mut dy = COHESION * cohe.y + AVOIDANCE *

avoid.y + CONSISTENCY * cons.y + RANDOMNESS

* rand.y + MOMENTUM * mom.y;
40

41 let dis = (dx * dx + dy * dy).sqrt();
42 if dis > 0.0 { dx = dx / dis * JUMP; dy = dy /

dis * JUMP; }
43

44 self.last_d = Real2D { x: dx, y: dy };
45 let loc_x = toroidal_transform(self.pos.x + dx,

WIDTH);
46 let loc_y = toroidal_transform(self.pos.y + dy,

WIDTH);
47

48 self.pos = Real2D { x: loc_x, y: loc_y };
49 drop(vec);
50 state.field1.set_object_location(*self, Real2D

{ x: loc_x, y: loc_y });
51 }
52 }

Model definition

We define the Boids simulation state by declaring a new struct Boid
sState. Listing 3.3 shows the code of the BoidsState struct (lines
1− 9). According to the model and the agent definitions, we defined
the agents’ interactions through the Field2D environment. For this
reason, the state struct contains only a Field2D declaration.

Listing 3.3: Rust-AB Simulation State.

1 pub struct BoidsState {
2 pub field1: Field2D<Bird>,
3 }
4

5 impl BoidsState {
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6 pub fn new(w: f64, h: f64, d: f64, t: bool) ->
BoidsState {

7 BoidsState { field1: Field2D::new(w, h, d, t),
}

8 }
9 }

The main simulation function is shown in Listing 3.4. At line 3, a
new Rust-AB Schedule is defined, while at line 5 the local variable
state is declared, this models the simulation state. From line 6 to 13 a
given number of agents are randomly initialised, placed in the Field2
D (line 11), and scheduled using the schedule repeating method
(line 12). At line 15 the schedule step is called for a given number of
times.

Listing 3.4: Rust-AB Main Simulation Function

1 fn main() {
2 let mut rng = rand::thread_rng();
3 let mut schedule: Schedule<Bird> = Schedule::new();
4

5 let mut state = BoidsState::new(WIDTH, HEIGTH,
DISCRETIZATION, TOROIDAL);

6 for bird_id in 0..NUM_AGENT {
7 let r1: f64 = rng.gen();
8 let r2: f64 = rng.gen();
9 let last_d = Real2D { x: 0.0, y: 0.0 };

10 let bird = Bird::new( bird_id, Real2D {x: WIDTH

* r1, y: HEIGTH * r2,}, last_d,);
11 state.field1.set_object_location(bird, bird.pos

);
12 schedule.schedule_repeating(bird, 0.0, 0);
13 }
14 for _ in 0..STEP {
15 schedule.step(&mut state);
16 }
17 }

Results

We performed several tests to assess Rust-AB ability to run simulations
with different model scale properties. As benchmark simulation, we
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used Rust-AB Boids compared with MASON and NetLogo Flockers.
Both simulations implement the same model.

All experiments have been performed on a desktop machine equipped
as follow: 1×CPU i-7-8700T 12× 2.40 MHz; 16 GB of RAM; Ubuntu
Linux 18.04 LTS; Oracle Java Virtual Machine 1.7; Rust 1.31.

We evaluated several simulation configurations by changing the
simulation environment and the number of agents. The experiments
were conducted in different settings: i) constant agent density, varying
both numbers of agents and the dimensions of the simulation field; ii)
constant field size, chancing only the number of agents; iii) constant
number of agents, varying only the dimensions of the simulation field.
The agent density of a simulation field can be easily computed by w×h

A
,

where w and h denotes respectively the width, and the height of the
simulation field and A denotes the number of agents.

102 103 104 105 106

10−1

100

101

102

103

104

Number of agents

St
ep

/s
ec

on
d

MASON
Rust-AB
Netlogo

Figure 3.1: Rust-AB performance comparison. Constant Agents Den-
sity

Constant agent density. In these experiments, we tested the sim-
ulation engine’s ability to simulate an increasing number of agents
while maintaining the same scaling proprieties. Results are depicted
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in Figure 3.1. The x-axis shows the number of agents - ranging from
100 to 1638400 - while the y-axis shows the performance in terms of
average simulation step per second (log scale), during a 10 minutes of
simulation. As shown in the plot on the left, Rust-AB and MASON
obtain almost the same performance when the agent density is constant.
On the other hand, the performance of NetLogo is always significantly
smaller than the other simulators. It is worth highlighting that NetL-
ogo was not able to execute the last three experiments due to memory
requirements.
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Figure 3.2: Rust-AB performance comparison. Constant Field Size

Constant field size. We evaluated the simulation engine’s ability to
simulate an increasing number of agents lying on a field of fixed size
(200 × 200). Increasing the number of agents implies increasing the
agent density and, consequently, the computational cost of computing
the neighborhood and the new position of each agent. Figure 3.2 shows
how Rust-AB simulation scales much better than MASON and NetLogo
simulations. In particular, MASON achieves the same performance of
Rust-AB when the number of agents is low. However, at the increasing
of the number of agents, and consequently of the total computational
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load, Rust-AB performs better. This behavior may be due to Rust’s
ability to efficiently manage a high computational workload, mainly
thanks to its memory system. Further analysis is needed to assess
this hypothesis. On the contrary, NetLogo initially provides the worst
results, while at the end, its performance is comparable to MASON.
Again it is worth mentioning that neither MASON and NetLogo were
able to execute the last two simulation configurations.
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Figure 3.3: Rust-AB vs MASON: Constant Number of Agents.

Constant number of agents. With these tests, we evaluated the simu-
lation engine’s ability to simulate a constant number of agents (102400)
varying the field dimension. Figure 3.3 presents the results. The x-axis
describes the field size - ranging from 200 × 200 to 20298 × 20298
- while the y-axis represents the performance obtained in terms of
average simulation step per second. As shown in the plot, Rust-AB
outperforms the MASON until the density of the field becomes small
enough to decrease the total computation load. These results can be
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motivated by the same explanation given in the previous paragraph.
When the density of the simulation field is small, the MASON library
outperforms Rust-AB slightly due to the cost of double buffering used
in the Rust-Ab Field2D implementation. For this experiment, we do
not show the results of NetLogo as it was not able to run the simulation
using the experiment configurations.

3.3 Parallelize Rust-AB

The need to have an effective and efficient agent simulation library
capable of handling a massive amount of agents drove us to take full
advantage of the multi-threaded architecture of modern computing sys-
tems. As described in Section 3.2.1 the Schedule provides all the
functionalities to manage the simulation according to the event-based
scheduling. As a result, it is the first place to apply parallel computing
techniques. The parallel version of the Schedule uses threads to exe-
cute several events (agents) simultaneously. However, multiple agents’
parallel execution shows a criticality due to concurrent access to the
Field2D. The Field2D structure comprises several data structures
to store agents and objects on the field and efficiently access them,
so we need to modify these internal structures to allows thread-safe
operation. These data structures are modified to exploit the double
buffering and sharding approaches. As the name implies, the double
buffering scheme divides the state of a data structure into two, one
for reading and one for writing. This division leads to the need to
have a point at which these structures’ states must be synchronized.
Given the stepwise nature of an agent-based simulation, the end of a
step represents an excellent synchronization point. The introduction
of double buffering improves concurrent access to the Field2D field
but brought an increase in memory requirements due to double state
handling.
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Listing 3.5: Rust-AB Schedule.

1 pub struct Schedule<A:'static + Agent + Clone + Send>{
2 pub step: usize,
3 pub time: f64,
4 pub events: Mutex<PriorityQueue<AgentImpl<A>,

Priority>>,
5 pub pool: ThreadPool
6 }

3.3.1 Parallel Schedule
In the parallel version of Schedule a pool field has been added. This
field is a ThreadPool of the Rayon crate.

The step() method of the Schedule divides the agents to be
processed equally into N batches, where N is the number of threads
used (the user specifies this value). These batches are then assigned to
the threads within the pool to be processed.

Each time a thread processes an agent, it also checks if it needs to
reschedule it for the next step, maintaining these agents in a list. When
a thread has finished processing its assigned batch, it requests the lock
on the event queue, reschedules the agents if necessary, and releases it.

Double buffered Field2D
The original implementation of Field2D used Hashmaps to store
agents and objects inside the field and efficiently access them. In the
parallel version of Rust-AB, such HashMaps have been replaced by
DBDashMaps, a modified version of the concurrent DashMap [90]
remodeled to take better advantage of the double buffering technique.

The DBDashMaps retains the same sharding mechanism as Dash
Map to significantly reduce the contention that occurs when the number
of threads begins to grow. In detail, DashMap divides the underline
HashMap into several shards (Box<[RwLock<HashMap<K,V,S>
>]>), each of these shards is a HashMap protected by a lock. This
division does not affect correctness. When an operation on DashMap
occurs, a hash function is used to locate the correct HashMap on which
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to operate. As long the number of shards is big enough, the probability
of two or more threads waiting for the same should be small enough.
The problem related to the DashMap is that read and write operations
must request a lock on a shard to be performed. This is needed for the
writing operation, but we can prevent the lock request on the reading
operation. In DBDashMaps, we applied the double buffering approach
to the sharding mechanism used in DashMap. Thus, in DBHashmap,
we have a collection of writing shards synchronized by a lock (Box<
[Mutex<HashMap>]>) and a collection of reading shards without
synchronization (Box<[HashMap]>).

