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Abstract 

 

 

 

 
Energy is essential to society for ensuring good quality of life by modern 

standards. Nowadays, fossil fuels are still the most used energy source, but, 

due to their depletion and contribution to climate change, the pursuit of a 

sustainable development has promoted an ever-growing trend to use new and 

pollution-free energy sources. Such a trend is impacting the energy scenario 

with massive transformations on a world scale. 

From the Kyoto protocol in 1997 to the COP 21 Paris agreement in 2015, 

great challenges have been introduced in terms of both emissions’ reduction 

and development of new energy sources, which are cleaner than the fossil 

ones. As a result, renewable energy sources (RESs) have seen a great 

development, favoured by a strong interest from governments, private 

companies, universities and public and private research centres. In fact, 

estimates suggest a RES penetration of over 55% in the next few years. 

Obviously, such a process is not likely to occur in the same fashion in all 

countries. As a matter of fact, RESs are not uniformly distributed, and 

incentive policies differ very much according to the single countries. 

Among RESs, wind power is the most widespread in the world after 

hydropower: over the last few decades, the global wind installed capacity has 

grown rapidly, particularly in Europe, Asia, and North America. However, the 

unpredictable and intermittent nature of wind is the main obstacle to its 

integration on a large scale: grid operators have difficulties keeping the grid 

in a safe state when large volumes of this energy are injected into the power 

system. Hence, in order to manage wind capacity, accurate wind power 

forecasting is necessary. However, forecasting the wind power production is 

quite challenging as wind is extremely variable and depends on weather 

conditions, terrain factors, and height above ground level. Furthermore, wind 

power strongly depends on wind speed, thus for a successful integration of 

this type of energy into any power system, it is important to design a wind 

speed prediction model with a forecasting error which is as low as possible. 

Unfortunately, wind is the most difficult meteorological phenomenon to 

predict: wind forecasting thus represents a great challenge for researchers, 

meteorologist, and wind power producers. 

In the literature, several forecasting models have been proposed, 

traditionally based on physical and statistical methods. In addition to those, a 
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number of more advanced methods based on artificial intelligence have been 

investigated in recent years, in the attempt to attain more reliable wind-power 

forecasts. 

The aim of this thesis is to develop a forecasting model for estimating the 

generated power from the predicted wind speed on a given wind farm. 

In this PhD dissertation, after introducing the problems connected to the 

integration of wind power on a large scale, a two-stage forecasting model is 

proposed. The wind power forecasting problem is divided into two sub-

problems: wind speed forecasting and wind power forecasting. Unlike many 

models presented in the literature or by commercial tools, in the proposed 

approach weather information and wind production data are used separately. 

In order to solve the first sub-problem, two models for the daily and hourly 

wind speed prediction were developed. 

The main difference between the models here proposed and those from the 

literature or commercial tools is the analysis of the weather fronts and their 

spatio-temporal evolution. In detail, in order to characterize the evolution of 

the meteorological fronts, a mesoscale study of a number of meteorological 

data was conducted. According to mesoscale theory, the weather phenomena 

occurring in a given area are connected to the evolution of the meteorological 

factors in the surrounding areas. Therefore, in the proposed approaches, 

instead of considering only the data relating to the site where the forecast is to 

be made, the prediction is carried out on the basis of the historical data of the 

area around the site, on a scale of a few hundred kilometres. To this regard, a 

simple nesting grid was built, similar to those used in the advanced global 

numerical weather prediction (NWP) models and adopted by the European 

Centre for Medium-Range Weather Forecast (ECMWF). However, unlike the 

mesoscale approaches, the nesting grid constructed in the proposed models is 

made up of a very limited number of points (16 + 1) instead of several 

hundred. 

The first model, for the daily prediction, is based on a Multi-Layer 

Perceptron neural network (MLP) and dynamic clustering process. The 

model's inputs are the historical and current meteorological data, including 

pressure, temperature and wind intensity. These data, time-shifted by a proper 

delay related to spatial distance, are useful to describe the spatio-temporal 

evolution of the weather fronts at the point with respect to which the forecast 

is to be made. The forecasting results of a case study were compared with real-

world data registered at the test site (located in southern Italy) and with the 

results obtained from the persistence model, the traditional benchmark for 

prediction models. The comparison and performance evaluation demonstrate 

the high effectiveness of the proposed strategy. 

The second model proposed, for the hourly prediction, is based on an 

optimized artificial neural network (ANN), data correlation analysis, and 

clustering process. Again, the input data consist of pressure, temperature, and 

wind intensity (both historical and current values). As in the daily model, the 
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training set is constructed by a time-shifting τ of the meteorological data, 

which are then clustered into four groups, through the k-means algorithm. The 

model's effectiveness was verified by comparing the obtained forecasted 

values with the real-world registered values and with the results from the 

persistence model. Furthermore, the model's effectiveness was confirmed by 

performance evaluation, with respect to the main figures of merit proposed in 

the literature. 

The last part of the work deals with the wind power forecasting problem, 

proposing a forecasting approach based on Betz’s theory and historical wind 

production curves. The proposed forecasting model is fed by the outcome of 

the wind speed forecast from the previous stage, wind production curves and 

the structural characteristics of the particular wind farm to estimate the 

generated power. The method was tested with data from representative periods 

around the year: spring and fall equinoxes, summer and winter solstices, and 

the first week of spring. Once again, performance analysis and the comparison 

between the forecasted results, along with the recorded values and the 

persistence model, have all confirmed the effectiveness of the proposed 

approach. 

In summary, performance analysis and comparisons have validated the 

proposed forecasting approaches, both for wind speed and wind power, 

showing a better performance when compared to well-known commercial 

tools and alternative models from the literature. 

Throughout the entire work of the thesis, the real-world data of the case 

study were provided by the National Air Force Meteorological Service - 

C.O.Met. (Centro Operativo per la Meteorologia) and IVPC (Italian Vento 

Power Corporation) to which the author is grateful for the contribution 

offered. 

 



 

 

 



 

 

 

Introduction 

 

 

 

 
In the last few decades, due to environmental issues and the depletion of 

raw materials, RESs (renewable energy sources) have been growing rapidly, 

becoming an effective alternative to traditional energy sources. In fact, the 

growing energy demand and the importance of significantly reducing carbon 

dioxide emissions are likely to promote an even more massive spread of wind 

energy in the upcoming years.  

The overall generation of energy from RESs on a world basis is expected 

to reach 55% in 2030. 

Among renewable sources, wind energy is believed to become the first 

source of electricity generation by 2040. In fact, the GWEC (Global Wind 

Energy Council) estimates that the cumulative installed wind power capacity 

around the world rose from 432.9 GW at the end of 2015 to 591 GW in 2018, 

with new installations in Latin America, Asia and Africa contributing to the 

relentless growth of the installed capacity, along with the well-established 

giants of China, US, EU, India and Brazil. In Europe, thanks to the incentive 

policies implemented in the last twenty years, 18% of the electricity demand 

today is covered by wind power. In this scenario, Italy is the third European 

country, after Germany and Spain, for installed wind power, with wind power 

covering around 15.5% of the whole national electric energy production. 

Although wind energy is pollution-free, it has some disadvantages, of both 

technical and economic relevance. The main disadvantage is intermittency, 

which makes wind energy difficult to integrate into any power systems and to 

be dispatched effectively. In fact, the growing penetration of wind energy has 

been increasingly causing significant problems to the ISOs (Independent 

System Operators), which are responsible for energy dispatching. Therefore, 

the necessity has been considered to activate sanctioning mechanisms for wind 

energy producers in case these do not comply with the estimated production 

plans in the short or very short term. 

Since energy storage on a big scale is practically unfeasible, an accurate 

forecasting of wind power (with a depth of one or more days) has become 

important for all operators and stakeholders in the power system field. A 

precise and reliable estimate of energy production, in fact, allows ISOs (Terna 

in Italy) to better plan and manage the instantaneous balance between energy 

demand and energy production (necessary to ensure safe network efficiency) 
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in the planning and balancing phase, thus reducing the power reserves to be 

implemented, with direct and immediate benefits on the price of power. 

Today, in addition to ISOs, wind producers also make use of wind forecasts 

to avoid incurring sanctions for not complying with the established production 

plans. 

Therefore, in the scenario of renewables just described, the forecasting of 

the available wind power production becomes crucial as an indispensable 

solution for a sustainable development on our planet and an effective 

integration of wind energy. 

In the literature, wind forecasting is classified into four categories, 

according to the temporal forecasting depth: very short-term (few seconds to 

30 minutes), for network regulation actions; short-term (30 minutes to 6 

hours), for making decisions to guarantee the correct network functioning; 

medium-term (6 to 24 hours), for operational security applications; long-term 

(2 to 7 days), used for ensuring optimal network efficiency. 

Depending on the application, some researchers propose forecasting 

models based on statistical methods – like ARMA, ARIMA, etc. – for very 

short-term and short-term forecasts, while for medium- and long-term 

forecasts, they propose models based on machine learning approaches such as 

ANNs (Artificial Neural Networks). Recent works have proposed to address 

long-term forecasts by means of hybrid models, based on the combination of 

either different statistical methods, different machine learning methods or 

machine learning along with statistical methods. 

Many of the aforementioned methods form the basis of commercial 

products developed by private companies or university spin-offs, such as 

Zephyr or Previento. All the solutions on the market use weather information 

and historical wind production data to predict the wind energy amount that a 

given wind farm can produce. 

This PhD dissertation falls within this context, presenting an original two-

stage hybrid wind power forecasting model for short-medium term wind 

power forecasting on WFs (wind farms). 

Because wind power is strictly dependent on wind speed, the proposed 

model is made up of two stages: wind speed forecasting and wind power 

evaluation. Specifically, first the wind is predicted in the area where the wind 

farm is located, and then the prediction of the power produced follows, based 

on the expected wind. 

In the first stage, in order to predict wind speed, a hybrid model based on 

weather front analysis, using an ANN is proposed. Then, in the second stage, 

based on Betz’s law and historical wind power data, the wind power is 

estimated, taking into account the features of the wind farm considered. 

The main difference between the new proposed procedure and the models 

in the literature as well as the commercial tools lies in the analysis of 

meteorological information, in particular the evolution of the weather fronts: 

according to mesoscale theory, in fact, the weather phenomena occurring in a 
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given area are connected to the evolution of meteorological factors in the 

surrounding areas. Therefore, in the proposed approach, instead of considering 

only the data relating to the site where the forecast is to be made, in accordance 

with the approach followed for weather prediction, the forecast is made on the 

basis of the historical data of the area around the site, on a scale of a few 

hundred kilometres. Moreover, unlike the mesoscale approach, which uses 

meshes with hundreds of points, the proposed model bases the prediction on 

a very limited number of points (16 + 1). 

All the data used, both weather and wind power information, were 

provided, respectively, by the National Air Force Meteorological Service – 

C.O.Met. (Centro Operativo per la Meteorologia) and IVPC (Italian Vento 

Power Corporation), one of the main wind energy companies in Italy. 

The structure of this PhD dissertation is as follows. 

In Chapter I, the energy scenario, both in terms of energy demand and 

production, is introduced. The chapter begins with a brief overview of the 

environmental issues relating to the power system and the need of RESs for a 

sustainable development. The chapter then presents the situation of RESs 

worldwide, with a deeper look at the Italian landscape, focusing on wind 

energy. The second part of the chapter deals with the problem of the 

integration of wind energy into the electrical grid and the importance of the 

wind power forecasting problem, thus introducing the aims of this thesis. 

In Chapter II, the wind power forecasting problem is discussed in detail. 

First, the intermittent nature of wind power and the different categories of the 

forecasting models based on time depth are presented. A number of methods 

existing in the literature and a number of commercial products implementing 

them are then illustrated. Particular attention is dedicated to models based on 

data mining techniques using ANNs, the methodology that will then be used 

in this thesis, thus defining the state of the art. The chapter ends with the 

presentation of the main figures of merit used in the literature to verify and to 

compare the performance of the proposed wind forecasting model. 

After a study on the relationship between wind speed and wind power and 

on the physical phenomena and meteorological dynamics related to wind 

formation, in Chapter III the proposed method is presented. This is based on 

the mesoscale study of a limited set of physical data (wind speed, atmospheric 

pressure and temperature), useful for characterizing the presence of 

meteorological fronts and their space-time evolution, with the aim of 

predicting the wind at the site of interest. 

In order to test the effectiveness of the proposed method, also in Chapter 

III, the model is applied to forecast the average daily wind in a particular site, 

a forecast useful for estimating the energy contribution that a given wind farm 

is able to ensure in the short and medium term. After the discussion on the 

model’s design, a case study based on real data is presented. The model’s 

effectiveness is examined through the evaluation of the performance and the 
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comparison between the proposed model and the persistence model, the most 

used benchmark in the literature for forecasting models. 

In Chapter IV, a novel hybrid model for a one-hour-ahead wind speed 

prediction, also based on the physical model introduced in the previous 

chapter, is proposed. In the first part of the chapter, the methodology and 

structure of the model are described, focusing on the k-means clustering phase 

and the construction of the PSO-ANN model. To test the effectiveness of the 

proposed method, a case study is presented and discussed, also based on real 

data provided by the National Air Force Meteorological Service, in this case 

to generate hourly forecasts. In order to highlight the advantages introduced 

by the novel model, a forecasting error analysis and a comparison with the 

persistence model are carried out. 

The thesis ends by presenting the development of a model for moving from 

site wind data to wind farm production data. Therefore, after the presentation 

of the proposed wind speed forecasting models, in Chapter V a wind power 

forecasting approach based on Betz’s law and the WF wind production curves 

is presented and validated using data from a real wind farm located in 

Campania, southern Italy. 

The PhD dissertation closes with conclusions that outline the contribution 

of the work described, resuming the main achievements of the study and 

proposing a direction for future research that might address yet unresolved 

issues. 
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I.1 The power system: general context and RESs penetration 

All modern society is based on electricity, arguably the most valuable form 

of energy and one of the most significant indicators of the level of 

industrialization and well-being of a country. Although the use of electricity 

is linked to sustainability, efficiency and low environmental impact, the 

massive use of non-renewable sources becomes, over time, unsustainable as, 

due to their nature, non-renewables are subject to exhaustion and contribute 

to environmental pollution, the biggest problem associated with their use. 

While on the one hand electrification has been identified as the most credible 

solution to favour the social and economic development of the poorest areas 

of the world as well as for the reduction of polluting emissions in the final use 

of energy, on the other hand the search for production systems with a lower 

environmental impact has become a priority to solve the problem of 

atmospheric pollution. This is due to the release of harmful substances - 

including carbon dioxide (CO2) – produced by combustion, the cause of the 

greenhouse effect, which produces an increase in the world average 

temperature. To reduce CO2 emissions, an agreement between 176 countries – 

Paris COP21 – confirms the importance of CO2 emission reduction (discussed 

and analysed in the Kyoto Protocol as early as 1990), and establishes the limit 

of temperature increase to 1.5 °C (EU Parliament, 2002) (COP21, 2016). 

In the last few decades, there has been a growing attention to the 

development of energy policies to support the spreading of renewable energy 

sources (RESs). These are, by virtue of their eco-compatible nature, an 

effective alternative to fossil fuels, which reduces the impact on nature to 

almost zero, while also solving, at the same time, the problem of the 

exhaustion of raw materials.  
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The definition of renewable energy is not univocal: in fact, this term 

sometimes refers to sources considered clean for the environment, and 

sometimes to all sources alternative to the traditional ones (combustible 

fossils), which are capable of regenerating over time.  

For the Italian legislation (Italian Parliament, 31 March, 1999), all 

following sources are considered renewable: “... the sun, wind, water, 

geothermal resources, tides, the wave motion and the transformation of 

vegetable products or organic and inorganic waste into electricity”. 

In general, RESs can be classified into the following (Towler, 2014): 

• Biomass energy: biomasses are organic (plant or animal) materials, 

excluding fossil fuels and plastics deriving from purposely grown energy 

crops (e.g. miscanthus, switchgrass), or from wood or forest residues or, 

again, as waste from food crops or human, or from animal farming, etc. 

The technologies used to exploit this resource are based on two 

methodologies, i.e. biochemical and thermochemical conversion. In both 

cases, biofuels are obtained which, although burned, do not contribute with 

their use to the increase of carbon dioxide emissions, as the latter are 

comparable to the amount of CO2 absorbed during the growth of biomass. 

The nearly zero impact on CO2 emissions and their being widely available 

at low cost make biomasses a source of clean and renewable energy. This 

form of energy is more developed in Central and Northern European 

countries than in Italy, despite Italy’s abundant resources in this respect; 

• Hydraulic energy: the water flow is conveyed through special pipes to 

transform water force into pressure and kinetic energy. This energy 

subsequently powers a generator, which in turn converts said energy into 

electricity. Among RESs this is the oldest, and its contribution to the 

world’s electricity production is currently 18% (IEA, 2018d). In Italy, 

according to the data provided by Terna – the Italian Transmission System 

Operator (TSO) – hydropower contributes to 14.3% of the total energy 

requirement (Terna, 2019); 

• Geothermal energy: this is based on the thermal energy derived from 

within the Earth’s sub-surface. When water comes into contact with 

magmatic layers, it heats up, until it becomes steam, carrying with it a large 

amount of energy that can be converted into electricity. The phenomenon 

generates, among other things, the spectacular “geysers”. This major 

renewable source covers a significant share of electricity demand in 

countries located close to tectonically active regions. For this kind of 

electricity generation, high or medium temperature resources are needed, 

available in few countries in the world (Iceland, El Salvador, New 

Zealand), where geothermal energy provides core or ancillary services to 

the grid; 
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•Solar energy: this type of energy is produced by solar panels exposed to 

the sun so as to receive the maximum incident radiation. The ability to play 

with the shape of the panels allows optimal installation and good 

integration into buildings, thus helping the spreading of this particular form 

of energy. Based on the panels’ technology, it is possible to generate two 

kinds of energy: thermal and electric. Photovoltaic panels convert light 

solar directly into electricity. In Europe, thanks to economic incentives, 

(Conto Energia in Italy), the installation of such plants has spread widely, 

thus causing a number of network management problems (Gazzetta 

Ufficiale della Repubblica Italiana, 2012). 

• Wind energy: this form of energy is based on the transformation, through 

an electric generator, of wind kinetic energy. In detail, wind is the 

movement of air on the Earth’s surface between high pressure and low-

pressure areas (Landberg, 2015) due to the different warming of the 

surface, be it land, sea or lakes, generated by the non-uniformity of 

temperature on our planet. In fact, the Earth’s surface is heated unevenly 

by the sun, depending on factors such as the angle of incidence of sunrays 

on the planet’s surface - which differs according to the latitude and time of 

day -, on thermal conductivity and reflectivity of the surface, and the 

presence and thickness of clouds. The atmospheric pressure gradient 

originates the wind, which activates a rotor with a blade system connected 

to an electric generator. Wind farms (WFs), which group a set of wind 

generators, are divided into two categories (Manwell et al., 2010): onshore 

WFs, characterized by turbine capacities of about 2 MW,  typically placed 

in open areas and on mountainous or hilly regions; offshore WFs, 

characterized by turbine capacities of about 3-5 MW,  installed more than 

10 km off the coast in order to take advantage of the absence of obstacles 

at open sea and the presence of stronger winds, thus ensuring a high energy 

yield (Figure I.1) 

 
Figure I.1 Examples of onshore and offshore plants 
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I.1.1 Penetration of RESs 

Until a few years ago, the consumption of electricity was concentrated in 

the member countries of the OECD (Organization for Cooperation and 

Economic Development), the assembly of the world’s most industrialized 

countries open to the market, founded in 1961. However, in the last few 

decades, electricity generation and demand has increased in non-OECD 

countries more than in OECD countries, thus defining a new trend that 

currently appears irreversible (IEA, 2019). This is due to the increasing 

industrial development that is taking place in non-OECD countries such as 

China or India (Figure I.2). 

 
Figure I.2 Electricity generation and demand in OECD countries and non-

OECD countries 

Despite the increase in electricity demand in non-OECD countries, 

electricity generation from RESs is more widespread in OECD countries, in 

which RESs supplied 26.2% of global electricity at the end of 2018 

(Figure I.3) (REN21, 2019). 

 
Figure I.3 Renewable energy share of global electricity production, 2018 
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Among RESs, the sources of most recent commercial and technological 

development are wind and photovoltaic solar, with a high reduction in the 

production from fossil fuels. In particular, according to IEA (International 

Energy Agency) forecasts (IEA, 2019), in OECD European countries, the 

expected electricity generation by 2050 will mainly derive from wind energy, 

which is likely to go through a constant growth in the next few years 

(Figure I.4). 

 
Figure I.4 Net electricity generation from fuel and RESs – IEA source 

This trend is confirmed by surveys (BNEF, 2019), which report that the 

expected renewable production will reach, in 2050, 62% of global energy 

production, and such production is mainly due to wind and solar (around 

48%), thus exceeding hydroelectric production (Figure I.5). 

 

Figure I.5 Global power generation mix expected in 2050 – (BNEF Report, 

2019) 
 

In this scenario, due to the rapid growth of offshore wind, wind power is 

expected to become the first source of electricity generation by 2040, thus 

replacing traditional energy sources (Figure I.6) (IEA, 2018a) (IRENA, 2017) 

(IEA, 2018b). 
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Today, according to (IEA 2018c), two markets have the primacy in the 

production of wind energy: China and United States, where wind production 

reaches 40% of the total energy production. In particular, in 2018, China had 

the highest proportion of new installations, both offshore and onshore 

(around 45%) (GWEC, 2018). In addition, emerging countries such as Brazil, 

Mexico and even Chile are attractive markets for the wind sector, thanks to 

their national energy policies, developed to encourage economic growth while 

reducing high pollution contribution (BP, 2019a) (BP, 2019b). In fact, the 

Latin American (LATAM) wind market has significantly grown over the past 

ten years, reaching the total installed power of 25 GW, especially in Brazil, 

which continues to hold joint capacity auctions for onshore wind, thus aiming 

to reach 10% of the national energy production due to wind in 2021 

(Aldana et al., 2019). Even in Europe, wind power is extremely widespread: 

in fact, it covers 14% of the EU’s electricity demand, with leading countries 

such as Spain, Great Britain (Scotland), Denmark and Germany, where 

offshore wind power has spread widely. According to (Eurostat, 2019), in 

2018, the installed wind power had more capacity than any other form of 

power generation in the EU, accounting for 48% of the total power capacity 

installations. In detail, Denmark is the country with the highest share of wind 

energy within its electricity demand (41%), whereas the UK registered the 

largest annual increase of wind energy within its electricity demand, rising 

from 13.5% to 18%. 

 
Figure I.6 New electricity scenario in European Union (IRENA, 2019) 

The rest of Europe has also opened up to wind power, especially Eastern 

countries such as Romania, Poland and Bulgaria with their numerous 

installations, thus challenging the lower incentives imposed by the 

governments and performing exceptionally well (Eurostat, 2019). 

I.1.2 Wind power in Italy 

In Italy, electricity production has traditionally been linked to fossil fuels, 

in particular natural gas (around 60%). The sustainability policies launched in 

the late 1990s, supported by a significant incentive policy in the 2000s, led to 
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a significant increase in the penetration of RESs (GSE, 2019), to the point of 

covering, in 2018, 39.5% of the Italian electricity production (Figure I.7) 

(Terna,  2018).  

In Italy, the electricity system’s opening to the market and the 

disappearance of the vertically integrated state-controlled company fixed by 

Law 79, March, 31, 1999, has introduced a new organization and new rules 

for the production of electricity from RESs. A new agency was established, 

responsible for drafting the technical standards, the Authority for Electricity 

and Gas (AEEG), now ARERA (Autorità di Regolazione per Energia, Reti e 

Ambiente – Authority for Energy, Grids, and Environment).  

New rules (Gazzetta Ufficiale della Repubblica Italiana, 29 Dicembre 

2003) for building and operating a plant powered by RESs were issued, with 

a considerable simplification of the authorization procedures on a local basis, 

thus defining a favourable context for the development of renewable sources, 

especially for wind power plants. For instance, all plants powered by RESs 

were defined as systems “of public utility, not deferrable, and urgent”. In 

particular, Legislative Decree 387/03 (Gazzetta Ufficiale della Repubblica 

Italiana, 29 Dicembre 2003) centralized the authorization procedures for 

power plants greater than 200 kW and simplified the bureaucratic process for 

small size plants with a nominal power of less than 20 kW, usually destined 

for self-consumption. 

Besides simplifying and rationalizing authorizations, in order to support 

the spreading of RESs, Italy has implemented an incentive policy in 2002 

introducing the so-called Green Certificates (GC). Since 2016, the mechanism 

of GCs has been replaced by a new kind of incentive, based on the 

remuneration by the GSE of the net production of energy, in addition to the 

revenues deriving from the energy sale (Ministry of Economic Development, 

2016). The effects of these policies in the last 15 years are shown in Figure I.7: 

the contribution of RESs to the electric energy production in Italy has more 

than doubled, whereas that of coal has halved, with thermoelectric energy 

remaining stable. 

 
Figure I.7 Electricity production in Italy – GSE source 
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Today, Italy is the third European country, after Germany and Spain, for 

installed wind power, with wind covering around 15.5% of the whole national 

electric energy production (Terna, 2019). 

Most installations are in the southern regions of Italy, due to the availability 

of the wind source. As of the end of 2018, Basilicata is the region with the 

highest percentage of plants on the national territory (25.0%), followed by 

Puglia (20.8%), Sicily and Campania (Figure I.8) (GSE, 2019). 

As for the size of the wind power plants installed in Italy between 2017 

and 2018, both in terms of numbers (+5.9%) and installed power 

(+499 MW, + 5.1%), 93% of them is greater than 1 MW, whereas plants 

smaller than 1 MW represent only 34 MW (about 7%) (GSE, 2019). 

 
Figure I.8 Distribution of wind farms at the end of 2018 in Italy 
 

However, the spreading of wind energy is hampered by a number of issues, 

including the noise of turbines, the visual impact, the acidification and 

eutrophication of soils, the emission of polluting substances, the impact on 

fauna, etc. (Bispo R. & al., 2019). Among the aforementioned problems, the 

visual impact is perhaps the most sensitive for the public, while the problem 

of noise is linked to the electric generators installed in wind turbines, which 

in the past were not specifically designed for the conditions of typical 

operativity of a wind turbine. The potential noise pollution caused by wind 

turbines is linked to two types of noise: mechanical, ascribable to the 

generator, and aerodynamic, ascribable to the rotor blades. New wind turbines 

have almost eliminated the problem of mechanical noise, and the sound levels 

are mainly related to the flows around the blades, partly controllable by 

reducing the rotation speed and by installing special aerodynamic appendages; 

however, this noise is normally less than 45 dB at 350 m distance 

(Hansen, 2015). 
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I.2 The wind power forecasting problem 

As electricity cannot be stored, an instant-by-instant balance must be 

ensured between the energy produced by the generation systems scattered 

throughout a country and the energy required by the users. The ability to 

maintain a continuous balance between demand and generation is called 

dispatching. In Italy, maintaining this balance is the task of Terna, the 

Transmission System Operator (TSO) which manages the national electricity 

transmission network, monitors the electrical flows and applies the provisions 

necessary for the coordinated exercise of system elements, i.e. production 

plants, the transmission network and auxiliary services.  

Although the wind is a clean and inexhaustible energy source, its 

intermittent nature makes its power very unpredictable. In fact, with the 

spreading of NP-RESs, Terna struggles to ensure the continuous balance 

between demand and generation, essential for the power system grid to work 

in safe operating conditions, thus avoiding blackouts or large overproductions. 

The randomness of wind power causes the TSO dispatching problems in 

both technical and economic terms. In the next sections, these two kinds of 

problems are outlined. 

I.2.1 Technical aspects 

Due to the intermittent nature of their source, RESs, and in particular wind 

power production, are classified as non-programmable renewable energy 

sources (NP-RESs). The non-programmability of these sources makes it 

difficult to integrate their energy into the electricity grid. This is starting to 

become a significant problem in countries with a high percentage of renewable 

energy from NP-RES like Italy, where RESs such as wind and photovoltaic 

have dispatching priority. 

The extreme variability and intermittency of wind energy might cause a 

number of stability problems to the transmission grid, which can override the 

dispatching priority constraint, as defined in legislative resolution 138/05 

(AEEG, 7 July 2005) on the dispatching of production units from NP-RESs in 

critical conditions of the electrical system. The slower development of the 

transmission network compared to the growth of NP-RES has led to an 

increasingly frequent use of modulations of NP-RES plants, in particular wind 

turbines, to the point of making it necessary to introduce new regulations in 

Italy that can help a better integration of NP-RESs into the electricity system 

(AEEG, 20 December 2007) (AEEG, 25 July 2008). 

To this regard, in order to overcome stability and safety problems, the TSO 

daily asks NP-RES power producers for a forecast production schedule (with a 

timeline of a few days). In detail, Terna daily runs a forecast of the national 

demand of electricity and, based on the forecasts provided by the NP-RESs 

power producers, it coordinates the generation plants so that the production is 
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adjusted to the actual demand for energy. Hence, in order to maintain the 

continuous balance between energy demand and production, and in order to 

integrate wind energy in the existent electric grid, an accurate wind power 

forecasting is necessary. 

I.2.2 Economic aspects 

In the market scenario, in order to make up the daily schedule of 

production, TSOs may purchase power generation from Independent Power 

Producers (IPPs) and utilities, or via bilateral contracts or electricity pools, or 

considering their own power production means, if they have any. In Italy, after 

the introduction of the “Bersani” decree (Italian Parliament, 31 March 1999), 

more players appear on the market, superseding the traditional structure based 

on a vertically integrated utility with local monopolies. In short, electricity 

markets in Italy basically consist of two mechanisms: 

• the spot market: participants propose a given production cost for 

quantities of energy for the following day. The electricity spot 

price for the various periods is settled by an auction system, 

according to the different offers; 

• the balancing of power generation, which is coordinated by the 

TSO. The TSO will determine the penalties that will be paid by 

IPPs who have failed in their obligations, depending on the energy 

lacks or surplus, such as power plant failures or the intermittence 

of wind power. 

The unpredictability of wind energy also impacts the electric market, 

particularly the balancing market. The impact of NP-RESs, especially of wind 

energy, is even stronger in light of the dispatching priority, which is 

guaranteed for these types of RESs at a European level. In fact, according to 

the European directive 2009/28/EC (EU Parliament, 5 June 2009), “[...] 

Member States ensure that, in the dispatching of electricity production, 

transmission system operators give priority to production plants that use 

renewable energy sources ensuring the safe operation of the national 

electricity system and on the basis of transparent and non-discriminatory 

criteria. The Member States ensure that appropriate market and network 

operational measures are taken, to ensure that there are fewer possible 

limitations of electricity produced from renewable sources.” Therefore, in the 

Italian electric system, it is expected that in the presence of several sales offers 

proposing the same price, the following order of priority applies: 

• offers to sell essential units for electric system security; 

• offers to sell production units powered by NP-RESs (i.e. production 

units that use solar energy, wind, sea-power, wave motion, landfill gas, 

gas residues from purification processes, biogas, geothermal energy or 

hydraulic energy, limited, in the last case, to water flowing units); 
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• offers to sell production units powered by different RESs; 

• offers to sell cogeneration production units; 

•  sale offers of the CIP6/92 production units and of the production of 

Legislative Decree 387/03 (Gazzetta Ufficiale della Repubblica 

Italiana, 29 December 2003) or Law. 239/04 (Italian Parliament, 23 

August 2004); 

• offers to sell production units powered exclusively by national sources 

of primary fuel, for a maximum annual share not exceeding 15% 

percent of all primary energy necessary to generate the electricity 

consumed; 

• offers relating to bilateral contracts; 

• other offers to sell. 