The main methods provided by the DBDashMap are as follows:

• insert(): to insert new entries into the DBDashMap, operates
on the writing shards;

• remove(): to remove an entry from DBDashMap, it works on
writing shards;

• get(): to read an entry in the DBDashMap, it operates on the
reading shards, without the need for synchronization;

• update(): exchanges shard pointers and clear the writing
shard. At the end of the execution of this method, the reading
shards will contain all the entries made since the last call of
update();

Notice that, in this new version of Rust-AB, the double buffering is
exploited both in the sequential executions and in the parallel ones.

3.3.2 Parallel evaluation
We evaluated the parallel version of Rust-AB using the Boids simulation
described in section 3.2.2. An interesting aspect is the possibility
of using the same simulation code presented in Section 3.2.2, and
executing it in a parallel or sequential manner. This ability has been
made possible through the Cargo Features mechanism. Listing 3.6
shows the command to run the Boids simulation in parallel by adding
the parallel feature and specifying the number of threads desired by the
nt feature.
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Listing 3.6: Command to run boids simulation in parallel.

cargo run --release --features parallel --example boids
--nt N

Instead, Listing 3.7 shows the command to run the boids simulation in
a sequential manner.

Listing 3.7: Command to run boids simulation in sequential.

cargo run --release --example boids

To evaluate the performance of the parallel version of Rust-AB,
we performed a Strong Scalability analysis. All experiments were per-
formed on a c5.24xlarge machine on Amazon EC2 with the following
configuration: 96 vCPU; 192 GB of RAM; 10 Gbps of bandwidth;
Ubuntu Linux 20.04 LTS, OpenJDK 11; Rust 1.48.

Strong Scalability. Two strong scalabiliy analyses were performed,
one using 500000 agents and the other using 1000000 agents by varying
the number of threads used from 1 to 96. The results obtained by Rust-
AB were compared with ideal values.

Figure 3.4 shows the results obtained by Rust-AB, to run the Boids
simulation with 500000 agents. The x-axis shows the number of threads
used - ranging from 1 to 96- while the y-axis shows the speedup ob-
tained from Rust-AB to perform 50 simulation steps. The figure shows
a notable increase of the performances according to the increase of
the number of threads, with a speedup of ×10 with 96 processors.
Figure 3.5 shows the results obtained with Rust-AB to execute the
Boids simulation with 1000000 agents. As before, the x-axis shows
the number of threads used - ranging from 1 to 96- while the y-axis
shows the speedup obtained from Rust-AB to perform 50 simulation
steps. From the figure, we can see that although the number of agents
is considerably higher, with 96 threads, we manage to obtain a speedup
of ×14.
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Figure 3.4: Strong Scalability Analysis, Boids Model with 500000
agents for 1,2,4,8,16,32,36,64,72,96 threads.
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Figure 3.5: Strong Scalability Analysis, Boids Model with 1000000
agents for 1,2,4,8,16,32,36,64,72,96 threads.



Chapter 4

Distributed Simulation
Optimization

4.1 Introduction

Complex system simulations continuously gain relevance in business
and academic fields as powerful experimental tools for research and
management, particularly for Computational Science.

Simulations are mainly used to analyze too complex behaviors to be
studied analytically or risky/expensive to be tested experimentally [91,
92].

The representation of such complex systems results in a mathemati-
cal model that includes several parameters. To obtain results close to
reality, the need to tune a simulation model arises, which results in find-
ing the optimal values of the parameters that maximize the effectiveness
of the model. Considering the multi-dimensionality of the parameter
space, their heterogeneity, and the irregular and stochastic nature of the
objective functions, finding the optimal configuration of the parameters
is not an easy task and requires a lot of computational power. Optimiza-
tion via Simulation (OvS) strategies are designed to ascertain model
parameters that minimize (or maximize) specific criteria (one or many),
which can only be computed by running a simulation. Although these
techniques aim to reduce the computational load and time required,
these are still exaggeratedly high. As a result, the need for tools that
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leverage the computational power of parallel and distributed systems to
improve the effectiveness and efficiency of OvS strategies has become
essential.

This chapter discusses methods for exploiting parallel and dis-
tributed systems’ computational power to improve the efficiency and
effectiveness of OvS strategies. Specifically, three frameworks are pre-
sented that differ for their underlying computing system architecture
adopted:

• Heterogeneous - Heterogeneous Simulation Optimization (HSO)
framework allow using CPUs and GPUs to execute simulations
in a distributed system composed of a heterogeneous node in
terms of hardware and software.

• Homogeneous - The computing system is composed of homoge-
neous nodes where are used MASON (simulation library) and
ECJ (optimization library) software to elaborate the OvS process.

• Cloud computing - The computing system is a MapReduce cluster
running over the cloud to elaborate an OvS process to solve the
Cruise Itinerary Scheduling problem.

4.1.1 Optimization via Simulation
Optimization via Simulation problem, also called Simulation Optimiza-
tion (SO), described in [93, 94], is defined as follows

min g(x),x ∈ Θ, (4.1)

where g(x) = E[Y (x, ξ)] is a single objective function defined by
the expected value of a random variable Y (x, ξ). The random variable
Y (x, ξ) represents the result of a simulation process, in which x a
set of simulation parameters (configuration) and ξ corresponds to the
randomness of the process (the random seed). Θ is the set of feasible
configurations. The distribution of the variable Y (x, ξ) is unknown a
priori, and it is estimated running several simulations with the same
configuration x but using different random seeds.
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Figure 4.1: Methods in Optimization via Simulation.

Understandably, there are many methods suggested for OvS, and
the primary methods are displayed in Figure 4.1. However, most devel-
opers preferred heuristic search methods in their solutions. Heuristic
search algorithms provide goods and reasonably fast results on a wide
variety of problems [93]. The authors mention some important heuristic
algorithms. These include genetic algorithms, evolutionary strategies,
simulated annealing, simplex search, and tabu search [93].

Optimization via Simulation is an iterative process and typically
works as follow:

1. An initial set of parameter values is chosen and one or more
replication experiments are carried out with these values.

2. The results are obtained from the simulation runs, and then the
optimization module chooses another parameter set to try.

3. The new values are set and the next experiment set is run.

4. Step 2 e 3 are repeated until either the algorithm is stopped
manually or a set of defined finish conditions are met.

This general procedure seems to be very clear and simple, but its
implementation is much more complicated, as different simulation
platforms and selected algorithms have to be used.
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4.2 Heterogeneous Scalable Multi-Languages
Optimization via Simulation

Heterogeneous Simulation Optimization (HSO) is a framework for
developing OvS processes in a heterogeneous computing system. We
designed our architecture to exploit the computational power of several
different hardware architectures, for instance, General-purpose CPUs
and/or GPUs, and exploit different programming languages available
on the heterogeneous system.

According to the OvS problem definition, we assume the following:

• simulation process takes more time than the optimization process,
that means the computational cost to generate the configurations
to be evaluated is significantly lower than the computational cost
to compute the objective function (running a set of simulations);

• the number of configurations to be evaluated is large. A huge
number of simulation processes are needed (also considering that
since simulations are not deterministic, several simulation runs
are required for each configuration to be analyzed).

Heterogeneous computing overview. In a Heterogeneous Comput-
ing system, multiple, possibly dissimilar, computational machines co-
operate to solve a problem. If well configured, such systems allow full
utilization of the computational power of each element in the system.

A widely used definition, presented in [95], of the heterogeneous
computing network model is a set H = {M1,M2, . . . ,Mm} of m dis-
tinct machines, where each machine can communicate with any other.
The model considers any computing paradigm (parallel, sequential,
dataflow, etc.). The computation is divided into tasks, and each ma-
chine can execute one task at a time. Dependencies among tasks are
described through a task graph. A task graph for a particular com-
putation P is a directed acyclic graph GP = (V,E), whose nodes
V = {t1, t2, . . . , tn}, are the tasks and whose edges are intertask depen-
dency that is (ti, tj) is in E if and only if ti must be executed before
tj due to data dependencies or tasks synchronization. Each task is
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an atomic computation, meaning that when a task is executed on one
machine, no communication takes place with any other machine.

A mapping Π : V → H associates each task to a machine in
H . Notice that if Π maps all tasks to the same machine, we have
sequential computation. Given a computation P of n tasks on a system
H composed by m machines, there are mn possible mappings.

4.2.1 OvS in a heterogeneous computing model

OvS process is composed of several optimization rounds and is executed
using the Master/Worker paradigm [96]. In each round, the Master node
invokes the optimizer that generates a set of configurations X ⊆ Θ
to be analyzed according to the results of previous simulations. The
system at this point builds a mapping Π, that assigns a subset Xj ⊂X
to each machine Mj ∈ H . Each machine Mj ∈ H executes for each
element in the subset Xj a certain number of simulations using CPU
or GPU (according to their hardware and software capabilities). When
a machine ends its computation, it sends back to the Master node the
results, and the process starts again until the optimizer decides to end
the process.

Figure 4.2: HSO Architecture.

Figure 4.2 depicts the proposed architecture named Heterogeneous
Simulation Optimization (HSO). HSO is based on the Message Passing
paradigm. The Master of the system builds two different messages
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queues named EVAL and OUT. In the EVAL queue is sent, by the opti-
mizer process, the set of configuration to be evaluated X . In contrast,
the machines send the results of the simulations (the value of Y ) in
the OUT queue. The system takes the values in the queue EVAL and
generates the mapping Π, according to the underlying set of machines
H . The optimizer is executed on a machine that is not involved in the
computation. When the optimizer process needs to execute the evalua-
tion of some configurations X , it sends to HSO a message containing
the values that will be processed. The computational machines use the
simulation software provided by the OvS developer and written for both
CPU and/or GPU to run the simulation with the chosen parameters.