The points listed above indicate that RES production units – both 

programmable and non-programmable - have dispatching priority but only at 

the same offer price and compatibly with the safety of the electrical system. 

According the rules of dispatching priority and lower operating costs, when 

wind generation is present, the conventional generation is replaced. However, 

due to the huge variability of this primary energy, wind power producers are 

penalized by the market system and thus a great part of their production may 

be subjected to penalties. In fact, in Italy, according to legislative resolution 

281/12 (Authority for Energy and Gas, 5 July 2012), RES producers have to 

pay the imbalance costs deriving from the failure or incorrect forecast of the 

energy introduced into the network. Before the approval of this resolution, the 

final consumer used to take full responsibility for any costs of unbalancing the 

national electricity network. Hence, it is obvious that an IPP cannot propose 

quantities of energy on the market and avoid the possible penalties without 

knowing what the output of wind farms will be (ARERA, 2016). 

Therefore, in order to solve both technical and economic problems, an 

accurate wind power forecast is crucial. 

I.3 Objective of thesis 

The aim of this work is to develop a novel wind power forecasting model, 

combining local observations with wind trends on a medium scale to predict 

the generated wind power with a low forecasting error. More specifically, the 

purpose is to provide prediction models based on Artificial Neural Networks 

(ANNs), one of the most used machine learning approaches, and on 

meteorological data on mesoscale.  

The proposed approach is composed of two phases: first, forecasting the 

primary energy source, i.e. the wind and its speed; second, calculating the 

electric power produced, once the wind forecast is known. 

The work is organized as follows: after a brief review of the state of the art 

of all wind forecasting models proposed both in the literature and by 
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commercial products, a study is proposed on wind phenomena, necessary to 

understand which and how meteorological factors influence wind generation, 

thus highlighting the relationship between wind speed and other 

meteorological factors which form the basic idea of this thesis. In particular, 

through a meteorological front analysis, according to the main meteorological 

models (mesoscale), a point grid around the site chosen for forecasting was 

constructed which describes the spatial-temporal evolution of weather fronts. 

In order to describe the weather fronts’ temporal evolution, the meteorological 

information of each grid point are shifted, according to how far a point is from 

the forecast site, by a time shift delay. 

Based on this idea, two wind speed forecasting models, both for daily and 

hourly predictions, are defined and described. In order to analyse the 

performance of the implemented models, the wind speed forecasted values are 

compared with actual values measured by an actual meteorological station. 

Specifically, the validation of the model was carried out using the data made 

available by the meteorological service of the Italian Air Force (COMET) and 

is based on a series of data registered over several years on an hourly basis at 

COMET survey stations.  

The models have been used to forecast wind values on a real wind farm 

located in southern Italy.  

The results obtained were presented, compared with those obtainable from 

the literature models, and then discussed in the final part. 

The thesis ends with brief conclusions that summarize the work. 

 



 

 

 

State of art in wind power 

forecasting 

 

 

 

 
This chapter presents a brief overview of the state of the art of the wind 

power forecasting problem. 

In detail, once the different depths of prediction are explained, the related 

forecasting models are described, from statistical to machine learning. 

Furthermore, the fluid dynamic model on which the physical models are based 

is described. In addition to the traditional models, hybrid models and 

commercial tools are also mentioned. 

The chapter ends with the description of the forecast evaluation metrics 

used in the literature to evaluate the models’ effectiveness. 

II.1 Principal aspects of the forecasting problem 

In the power system, electric energy is not stored, if not in small quantities, 

and therefore it is necessary to guarantee an instantaneous balance between 

the power supplied and the power required. The spread of RESs has increased 

the difficulty for TSOs to ensure power balance for the safe functioning of the 

network (Jones, 2014). The unpredictability stemming from RES production 

generates uncertainty in the next-day production profile, so TSOs ask 

renewable energy producers to bear the higher costs associated with managing 

the imbalance caused. However, not all RESs have the same degree of 

unpredictability. For example, tidal or biomass energy are more easily 

predictable and programmable than wind or solar energy (Farret et al., 2017). 

Among the RESs, the most difficult to predict is wind energy, due to the 

intermittency and unpredictability of its source, which changes very quickly 

during the day. In fact, grid operators usually see a wind farm’s generation, 

due to its dependence on wind speed and meteorological conditions, as a 

‘negative load’. 
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In detail, wind power depends both on the plant and availability, on the 

characteristics of the wind turbine as well as the characteristics of the site, 

including its orography, wind speed, wind direction, changes in atmospheric 

pressure, etc. The producer, except for the weather factors linked to the wind, 

knows all these parameters. Hence, the integration of wind power is becoming 

a challenge that producers, grid operators etc. are facing due to wind 

variability, making wind forecasting important for optimally integrating wind 

energy generation (Chandra, 2017). 

Wind speed constantly changes, and its non-stationary nature can be 

modelled using the Weibull distribution with two parameters, the scale factor 

Aw and the shape factor kw. This function, widely used for product lifetime 

analysis and reliability engineering, best describes the probabilistic 

distribution of wind speed (Jain, 2016): 
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where v is wind speed and the parameters Aw and kw are estimated using a 

sufficiently long series of wind speed data. In general, the scale parameter Aw 

takes values between 2 and 8, and the shape factor kw between 1.5 and 2.2 

(Horst, 2008). 

As previously mentioned, while the high variability of wind determines the 

uncertainty of the produced power, the relationship between wind and the 

produced power is much simpler and almost deterministic: wind turbines 

convert the kinetic energy of the wind into mechanical energy and therefore 

into electrical energy (Manwell et al., 2010). The energy conversion process 

of a wind turbine is described by its characteristic curve, known as the wind 

turbine power curve (Figure II.1).  

 
Figure II.1 Typical wind turbine power curve 
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As shown in Figure II.1, the power curve is divided into 4 regions: the 

power production is null below the cut-in wind speed (around 2 - 4 m/s), then 

sharply increases between the cut-in and the rated wind speed (12 - 15 m/s). 

In this region, a small variation in wind speed determines an even greater 

variation in power. The third region starts when the wind reaches the rated 

speed, which corresponds to the rated power Pn of the wind turbine, and ends 

at cut-off speed (around 25 m/s). This region is characterized by a nearly 

constant produced power. At the cut-off speed, the turbine stops for safety 

reasons: here starts the fourth region, characterized by zero power.  

The sharp increase of the characteristic power curve in the second region 

is related to the cubic power law that describes the relationship between wind 

power and wind speed. In detail, wind power is proportional to air density, the 

area of the wind turbine rotor and the cube of wind speed (El-Sharkawi, 2015): 

3

2

1
AvP =  (II.2) 

where ρ is the air density (kg/m3), A is the area of wind turbine rotor and v is  

wind speed (m/s).  Eq. (II.2) refers to ideal conditions, as it does not consider 

factors such as the Betz limit, the generator and gearbox efficiencies or other 

losses, which reduce by 20-30% the maximal theoretical power available. In 

real-life conditions, the wind power law becomes: 

3

2

1
AvCP p=  (II.3) 

where η is the turbine efficiency ratio (up to 0.8) and Cp is the turbine 

performance coefficient (around 0.35), which is bounded by the Betz limit, 

the function of both the blade pitch angle and the ratio of the rotor blade tip 

speed to wind speed. In the same way, the power curve shown in Figure II.1 

must be considered as theoretical, since it is obtained in wind tunnels 

characterized by well-defined conditions (a constant flow of wind with no 

turbulence), which do not consider the intermittent and complex behaviour of 

wind speed (Hau, 2013). 

In this thesis, the theoretical expression of wind power is considered. 

II.1.1 Intermittent nature of wind power 

The extreme variability of wind speed leads to heavy fluctuations of wind 

power that greatly affect the power balance and network stability, especially 

when the amount of wind penetration is comparable to the available reserve 

margin. Hence, the main problem with the integration of wind power is the 

uncertainty of the primary source. Wind, from one instant to another, can 

unpredictably change its direction and intensity, as shown by the emblematic 
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case recorded in Texas in 2008 (Figure II.2) (NREL, 2009), thus generating a 

high variability in production that must be quickly compensated in some way. 

 
Figure II.2 Hourly wind power variation in Texas, USA 

Therefore, even though wind power production is conditioned by multiple 

factors – weather conditions, local orography, seasonal variations, daily cycles 

which may be substantial or not, mainly due to thermal effects –  wind 

fluctuations receive a great deal of attention, and the challenges to be faced, 

when wind generation is injected into electricity grids, are related to the 

managing of the wind’s intermittence, which causes problems in balancing 

between the power generated and the power absorbed. The responsible for 

managing the electricity balance on the grid is the TSO, which guarantees at 

any given time that the electricity production meets the electricity demand. To 

manage this balance, taking into account the intrinsic uncertainty of the power 

demand, it is necessary to schedule the production over the area of interest in 

advance: load profiles are usually given by load forecasts (produced from 

experience or by prediction methods). The randomness of wind power 

generation, in the same way, requires in some way to be forecasted, so as to 

enable the TSO to schedule, with a defined degree of sustainable uncertainty, 

the production of programmable-power production plants (Shakir et al., 

2020). 

Therefore, being able to predict the produced wind energy by predicting 

the wind becomes crucial. 
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II.1.2 Types of wind forecast in the power system area 

The causes that generate and attenuate the wind locally, due to its high 

variability on any time scale (hourly, daily or seasonal), and its non-linear 

dependence on weather factors – which influence the wind power generation 

associated to it – make its forecasting a complex challenge. 

In the technical-scientific literature in the field of power systems and RESs, 

focus is typically given to the prediction of the power output and not to wind 

speed, hence the building of forecasting models with inputs based both on 

meteorological and production data. This approach is widely used by 

commercial tools for wind production forecast, often carried out on the basis 

of scientific works by researchers from university and public or private 

research centres. These tools are different from each other in terms of 

prediction horizon (a few minutes, hours or days), computational facilities 

(a small PC or a supercomputer), and desired accuracy. 

Therefore, it is appropriate to understand what types of forecasts exist and 

what purposes they serve. 

First of all, the forecasting of wind power generation may be considered 

according to different time scales, each characterized by a different 

forecasting model (Giebel et al., 2017). The table below summarizes the major 

prediction horizon groups and their main applications. 

Table II.1 Different prediction horizons and applications 

PREDICTION 

HORIZON 

TIME 

RANGE 
APPLICATION 

VERY-SHORT 

TERM 

Few seconds 

- 30 minutes 

-  Clearing of the electricity market 

-  Network regulation actions 

SHORT-TERM 
30 minutes - 

6 hours 

- Economic dispatching plans 

- Decisions for the correct network 

functioning  

MEDIUM-TERM 
6 - 24 hours 

(1 day) 

- Operational security in the next 

day energy market 

LONG-TERM 2- 7 days 
- Ensure optimal network operation 

by keeping scheduled plans 

A second classification is made on the basis of the methodology used to 

construct the forecast. In this respect, wind forecasting methods can be 

grouped into four categories: statistics models, fluid dynamic and physical 

models, machine learning models and hybrid models. These models differ 

from each other as regards horizons, applications and inputs. For example, 

statistical approaches use, as inputs, only information about wind production 
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and consider as linear, for a few instants, the relationship between the wind 

power measured shortly before and the same power at a new instant. Instead, 

physical models are based on the physical laws that describe the physical 

phenomena related to the movements of air masses in the atmosphere, while 

data-mining approaches are used for describing the nonlinear relationship 

between wind power and wind speed. In recent years, in order to improve the 

forecasting performance and to combine the best characteristics of the 

different approaches, hybrid models have been developed. Below, table II.2 

summarizes the different prediction models. 

Table II.2 Different forecasting approaches 

PREDICTION 

APPROACH 

SUB-

MODELS 
EXAMPLES CONSIDERATIONS 

STATISTICAL 

METHODS 

Persistence 

& 

Time series 

model 

ARMA 

ARIMA 

Kalman filter, 

etc. 

Mainly used for very 

short-term predictions 

The persistence model is 

a benchmark for 

prediction models 

PHYSICAL 

METHODS 

Numeric 

Weather 

Predictors 

(NWP) 

Global 

Forecasting 

System 

Prediktor 

HIRLAM, etc. 

These methods use the 

physical laws that 

describe the dynamic 

atmospheric behaviour 

MACHINE 

LEARNING 

METHODS 

- 

ANNs 

GAs 

SVM, etc. 

 

These methods describe 

the non-linearity of 

RESs and are mainly 

used for medium-long 

term forecasts 

HYBRID 

METHODS 
- 

ANN + NWP 

ANN+ FL 

Time series + 

NWP 

etc. 

These methods are used 

to obtain better 

forecasting 

performances than those 

obtained with traditional 

methods 

They are mainly used for 

long-term forecasts 

In the next paragraphs, the different prediction models are described in 

detail. 
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II.2  Statistical approaches 

Statistical forecasting methods, defined as quantitative techniques, are 

based on the Box-Jenkins methodology (Jenkins et al., 2008). They consist in 

an iterative procedure that allows to attain, starting from data observation, the 

construction of a model which provides a valid/effective description of the 

stochastic process that generates the historical series observed. Therefore, it 

can be defined as an approach to data in which the time series are oriented 

towards the model, and not vice versa. 

In these models, wind speed is expressed by the autocorrelation of a non-

Gaussian distribution, that is, using the autoregressive AR model as a linear 

predictor so as to predict the nth sample from the previous samples, based on 

the relationship between the variable to forecast and the other past variables. 

Hence, wind speed is expressed in the following way: 
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where ct,i are the AR coefficients estimated using the Yule-Walker equations, 

and εt is the prediction error (Paolella, 2018); if this term is omitted, the 

persistence method is obtained. These models are mainly used for decision-

making or planning applications, such as network regulation actions, 

economic dispatching plans or to make decisions for the correct functioning 

of the network (Chatfield, 2000). 

Below, the persistence model and other time series models are described 

in detail. 

II.2.1  Persistence model 

The persistence model is defined as a naive predictor, as it commonly 

refers to the principle of “what you see is what you get”. It is one of the 

simplest wind power prediction models: the forecast values are calculated 

assuming that conditions remain unchanged between the current instant t and 

the instant ahead t+T. Hence, by definition, the error for zero-time steps ahead 

is zero (Chatfield, 2000). The persistence model, considering a stationary time 

series (mean and variance do not change over time), is implemented as 

follows: 

)()( tyTty =+  (II.5) 

In detail, this model considers wind at the next instant of time t+T equal to 

wind at the current time t, implicitly assuming that the weather conditions are 

stationary. However, atmospheric phenomena are not stationary, and their 
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variation depend on seasonal, diurnal and inter-annual cycles as well as 

perturbations external to air observation. Hence, despite its apparent 

simplicity, this method might be used for first look-ahead times (a few minutes 

up to 1 hour), due to the scale of changes in the atmosphere, which are actually 

slow, in the order of days (in the case of Europe): a low pressure system, a 

driving force for the wind, takes about from one to three days to cross the 

whole continent (Barry et al., 2009). 