The HSO framework can change the mapping Π for each OvS
round according to the execution time of the previous optimization
round or optimize some computational criteria. We plan to introduce
learning algorithms to compute an optimal mapping for the underlying
heterogeneous system. This could also be useful in a Cloud Computing
scenario, in which we could change the number of CPUs dynamically
and/or GPUs involved in the OvS process. Dynamically changing the
dimension of the system H , we can optimize the total cost (on the
Cloud Computing infrastructure) of the computation or the completion
time of an optimization round.

4.2.2 Heterogeneous Simulation Optimization (HSO)
framework

HSO was developed in the C language, and its execution model follows
the Master/Worker paradigm. The software is fully implemented, and
it is available on a public GitHub repository1. We used OpenMPI [97]
library, an implementation of the standard Message Passing Interface
(MPI), for its features in managing the processes spreading over the
system. MPI is also used to exchange information between the master
node and worker nodes about the number of CPUs and GPUs available
on each worker.

1Heterogeneous Scalable Multi-Languages Optimization via Simulation GitHub
repository, https://github.com/isislab-unisa/hso

https://github.com/isislab-unisa/hso
https://github.com/isislab-unisa/hso
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HSO is designed to support two levels of heterogeneity. The first is
the hardware heterogeneity. The second level of heterogeneity concerns
the ability of HSO to support a wide range of programming languages
for both simulation and optimization. We have used the ZeroMQ1 dis-
tributed messaging library for the communication between the master
of HSO and the optimizer process. ZeroMQ is an embeddable network-
ing library but could be seen as a simple concurrency framework. The
library enables the developer to use in-process, inter-process, TCP, and
multicast communication through message passing. For our purposes,
ZeroMQ is suitable for heterogeneous computing since it supports many
programming languages such as C++, C, Clojure, Erlang, Go, Haskel,
Java, Node.js, Objective-C, PHP, Python, Scala, and many others. This
allows OvS process developers to write their optimizer or import the
optimizer they are used to running in any supported language, providing
a high heterogeneity level. HSO is designed for general executable
and can run any simulation software. For this reason, the simulations
on CPU and GPU are executed by defining two different Bash scripts
which, respectively, run a simulation on a CPU or a GPU.

The OvS developer needs to load on each worker, in H , the simula-
tion software, and provide a script to be used for starting a simulation.
The provided script takes as the first argument the simulation input (a
configuration x ∈ Θ) as a string of values separated by a comma. This
approach enables the OvS developer to use any simulation software or
library.

Listing 4.1 shows the script that executes a simulation on a CPU us-
ing the NetLogo simulator. The script exploits a wrapper tool to execute
NetLogo by command line2. In this example the simulation takes four
arguments (see line 18) that are stored in the variable param line
(see line 8). The NetLogo simulation parameters are described in Sec-
tion 4.2.4.

1ZeroMQ distributed messaging library, http://zeromo a70q.org/
2High-Performance Dataflow Computing Agent-Based Simulator Wrapper,

https://github.com/spagnuolocarmine/swiftlangabm

http://zeromq.org/
https://github.com/spagnuolocarmine/swiftlangabm
https://github.com/spagnuolocarmine/swiftlangabm
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Listing 4.1: CPU simulation example

#!/bin/bash
set -eu
if [ $# -eq 0 ]

then
echo "No arguments supplied: run ./script.sh <

params>"
exit 1

fi
param_line=$1
IFS=','
read -ra PARAMS <<< "$param_line"
cd ../example/Zombie/Simulation_Netlogo
/usr/local/java/bin/java -Xmx1536m -XX:-UseLargePages

-jar target/netlogo-1.0-wrapper.jar \
-m resources/models/JZombiesLogo.nlogo \
-outfile counts.csv \
-runid 1 \
-s 250 \
-trial 1 \
-i human_count, ${PARAMS[0]}, zombie_count, ${

PARAMS[1]}, human_step_size, ${PARAMS[2]},
zombie_step_size, ${PARAMS[3]} \

-o human_count\

When HSO starts, the master node waits to receive initialization
messages from the workers and the optimizer process. The initialization
messages are:

• INIT OUT::out address:port::, this message is sent
from the optimizer to HSO, the message informs HSO about the
IP address and port to be used for the communication using the
ZeroMQ library (this message enables to use the optimizer and
the HSO on different networks);

• INIT CPU::cpu model::, this message informs HSO about
the script to be used for executing a CPU simulation;

• INIT GPU::gpu model::, this message informs HSO about
the script to be used for executing a GPU simulation;
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• INIT NUM::num cpu::num gpu::, this message is sent
by the optimizer to HSO and informs HSO about how many
CPUs and GPUs (according to the available CPUs and GPUs in
the system) are available for the OvS process.

As described above, the HSO uses two queues (EVAL and OUT) for
the communication between the optimizer and the HSO. Two kinds of
messages are sent on the queues:

• INPUT::param1;param2;. . .;paramN::N::, this message
contains a set of simulation configuration, and is sent by the opti-
mizer on the EVAL queue. Each value parami is a configuration
as a list of values separated by a comma, corresponding to the
values of each simulation parameter. HSO generates the mapping
Π using a Round-robin strategy (other strategies can be easily
implemented). All inputs are divided among the workers in equal
portions and in circular order. Each configuration is executed by
a CPU or a GPU. We notice that when a GPU is used, also the
corresponding CPU is busy. For this reason, if a GPU simulation
is assigned, it is not possible to assign on the same machine also
a CPU simulation;

• OUTPUT::res1;res2;. . .;resN::, this message contains the
output values of the simulation process, each resi is the output
value of a requested configuration.

4.2.3 Usage of HSO
As described before, the OvS developer must define the scripts for
executing CPU and GPU simulations and distribute them on all the
available machines. The optimizer can be written in any language
supported by the ZeroMQ library. Listing 4.2 shows the code of a
dummy optimizer, written in Java language. The optimizer uses the
HSO to analyze two random configurations in two optimization rounds.

Lines 14− 21 show the configuration code of the ZeroMQ, while
line 26 and 27 show the code for sending HSO optimizer initialization
messages. Lines 30 − 38 show the code to initialize CPU and GPU
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HSO simulation software. Finally, lines 40− 69 show the code of the
random optimization process. In each optimization round, a random
configuration x is computed and sent to the HSO to be evaluated. At
the end of each round, the results are printed on the console.

Listing 4.2: Dummy Java Optimizer

//other imports are omitted
import org.zeromq.*;
import org.zeromq.ZMQ.Socket;
public class Optimizer {

private static ZMQ.Context context;
// HSO Queues
private static Socket eval, out;
static String IP="127.0.1.1";
static String PORT_EVAL="2222";
static String PORT_OUT="2223";

public static void main(String args[]) throws
Exception {
// ZeroMQ initialization
context = ZMQ.context(1);
String path_eval = "tcp://"+IP+":"+PORT_EVAL;
System.out.println(path_eval);
String path_out = "tcp://"+ Inet4Address.

getLocalHost(). getHostAddress() +":"+
PORT_OUT;

eval = context.socket(ZMQ.PAIR);
eval.connect(path_eval);
out = context.socket(ZMQ.PAIR);
out.bind(path_out);

//Init HSO with Optimizer IP
System.out.println("INIT_OUT::" +path_out +"::"

);
System.out.println(("INIT_OUT::" +path_out +"::

").length());
eval.send(String.valueOf(("INIT_OUT::" +

path_out +"::").length()),0);
eval.send("INIT_OUT::"+path_out+"::",0);

//Init HSO with cpu and gpu simulation model
String cpu_model = "INIT_CPU::cpu_script.sh::";
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String gpu_model = "INIT_gpu::gpu_script.sh::";
String n_acc = "INIT_NUM::1::1::";
eval.send(String.valueOf(n_acc.length()),0);
eval.send(n_acc,0);
eval.send(String.valueOf(cpu_model.length()),0)

;
eval.send(cpu_model,0);
eval.send(String.valueOf(gpu_model.length()),0)

;
eval.send(gpu_model,0);

byte[] res;
String result;
String[] tmp,array_res;
StringBuilder sb = new StringBuilder("");
int round = 2;
Random r = new Random();
int N = 10;
while(round > 0)
{

String x = r.nextInt()+"," +r.nextInt() +";
" +r.nextInt() +"," +r.nextInt();

//x denotes a configurations
sb.append("::INPUT::"+x+"::2::");
String params = sb.toString();
eval.send(String.valueOf(params .length())

,0);
eval.send(params,0);
//Evaluate the configuration using HSO
out.recv(0);
res = out.recv(0);
result = new String(res);
tmp = result.split("::");
array_res = tmp[1].split(";");
int num = 0;
for(int i=0;i<N;i++){

for(int j=0;j<2;j++){
System.out.println (Integer.

parseInt(array_res[num]));
num++;

}
}
round--;
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}
eval.close();
out.close();
context.term();
System.exit(0);

}
}

4.2.4 Use cases
We have studied two social science diffusion problems using different
optimization strategies. The purpose of these use cases is, on one side,
to show how to use different optimization strategies in HSO, and on the
other side, to provide examples of the HSO programming languages
heterogeneity.

In the first use case, we have simulated a Spread of Information
process using a SIR ABM compartmental epidemiology model and
genetic algorithm to optimize the simulation parameters. This use
case is presented in [35]. The authors use the EMEWS framework
to evaluate the OvS process on an HPC system. The OvS process is
developed using a Python genetic algorithm for the optimization, and
a Repast simulation, for the simulation. We developed the same OvS
process, using a NetLogo simulation and a FlameGPU simulation, and
we have tested it on a heterogeneous cluster machine.

The second use case is a Spread of Influence process, which models
the social influence diffusion process in a social network. Starting
from the theoretical diffusion model defined in [98] we developed a
CPU based simulation, written in the C language, and a GPU based
simulation, written using the Nvidia CUDA [99]. For the optimization
strategy, we have used a Java implementation of the Optimal computing
budget allocation (OCBA) approach, which has been presented in [100].

Spread of information

This use case is named “Zombie”1 and aims to show the HSO ability
to reuse code already written in other contexts. The ABM simulation

1HSO Zombie use case, https://github.com/isislab-
unisa/hso/tree/master/example/Zombie

https://github.com/isislab-unisa/hso/tree/master/example/Zombie
https://github.com/isislab-unisa/hso/tree/master/example/Zombie
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model is an instance of the SIR compartmental epidemiology model
in which each of the agents is moving in a 2-dimensional environment
and have three different behaviors: S for susceptible, I for infectious,
and R for recovered (or immune).

The agents interact with each other and change their behavior ac-
cording to simple rules. If the agent is in the state S change to I when
interacts with an agent in the state I, after some time, an agent in the
state I changes its behavior to R. We used a variant of the SIR model
that uses only the behaviors S and I. The agents in the state S represent
the humans while the agents in the state I represent the zombies.

The CPU simulation has been written using NetLogo1, while we
have developed the same simulation using FlameGPU, to exploit the
computational power of GPUs.

Simulations parameters are:

• human count, an integer value that is the initial number of agents
in the state S (number of humans);

• zombie count, an integer value that is the initial number of agents
in the stat I (number of zombies);

• human step size, a real value that is the velocity of the humans;

• zombie step size, a real value that is the velocity of the zombies;

The output of the simulation is the number of humans that are
survived during a fixed amount of simulation time. In this OvS use
case, we assume that we are interested in maximizing the number of
humans that can survive at the end of the simulation.

The optimization process uses a Python implementation of a ge-
netic algorithm, written using the Distributed Evolutionary Algorithms
Python library2. We have modified the original implementation, pre-
sented in [35], to be suitable for HSO. Hence, the OvS process is written
in Python and starts from an initial set of configurations X. During
the first step, the HSO simulates the initial configurations. After this

1Zombie: simulation Netlogo, https://github.com/isislab-unisa/hso/tree/master
/example/Zombie/Simulation Netlogo

2Distributed Evolutionary Algorithms in Python, https://github.com/deap

https://github.com/isislab-unisa/hso/tree/master/example/Zombie/Simulation_Netlogo
https://github.com/isislab-unisa/hso/tree/master/example/Zombie/Simulation_Netlogo
https://github.com/deap
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initial step, it executes the genetic algorithm and generates a new set of
configurations X. The OvS process continues until a certain number of
epochs (optimization rounds) is reached.

Figure 4.3: OvS Spread of Information use case performance over 4
CPUs and 4 GPUs for 10 optimization round.

Spread of influence

The second use case aims to study the spread of influence in social
networks (see [98] and references quoted therein). For instance, in the
area of viral marketing [101] companies wanting to promote products
or behaviors might try initially to target and convince a few individuals
which, by word-of-mouth effects, can trigger a cascade of influence
in the network, leading to an adoption of the products by a much
larger number of individuals. The intent of maximizing the spread of
viral information across a network naturally suggests many exciting
optimization problems. In our case, we are looking for a fixed-sized
initial set of nodes (initial adopters) that maximizes the number of
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influenced nodes at the end of the diffusion process. We have used a
diffusion model presented in [98]. This model starts from an initial
set of individuals lying in a social network and simulating a threshold-
based influence diffusion process.

Formally, given a social network defined by a graph G = (V,E),
and a set of initial adopters S ⊂ V , at each round i the set of influenced
nodes is augmented by the set of nodes u that have several already
influenced neighbors greater or equal to u’s threshold t(u). The process
terminates when two rounds terminate with the same set of influenced
nodes. The threshold t(u) quantifies the human tendency to conform,
that is, how hard it is to influence node u, in the sense that easy-to-
influence individuals of the network have “low” value. In contrast,
hard-to-influence individuals have “high” t(·) values. Unfortunately,
the threshold values are usually not known a priori. For our purposes,
we have studied the problem when the threshold values are unknown,
but to perform fair comparisons, the total sum T of the threshold values
is known. Consequently, given an initial set S, the diffusion process
must be executed many times, randomly selecting a distribution of the
threshold values over the network, to correctly estimate the number of
activated nodes at the end of the process.

We have developed the diffusion model for CPU, using the C lan-
guage, and for GPU, using the Nvidia CUDA library. Both simulations
take as inputs a graph G, a subset S, the sum of the threshold T , and
the number of trials t to be executed. The diffusion process returns
the expected number of influenced nodes for a given subset S. For
each trial, the process randomly selects the distribution of the threshold
values over the network, such that the sum of the values is equal to T .

The OvS process is written in Java and uses the Optimal computing
budget allocation (OCBA) approach [100] to find out the best subset
S with respect to the threshold sum T . OCBA approach starts from an
initial set of configurations, in our case, a certain number of subsets S,
that are randomly selected by the optimizer. After that, the OvS process
evaluates the subsets using HSO and the diffusion model described
above for a fixed number of trials i. At the end of the first evaluation,
OCBA is invoked to compute the new number of trials i for each subset
S ∈ S. In other words, the OCBA selects, from the initial set of



104 4. Distributed Simulation Optimization

subsets S, the best candidates accordingly to the results of the previous
evaluations. OvS process continues until the number of subsets S, which
has a value of trials greater than zero, is equal to a chosen number of
solutions or a fixed number of optimization rounds.

Table 4.1: Social Networks Spread of Influence use case

Network #Vertices #Edges Avg. Degree
egonets-Facebook 4039 88234 22
ca-AstroPh 18772 396160 21
ca-HepPh 12008 237010 20
email-Enron 26692 367662 10
ca-CondMat 23133 166936 8
ca-GrQc 5242 28980 9
ca-HepTh 9877 51971 5

OvS process evaluations

We tested the OvS use cases, described above, on a heterogeneous
cluster machine with:

• 14 CPUs: 7 machines with 2 x Intel(R) Xeon(R) CPU E5-2680
2.70GHz and 256 GB of RAM.

• 8 GPUs: 3 machines with 2 x Tesla M2090 and 2 machines with
1 x Tesla M2090.

We performed several experiments, evaluating the first use case,
setting the initial number of humans to 1000 and the number of zombies
to 400. The human’s velocity is set between 1.0 and 10.0, while the
zombie velocity varies between 0.1 and 4.0. The optimization process
starts from an initial population of 200 individuals and performs 10
epochs (optimization rounds). Overall the system performed 1, 284
simulations.

Figure 4.3 depicts the time (using a color time scale) required to
complete the OvS process, varying the number of CPUs (x-axis) and
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the number of GPUs (y-axis) involved in the computation. As shown in
the figure, the best performance is achieved by the configuration that
uses 4 CPUs and 4 GPUs (the most heterogeneous execution setting).
The obtained speedup (i.e., the sequential execution time ratio to the
HSO execution time) is 5.

We tested the second OvS use case process, on 7 real networks
of various sizes from the Stanford Large Network Data set Collection
(SNAP) [101] ((see Table 4.1), setting the size of |S| = 5% of |V | and
the T = |E|. The number of evaluated subsets is equal to 200, and
the number of initial i trials for each subset is equal to 10. We run the
experiment for at most 100 optimization round. Overall a total number
of 200, 000 simulations have been performed.

As for the previous use case, we have tested the HSO system using
at most 4 CPUs and 4 GPUs. Figure 4.4 depicts the obtained speedup for
three CPUs and GPUs configurations. The best performance, as shown,
is achieved by the heterogeneous configuration for each considered
network.

Figure 4.4: OvS Spread of Influence speed-up over 4 CPUs and 4
GPUs.

We also notice that the OvS process ensures good quality results.
The hardship to influence a network is proportional to the average
degree of the nodes. We experimented on the first three networks (those
with the highest average degree) the OvS process, varying the size of
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the initial set S. Clearly, the smaller is the initial set S, the harder it is
to influence the network. As shown in the Table 4.2, we have tested
different sizes of S from 5% to 20% of V .

Table 4.2: Percentage of influenced vertices after 100 OCBA optimiza-
tion rounds.

Network %5 %10 %15 %20
egonets-Facebook 7.6 16.3 54.2 97.9
ca-AstroPh 7.2 63.4 95.8 98.9
ca-HepPh 11.4 75.1 94.5 97.9

4.3 Assisted Parameter and Behavior Cali-
bration in Agent-Based Models with Dis-
tributed Optimization

In an agent-based model, many agents (computational entities) inter-
act to give rise to emergent macrophenomena. Agent-based models
(ABMs) are widely used in computational biology, social sciences, and
multiagent systems. An important step in developing an agent-based
model is calibration, whereby the model’s parameters are tuned to
produce expected results. Agent-based models can be challenging to
calibrate for several reasons. First, agents often have numerous and
intricate interactions, producing complex and difficult to predict dy-
namics. Second, the agents themselves may be imbued with behaviors
that need to be tuned: and thus the parameters in ABMs may not just be
simple numbers but computational structures. Finally, ABMs are often
large and slow, which reduces the number of trials one can perform in a
given amount of time.