A generalization of the persistence method is obtained by replacing the last 

measured value with the average of the last n measured values: 
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In the literature, for short-term prediction horizons (e.g., a few minutes or 

hours), this model is considered the benchmark for all other prediction models 

to beat (Ssekulima et al., 2016) 

II.2.2 Time–series models 

The simplest and oldest models for short-term wind prediction are the time-

series models, which are variants of the autoregressive model. Although 

designed for very short horizons – no more than 6 hours - this model is a 

typical reference point in wind energy, where the process is not fixed on any 

time scale. These models are not considered particularly well performing, as 

they are characterized by significant errors even over a time horizon of a few 

hours. To overcome this limitation, for short-term wind prediction both 

autoregressive with moving average (ARMA), or autoregressive integrated 

moving average (ARIMA), or Kalman filter approaches (Alencar et al., 2017) 

are used, thus introducing weighted over time averages. 

The best-known time series model is ARMA, a mathematical model 

characterized by: linearity – multiplying all the inputs by a factor k, the output 

will also be multiplied by this value – and time invariance – a certain input 

sequence will give a certain output sequence regardless of the amount of 

instants elapsed since the instant zero. The concept of instant zero is purely 

conventional, since the system tends to “forget” the past, that is, to be 

influenced in an exponentially decreasing way over time (a feature known as 

“evanescence”) (Jenkins et al., 2008). 

This model describes weakly stationary stochastic time series in terms of 

two polynomial parts: the autoregressive component (AR) and the moving 

average component (MA). The AR provides a prediction using previous 

values of the dependent variable, while the MA part makes predictions using 

the series mean and previous errors. 

Usually, the model is indicated with ARMA (p, q) where p is the order of 

the autoregressive part and q is the order of the moving average part. In detail, 

wind speed v can be expressed as follows (Paolella, 2018): 
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where µ is a constant, ct,i are the autoregressive model’s parameters, ϑj are the 

moving average model’s parameters and εt are the error terms (white noise). 

Another widely used time-series model is ARIMA, a generalized random 

walk model which is fine-tuned to eliminate all residual autocorrelation. 

ARIMA is very similar to ARMA: in fact, the AR and MA components are 

identical to the ARMA model, whereas the additional “I” (Integrated) 

highlights that a difference of the order d has been applied to make the model 

stationary. In detail, if a model is not stationary, ARMA cannot be used, so 

the model becomes stationary by assuming a series of differences. Hence, the 

letter “I” in the ARIMA model is a measure of how many non-seasonal 

differences are needed to achieve the stationary status. If the differencing is 

not involved in the model, ARIMA becomes ARMA. 

An ARIMA model is indicated with ARIMA (p, d, q) where p indicates the 

autoregressive terms and allows the effect of the past values in the model, q 

refers to lagged forecast errors considered as linear combinations of the error 

values observed at a previous instant, and the d takes into account the non-

seasonal differences needed for stationarity (Montgomery et al., 2008). The 

forecasting of wind speed v can be expressed as follows: 
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where P and Q refer to integrated parts. 

In the literature, these models are mostly used for both wind power and 

wind speed forecasting. In fact, in (Alencar et al., 2017) the authors present 

different wind power forecasting models based on ARMA and ARIMA 

approaches. In this paper, these models are used for very-short term and short-

term wind power predictions. The data used for the implementation and tuning 

of models are provided by the national organization system of environmental 

data (SONDA), Petrolina station. In (Colak et al., 2015), the authors, by 

modelling the multi-time scale as very short-term, short-term, medium-term 

and long-term, analyse and implement the ARIMA and ARMA approaches 

for wind speed and wind power forecasting. The results obtained confirm that 

these models are more accurate for very-short term and short-term prediction. 

In the literature, the ARMA approaches are sometimes mixed with the 

decomposition model, making the original data sequence stable. An example 

is in (Yu et al., 2017), where the authors propose a two-step model. In the first 
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part, the Empirical Mode Decomposition (EMD) decomposes the original 

wind speed sequence into a series of Intrinsic Mode Functions (IMFs), while 

the forecasting part is entrusted to the ARMA model. The authors demonstrate 

that the proposed method is more accurate, in terms of prediction error, than 

the traditional ARMA model. 

Many researchers, in order to improve the performance of predictive 

models based on time-series models, suggest considering the non-linearity of 

wind. In this regard, in (Lydia et al., 2016), the authors investigate the 

effectiveness of linear and non-linear time-series models in terms of mean 

absolute error (MAE), root mean square error (RMSE) and mean absolute 

percentage error (MAPE). All types of models are ARMA but the difference 

between them is how the respective parameters are calculated: for linear 

ARMA models, they are obtained using the Gauss-Newton algorithm, while 

for non-linear ARMA models, data-mining algorithms are considered. The 

work highlights that non-linear ARMA models, known as ARMAX, perform 

better than linear ARMA models. 

In the literature, another way to deal with the non-linearity of wind is the 

use of the aforementioned forecasting models based on ARIMA, as in 

(Yatiyana et al., 2017), where the authors present a forecasting model based 

on the ARIMA approach to predict the speed and direction of the wind flow 

in Australia using historical, real-world wind speed and direction data, 

collected on the test site over seven days. In (Eldali, 2016) ARIMA models 

are used for improving wind power forecasts in order to reduce dispatch 

uncertainty. In the paper, these models are tuned by using historical data of 

hourly wind power, provided by the Electric Reliability Council of Texas 

(ERCOT). Sometimes the ARIMA models are mixed with other auto-

regression models. An example of this is the prediction model developed in 

(Tian, 2018). Here, the authors propose a hybrid model based on ARIMA 

approaches and a Logarithmic Generalized Autoregression Conditional 

Heteroscedasticity (LGARCH) model, thus achieving higher accuracy in wind 

power output short-term forecasting in the presence of strong uncertainty by 

analysing the non-stationary fluctuation characteristics of wind power. The 

effectiveness of this model is confirmed by performance comparison in terms 

of mean relative errors (MRE) between basic ARMA, ARIMA and the 

proposed approach.  

In the literature on wind power forecasting, in addition to ARMA and 

ARIMA approaches, there also exist models based on the Kalman filter 

(Jiauzhou et al., 2016). The Kalman filter is used for wind forecasting on 

account of its ability to describe a dynamic system on the basis of its current 

state. This approach, also known as linear quadratic estimation (LQE), since 

the state of a system is notoriously only affected by uncertainty and at 

established time intervals, provides an “optimal” estimate of the state 

variables, and allows, starting from said estimate, to predict the system’s 

evolution. The algorithm is composed of two steps: in the forecasting phase, 
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the Kalman filter generates an estimate of the current state variables affected 

by uncertainty. Once the outcome of the next measurement has been observed 

(corrupted by a certain amount of error), the estimate is updated using a 

weighted average, with a greater weight if the estimate is certain, and vice 

versa. The algorithm is recursive and works in real-time, using only the current 

input measurements and the estimation of the previous state in combination 

with its uncertainty matrix, without needing further information on past values 

(Anderson et al., 2007). As previously mentioned, the Kalman filter approach 

has many applications in wind forecasting: in (Zuluaga et al., 2015) the 

Kalman filter is used for one-step-ahead forecasting of wind speed. In detail, 

three models are implemented in order to make the forecasting model based 

on the Kalman filter robust to outliers. The performances are analysed using 

two wind speed datasets. Another use of the Kalman filter is proposed in 

(Akcay et al., 2017), in which the proposed forecasting model is implemented 

for one-step-ahead and multi-step-ahead wind speed prediction, both based on 

the spectral analysis of long-term observations and the analysis of the missing 

values that can reduce the estimate’s accuracy. Sometimes the Kalman filter 

approach is used to optimize the numerical prediction model, as in (Hua et al. 

, 2017), where the authors review, through the Kalman filter method, the 

weather research and forecast (WRF) model, in order to reduce the forecasting 

error and to increase the model’s accuracy.  

The literature on times-series models used in wind speed or wind power 

forecasting includes not only the models just described. In order to improve 

the performance of simple and typical ARMA models, there are other 

statistical approaches based, for example, on Wavelet Transform (Kiplangat et 

al., 2016), Gaussian Process regression (Zhang et al., 2016), Principal 

component analysis (Skittides et al., 2014) (Skittides, 2015), spatial and 

temporal correlation (Haiqiang et al., 2017), Bayesian approach (Xie et al., 

2019) or space vector auto regression (Dowell et al., 2016).  

II.3 Physical approaches 

As time-series models reach forecast horizons of around 6 hours, in the last 

few decades the dedicated weather forecasts based on physical approaches 

have received particular attention in the wind energy sector. This approach is 

based on the use of the physics laws that describe the dynamic behaviour of 

the atmosphere to predict wind speed, temperature, pressure and humidity 

(Coiffier, 2012). These models are based on the following set of equations: 

• the first principle of thermodynamic: the energy of an isolated 

thermodynamic system is not created or destroyed, but it is transformed, 

moving from one form to another; 

• the motion equation; 
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• the mass conservation equation: during a chemical reaction, mass is 

conserved, i.e. the total mass of the reactants is equal to the mass of 

total products; 

• the energy conservation equation (energy can be transformed and 

converted from one form to another, but the total amount of it in an 

isolated system does not vary over time) plus the set of equations of 

conservation of hydrometeors; 

• Navier-Stokes equations: the system of three balance equations which 

describe a linear viscous fluid. These equations are able to describe any 

fluid, even turbulent; 

• the equation of water vapour; 

• the continuity equation: the speed at which mass enters a system 

depends on the speed at which mass leaves the system and the 

accumulation of mass within the system; 

• the gases equation of state: the index of how a given set of physical 

conditions, such as pressure, volume, temperature, influences the state 

of matter; 

• the hydrostatic equation: pressure variation is proportional to height 

variation, the average air density and the gravitational constant. 

These equations do not have an exact solution and are solved by numerical 

approximate methods. The obtained models are thus known as numerical 

weather prediction (NWP) models. Here, the atmosphere has a discrete 

representation and it is divided into a number of finite dimensional volumes, 

creating a regular spatial grid. The size of the volumes characterizes the spatial 

resolution of the numerical model and the atmosphere is represented at 

different levels through grid points (Vasquez, 2015) (Figure II.3). In these 

meteorological models, the atmosphere and its evolution are described 

according to different weather scales, with respect to the horizontal size of the 

phenomena that occur in them. 

These scales can be classified as follows (Kalnay, 2012): 

• global weather scale: the longest-lived weather scale which describes 

phenomena spanning tens of thousands of kilometres in size, extending 

from one end of the globe to another; 

• synoptic weather scale: describes the phenomena that extend from a 

few hundred to several thousand kilometres and have lifetimes of a few 

days to a week or more; 

• mesoscale weather scale: includes weather events, such as weather 

fronts or local wind, that extend from a few kilometres to several 

hundred kilometres in size and whose evolution is of about a day or less. 

These events impact areas on a regional and local scale. The mesoscale 
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is classified into three categories: meso-α (2000-200 km), meso-β (200-

20 km) and meso-γ (20-2 km) (Pielke, 2013);  

• microscale weather scale: refers to weather events, such as turbulence, 

that are smaller than 1 kilometre in size and very short-lived and only 

last a few minutes. 

 
Figure II.3 NWP weather forecasting modelling 
 

The NWP models provide, for a given time range, the average value of 

meteorological parameters characterizing the atmosphere at a grid point or, 

more specifically, for the spatial domain represented by the grid point. The 

NWP models are divided into two macro-categories: global forecasting 

systems (GFSs) and local area models (LAMs). These two categories differ 

according to the resolution of the model considered: GFS models reach 

horizontal resolutions of about 50 km, whereas LAMs use denser grids, with 

a horizontal resolution ranging from 20 km to a few km (Stensurd, 2009). 

In detail, global models integrate the physics equations of the atmosphere on 

the entire Earth (or on one hemisphere), producing long-term predictions. 

Conversely, in order to obtain more detailed forecasts on restricted areas, 

LAMs are used. These models, unlike GFSs, require very precise knowledge 

of both initial and boundary conditions: the result they produce is strongly 

affected by said conditions. Moreover, local models cannot work by 

themselves, nor are they suitable for developing large-scale predictions. 

Therefore, LAMs generally work symbiotically with GFSs. In this way, it is 

possible to obtain very good results, even on time scales exceeding 6 hours 

(Warner, 2010). This approach is the basis of the models used by two of the 

best-known NWP organizations: in USA, the National Centers for 

Environmental Prediction (NCEP) of NOAA (National Oceanic and 

Atmospheric Administration), which develops GSF and NAM-HIRES 

models; and the European Centre for Medium-Range Weather Forecast 

(ECMWF), which develops the Integrated Forecasting System (IFS) model 

(Coiffier, 2012). 



 Chapter 2 – State of art in wind power forecasting 

26 

The forecast can be summarized in four steps: 

• collection of observations; 

• determination of the initial state through data assimilation; 

• forecast with the numerical model and post-processing; 

• verification of forecasts. 

As previously mentioned, for NWP models an accurate observation of the 

present - and the measurement of each factor connected to it- is important to 

obtain accurate wind forecasting. The data observed and collected in this 

phase are measured according to standard criteria, established by the World 

Meteorological Organisation (WMO) in this way, observations can be 

compared. The observed data are sent to the various meteorological centres 

via GTS, the Global Telecommunication System. The received data are pre-

processed and transformed into the standard format BUFR (Binary Universal 

Form for the Representation of meteorological data), as the WMO established, 

by the SAPP software (Scalable Acquisition and Pre-Processing), developed 

by the ECMWF.  

The system just described is used for several purposes: to continuously pre-

process the observations necessary; to verify the numerical forecasts; for the 

operational needs related to the now-casting activity; to check the quality of 

the observational data received; to standardize the format of the various local 

observations available at a national level, and anything else not present on the 

international GTS circuit. 

In Italy, the role of data collection centre lies with C.O.Met. (Centro 

Operativo per la Meteorologia, hereinafter referred to with the acronym 

COMET); the centre is also entrusted with receiving and processing 

meteorological remote-sensed satellite data, both through direct reception in 

L and X band, and through the European Organisation for the Exploitation of 

Meteorological Satellites (EUMETCAST) network, run by the European 

agency EUMETSAT. 

After the collection phase, due to the diverse nature of the data, a checking 

procedure becomes necessary, as data coming from observation systems can 

be affected by uncertainty attributable to the measuring instruments, poor 

calibration or erroneous observation recording. This control is part of a data 

assimilation phase, in which the best possible initial state of the atmosphere 

for a certain time window is found: the data, irregularly distributed in space 

and time, are analysed by statistical-numerical algorithms to obtain the best 

estimate of the state of the atmosphere, represented on a regular three-

dimensional grid at a fixed instant. It seems clear that an accurate definition 

of the initial conditions is essential to build a successful NWP model, as the 

uncertainty linked to initial conditions is predominant compared to other 

uncertainty sources.  

One of the most advanced techniques is the stochastic Kalman filter. The 

version used by COMET is the Local Ensemble Transform Kalman Filter 

(LETKF) which in recent years has become an effective alternative to 
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traditional data assimilation systems based on variation schemes (Bonavita et 

al., 2005), (Bonavita et al., 2008). Furthermore, COMET is the first 

operational centre to use an ensemble analysis scheme to initialize an NWP 

model on a regional scale (Bonavita et al., 2010), (Meng et al., 2011). After 

the initial and boundary conditions are defined in the previous phase, the 

forecasting system proceeds with the prediction phase with LAM models. In 

recent years, high-resolution LAMs have reached an increasingly high level 

of reliability, becoming widely used in the very short and short-term 

forecasting activities of operational meteorological centres. The best known 

LAM is the COSMO (COnsortium for Small-scale MOdelling) model 

(http://www.cosmo-model.org/content/tasks/operational/leps/) which is a 

deterministic, non-hydrostatic limited-area atmospheric prediction model 

designed for working on the meso-β and meso-γ scale (Pielke, 2013) It is based 

on the primitive thermo-hydro dynamical equations describing a compressible 

flow in a moist atmosphere (Marsigli et al., 2005) and is the basis of the 

regional numerical weather prediction used at COMET. LAM models are not 

only deterministic, providing the “best” forecast of the future atmospheric 

state, but also probabilistic, especially the ensemble prediction. This means 

that the set of all possible predictions is evaluated. Assuming that the initial 

state is an approximation of the actual state of the atmosphere, a set of N initial 

states is generated within which the actual state of the atmosphere is also 

expected to fall. The physical equations are applied to each of the N elements 

of the initial set of states, thus obtaining N different evolutions within which 

the final actual state is supposed to fall (Kalnay, 2012). The ensemble 

prediction system (EPS) ends with the statistical analysis of all final states, 

and from it, the most probable meteorological evolution and its uncertainty 

will be obtained (Figure II.4). 