Despite its importance, ABM calibration is often done by hand
using guesswork and manual tweaking, or the model is left uncalibrated
because the model’s complexity makes it too difficult for the modeler
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to perform the calibration! For example, in [102] approximately half of
the surveyed models performed no calibration at all.

In this work we consider the task of automated agent-based model
calibration. We marry two tools popular in their respective fields: the
MASON agent-based simulation toolkit [23], and the ECJ evolutionary
optimization library [34]. MASON is an efficient ABM simulation tool
which can be serialized and encapsulated in a single thread, making it
a good choice for massively distributed model optimization, and ECJ
has facilities critical to ABM optimization: it can perform distributed
evaluation on potentially millions of machines, and it has a wide range
of stochastic optimization facilities useful for agent-based modeling.

We will begin with an introduction to the ABM model calibration
problem and discuss previous work in model calibration and optimiza-
tion. We will next provide some background on ECJ and MASON,
then present our approach to massively distributed ABM calibration,
including examples that provide insight into the breadth of the approach.

4.3.1 Approach

As agent-based models become more common and more detailed, an
automated approach to calibration will be increasingly needed. We
envision the automation process to work as follows. The modeler first
builds the simulation, then assigns values to those parameters he knows
or wishes to be fixed. A distributed system then optimizes the remaining
parameters as best it can against criteria specified by the modeler. The
modeler then examines the results: if they are poor, this could be due
to bugs in the model, or insufficient model complexity to demonstrate
the modeler’s hypothesis, or a hypothesis that is wrong. Accordingly,
the modeler revises the simulation and resubmits it to the system to be
recalibrated.

To do this procedure, we merged ECJ and MASON to take full
advantage of their technical characteristics. To merge them, it was
necessary to make changes to both. Without going into implementation
details: first, ECJ was modified so that MASON simulations could be
used in the evaluation procedure of a candidate solution. Second, MA-
SON was modified to be able to receive the values of model parameters
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from outside (that is, from an ECJ process) and to provide the modeler
with a way to develop a score function for the simulation (which would
then be used by the optimization algorithm).

Write
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Figure 4.5: Automated model calibration workflow using distributed
ECJ and MASON.

Figure 4.5 shows the general workflow of the system. We first
define one ECJ process to be the master. This process performs the
top-level optimization algorithm. When this process has one or more
candidate solutions (individuals) ready to be assessed, they are handed
to a remote worker process. Each candidate solution is simply a set of
those agent parameters and behaviors that we wish to test: the worker
does this by creating a MASON simulation using those parameters
and behaviors, running it some number of times, and assessing its
performance. The worker then returns the assessments as the fitness
(quality) of its tested solutions, and the master uses these results in its
optimization procedure.

The modeler can completely customize this procedure if need be,
and we demonstrate one such scenario in Section 4.3.5. But if the
modeler’s optimization needs only involve global model parameters —
as is typical for many ABM calibration scenarios — then we provide a
simple alternative. The modeler specifies which parameters of interest
to optimize, then selects from a few optimization options, and MASON
does the rest: it defines the candidate solution representation as a fixed-
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length list of the parameters in question, builds the fitness mechanism,
creates the evolutionary process, prepares the workers to run the proper
simulation and default settings, then sends the candidates to remote
workers.

4.3.2 Speedup demonstration
We first show the efficiency of our distributed model calibration facility
on a nontrivial ABM scaled horizontally across a cluster of machines.
For this demonstration, we use the Refugee model drawn from the
contributed models in the GeoMASON distribution. This model can
take several minutes to run. Refugee explores the pattern of migration
of refugees in the Syrian refugee crisis. The model demonstrates how
population behavior emerges as the result of individual refugee deci-
sions. The agents (the refugees) select goal destinations in accordance
with the Law of Intervening Opportunities and these goals are prone to
change with fluctuating personal needs.

We calibrated the model using a simple genetic algorithm from ECJ
and assessed candidate solutions by comparing the number of arrivals
in each city against real-world data gathered from UNHCR and EU
agency databases.

Setup. We calibrated over four real-valued parameters in the model.
The model ran for 10,000 steps. We used a genetic algorithm with
a tournament selection of size 2, one-point crossover, and Gaussian
mutation with 100% probability and a standard deviation of 0.01. We
ran the models on a cluster of 24 machines, each with Dual Intel Xeon
E5-2670@2.60GHz, 24 GB, Intel 82575EB Gigabit Ethernet, Red Hat
Enterprise Linux Server 7.7 (Maipo), OpenJDK 1.8.0. Running on
these machines were some N ≤ 276 MASON worker processes.

Results. We performed strong and weak scalability analysis. Strong
scalability asks how much time is needed for a fixed size problem given
a variable number of workers. Weak scalability asks if an increasingly
difficult problem can be handled in the same amount of time with a
corresponding increasing number of workers. All the scalability results
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Figure 4.6: Strong Scalability Analysis, Refugee model, for 1, 2, 4, 8,
16, or 32 Workers

are statistically significantly different from one another (p < 0.01) as
verified by a one-way ANOVA with a Bonferroni post-hoc test.

To do strong scalability analysis we fixed the problem to ten gen-
erations, each with 32 individuals, for a total of 320 evaluations. The
number of workers was varied from 1 to 32. For 1 to 8 workers we
gathered the mean result of ten experiments; for 16 and 32 workers
(which ran faster), we gathered the mean result of 20 experiments. Fig-
ure 4.6 displays the speedup results. The strong scalability efficiency
(as a percentage of the optimum) came to 71.88% using 32 workers to
solve the problem.

To do weak scalability analysis, we varied the problem difficulty
by adjusting the population size such that, regardless of the number of
workers, each worker was responsible for four individuals (and thus
four simulation runs) per generation. In all cases, the results reflect
a mean of ten experiments. For each optimization process the num-
ber of generations was fixed to 10 and the population size varied in
{4, 8, 16, 32, 64, 128, 256, 512}, and thus the number of workers varied
as p ∈ {1, 2, 4, 8, 16, 32, 64, 128}. Figure 4.7 shows the weak scala-
bility results. The weak scalability efficiency (as a percentage of the
optimum) was 83.18.
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Figure 4.7: Weak Scalability Analysis, Refugee model, for 1, 2, 4, 8,
16, 32, 64, or 128 Workers

4.3.3 Asynchonous evolution experiment

The previous experiment involved a generational evolutionary optimiza-
tion algorithm: the entire population of individuals had to be evaluated
on the remote workers before the next generation of individuals was
constructed. We next considered an asynchronous evolutionary algo-
rithm to improve efficiency when the model runtime varied greatly. An
asynchronous evolutionary algorithm only updates the population a
little bit at a time, rather than wholesale, and doesn’t need to wait for
slowly-running models.

The approach works as follows: there are some N workers and a
master with a population of size P . The master first creates random
individuals, then assigns each to an available worker. When a worker
has completed its assessment, the individual is returned and added
to the population, and the worker becomes available for another task.
When the population has been fully populated, the master switches to a
steady-state mode: when a worker is available, the master applies the
evolutionary algorithm to produce an individual which is then given to
the worker to asses. When an individual is returned by a worker, the
master selects an existing individual in the population to be replaced by



112 4. Distributed Simulation Optimization

the new individual.

Setup. We compared the generational genetic algorithm from Sec-
tion 4.3.2 against an asynchronous evolutionary algorithm using a
steady-state genetic algorithm. When replacing an individual in the
population, the steady-state algorithm selected the least fit individual.
In our experiment, there were 128 workers, and the population size was
128: the generational approach was again run for ten generations, while
the asynchronous approach was run until it had evaluated 1280 indi-
viduals. We performed twenty experiments per treatment. To simulate
varying runtimes in the Refugee model, when a model was to be tested
we changed the number of simulation steps at random. 1/4 of the time
we halved them, 1/4 of the time we left them as normal, and 1/2 of the
time we doubled them.

Results. Asynchronous Evolution had a mean runtime of 293.77 sec-
onds; while Generational Evolution had a mean runtime of 437.77 sec-
onds. These results were statistically significantly different (p < 0.01)
as verified by a one-way ANOVA with a Bonferroni post-hoc test.

4.3.4 Evolutionary optimization examples
So far we have shown speedup results to demonstrate performance: next,
we turn to simple examples of some of many evolutionary algorithms
approaches afforded by our facility, to illustrate capabilities of the
system and justify their value in an ABM. Accordingly, the remaining
demonstrations will be mere proofs of concept, and so will not be
accompanied by statistical analysis.

Different evolutionary algorithms. We begin with a demonstration
of some different evolutionary algorithms to show breadth. We turn to
the Flockers model, a standard demo model in the MASON library. This
model is a simulation of the well-known Boids algorithm [89], where
agents develop collective realistic flocking or swarming behaviors.

Flockers has five classic parameters (avoidance, cohesion, consis-
tency, momentum, and randomness) that together define the behaviors
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Figure 4.8: Mean best-so-far performance of a Genetic Algorithm,
Evolution Strategy, and CMA-ES on the Flockers domain, averaged
over 30 runs.

of its agents. We optimized over these parameters and assessed the
model performance as the mean number of flockers within an agent’s
neighborhood, averaged over three trials. This is not a hard problem
to optimize: the calibration facility need only maximize cohesion. To
show the optimizers at work, we fixed every individual in the initial pop-
ulation to represent the opposite situation (minimal cohesion, maximal
values for other behaviors).

We ran for 30 generations using a population size of 276, spread
over 276 separate workers. We compared three different evolutionary
algorithms: the genetic algorithm as described before; a so-called
“(46, 276)” evolution strategy; and a CMA-ES estimation of distribution
algorithm with standard parameters. Figure 4.8 shows the performance
of these three algorithms on this simple agent-based model: as expected,
CMA-ES performs extraordinarily well.

Multi-Objective optimization. Next, we demonstrate our system’s
ability to optimize problems with multiple conflicting objectives. The
classic approach finds a set of solutions that have advantages or dis-
advantages relative to one another with respect to these objectives. A
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Figure 4.9: Pareto Nondominated Fronts (higher values preferred) for a
typical run of the two-objective Flockers domain at generations 0, 25,
50, 75, and 100.

solution A is said to Pareto-dominate another solution B if A is at least
as good as B in all objectives and better than B in at least one objective.
The optimal Pareto Nondominated Front is the set of solutions not
Pareto-dominated by any other solution.

We extended the Flockers model by introducing an “infection” into
the population. Healthy flockers have the same behavior as shown in
the previous example, but infected flockers will, with some probability,
infect their neighbors or be cured. Our new second objective was to
maximize the number of healthy flockers. To do this, flockers must stay
as far away from each other as possible, putting our new objective in
direct conflict with the first one.

We used the NSGA-II [103] multi-objective evolutionary algorithm
with four workers and 100 generations, having 24 individuals per gener-
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ation. Figure 4.9 shows the improvement in the Pareto front over time
for a typical run.

An aside: coevolution. Though we do not provide demonstrations
of them, it is worth mentioning two other capabilities of our system,
which may be of value to an agent-based modeler.

In some cases, is ti possible that one might wish to calibrate a model
to be insensitive to one or more global parameters. For example, we
might wish agents to perform migration the same way regardless of
rain or shine. One attractive evolutionary optimization approach is
competitive coevolution. Here we optimize the population A against a
second foil population B of parameter settings simultaneously being
optimized to trip up the first population. Thus while A is trying to be
insensitive to B, B is searching for corner cases to challenge A.

A related technique, called cooperative coevolution, is a popular
way to tackle high-dimensional problems. When the number of param-
eters to optimize is high, the joint parameter space is exponentially too
large to efficiently search. Cooperative coevolution breaks the space
into N subspaces by dividing the parameters into N groups, each with
its own independently optimized population. Individuals are tested by
combining them with ones from the other populations to form a com-
plete solution. The fitness of an individual is based on the performance
of various assessed combinations in which it has participated. This
reduces the search space from O(aN) to O(aN), but assumes that the
parameters in each group are largely statistically unlinked with other
groups.

4.3.5 Optimizing agent behaviors

Agent-based models are unusual in that not only do they have (typically
global) parameters which must be calibrated but agents with behaviors
that may benefit from calibration as well. Agent behaviors are essen-
tially programs which dictate how the agents operate in the environment
and interact with one another. Unfortunately, it is often the case that
the modeler does not know what the proper behavior should be for a
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Figure 4.10: Mean best-so-far performance, over 30 runs, of genetic
programming on the Serengeti model (lower is preferred).

given agent, or only understands part of the behavior and needs to fill
in the blanks with the remainder.

Because we are calibrating agent behaviors and not global model
parameters, the modeler must do more than just specify a set of model
parameters to calibrate and an optimization algorithm to use. He must
also specify the nature of the representation of these agent behaviors
(in our case below, an array of four parse-trees), and must also write
glue code which, when given an individual, evaluates its parse trees in
the simulation proper.

The evolutionary algorithm community has developed optimization
techniques for a variety of agent behavior representations. Out of
the box, we can support policies (stateless sets of if→then rules that
determine actions to take in response to the current world situation),
finite-state automata (as graph structures), neural networks (via NEAT),
and untyped or strongly-typed “Koza-style” genetic programming (or
GP) [104]; and provide hooks for a variety of other options.

In this example, we will focus on GP. Here, individuals take the
forms of forests of parse trees populated by functions drawn from a
modeler-specified function set. Functions may have arguments, types,
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and arbitrary execution order (like Lisp macros). Parse trees typically
impact on behavior through side effects among their functions, or by
returning some final result via the root of the tree. Our example is
drawn from the Serengeti model [105], in which four “lion” agents
must capture a “gazelle” in a real-valued toroidal environment. The
gazelle uses a simple hard-coded obstacle-avoidance behavior to elude
the lions, and can move three times as fast as any single lion. The lions
can sense the gazelle and each other. Each lion uses a GP parse tree that,
when evaluated, returns a vector indicating the direction and speed the
lion should travel at that timestep. Thus the behaviors to be calibrated
consist of four different parse trees, one per lion.

We used a GP facility closely following the approach in [105], in-
cluding its function set (we restricted ourselves to the “name-based
sensing” and “restricted breeding” variants as described in the paper).
We ran the GP algorithm as described, but with a population size of
5760 spread over 276 workers: each worker thus had 20 individuals
per generation. Assessment of an individual’s parse trees was per-
formed over 10 random trials. Figure 4.10 shows the mean best-so-far
performance of calibrated agent behaviors over 30 runs.

4.4 Large-scale Optimized Searching for Cruise
Itinerary Scheduling on the Cloud

The Cruise Itinerary Schedule Design (CISD) problem involves compa-
nies for cruising and transportation. The problem consists of defining
an optimal permutation for a subset of a given set of ports, representing
the cruise itinerary and arrival and departure times for each destination
to minimize the total cost, maintaining some constraints defined by
the cruising company. The research community has developed sev-
eral solutions for the CISD problem, exploiting either optimization or
simulation.

In detail, a cruise itinerary is a sequence of destinations (the naval
ports) visited by a ship during a cruise. Cruises are planned according
to weather conditions forecast and historical data considering different
geographical zones for each season. The globe is divided into zones
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where a ship stays for a certain period (the cruising season). Further-
more, the route of the ships during a season may visit different zones
according to a predefined sequence. The outcome of a planning process
is the positions of each ship for each day to reach the planned cruising
destinations, minimizing the total cost.

Despite the steady growth rate in the cruise industry, the CISD prob-
lem is barely present in the academic literature. In [106] is presented a
review of cruise industry-academic literature mainly from a marketing
and revenue management perspective. In general, it is agreed that very
little research has addressed cruise ship problems and [107] explains
this lack of research as a consequence of the following data: cruise
tourism accounts only for 2% of the whole tourism sector.

More recently [108] have reviewed the cruise industry and high-
lighted how state-of-the-art research provides empirical and descriptive
studies without any optimization-based analysis on cruise shipping-
related problems. Furthermore, research by [108] explains why cruise
ships have to be considered differently from cargo ships and land
transportation and therefore require ad hoc problem resolutions. For
interested readers, detailed literature examination can be found in [109].

In this work, we present a solution to the CISD problem that exploits
the Optimization via Simulation (OvS) process to find a sub-optimal
solution to the problem. We exploit a genetic algorithm in the optimiza-
tion phase to generate a new candidate set of parameters, while in the
second process phase, we developed a heuristic, based tabu search algo-
rithm, which generates candidates itineraries (see Section 4.4.3). We
used the Simulation exploration and Optimization Framework for the
cloud (SOF) presented in [46] and described in Section 4.4.2, because
of the framework ability to exploit the Cloud computing environment
easily.

4.4.1 Cruise Itinerary Schedule Design (CISD)

The Cruise Itinerary Schedule Design (CISD) is a planning process
where we are interested in maximizing/minimizing some cruise itinerary
constraints. In a cruise itinerary, we have to define the route of the
ships to reach interested ports with the minimum fuel consumption,
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Figure 4.11: Example of CISD problem.

considering the availability of the ports. During the cruising time, a
ship can be in a port docked to a pier (or anchorage) or at sea (traveling).
This leads in costs or benefits considering the total cruising cost because
a ship has a different cost if it is traveling (the amount of fuel needed
to operate a route), stay anchored, or stay stopped in a port (the port is
characterized by an attractiveness value defined by tourism perspective).

This planning process may be summarized in three phases:

• Ship Allocation phase, in which a ship is allocated to a given
maritime area in a given seasonal period;

• Cruise Scheduling phase, in which, given a planning horizon, the
process defines the cruises scheduling

• Day-By-Day Optimization phase, that leads to the selection of all
the ports of an itinerary, defining the visit sequence, the timing,
and the cruise speed for each cruise schedule, considering that
every port can not be visited twice except for the embark and
debark ports.

These phases could be embedded in a classical Operations Research
problem. The first phase is the strategic level, the second phase is the
tactical level, and the latter phase is the operational level.

The CISD problem is described formally in [110] as follows. The
CISD problem inputs are:



120 4. Distributed Simulation Optimization

• P , the set of ports with the associated logistic characteristics
(dock or anchorage, refueling, embark/debark, turnaround);

• N , the number of cruise liners which operate in the area;

• V , the set of cruising speeds for the cruise liners;

• c(i, j, v), is the fuel cost to travel from the port i to the port j at
speed v;

• α, an attractiveness index of each port;

• β, the total cost for fuel bunker, ship maneuvering, and the ship
stop in the port.

The CISD problem constraints are:

• restriction fuel type for ports and maritime zones;

• the minimum and maximum number of hours that a ship can stop
in a port;

• the time windows for arrival and departure;

• the minimum and maximum: length of an itinerary in nautical
miles, number of visited ports for an itinerary, percentage time
that a ship can stay in the sea, number of consecutive traveling
days, the distance among ports in hours of navigation (according
to the ship);

• the cabotage laws is an international law that defines cost con-
straints for the ships traveling among different countries;

• mandatory/forbidden ports and countries to visit.