 
Figure II.4 Operational LAM scheme of the AM Meteorological Service 
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COMET utilizes the COSMO model in ensemble mode in two 

configurations: 

• COSMO-ME EPS, consisting of 20 + 1 members integrated on a 

grid with a pitch of 7 km and 45 vertical levels, covering Central-

Southern Europe and the Mediterranean basin, with two runs per day 

(00 and 12 UTC), for up to a 72-hour forecast. COSMO-ME EPS 

uses a selection of the initial conditions produced by the LETKF 

system and boundary conditions by the ECMWF EPS. 

• COSMO-IT EPS (pre-operational), consisting of 20 + 1 members 

integrated on a 2.2 km pitch and 65 vertical levels, covering Italy, 

with two runs per day (00 and 12 UTC), for forecasts up to 48 hours. 

COSMO-IT EPS uses a selection of the initial conditions produced 

by the very high-resolution LETKF system and boundary conditions 

from COSMO-ME EPS. 

In addition to the COSMO model, the other main European LAM consortia 

are the ALADIN (http://www.cnrm.meteo.fr/aladin), HIRLAM (http://www. 

hirlam.org) and LACE (http://www.rclace.eu) projects and U.K. MetOffice 

(http://www.metoffice.com/research/nwp/index.html), which run on 

European areas at grid resolutions of 7-12 km. 

In the last phase of the NWP processes, the predictions of a numerical 

model for a given instant are compared with the corresponding observations 

or analyses for the objective determination of a number of statistical quantities 

(average error, mean square deviation, etc.). The values of these quantities, 

calculated over a sufficiently long period from a statistical point of view, 

provide information on the quality of the numerical forecast (Vasquez, 2002). 

In the literature, there are a number of applications for the LAMs to predict 

wind power and speed on a wind farm, such as (Xu et al., 2015), (Stathopoulos 

et al., 2013) or (Alessandrini et al., 2013). In particular, these NWP models 

are implemented by combining them with data-mining models in order to 

adjust the LAM inputs. Otherwise, like in (Li et al., 2015; Li et al., 2017), the 

prediction model is optimized by a PSO algorithm in order to forecast wind 

power with low prediction error. In (Sanz et al., 2008), the authors propose a 

short-term wind speed prediction model based on hybridizing a global and 

mesoscale combined with artificial neural networks in order to improve the 

effectiveness of the NWP model. Furthermore, wind prediction models have 

been developed in the literature in the last few decades, based on 

Computational Fluid Dynamics (CFD), which are able to capture the details 

of smaller scales in the flow when factors such as buildings or fine-scale 

topography are considered obstacles to the normal flow of wind speed 

(Zajaczkowski et al., 2011).  
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II.4 Machine Learning approaches 

Machine learning is a method of data analysis that automatizes the 

construction of analytical models. It is a branch of Artificial Intelligence and 

is based on the idea that systems, learning from data, can identify models 

independently and automatically, thus making decisions - once the model has 

been identified (learning) – with minimal human intervention. 

Specifically, machine learning uses algorithms that learn from real-world 

data, iteratively. The most important aspect of machine learning is 

repetitiveness, because the more the models are exposed to the data, the more 

they will be able to adapt independently. Therefore, systems based on machine 

learning approaches learn from previous processing to produce results and 

make decisions that are reliable and replicable (Mohssen, 2016). 

A prediction model based on machine learning approaches consists of two 

phases: 

• network learning/training; 

• forecast. 

The training of an artificial neural network can be both supervised and 

unsupervised. In the first case, the network learns the relationships that exist 

between the data, using a set of examples that make up the training set. The 

goal of supervised learning is a prediction that is as truthful as possible, based 

on a limited number of examples. An example of supervised training is the 

back-propagation algorithm. Conversely, unsupervised learning uses only the 

input data without knowing the desired output, and therefore without knowing 

the relationships between input and output. In fact, it is the network that must 

find and then learn the aforementioned relationships, based on the 

characteristics of the input data. Furthermore, learning can occur by 

reinforcement, which is based on creating algorithms capable of learning and 

adapting to changes in the environment (Colins, 2017). 

In the power system, machine learning methods are able to observe the 

nonlinear part of wind. For this reason, such approaches are among the most 

used for wind forecasting (Kariniotakis, 2017). Within these methods, the 

most developed are artificial neural networks (ANNs), support vector 

machines (SVMs) and genetic algorithms (GAs), which are described in detail 

in the next paragraphs. 

II.4.1 Overview of machine learning methods  

Machine learning methods can be used for solving a wide range of 

problems such as regression, classification and prediction, in many application 

fields. For instance, methods based on the Support Vector Machines approach 

are used for regression and classification analysis (Cortes et al., 1995). SVMs 

fall within statistical theory. They are based on supervised learning through 

which it is possible to generalize and to classify new data on the basis of those 
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learned previously. Hence, given a set of input vectors and a collection of 

distinct classes, a model is built which assigns a new element to one class or 

another. A classic example of classification consists in assigning each of the 

vectors of the input set a unique class value. The data used as examples in the 

SVM model are represented as points in space, mapped in such a way that the 

different categories are divided by the widest possible gap; in this way, the 

new elements will belong to a category according to the side of the gap within 

which they fall. More formally, an SVM model builds a hyperplane or a set of 

hyperplanes to classify all data inputs in high dimensional space, according to 

distance between it and the nearest training data point of any class 

(Figure II.5). The hyperplane is called a functional margin, whereas the closest 

values to the margin are called support vectors. In general, the larger the 

margin between the hyperplane and the support vectors, the lower the 

classifier generalization error (Abe et al., 2010). 

 
Figure II.5 Hyperplane classifier 
 

In the literature, there are a number of applications of SVMs in wind 

forecasting, as in (Bonfil et al., 2016), where the authors propose a forecasting 

model based on SVMs for short-term wind speed forecasting. The 

implemented model, in comparison with the persistence and autoregressive 

models, presents good performance in terms of MAE, mean bias error (MBE), 

root mean square error (RMSE), mean absolute scaled error (MASE), and 

directional accuracy (DA). 

Some researchers implement and utilize other versions of SVMs, such as 

in (Yuan et al., 2015), where the authors present a forecasting model based on 

least square SVM and a gravitational search algorithm to predict wind power. 

Sometimes, SVM models are combined with an optimization algorithm, as in 

(Kong et al., 2015), in which a prediction model is proposed, based on a 

reduced SVM with the parameters optimized by a particle swarm optimization 

(PSO) algorithm. In other works, SVM models are combined with statistical 

analysis, as in (Liu et al., 2017), in which the orthogonal test (OT) is used to 

describe the various factors related to the different irregular characteristics of 

the location, which bring difficulty in forecasting. Sometimes, SVM models 
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are integrated with other machine learning and soft computing approaches 

such as Fuzzy Logic (FL), a multipurpose logic and an extension of Boolean 

algebra, suitable for creating very powerful and flexible regulators, reasoners 

and classifiers. Based on a set of linguistic rules for modelling the real world, 

just like for human reasoning, FL is mostly used when the system is described 

qualitatively and there is no suitable model for the purpose considered, or 

when the multiplicity of objectives to be achieved poses decision difficulty. 

A FL process starts with a fuzzification of the data (Ross, 2016), then the 

aggregation procedure is used to combine all forecasted values, as, for 

instance, in (Zhang et al., 2012), (Kavousi et al., 2016) or (Shiarifian et al., 

2018); finally, the FL process, through the defuzzification procedure, returns 

the result expressed in terms of Fuzzy variables, which is reported into the 

final forecast, thus improving the accuracy and consistency performance of 

the predictor model. 

Another machine learning method used in the literature is the Genetic 

Algorithm (GA), a metaheuristic method inspired by Charles Darwin’s theory 

of natural evolution, introduced by John Holland in the 1960s and developed 

by his student David E. Goldberg in the late 1980s. GAs can be used 

effectively to solve both constrained and unconstrained optimization 

problems, where the objective function is discontinuous, non-differentiable, 

stochastic, or highly nonlinear or not convincingly solved by standard 

optimization algorithms. The GA uses three main procedure/actions – 

selection, crossover and mutation – to seek the optimal solution of an 

optimization function represented by fitness. The GA procedure is 

implemented as a repetitive evolutionary process: it repeatedly modifies a set 

of individual solutions; at each step, it selects random solutions, and from 

these, it constructs a new set of solutions. The algorithm ends when, over 

successive iterations, the set evolves toward an optimal solution (Mitchell, 

1996). Sometimes in the literature (Yin et al., 2017) (Kassa et al., 2016) ,this 

method is used for optimizing the parameters of Artificial Neural Networks 

(ANNs), one of the most used machine learning approaches in wind 

forecasting. These will be described in detail in the next paragraph. 

II.4.2 Artificial Neural Networks 

ANNs represent the main machine learning methods used in the power 

system to solve classification, regression and forecasting problems. ANNs, 

like the FL and GA models described above, are models of information 

processing belonging to a branch of computational intelligence 

(or soft computing), inspired by biology. In particular, this method 

reproduces, to a more limited extent, the functioning of human brain and its 

computational processes during the phases of learning and recognition.  

The main characteristic of an ANN is its being able to learn mathematical-

statistical models through experience by reading experimental data, without 
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having to explicitly determine the mathematical relationships between the 

input unknowns and the output solutions of a specific problem. Therefore, the 

parameters characterizing the function of an ANN are not assigned, but trained 

through a learning process based on historical data known as examples. 

Like biological neural networks, ANNs are composed of processing units 

(known as neurons) operating in parallel, which can be divided into subsets 

called network layers. Neurons communicate from one layer to another 

through connections, similarly to biological synapses (Figure II.6) 

(Fausett, 1994). 

 
Figure II.6 Biological neural network and ANN 
 

According to the organization of the connections between neurons, ANNs 

can be grouped in two main families (Figure II.7): 

• recurrent networks or feedback: the connections carry the signal 

both forward and backward. The Elman and Hopfield networks are 

the most known recurrent ANNs. The Elman network has three 

layers and an intermediate layer with a set of context units with a 

weight of one. In this ANN, the input is passed forward and fixed 

back connections save a copy of the previous values of hidden 

units in context units. In this way, the network can maintain a 

memory of state. Conversely, the Hopfield network features 

symmetric connections, and if the connections are trained using 

the Hebbian learning algorithm, the ANN can be considered as a 

solid content-addressable memory that is independent of 

connection alteration (Shanmuganathan et al., 2016); 

• non-recurring or feedforward networks: the connections carry the 

signal only forward. The simple perceptron and the Multi-Layer 

Perceptron (MLP) belong to this category. The perceptron is the 
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first feed-forward ANN implemented, and the MLP network 

derives from the former (Shanmuganathan et al., 2016). 

 
Figure II.7 Feedforward and feedback ANN 

However, the training procedures can be divided as follows 

(Shanmuganathan et al., 2016): 

• supervised learning: this is a type of learning in which the aim is 

to minimize the error of network prediction on a finite set of typical 

examples divided into input-output pairs (training sets). Training 

can be online, if the correction of the synaptic weights (w) occurs 

incrementally using one example at a time, or batch type, if the 

correction is made on the whole error calculated at the end of the 

training. If the training has been successful, the network learns to 

recognize the implicit relationship between input and output 

variables; 

• unsupervised learning: information on the environment is received 

externally without giving any indication of the output values. It is 

used when the data are not sufficient or incomplete; 

• reinforcement learning: this is a machine learning technique. The 

network interacts directly with the external environment, adapting 

itself directly to the mutations of it, through the distribution of 

rewards or punishments, which guide the algorithm in the learning 

phase; the network is then trained to increase the probabilities of 

getting rewards and to decrease those of receiving punishments. 
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Perceptron and MLP network 

The perceptron network is composed of only two layers, input and output, 

and one single neuron.  

 
Figure II.8 Perceptron network scheme 

As shown in Figure II.8, the perceptron network has an activation function 

and a transfer function: the former calculates the activation potential of the 

neuron, equal to the sum of all the inputs multiplied by the respective synaptic 

weights; with the latter, instead, the value of the output signal is calculated on 

the basis of the activation potential.  

The expression of the output of a simple neural network is the following: 
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where x = [x1, …, xn] is the input vector and w = [w1, …, wn] is the weight 

vector, while φ is the transfer function which can be the same for all layers or 

different. The most common transfer functions are: 

• linear function without saturation: kPPf == )( , where k is 

the angular coefficient of the straight line; 

• linear function with saturation: 
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coefficient of the straight line and Smax is the function amplitude; 
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• Sigmoid function: 
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• hyperbolic tangent function: 
kPkP

kPkP

ee
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== )( , with 

values between -1 and 1 and derivable. 

Since the Perceptron is particularly simple, it is not suitable for solving 

problems of non-linear separation. For this reason, it was necessary to create 

a new network, the MLP (multi-layer perceptron) (Shanmuganathan et al., 

2016), the most widely used type of ANN today. This network consists of an 

input layer, one or more intermediate layers (hidden layers) and an output 

layer (Figure II.9). 

 
Figure II.9 MLP network architecture 

In this new architecture, the outputs of a layer become the inputs of the 

next layer (feed-forward network), except for the last one, where the outputs 

correspond to the actual network outputs. The transfer function used for the 

intermediate layers and for the output layer must be non-linear – typically, 

sigmoid – while the input layer acts as a “buffer” for network inputs and uses 

a ramp with the saturation transfer function, to limit the range of values that 

the network inputs can assume. As mentioned above, since the MLP is a feed-

forward network, the actual outputs of the network will be calculated last, that 

is, we will first proceed to calculate the outputs of the first layer, then those of 

the intermediate layers, and finally those of the output layer, which correspond 

to those effects. Typically, when the problem to be dealt with becomes more 

complex, it is possible to increase the number of intermediate layers up to a 

maximum of hidden layers equal to 2, thus extending the network resolution 

capacity to concave-convex problems also. 

Usually, a back propagation learning algorithm is used to train an MLP 

network. The aim of this training algorithm is to minimize the cost function 

of the network, that is, the root mean-square error between all network outputs 

and the values desired, contained in the training set. Given a network with n 

input xi (with i = 1,2, ..., n), a hidden layer of q neurons Zk (with k=1, 2, ..., q) 

and an output layer of m neurons yj (with j = 1, 2, ..., m) the training set 
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consisting of p examples, and all neurons having the same transfer function, 

the error function of the output layer is expressed as follows: 

( )
= =

−=
p

r

m

j

rjrj dyE
1 1

2

2

1
 (II.10) 

where yrj is the output yi relative to example r, and drj is the corresponding 

output desired. At this point, by applying the gradient rule, the expression used 

for updating the synaptic weights of the connections between the hidden layer 

and output layer (ΔWjk) and input layer and hidden layer (ΔWki) is obtained: 
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The updating procedure is iterated for all the examples of an era 

(in the online mode) and for all the periods available. It stops when a 

predetermined error value is reached. 