The planning objective is defining a sequence of ports to be visited
by each ship, defining the scheduling time of arrivals and departures, to
minimize the total cost C of the cruise (fuel cost and ports cost) and
maximize the commercial attractiveness A of the cruise (the sum of
α values of each visited ports). The CISD problem is a two-objective
optimization problem [111] and a solution can be found using the
Pareto Efficient Frontier.
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Cruise attractiveness index. From the cruising companies’ perspec-
tives, the solution’s quality is a trade-off between the cost and the quality
of a cruise. From the commercial point of view, the most important
successful index of cruising is tourist attractiveness. The evaluation of
the attractiveness is a relative measure (a rating score) of the impact on
the customers of a cruise according to the characteristics of the visited
cities and tourism values as season, historical frequency of visit of a
particular port, etc. The α attractiveness index is computed according
to different cruising attributes to increase the commercial interest for
customers. The considered attributives are: reputation (political sta-
bility, safety, etc.); port facilities (infrastructures, distance to the city
center, etc.); activities (cultural/natural, food and beverage, shopping,
etc.); exclusivity (crowding level, etc.); cruise design (number traveling
days, overnights in ports, etc.).

4.4.2 Simulation exploration and optimization frame-
work for the cloud

In [46] the authors introduced Simulation exploration and Optimization
Framework for the cloud (SOF). This framework enables domain ex-
perts and/or policymakers to run and collect results for two kinds of
optimization scenarios: parameter space exploration (PSE) and simula-
tion optimization (SO).

Figure 4.12 depicts the SOF work cycle, which comprises three
phases: selection, parallel simulation, and evaluation. SOF provides a
set of functionality that enables developers to construct their simula-
tion optimization strategy. We designed the framework based on the
following objectives:

• zero configuration: the framework neither requires the instal-
lation nor the configuration of any additional software, only
Hadoop and SSH access to the hosting platform are required;

• ease of use: the tool is transparent to the user since the user is
unaware that the system operates in a distributed environment;

• programmability: both the simulation implementation and the
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Figure 4.12: SOF Work Cycle.

simulation optimization functionalities can be implemented using
different simulation toolkits (MASON, NetLogo, etc.) and/or
by exploiting different programming languages supported by the
hosting platform;

• efficiency: by executing several independent tasks (simulations)
concurrently, the framework adequately exploits the resources
available on the hosting platforms.

Work cycle. The framework is divided into three functional blocks:
the User Front-end (Figure 4.12, left); the SOF core, which acts as a
controller (Figure 4.12, middle); the computational resources (Figure
4.12, right).
The User front-end is implemented as a web or a standalone application,
through which the user provides the inputs to the system which are:
Simulation Implementation, Selection Function, Evaluation Function
and are written using any language supported by the cloud environment.
According to SOF XML schema, a set of files in XML format defines
the Parameters Domain, the Simulation Input, Output, and Rating. The
application level of SOF provides a tool to generate the needed files
easily. The SOF Core is designed to ensure flexibility in terms of the
ability to use any Hadoop installation on-the-fly without requiring a
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specific configuration of Hadoop infrastructure or a particular software
installation on the remote host. The SOF core comprises the funda-
mental block in the SOF architecture that provides the routines for
executing and monitoring simulations. It uses Secure SHell (SSH)
protocol to invoke an asynchronous execution of the SOF-RUNNER.
When an SO process is started, the remote process ID is stored in the
XML simulation descriptor file on the Hadoop Distributed File System
(HDFS). In this way, it is always possible to monitor the SO process
on the remote machine, and it is also possible to stop/restart or abort
the SO process. The execution of the system, described in Figure 4.12,
begins whit a user request. We summarize a SOF loop in the following
key phases:

1. Selection. The system processes the request using the Selection
Function and generates a set of parameters according to the XML
schema defined by the user.

2. Spread. The generated XML inputs are dynamically assigned to
the computational resources. We notice that our system delegates
to the distributed computing environment (Hadoop in our case )
both scheduling and load balancing of tasks (simulations).

3. Collect. When all the simulation executions end, the computation
state is synchronized, and the outputs are collected at the SOF
core system according to the XML schema defined by the user
through a set of messages exchanged between the computational
resources and the core system.

4. Evaluation Phase. The system applies the evaluation function
to the collected outputs and generates the rating (again in the
desired XML format).

After the evaluation phase, the system returns to the selection phase,
which, also using the evaluation results obtained during the preceding
steps, generates a new set of XML inputs for the next loop. Obviously,
the selection function also includes a stopping rule (for instance, an
empty set of parameters), which enables the termination of the SO
process.
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4.4.3 CISD optimization
We have designed and developed a heuristic search algorithm to com-
pute the Day-by-day optimization described in the previous Section
4.4.1. We based our solution on a constructive heuristic that exploits
the Tabu search approach [112]. Tabu search algorithm can find out
a local optimum by the following steps: compute an initial solution,
compute a good neighbor solution by a local search, to improve the
value of the objective function. In this kind of search algorithm, it is
possible to move the solution to another even if there is no objective
function improvement. In this case, the new solution is named tabu,
and it is stored in a tabu list. In this way, the algorithm can check if a
local optimum solution was not already computed. The algorithm has
a fixed number of possible tabu solution. The solutions are iteratively
computed until a stopping criterion is reached. The algorithm works as
follows.

Init phase. First of all, the algorithm tries to merge ports that are
close to each other and have the same time windows. To do that, the
algorithm performs the following steps.

1. computes dmax and dmin as the maximum and minimum distances
among all ports, respectively.

2. computes pivot distance d̂ = dmax−dmin

PIV OT DISTANCE RATIO
where

PIV OT DISTANCE RATIO is a parameter of the algorithm.

3. for each couple of ports i and j, if distance dij ≤ d̂ and time
windows of i and j are the same, i and j are considered as the
same port.

4. for each couple of ports i and j, compute v∗ij as the best speed
(minimum cost) between i and j according to their consumption
curve.

5. compute convergence limit climit = totp·maxp

CONV LIMIT RATIO
, where

totp is the total number of feasible ports and maxp is the max-
imum number of ports that can be visited in the cruise and
CONV LIMIT RATIO is a parameter of the algorithm.
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6. creates POP SIZE initial solution by randomly selecting the
first port, where POP SIZE is a parameter of the algorithm.

Evolution phase. During this phase, the algorithm expands the initial
solution until a stopping criterion is met or a blind destination is reached
(i.e., no other possible destination are available).

1. for each partial solution up to port i, select all feasible candidates
for a successive stop considering a maximum waiting time to
enter into the port equals to MAX HOURS TO ENTER that is a
parameter of the algorithm.

2. for each candidate k, if parameter USE ONLY BEST SPE
EDS = 1 consider only speed v∗ik, otherwise check if it possible
to modify speed in order minimize time window violations.

3. randomly selects next stop among all candidates k.

4. if the selected candidate k∗ is a blind destination (i.e., there are
no other possible destinations) k∗ is inserted in a tabu list.

5. at each iteration checks if at least one stopping criteria is met.

6. destroys and rebuilds from scratch the solution with a probability
of RESET THRESHOLD which is a parameter of the algorithm.

Summing up, the algorithm’s main parameters, that are iteratively
changed for the analysis described in this article, are: USE ONLY BES
T SPEEDS, POP SIZE, CONV LIMIT RATIO, PIVOT DISTANCE RA
TIO, MAX HOURS TO ENTER, RESET THRESHOLD.

Parameter selection optimization process. To discover the parame-
ters configuration that enables to obtain an efficient solution, we have
developed the selection function and the evaluation functions for the
SOF framework work cycle. The selection function generates a set of
parameters. Thereafter the searching algorithm above is executed to
generate feasible solutions (according to the current parameters) while
the evaluation function computes the cost and the attractiveness of each
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solution. The selection function is a pure Java-based genetic algorithm,
having a certain number of individuals (population size), which is able
to generate a new feasible parameter set for the searching heuristic
described above, also exploiting the previous evaluation results. With
more details, in the first optimization loop, the algorithm randomly
generates a set of parameters. The algorithm takes as input the previ-
ous input/output/evaluation results and accordingly generates a new
set of parameters in the next steps. The parameter selection process
iterates until a stopping criterion is met. In this work, we have used
two simple stopping criteria: the optimization loop terminates when
the selection function has performed max iter iterations, or the last
max no improving iter iterations did not improve the solution.

4.4.4 Results
In this section, we describe our results in terms of the quality of the solu-
tion obtained by the OvS process using our heuristic tabu search-based
algorithm, and we present the computation time of the process varying
the number of machines involved in the execution on the AWS cloud in-
frastructure. We have exploited the Amazon Elastic Map Reduce(EMR)
1 that provides a managed Hadoop framework on the Amazon Elastic
Compute Cloud 2 platform, that provides a resizable compute capacity
in the cloud. The tests have been performed on a real scenario using
220 ports and 1 ship, and the Mediterranean sea as a maritime area. The
other data and parameters range values are computed according to the
requirements given by a cursing company.

Quality results We performed 12 different parameters scenario op-
timization using EMR cluster of 4 EC2 nodes. We changed the input
parameters of the selection function varying the three genetic algorithm
input:

• population size = 20;
1Amazon Elastic Map Reduce (EMR) https://aws.amazon.com/en/

emr/
2Amazon Elastic Compute Cloud (Amazon EC2) https://aws.amazon.

com/ec2

https://aws.amazon.com/en/emr/
https://aws.amazon.com/en/emr/
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
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• max iter = 20, 30, 40;

• max no improving iter = 1, 2, 3, 4, 5, 8, 10, 15, 20.

The values of max no improving iter for the first 6 tests are obtained
by max no improvig iter = max iter× [0.05, 0.10], while for the last 6
tests by max no inproving iter = max iter× [0.25, 0.50].

id test population size max iter max no inproving iter Executed loops Best loop C A
1 20 20 1 5 4 218817,36 293
2 20 20 2 11 9 216360,96 292
3 20 30 3 8 5 217938,53 304
4 20 30 3 9 6 218319,12 331
5 20 40 2 - - - -
6 20 40 4 7 3 209174,08 276
7 20 20 5 11 6 207845,81 294
8 20 20 10 20 13 199226,54 352
9 20 30 8 13 10 193345,45 293
10 20 30 15 30 20 209420,05 354
11 20 40 10 20 10 214056,81 328
12 20 40 20 34 14 205052,33 357

Table 4.3: Quality results with different parameter settings. .

The tests are described in the Table 4.3. The selection function
generates a set of cardinality population size in each iteration. Each
generated input is a configuration for the Day-by-Day optimization
algorithm. In this experiment we have used the genetic algorithm to
change 6 parameters of our algorithm. In particular, the parameters
change according to a possible range and are:

• use only best speed ∈ [0, 1]

• pop size ∈ [40, 45, 50, 55, 60]

• conv limit ratio ∈ [1, 2, 3, 4, 5]

• pivot distance ratio ∈ [50, 100, 150, 200]

• max hours to enter ∈ [6, 12, 18, 24, 30, 36, 42, 48]

• reset threshold ∈ [0.05, 0.10, 0.15, 0.20]
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Table 4.3 shows the configuration for the selection function and the
number of executed optimization loops (Executed loops), the loop that
have produced the best results (Best loop), the total cruising cost C and
the total value of attractiveness A. As shown in the table 4.3, only the
test 5 did not produce a feasible solution before the stopping criteria.
The tests 8 and 10 ended because the maximum number of iteration has
been reached. The best solution has been achieved by the test 9 and 12.
Specifically, the test 9 provides the minimum cruise cost, while the test
12 provides the best attractiveness cruising value.

Performance results. We performed 7 experiments on an EMR clus-
ter to evaluate the scalability of our OvS process for CISD. We exploited
a cluster of 32 EC2 instances running the Ubuntu Server 16.04 LTS
operating system. Amazon provides different kinds of EC2 instances
varying the cost (that is, computed effective computation minutes), the
number of CPUs, and the amount of memory. We performed our test
with EC2 instance c4.2xlarge. The hardware details of this instance
type are Xeon E5-2666 v3 processor, 8 vCPUs, and High Network
Speed. The cost is 0.398 hourly for Linux on Demand instance and
0.105 hourly for Linux on Spot instance. We present the performance

Nodes vCPUs Memory time(s) Cost on demand EC2 Cost on demand EMR Total cost
1 4 15.0 GB 27165 $ 3.00 $ 0.79 $ 3.79

1 8 15.0 GB 23164 $ 2.56 $ 0.68 $ 3.24

2 16 30.0 GB 18695 $ 4.13 $ 1.09 $ 5.22

4 32 60.0 GB 10185 $ 4.50 $ 1.19 $ 5.69

8 64 120.0 GB 5259 $ 4.65 $ 1.23 $ 5.88

16 128 240.0 GB 3610 $ 6.39 $ 1.68 $ 8.07

32 256 480.0 GB 2005 $ 7.09 $ 1.87 $ 8.96

Table 4.4: Time in second and cost ($) required by the 10 loops of the
SO process for evaluating 10 input configurations.

results in terms of strong scalability. We have fixed the total amount of
computation to 10 optimization loops in which we generate/evaluate 10
input configurations of our algorithm for CISD. We varied the number
of nodes from 1 to 32 and, accordingly, we varied the number of vCPU
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involved in the computation from 4 to 256.
For each experiment, we compute the total time required to execute
the OvS process, the total cost of EC2 instances, the cost of the EMR
cluster, and finally, the total cost of the cloud computing infrastructure.
All these values are reported in Table 4.4. Results show that the system
provides good scalability: Comparing the first and the last test, we have
that the time required for the whole computation is reduced by a factor
of 13, while the cost of the process is incremented about 2.4 times.
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Chapter 5

Conclusion

Computational science is an attractive and active field of research that
aims to solve complex problems through a computational approach.
Solutions to this problem are computationally expensive and time-
consuming. Therefore, the notion of “scalability” becomes central, and
the challenge is to improve the current state of solutions in terms of
efficiency and effectiveness. However, implementing scalable solutions
requires a deep understanding of parallel and distributed computing
architectures and paradigms. The cultural background of computational
scientists (also called domain experts) does not have these skills. Con-
sequently, they spend most of their time making applications scalable
by taking time away from implementing the application logic.

This dissertation discussed frameworks and languages designed
to support computational scientists in creating scalable applications
efficiently, allowing them to focus on the application’s logic without
worrying about the implementation aspects of parallel and distributed
computing.

One of the main choices when creating computational science appli-
cations is the programming language. Many languages support parallel
computing constructs for building scalable applications, but they re-
quire knowledge of the underlying computing system, which must be
managed and maintained. This dissertation discussed FLY, a domain-
specific language that aims to reconcile the world of Cloud computing
with that of High-Performance Computing. FLY allows the Function-
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as-a-Service(FaaS) model provided by different cloud providers to be
used as a computing environment transparently and simultaneously
in a single application. Using FLY, the domain expert specifies the
workflow (the application logic) they want to execute and on which
cloud platform(s) they want to execute it (setting only the cloud access
credentials and some configuration parameters). Through FLY, com-
plex scientific workflows can be executed in a scalable way. Besides
showing the language programming model and the source-to-source
compiler, we presented a performance evaluation on a popular bench-
mark for distributed workflow computing frameworks, WordCount.
Furthermore, we showed a collection of three algorithms (Montecarlo
evaluation of π, K-Nearest Neighbor, and Smith-Waterman) with an
analysis of their performance results on Amazon AWS. The results of
these analyses show that considerable speedup can be achieved through
FLY at an affordable cost, much less than that of a MapReduce cluster
or Virtual Machines provided by Amazon AWS. Finally, an example of
integrating a FLY program into an Optimization via Simulation process
for solving a Customer Allocation problem is shown. We found that
our solution allows us to achieve a significant speedup in execution
time, confirming the ability of FaaS to be effective and efficient for
developing a large-scale scientific workflow that takes advantage of the
OvS techniques. This study’s findings have to be seen in the light of
a well-known drawback related to FaaS use regarding computational
time and memory limits. Although these limits are getting larger and
larger, very long-running simulation executions cannot be performed at
the moment.

A methodology that is having some success within Computational
Science is agent-based modeling (ABM). The success of this tool has
led to the creation of several libraries of ABM simulations and the
development of simulations with a huge number of agents. This disser-
tation showed Rust-AB, an open-source library for building massive
agent simulations through the Rust language. We implemented an
example of Rust-AB simulation, the Boids model, to investigate the
sequential performance of Rust-AB in comparison with MASON. The
results are promising and exhibit performance-enhancing compared to
the MASON toolkit, particularly for simulations with a high agent den-
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sity. We performed even a parallel performance evaluation of Rust-AB,
always using the Boids model, increasing the number of threads used
to simulate 500000 and 100000 agent. We have obtained promising
results showing that the parallel version of Rust-AB has a speedup of
x14 compared to the sequential version. This speedup can be further
improved by making optimal use of Rust’s capability.

The growing interest in the development of ABM has led to the need
to optimize these models to reflect the reality you want to simulate. The
Optimization via Simulation (OvS) collects various methodologies to
optimize the simulation parameters efficiently, but it demands a remark-
able amount of computational resources. In this dissertation, three tools
are presented that exploit the hardware and software features of three
different types of distributed infrastructures and Cloud infrastructures.
HSO, a tool that uses the power of a heterogeneous distributed system,
composed of several CPUs and GPUs, to develop general OvS pro-
cesses, has been presented. We have evaluated the performance of HSO
on two use cases: Spread of Information and Spread of Influence, com-
paring the OvS process time required to complete different experiments
using a heterogeneous system composed of 4CPUs and 4GPUs. In the
first use case, we exploited an ABM simulation, written in NetLogo,
and a genetic algorithm, developed in Python, to study the problem of
Spread of Information. In the second use case, we developed a C based
and Nvidia CUDA based simulation to model the Spread of Influence
on a social network, and we used a Java OCBA implementation for the
optimization phase. In the context of distributed OvS, in this disserta-
tion, we presented a tool that aims to provide an automatic calibration
tool for ABM simulations. We developed this kind of tool combin-
ing the popular MASON and ECJ libraries and have shown how their
combination can produce powerful, fully-featured model calibration
facilities with special capabilities of interest to the agent-based modeler.
A performance evaluation of several calibration processes using various
optimization techniques, like Genetic algorithms, Evolutionary Strategy
and CMAES, and simulations, like the Flocker model and the Refugee
model, was presented. Finally, a tool for solving the Cruise Itinerary
Schedule Desing problem was discussed, which realized a distributed
OvS process, through the SOF framework, using a MapReduce clus-
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ter provided by Amazon Cloud provider. We evaluated the proposed
solution on a real scenario in terms of both the quality of the obtained
solutions (attractiveness and costs) and the scalability/cost efficiency
on Amazon AWS. Results show that the strategy can identify good
solutions and that the cloud infrastructure’s use improves the strategy’s
timing without severely impacting costs.
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