 
Figure II.10 Back propagation algorithm for an MLP 
 

In the literature, the ANN is the most used approach in wind forecasting 

(Giebel et al., 2017), (Kaur et al., 2016). In fact, in (Moustris et al., 2016), a 

24-h wind speed prediction model based on the ANNs and the hourly based 

wind speed is proposed. Sometimes, in order to obtain an accurate wind speed 

forecasting model, the ANN is combined with a Weibull distribution 

(Kadhem et al., 2017). More in detail, the implemented method produces wind 

speed data predictions according to the dependence on seasonal wind 

variations over a particular time frame, usually a year, in the form of a Weibull 

distribution. ANNs also are used in short-term wind forecasting, both for wind 

speed and wind power. In detail, according to (Marugàn et al., 2018), ANNs 
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can be used for several applications, including forecasting and predictions, 

design optimization, fault detection and diagnosis, optimal control. In 

(Chang et al., 2017 ) and in (Kurdikeri et al., 2018), ANNs are used for wind 

speed and wind power predictions. In detail, in the former work, the authors 

propose a particular radial basis function neural network-based model with an 

error feedback scheme for forecasting wind speed and wind power, In the 

latter paper, instead, the authors make a comparative study of feed-forward 

network models and recurrent neural network models. 

II.5  Hybrid approaches 

In addition to the aforementioned approaches, as seen in the literature, 

hybrid models have been implemented to forecast wind energy or wind speed. 

These models are a combination of statistical and machine learning 

approaches or of two different machine learning approaches, and they are 

mainly used for medium- and long-term forecasts (Chang et al., 2016), 

(Makhloufi et al., 2017). For example, in the medium-term prediction model, 

an ANN combined with an FL can improve predictions: the FL approach can 

be used for the training phase and the ANN for the prediction phase. In this 

way, the first part of the model is faster and therefore the methods tend to 

converge more quickly (Singh et al., 2018). 

Another example is to construct a forecasting model based on merging a 

statistical process, such as a moving average process, and a machine learning 

approach such as an SVM. To this regard, in (Chen et al., 2018), the authors 

propose a forecasting model based on a nonlinear-learning ensemble of a deep 

learning time series prediction. In detail, LSTMs (Long Short-Term Memory 

neural networks) are used to explore and exploit the implicit information of 

wind speed time series, when diversiform data can generate a weak 

generalization capability, whereas SVM and EO (Extremal Optimization) 

algorithms are used for the prediction phase. Some researchers propose novel 

methods based on merging neural networks and optimization algorithms in 

order to forecast wind speed with a low prediction error. In these works, the 

optimization phase is important to obtain the best parameters of data mining 

models, which are then employed in the forecasting phase (Meng et al., 2016), 

(Wang et al., 2016a), (Wang et al., 2016b). 

Moreover, in a number of works, hybrid models are employed in short term 

wind forecasting, thus obtaining good performances in terms of prediction 

error, as in (Jiang et al., 2017), (Liu et al., 2014), (Zhang et al., 2015), or 

(Eseye et al., 2017). Conversely, we propose models based on a combination 

of Wavelet Transform and SVM, or GA and FL, or SVM and Empirical 

Decomposition. In these models, the forecasts are obtained through two steps: 

the first, in which the model’s parameters are searched and initialized through 

statistical methods or data mining approaches; and the second, in which 

machine learning methods are used for wind forecasting. 
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II.6 Commercial tools 

The importance of having tools for the prediction of the electricity 

produced by wind power has created an actual market sector. The commercial 

wind power prediction tools (WPPTs) available on the market are based on 

the methods just described. WPPTs are implemented, in almost all cases, by 

universities or research centres (Ackerman, 2012). Some examples of 

commercial tools are described below. 

Wind Power Prediction Tool 

This tool is an applicative example of how to make use of the 

aforementioned statistical methods to predict the power produced by wind 

turbines in larger areas. It was developed through the collaboration between 

Eltra, Elsa and the IT Department and Mathematics of the University of 

Denmark. The tool uses online data from only a portion of the entire set of 

wind turbines in the area; in fact, the area of interest is divided into sub-areas 

and each of them represents a particular wind farm. The weather forecast of 

wind speed and direction is used to predict the power produced by the wind 

for periods ranging from half an hour to 36 hours. Once the forecasts for each 

sub-area are attained, they are reprocessed to obtain the forecast of the whole 

area of interest. The inputs of this tool are wind speed and direction, the 

temperature and the output power of the reference wind farm, and they are 

sampled every 5 minutes; furthermore, forecasts must be added to these 

weather inputs. These are charged every six hours and cover a 48-hour period. 

In WPPTs, one of the statistical methods described is used to determine the 

optimal weights between local measures and variables of weather forecasts 

(Giebiel, 2003). 

Zephyr 

This tool is the result of the merging of the statistical and persistence 

methods. In this way, it is possible to make predictions for a period of time 

greater than with WPPTs; in fact, forecasts can be made both in the short term 

(0-9 hours) and the long term (36-48 hours). The tool was developed by the 

Department of Computer Science and Mathematics and by the National Risø 

Laboratory1 in Denmark (Giebiel et al., 2002). 

Previento 

Previento2 is able to make power forecasts in a large area both for now-

casting and a long-term forecasts. It uses a predicting method based on human 

observation, using persistence (the next event is expected considering only the 

 
1 http://www.risoe.dk. 
2 http://www.previento.de. 
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previous event). This tool was developed by the University of Oldenburg, 

Germany (Focken et al., 2001). 

eWind 

Developed by True Wind Solutions, USA, eWind is made up of four main 

components: 

• a set of three-dimensional atmospheric numerical models based on 

physics; 

• adaptive statistical models; 

• models for building the plant; 

• system for receiving the forecast. 

The first of the points listed above is similar to the one used for weather 

forecasting. Adaptive statistical models are a set of empirical relationships 

between the output of atmospheric models based on physics and the specific 

parameters to predict for a certain area. These parameters are wind speed and 

direction of the wind turbines that send power to the substations. The third 

component connects the atmospheric variables with the output of the wind 

turbines. The output of a wind turbine is a combination of the latest 

atmospheric data and of the output data of the wind turbine. The last part of 

the system refers to the user’s choice of how to obtain the information relating 

to the forecast (Giebiel, 2003). 

SIPREOLICO 

This is a prediction tool based on statistics, developed by the Carlos 

University of Madrid, Spain. For a single turbine, this tool uses four types of 

inputs: the wind farm’s characteristics, the historical data of the wind and the 

power produced by the turbines, and weather predictions. The predictions 

depend on what type of input is available. The input data can be partial or 

complete. Partial data are those available for each wind farm, i.e. weather 

forecast and standard curves of power, plus real power curves, while complete 

data are those just listed plus real-time data of generated energy 

(Sánchez et al., 2002).  
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II.7 Forecasting evaluation metrics  

The efficiency and effectiveness of a forecasting model are usually 

evaluated through four figures of merit: mean absolute error (MAE), mean 

absolute percentage error (MAPE), mean square error (MSE) and root mean 

square error (RMSE) (Kariniotakis, 2017). All evaluation metrics are 

described in detail below. 

In statistics, MAE is a measure of difference between two continuous 

values, which, in a forecasting model, are the predicted and desired values. 

This metric is a common measure of forecast error and is defined as follows: 
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where yi is the ith forecast value and di is the ith desired value. 

MAPE is the index of how accurate a forecasting model is. The forecasting 

accuracy is measured in percentage and it is calculated as mean of absolute 

percentage error for each time period. The expression of MAPE is given by: 
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MSE evaluates the quality of a predictor, according to the average of the 

squares of the errors, that is, the average squared difference between the 

forecasting values and the desired values. Given a vector of n predictions, D 

is the vector of the desired values of the variable being predicted, and the Y is 

the vector of the forecasted values. The MSE of the predictor is calculated as 

follows: 
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Finally, the last figure of merit, RMSE, represents the standard deviation 

of the prediction errors, known as residuals. These measure how far from the 

regression line the data points are; RMSE is also a measure of how the data is 

concentrated around the line of best fit. Root mean square error is commonly 

used in forecasting and regression analysis to verify experimental results. 

RMSE is expressed as: 
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where, as before, D and Y are respectively the desired vector and the predicted 

vector. 



 

 

 

Day-ahead wind prediction 

 

 

 

 
In the following chapter, the proposed model for daily wind speed 

forecasting is described. The chapter begins with a description of the 

methodology underlying the proposed model, based on the space-time 

relationships between weather variables and on the evolution of the weather 

fronts; the model’s flowchart is then presented and described in each of its 

parts. Afterward, the proposed model is validated through the analysis of a 

case study focusing on real-world data. 

The chapter ends with a discussion of the forecasting results obtained and 

an analysis of the neural predictor’s implemented performances, with respect 

to the main figures of merit used in the literature. 

III.1 Methodology 

Due to the nature of wind and its dependence on the evolution of weather 

phenomena, the wind speed forecasting problem is considered a site-

dependent problem. 

In general, many of the wind forecasting models proposed in the literature 

(both for wind speed and wind direction) are based on the relationship between 

one-day-ahead and historical data, both referring exclusively to the site chosen 

for the forecast (Wang et al., 2016) (Karakuş et al., 2017). Even in most of the 

forecasting models and commercial tools used in the field of wind generation, 

wind speed prediction models are based on the relationship between wind 

speed and other meteorological factors influencing wind production fed by 

data referring exclusively to the site chosen for prediction (Dong et al., 2016) 

(Zheng et al., 2017) (Ackerman, 2012). 

Unlike the aforementioned approaches, the proposed day-ahead 

forecasting model is based on the relationship between the wind information 

of the site chosen for the prediction and the evolution of some weather 

parameters in the larger area around the site itself. More in detail, the proposed 

approach analyses both the influence of the weather front evolution on wind 
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generation and the relationship between wind speed and the main 

meteorological factors (specifically barometric pressure and temperature) 

which influence wind generation at the point where the forecast is to be made, 

and on a larger area around the site itself. In fact, according to meteorology, 

wind is the phenomenon of air displacement from high to low pressure on 

large areas, from synoptic to mesoscale (Landberg, 2015). Precisely because 

of the vastness of the area that affects the wind phenomenon, air does not 

simply move from high to low pressure, but rather deflects to the right in the 

Northern Hemisphere, circulating clockwise around high-pressure centres and 

counter-clockwise around low-pressure centres, all being reversed in the 

Southern Hemisphere (Buys-Ballot law). This effect is a direct consequence 

of the Earth’s rotation, and the phenomenon is not appreciable locally. In 

practice, air is subjected to a force known as Coriolis force, the effects of 

which are as great as is the speed of air (Emeis, 2013) (Figure III.1). 

 
Figure III.1 Coriolis force effects 

Wind intensity depends on the “baric gradient”, i.e. the ratio between the 

pressure difference of two geographical points and the horizontal distance 

between the two points. In other words, wind will be as intense as the baric 

gradient will be. Pressure variation – and hence wind intensity – mainly 

depends on temperature variation. In fact, when temperature increases, 

pressure variation decreases, as hot air tends to expand, becoming less dense 

and lighter. The lower weight of the hot air mass reduces the air column 

pressure and thus the atmospheric pressure. Conversely, when air cools, its 

density increases, and the greater weight of the air mass increases the 

atmospheric pressure, which varies over 24 hours and changes between day 

and night. Hence, sudden changes in temperature are equal to substantial 

changes of weather conditions and, more in detail, of wind speed 

(Emeis, 2013). 

Due to the solar radiation, areas of thermic discontinuity are created with 

the consequent formation of warm air masses and cold air masses, which, in 

their motions, move from high pressure to low pressure areas. When two air 
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masses at different temperatures come into contact with each other, a 

meteorological front, also called a weather front, is created. Weather fronts 

are active on a mesoscale and synoptic scale, from a few hundred to a few 

thousand kilometres. In detail, a weather front is a transition surface between 

two air masses with different temperature, pressure and humidity; the passage 

of a weather front determines changes in wind, both for wind speed and wind 

direction. The weather fronts that determine these changes are two: cold and 

warm fronts, to which the occluded front must be added, characterized by 

phenomena common to both fronts (Spellman, 2012). According to mesoscale 

theory, cold and warm weather fronts are characterized by two different 

speeds: cold fronts move faster than  warm fronts, with a much faster 

variation, due to the higher vertical thermal gradient (Figure III.2a). Hence, 

when a cold front appears, the temperature drops sharply and the atmospheric 

pressure increases, thus producing a drastic change in the wind’s direction 

(from southwest to northwest or from west to north in the Northern 

Hemisphere) and a sudden increase in wind speed (Figure III.3).  

Conversely, a warm front appears when a mass of warm air advances, thus 

invading areas previously occupied by masses of cold air. As warm fronts 

feature less dense air, they tend to move over the cooler air gradually,  thus 

moving more slowly than cold fronts (Figure III.2b). With the passage of the 

warm front, the temperature increases and the pressure decreases; therefore, 

the wind decreases in intensity and changes direction, thus rotating 

counterclockwise, when in the Northern Hemisphere, from south to south-

west or west (Figure III.3) (Ackerman et al., 2007). 

 
Figure III.2 a) cold front formation b) warm front formation 
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Figure III.3 Cold and warm front effects 

The relationship between barometric pressure, temperature and wind speed 

and the influence of the weather phenomena from the surrounding regions on 

a chosen site are, as previously mentioned, the basis of the proposed model, 

which will be described in detail in the next paragraphs. 

III.2 Problem formulation 

According to eq. (II.2), the wind power of a given wind farm depends on 

wind speed W, which is the only quantity that is highly variable. Hence, the 

wind power on a chosen site S0 at one day-ahead depends on wind speed at 

one day-ahead t+1: 
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Therefore, in order to predict the wind power that a given wind farm can 

produce, it is necessary to forecast the wind speed of the chosen site. 

As previously mentioned, according to the weather phenomena related to 

wind, wind speed depends on barometric pressure P (mb) and temperature 

T (°C).  

The wind speed on a chosen wind farm located at S0, at an instant t+1 

depends on barometric pressure, P, temperature, T and wind speed data, W 

assumed in previous times t-k in the same place S0 and in more or less close 

points Si,j  located around the point S0 on the mesoscale distance d(Si,j, S0).  

The model can be formalized through the following equation: 
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 (III.2) 
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In eq. (III.2), the space-time evolution of the weather front is represented 

by the variable tk
i,j, where the subscripts i and j are, respectively, the distance 

and the direction of the point Si,j with respect to S0, with i ϵ Δ, where Δ is the 

set of distances and j ϵ Ω, with Ω the set of directions, respectively. k ϵ K = {-

k, …, -1, 0, +1} indicates the number of time steps taken by a weather front 

located at point Si to reach point S0 moving in the j direction, while the value 

+1 indicates the future time with respect to which the forecast is made. 

Even though in the model there are no constraints in positioning the points 

Si,j, with respect to S0, as will be seen in the next paragraph, in the proposed 

approach the points S1,j and S2,j lie on two concentric circles centred in S0 and 

of radius r1,j and r2,j (Δ = {r1,j, r2,j}) along the 8 main directions of the compass 

rose (Ω = {N, NE, E, SE, S, SW, W, NW}). 

In first approximation, the radii are chosen as follows:  

jj rr ,1,2 2  (III.3) 

Moreover, in the eq. (III.2), t+1 is the forecast time horizon, while t-2
i, j and 

t-1
i, j are the temporal instants preceding t+1 at the point Si,j. These depend on 

t0, the current time instant, and are defined as follows: 







−=

−=

−

−





202

,2

01

,1

tt

tt

jr

jr
 (III.4) 

where τ is the time-shift delay factor, used to carry into account the 

information relating to the temporal evolution of weather phenomena. The 

value of this factor will be defined in the next paragraphs. 

III.3 Proposed forecasting model 

In this thesis, starting from the problem model just introduced, a wind 

predictor based on MLP artificial neural network (ANN-MLP) to forecast the 

daily wind speed on an actual wind farm (Shanmuganathan et al., 2016) was 

built. The predictor is composed of three layers – input, output and one hidden 

layer – and the back propagation algorithm is used for the supervised learning 

phase. 

The building of the neural predictor model is structured in accordance with 

the model described in paragraph III.2. In order to analyse the weather fronts 

phenomena, the model is built on the basis of the nesting theory (NT) 

(Coiffier, 2012) used for advancing global numerical weather, including the 

ECMWF3 and in the COSMO LAM model (Bohme et al., 2011).  

 
3 https://www.ecmwf.int/en/research/modelling-and-prediction 
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The model’s inputs are temperature T, pressure P and wind W, measured 

at different times and at different points around point S0, where the forecast is 

to be made (which will also be called Point of Interest - POI), whereas the 

model’s output is wind speed W at point S0 time t+1. 

According to the NT, in order to obtain large-scale weather predictions, the 

identification of hundreds or even thousands sites located around the POI is 

necessary. In this thesis, a simplified version of the NT is proposed. Around 

the area of the POI, a grid based on the 8 main directions of the compass rose 

- defined in the set Ω = {N, NE, E, SE, S, SW, W, NW} - on two different 

distances was built, for a total of 16 points, over the POI. Starting from the 

site where wind speed has to be forecasted (POI), the model identifies eight 

sites S2,j at distance r2 (500 km) from the POI S0, and eight sites S1,j at a short 

distance, r1, 250 km (Figure III.4a and III.4b). The data considered are the 

average weather data at three different times to describe, according to 

mesoscale model (Pielke, 2013), the daily evolution of weather fronts 

(Figure III.4c). According to the seasonality of meteorological fronts, the 

weather data related to each identified site are clustered. 

In this way, the data set constructed for the proposed model contains 

meteorological information related to the sites near the point chosen for the 

prediction and to the point itself. 

 
Figure III.4 a) Geographical location of the sites and POI. b) Schematic 

illustration of the sites along the principal and secondary cardinal directions. 

c) Time forecast horizon 
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III.3.1 Model’s structure 

The first phase of the forecasting model’s building process, as described in 

Figure III.5, is data filtering. In this phase, according to a distance r1 and r2 

from S0, the two regions where the points Si,j are located are identified, with 

respect to which historical pressure, temperature and wind data (quarter-

hourly, hourly or daily average) are acquired. Subsequently, starting from the 

data analysis, the value of the time-shift delay (τ-factor) is determined, which, 

as previously mentioned, depends on the choice of the points. From an 

operational point of view, the choice of the τ-factor is made by trial and error 

procedure, implementing a set of ANN-MLP for different τ values and 

evaluating the error. Once the τ-factor has been identified, three training sets 

are built, as per eq. (III.3) and eq. (III.4). In order to reduce the forecast error, 

the neural predictor was trained by the constructed training sets and, by 

comparing the neural network performances, the best training is identified. 

After that, the model proceeds with the wind speed forecasting. The forecast 

results are compared with the real-world wind speed registered by the weather 

station, and, in order to verify the effectiveness of the proposed approach, the 

model’s performances are evaluated. 

 
Figure III.5 Flowchart of the proposed model 
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Evaluation of time-shift delay 

The use of the time-shift delay allows to describe, in the proposed neural 

predictor, the temporal evolution of the weather fronts taking into account the 

characteristics of the area covered by the forecast. More in detail, the input 

vectors of the proposed model are the collected meteorological data that are 

shifted in time according to the time relationship expressed in eq. (III.4), 

where the time-shift delay, τ-factor, belongs to {3 h; 6 h; 9 h; 12 h; 15 h, 18 h; 

21 h; 24 h}. 

Since the speed of the fronts is generally a seasonal function, in order to 

determine the τ-factor, the implemented ANN-MLP is trained with four 

clusters of three months, and it is used to forecast wind speed in the central 

month of each cluster. 

The four clusters are: 

• cluster I: December, January, February; 

• cluster II: March, April, May; 

• cluster III: June, July, August; 

• cluster IV: September, October, November. 

The clusters, and hence the training set, contain the historical weather 

information series that cover a period of a few years (four in the implemented 

case). 

The criteria used for choosing the τ-factor are the model’s performances in 

terms of MAPE: the case of lowest MAPE corresponds to the best τ-factor 

(Table III.1). 

Table III.1 MAPE for different τ-factor 

τ-factor 
Months 

JAN APR JUL OCT 

τ = 3 h 29.38% 42.29% 27.82 % 34.41% 

τ = 6 h 16.96% 20.64% 12.35 % 24.67% 

τ = 9 h 21.83% 19.69% 13.63% 21.75% 

τ = 12 h 11.74% 12.24% 7.27% 11.87% 

τ = 15 h 15.61% 14.35% 14.22% 17.39% 

τ = 18 h 22.21% 19.09% 19.21% 23.04% 

τ = 21 h 26.88% 32.22% 29.13% 32.49% 

τ = 24 h 28.22% 36.09% 32.85% 34.58% 

The evolution of MAPE, calculated for the various simulations with the 

different τ values, showed that MAPE, for the choice of the points Si,j, 
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decreases for τ-factor equal to 12 h and 15 h (green area in the graph – 

Figure III.6). 

 
Figure III.6 MAPE for all values of τ-factor 

Therefore, the τ-factor set is reduced, and it becomes {12 h, 13 h, 

14h, 15 h}. As before, in order to determine the best τ-factor, the criteria are 

the model’s performances in terms of MAPE: the wind speed values are 

forecasted, characterizing eq. (III.4) with the new τ-factor set. In the table 

below, the performances related to each wind speed prediction are reported. 

Table III.2 MAPE values in the new τ-factor set 

τ-factor 
Months 

JAN APR JUL OCT 

τ= 12 h 11.74% 12.24% 7.27% 11.87% 

τ= 13 h 12.73% 14.92% 11.48% 14.42% 

τ= 14 h 10.74% 13.79% 15.43% 17.42% 

τ= 15 h 15.61% 14.35% 14.22% 17.39% 

As depicted in Figure III.7, the evolution of the percentage error, related to 

the various simulations with the new range of τ-factor, shows that the 

percentage error is lower in the case of τ-factor equal to 12 h than in the other 

cases (selection area of the graph – Figure III.7). 

Hence, in the analysed case, the best value of τ-factor is 12 h. 
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Figure III.7 MAPE for the new τ-factor set and best τ-factor value area 

It is important to note that a single τ-factor will be used, even though the 

model allows to specify a different time-shift delay factor for each cluster and 

for each direction. 

After the choice of the τ-factor, the model proceeds with the training of the 

neural network. More in detail, after determining eq. (III.4) with the best  

τ-factor, the best training procedure is investigated in the model. 

Training procedure 

The training phase is an important part of the neural model, as in it, the 

predictor learns the relationship between wind speed and meteorological 

phenomena. Hence, finding the best training set is important to obtain a good 

wind forecast. To this regard, the ANN-MLP is trained with three different 

training sets; subsequently, the predictor is used for wind speed forecasting 

and then, through a performance analysis in terms of MAPE, the best training 

set is found. The training procedure uses, in all cases, the back propagation 

learning algorithm, whose aim is to minimize the mean square error. 

Of the three training sets constructed, two are seasonal and one is dynamic. 

Following the seasons, in the first case the year is divided into four clusters, 

whereas in the second case the year is divided into three clusters. The third set 

is a dynamic training set, which moves in a dynamic temporal window, 

according to the forecast horizon. In particular, the training set is built 

considering data referring to 45 days before the time of the forecast and 45 

days after it. 

Below, Table III.3 describes the three cases. 
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Table III.3 The three training sets 

CASES TRAINING SET DESCRIPTION 

1° CASE Seasonal Set:  

4 CLUSTER 

1 CLUSTER: Dec, Jan, Feb; 

 2 CLUSTER: Mar, Apr, May; 

 3 CLUSTER: Jun, Jul, Aug; 

 4 CLUSTER: Sep, Oct, Nov 

2° CASE Seasonal Set:  

3 CLUSTER 

 1 CLUSTER: Nov, Dec, Jan, Feb; 

 2 CLUSTER: Mar, Apr, May, Jun; 

 3 CLUSTER: Jul, Aug, Sep, Oct; 

3° CASE Dynamic Set  The training set covers a variable 

with a temporal window of 90-days 

The implemented forecasting model is used for predicting wind speed in 

the most critical months of the year (January, April, July and October), in 

which the variations of the weather conditions are frequent due to the 

continuous weather fluctuations, typical of seasonal changes. 

 
Figure III.8 Comparison of MAPE performance in all three cases 

The forecast’s results – obtained in all cases – are compared with the real-

world data registered by the weather stations in those particular months; then 

the model proceeds with the performance analysis. According to the MAPE 

performance, the best training set is the dynamic one (Figure III.8). 
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III.4 Case study 

The implemented forecasting model is used for predicting the daily wind 

speed on a wind farm sited in Campania, Southern Italy. As previously 

mentioned, the implemented predictor is an ANN-MLP, with one hidden 

layer, and the activation function chosen is the logistic sigmoid function. The 

training set and the validation set cover respectively 80% and 20% of the data 

set, which covers a period of four years, and the forecasting period is refers to 

a whole year. 

III.4.1 Input data 

The implemented model is applied on a data set of daily average 

meteorological information. As explained in the previous section, the data set 

is dynamic and varies with the forecast’s time; it contains three variables: wind 

speed W (m/s), air temperature T (°C) and barometric pressure P (mb). The 

weather data used refer to the mesoscale α model, which is able to describe 

the meteorological fronts’ effects in a range of 200–2000 km (Pielke, 2013).  

The data sampling frequency is 10 min/point, but in the case of daily 

prediction, the daily average value of each meteorological data is calculated 

using only one value for each day (see Appendix A). The meteorological data, 

for each of the sixteen chosen sites, are provided by the Italian Air Force 

Meteorological Service weather station sited in each of the points considered. 

The data of the point S0 are also provided by IVPC, registered by an 

anemometer and a weather station installed in its own wind farm, chosen as a 

test site. The wind data of the considered weather stations are referred to 10 

meters. 

III.4.2 Results and discussion 

The simulation’s results refer to a period of one year and are compared to 

the measured values. The predicted values are the mean (not the best!) of 10-

runs of network simulation; in this way, all the prediction values, not only the 

results with low prediction error, are considered, with the aim of 

demonstrating the robustness of the model. The effectiveness of the proposed 

model is proven by the comparison between the forecasted results and the real-

world values in the months where the continuous variations of the 

meteorological phenomena are frequent. Moreover, the simulation’s results – 

related to the same months – are compared with the results of the typical 

benchmark model, the persistence method. 

In Figure III.9 and Figure III.10, the high forecasting accuracy of the 

proposed approach is shown: the simulation’s results are better in the proposed 

approach than in the persistence model, especially in the months of January 

and in October. 
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Figure III.9 Wind speed prediction in the most critical months of 2015 - a) 

wind speed forecasting in January; b) wind speed forecasting in April 
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Figure III.10 Wind speed prediction in the most critical months of 2015 - a) 

wind speed forecasting in July; b) wind speed forecasting in October 

The effectiveness of the proposed model is confirmed by the evaluation of 

the major figures of merit, described in the previous chapter.  

The next paragraph proposes in detail the figures of merit analysis. 
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III.5 Evaluation metrics of the proposed model 

In order to investigate the effectiveness of the proposed model, the major 

figure of merits - MAE, MAPE, MSE, RMSE – are calculated, first for the 

wind forecasts obtained in the most critical months (Table III.4) and then for 

the predictions of the whole year (Table III.5). 

The figures of merit analysis, as shown in Table III.4, demonstrates that 

the proposed model forecasts wind speed better than the persistence model. In 

fact, considering the forecasts in the critical months, the values of MAE, 

MAPE, MSE and RMSE are lower when the ANN-MLP solution is 

considered. 

Table III.4 Forecasting performance of the proposed approach and the 

persistence model 

MONTH 

MODEL 

Persistence Model ANN-MLP 

MAE MAPE MSE RMSE MAE MAPE MSE RMSE 

JANUARY 2.65 22.26% 10.97 3.31 1.31 11.13% 2.36 1.54 

APRIL 1.94 13.89% 7.79 2.79 2.14 15.53% 6.88 2.62 

JULY 2.76 18.76% 10.55 3.25 1.58 10.61% 3.35 1.83 

OCTOBER 4.00 24.96% 24.16 4.92 2.79 15.71% 10.55 3.25 

The performance evaluation over the whole year confirms the effectiveness 

of the proposed models. Table III.5 reveals lower values of the figures of merit 

for the proposed model when compared to the persistence model: the ANN-

MLP predicts wind speed with an improvement over the persistence model up 

to 35.75% for MAE and MAPE, and up to around 25% for the MSE and 

RMSE. 

Table III.5 Comparison between ANN-MLP model and persistence method 

and improvement for wind speed prediction 

MODEL 
Evaluation metrics 

MAE MAPE MSE RMSE 

Persistence Model 2.84 20,72% 8.014 2.83 

ANN MLP 1.83 13,31% 5.11 2.21 

Improvement [%] 35.40% 35,75% 36.24% 22.10% 

Hence, as shown by the performance analysis, the proposed ANN-MLP 

model is able to accurately forecast wind speed: the information about the 

meteorological fronts and the dynamic training set give forecasts up to 35% 

better than the persistence model. 



 

 

 



 

 

 

Hour-ahead wind prediction 

 

 

 

 
The fourth chapter describes the hourly wind speed forecast (HWSF) 

model. As for the previous section, the chapter starts with a description of the 

basic methodology and then moves on to analyse the flowchart and the 

achieved results. Mesoscale references and the COSMO model used in 

meteorology are the starting point of the model proposed, and their 

descriptions are also included in this chapter. Furthermore, the formulation of 

the problem, the optimization phases and data clustering are explained. As in 

the previous chapter, a number of analysed case studies, based on real-world 

data, were implemented to test the effectiveness of the model. 

The chapter ends with a discussion of the obtained results and the 

performance of the implemented neural model, according to the main figures 

of merit used in the literature. 

IV.1 Methodology 

As mentioned before, an accurate wind prediction is important for the TSO 

to plan and to dispatch the wind power generation (WPG) into the existing 

network systems not only on a daily basis, as seen in the previous chapter, but 

also and above all on an hourly basis for power dispatching. 

As in the case introduced and discussed in the preceding chapter, the basis 

of the proposed model is the phenomenology that describes the atmosphere’s 

evolution. The atmosphere, regarded as a fluid, is governed by a set of the 

continuous equations, such as the Navier-Stokes equations of fluid mechanics, 

and by the laws of thermodynamics. Due to the complexity of these equations, 

in meteorology, NWP models are constructed in order to solve said equations 

and hence describe the evolution of weather systems on an hourly basis 

(Kalnay, 2003). 

As mentioned in chapter II, the NWP models, according to the horizontal 

size of the phenomena, classify the atmosphere and its evolution into different 

weather scales (Kalnay, 2012): the global weather scale, which describes 
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phenomena that extend from one end of the globe to another; the synoptic 

weather scale, for phenomena that extend from a few hundred to several 

thousand kilometres; the mesoscale weather scale, for phenomena such as 

weather fronts or local wind, that extend from a few kilometres to several 

hundred kilometres; this scale can be classified into three categories: meso-α 

(2000-200 km), meso-β (200-20 km) and meso-γ (20-2 km) (Pielke, 2013). 

The last weather scale is the microscale that refers to particular and very fast 

events, such as turbulence, that are smaller than 1 kilometre in size and very 

short-lived.  

In this chapter, in order to implement the model for an hourly basis, a 

mesoscale weather scale approach is considered. The proposed model can be 

regarded as a simple version of LAMs such as COSMO4, in which, in order to 

describe the evolution of meteorological phenomena in the meso-β area, a 

nesting theory is applied. In this case also, the model’s leading idea is to study 

how the weather in the surrounding area influences the weather in the POI 

and, hence, the wind generation in the POI. The characteristics of meso-β 

region are used to describe the phenomenon of weather fronts, which have 

effects on the hourly wind speed evolution in the meso-β region, with a spatial 

range from a few to hundreds of kilometres, and the relationship between wind 

and other meteorological factors (Trapp, 2013). Also, for the hourly forecasts, 

the basic parameters which condition wind formation, i.e. barometric pressure 

P (mb) and air temperature T (°C) gradients, were considered, as suggested in 

the literature (Warner, 2010). 

Unlike the approaches followed in the literature, which consider a grid of 

hundreds, or even thousands of sites located around the POI (A. Mazur, 2018) 

(Bohme et al., 2011), the proposed model considers the relationship between 

the spatio-temporal evolution of weather fronts and the local wind speed with 

a weak mesh of points. This simplification does not invalidate the results, as 

will be seen below, and it is justified by the fact that the forecast only focuses 

on one point (the POI) and that it is only aimed at wind speed. 

In the next paragraphs, the proposed model will be described in detail. 

  

 
4 http://www.cosmo-model.org/ 
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IV.2 Structure and overview of the model 

The proposed model is based, similarly to what seen in the previous chapter 

for the daily model, on the wind’s dependence on barometric pressure P and 

temperature T, and its evolution in the meso-β region is expressed as follows: 
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where W is wind speed, Si,j are the chosen sites around the POI, S0, at 

maximum distance δmax and minimum distance δmin (Figure IV.1). The time 

instants t-k
ij, t-2

ij, t-1
ij and t0 describe the temporal evolution of the weather 

phenomena. In this case also, a simplifying hypothesis is adopted, which 

makes the model particularly agile: the models have considered the measured 

data referring at past time t-2
ij, t-1

ij in the points spaced r2 and r1 respectively 

from the POI, all referring to only two moments of time according to the 

following expression: 
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where t0 is the current instant, the indices i and j describe the spatial 

evolution of weather phenomena and respectively belong to Δ = {δmax, δmin} 

and Ω = {N, NE, E, SE, S, SW, W, NW}, while τ is the time-shift delay factor 

which time-shifts the weather data of each site Si,j. 

 
Figure IV.1 S0 and the chosen sites Si,j around it, along the cardinal directions 
 

 

Although the basic formulation of the proposed hourly prediction model is 

the same as that of the daily forecasting model described in the previous 
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chapter, a hybrid model for data clustering was proposed in this case. 

Moreover, the neural network used is still an MLP albeit assisted by a particle 

swarm optimization (PSO) algorithm. This is due to the need to obtain a more 

accurate wind forecast, since for hourly forecasts we start from a more rapidly 

variable database, as this is averaged over a few values. 

In detail, the proposed HWSF model is composed of three main phases: 

• the clustering phase, in which the dataset is divided, according to 

k-means algorithm, into four groups. After the construction of the 

four datasets obtained from clustering, each dataset is split into 

training, validation and test sets; 

• the model construction phase, in which the forecasting hybrid 

model, PSO-ANN, is constructed. The proposed predictor is 

based on an MLP-ANN structure optimized by a PSO algorithm, 

whose coefficients are used as the initial weights and the 

thresholds of the MLP-ANN model; 

• the forecasting phase, in which wind speed is predicted using the 

neural predictor developed in the previous stage with the 

manipulated data as input. After that, an analysis of the model’s 

performance is carried out in terms of the main figures of merit 

and in terms of comparison with the persistence model, regarded 

as the benchmark for forecasting models. 

These three main phases will be explained in detail in the next paragraph, 

focusing attention on the importance of data clustering in order to avoid false 

forecasting results. 

IV.3 Wind speed forecasting model 

In this thesis, the proposed HWSF model merges ANNs, clustering and 

optimization algorithms. In detail, the implemented neural predictor is an 

optimized ANN-MLP with three layers, where the Particle Swarm 

Optimization (PSO) algorithm optimizes the ANN parameters, as suggested 

in (Olsson, 2011). 

As previously mentioned, in the proposed model, the dataset construction 

covers the first part of it: in order to consider the most useful data, the weather 

data are clustered into four groups, by using the k-means algorithm, and for 

each group a correlation analysis is conducted. After the dataset construction, 

as shown in the Figure IV.2, the approach proceeds with the implementation 

of the PSO-ANN, the model’s core. Here, the ANN is built and trained, 

according to the search of the global extremum and the position of the optimal 

particle. The last part is dedicated to wind speed forecasting and performance 

analysis, in which the effectiveness of the proposed model is investigated, not 

only through the figures of merit evaluation, but also through the comparison 

of the model’s results with the persistence model’s forecasting values.  
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These phases of the model will be explained in detail in the following 

sections. 

 
Figure IV.2 Flowchart of the proposed PSO-ANN model 
l 
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IV.3.1 k-means clustering phase 

In this phase, the dataset construction criteria are investigated. Due to the 

large amount of data, after data collecting, data clustering is necessary: 

according to an analysis of similar features, the dataset is clustered with a k-

means algorithm, one of the most widespread clustering algorithms (Aggarwal 

et al., 2013) mostly used in the wind forecasting research field (Wang et al., 

2018) (Wu et al., 2017) (Hao et al., 2019) (Dong et al., 2016) (Ghofrani et al., 

2016). In detail, the k-means algorithm divides the dataset into several 

subgroups based on the similarity characteristic: the basic idea is to divide the 

whole dataset according to distance between the k-centre and the remaining 

data (Gan et al., 2007). 

In the proposed model, the clustering phase can be described as consisting 

of three main phases. The first one involves the initialization of input 

algorithm parameters and the definition of k centroids (one for each cluster). 

After that, the clustering phase proceeds with the assignment of the data points 

to a cluster, while the last phase is dedicated to updating the k centroids’ 

position. The initialization of the input parameters and the choice of k centre 

points is made on the basis of seasonal changes that have an impact on 

temperature and pressure variation and hence on wind generation (Emeis, 

2018). After that, according to the value of Euclidean distance (calculated 

among all data), each data is assigned to its closest centre point Ck, which is 

expressed as follows: 


=

=
kN

i

k

i

k

k x
N

C
1

1
 (IV.3) 

where xi is the ith data in the kth cluster and Nk are all data points of each cluster. 

Each centre point Ck, is updated by calculating the average value of every 

cluster until the value stops changing. Therefore, the dataset is divided, 

according to the high similarity of data, into season clusters. In detail, the 

training set and the validation set are composed of hourly wind speed data and 

hourly meteorological data, expressed as H = h1, h2, …, hN, and, as previously 

mentioned, all data are classified into different classes or clusters through a k-

means algorithm. After that, in order to choose the most useful data of each 

cluster, the model proceeds with a correlation data analysis (Figure IV.3). In 

detail, the evaluation of Pearson correlation index, calculated for each cluster 

data, is used to investigate the data correlation degree: the sign and the value 

of this index confirms the correlation between data (Shevlyakov et al., 2016). 
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Figure IV.3 Flowchart of the k-means clustering phase 

IV.3.2 PSO-ANN forecasting phase 

This phase is dedicated to the construction of the hybrid prediction model 

and therefore, to wind speed forecasting. In the neural model proposed, in 

order to improve convergence and to minimize the prediction error, the PSO 

algorithm, which is able to solve the problem of local minimum of the simple 

backpropagation MLP, is utilized (Fausett, 1994). 
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The PSO is a computational global searching algorithm whose aim is to 

search the global optimum of a problem through an iterative process that stops 

when the stopping criterion, established by a chosen fitness function, is met. 

In the PSO, each particle is considered as a potential solution to the 

optimization problem and it is characterized by three parameters: position, 

velocity and fitness value, determined by the fitness function (Olsson, 2011). 

In the literature, some hybrid approaches based on the PSO, both for wind 

power prediction and wind speed forecasting, are proposed (Kumar et al., 

2019) (Fazelpour et al., 2016). For example, in (Ma et al., 2017), the authors 

propose a forecasting model that combines a Fuzzy-ANN and a PSO in order 

to predict wind speed. In detail, in the aforementioned work, a spectrum 

analysis optimized by the optimization algorithm is applied to pre-process the 

original wind speed data in order to obtain a smoother sequence, subsequently 

used for forecasting wind speed. Conversely, in (Yue et al., 2017), the PSO is 

combined with Least Squares Support Vector Machine (LSSVM): the kernel 

and the regularization parameters of the LSSVM are optimized by the PSO. 

Hence, the authors propose a wind speed prediction model using the optimized 

parameters, thus improving the model’s forecasting accuracy. For initializing 

and training, the abovementioned models use the model data which refer to 

the weather phenomena occurring at the prediction point, while the proposed 

model uses the influence of weather phenomena that occur around the 

prediction point. Therefore, the proposed model, taking inspiration from the 

approaches in the literature, combines an ANN-MLP and a PSO, which is 

utilized to obtain the best set of weights, the position vector of particles with 

the best solution, taking into account the weather data of the prediction point 

and of the larger area around it. 

After the data clustering phase, the design of the neural predictor begins 

with the randomised initialization of a three-layer ANN-MLP, weight and 

bias; then, these parameters are evaluated according to a fitness function for 

the PSO algorithm. The dimension of the search space is identified, according 

to the ANN-MLP structure, with the total number of weights and biases of the 

neural network, which are initialized at the beginning, once the number of 

neurons of the intermediate states and the number of inputs and outputs is 

chosen. Hence, the weight and the threshold value of the proposed neural 

model are expressed through the particle status in the PSO. The MSE 

produced by the ANN-MLP is the criterion to define the PSO fitness function: 

according to the fitness function value of each particle, the individual extreme 

values and the global ones are computed. Then, each current value of fitness 

function is compared with the previously calculated value and then it is 

updated. The PSO algorithm ends when the stopping criterion is met and 

hence, the set of global optimum solutions corresponding to the particle 

position becomes the network’s weight and the threshold vectors that will be 

used in the training of the ANN-MLP. After that, the optimized neural network 

is trained and tested through the datasets which were constructed in the 



 Chapter 4 – Hour-ahead wind prediction 

65 

 

clustering phase, and then the model is used to obtain the final wind speed 

prediction value. 

IV.4 Case study 

The implemented hybrid forecasting model is tested on an actual wind farm 

sited in Campania, Southern Italy, to predict the hourly wind speed one day in 

advance. As previously mentioned, the implemented predictor is an ANN-

MLP combined with a PSO; the settings adopted for implementing the model 

are summarized in Table IV.1. 

Table IV.1 Optimized ANN-MLP parameters setting 

MODEL_PARAMETERS VALUE_PARAMETERS 

Number of input layers One with 1224 neurons 

Number of hidden layers 1 

Hidden layer transfer function ‘LinearSigmoid’ 

Output layer transfer function ‘LinearSigmoid’ 

Training algorithm Back propagation with momentum 

Momentum 0.5 

Error criterion figure MSE 

Maximum epochs 2000 

PSO fitness function MSE 

Number of k-means clusters 4 

IV.4.1 Input data 

The input dataset is composed of the hourly average meteorological 

information. As explained in the previous section, the dataset, according to the 

similarity characteristic of the seasons, is divided into four clusters (see 

Appendix A). The input dataset covers a period of four years, while the 

training set and the validation set cover respectively 80% and 20% of the input 

set. The dataset contains three weather variables: wind speed W (m/s), air 

temperature T (°C) and barometric pressure P (mb). The weather data used 

refer to the mesoscale β model, which describes the meteorological 

phenomena that occur in a range of 200–20 km (Pielke, 2013). The data 

considered have a sampling frequency of 1 hour/point, and they are time-

shifted according to eq. IV.2, in which the time shift delay factor τ is equal to 

1 hour. The meteorological data refer to sixteen chosen sites at a minimum 

distance δmin, 20 km, and at a maximum distance δmax, 50 km. The real-world 

meteorological data were provided by the Italian Air Force Meteorological 

Service and by the IVPC, having been registered respectively on actual 

weather stations sited in each of the chosen sites, and on a particular test site. 

The wind data of the considered weather stations are referred to 10 meters. 
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IV.4.2 Prediction results 

The simulation period refers to four specific days of the year, in which the 

weather undergoes critical changes: the summer solstice, the winter solstice, 

the spring equinox and the autumn equinox. In order to consider not just the 

model’s best results but all forecasting values, the predicted values are 

averaged on a 10 run network simulation. 

The effectiveness of the proposed model is demonstrated by the 

comparison between the forecasted results of the hybrid PSO-ANN-MLP 

predictor and the real-world values registered by an actual weather station in 

the period considered. Moreover, in order to confirm the validity of the 

proposed approach, the simulation’s results are also compared with the wind 

speed forecasts obtained with the typical benchmark model, i.e. the 

persistence model.  

The high forecasting accuracy of the proposed hybrid model is 

demonstrated by the following figures, in which the proposed approach proves 

to be better at obtaining good predictions than the persistence model. 

 
Figure IV.4 Wind speed forecasting - spring equinox (PSOANN model and 

persistence model) 

 
Figure IV.5 Wind speed forecasting - fall equinox (PSOANN model and 

persistence model) 
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Figure IV.6 Wind speed forecasting – summer solstice (PSOANN model and 

persistence model) 

 
Figure IV.7 Wind speed forecasting – winter solstice (PSOANN model and 

persistence model) 
 

IV.5 Wind speed forecasting error analysis 

In order to investigate the effectiveness of the proposed model, the main 

figures of merits – MAE, MAPE, MSE, and RMSE – are evaluated for the 

wind speed forecasts obtained in the simulation period defined above (Table 

IV.2). 

The analysis of the model’s performance and the comparison with the 

persistence model demonstrate, as shown in Table IV.2, that the proposed 

hybrid model forecasts hourly wind speed with a lower forecasting error than 

the persistence model – the classical benchmark proposed in the literature – 

especially in the cases related to autumn and winter.  
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Table IV.2 Forecasting performance of the proposed hybrid approach and 

the persistence model 

DAY 

MODEL 

Persistence Model PSO-ANN-MLP 

MAE MAPE MSE RMSE MAE MAPE MSE RMSE 

SPRING 1.90 17.84% 5.34 2.31 1.27 16.98% 2.04 1.43 

AUTUMN 0.95 24.97% 1.4 1.18 0.56 14.54% 1.17 1.08 

SUMMER 1.10 15.16% 1.69 1.30 0.72 14.14% 1.26 1.12 

WINTER 1.60 20.41% 3.09 1.76 0.73 12.78% 0.71 0.84 

According to Table IV.2, the values of the error metrics of the persistence 

model and the hybrid model change, respectively, from 25% of MAPE and 

2.31 of RMSE to 17% and 0.84 (considering the maximum and minimum 

values of error metrics calculated for the four cases). 

Hence, the proposed hybrid model is able to accurately forecast wind 

speed: the information about the evolution of meteorological fronts and the 

clustering and the optimization phases provide better forecasts than the 

persistence model, which predicts wind speed with a forecasting error of 

around 25%.



 

 

 

From wind speed to wind power: 

an Italian case study 

 

 

 

 
In this chapter, the wind speed forecasting model described in the previous 

chapters is used to obtain the amount of wind power available on an Italian 

wind farm. The chapter starts with the description of the theoretical method 

based on the Betz theory and of the proposed model, which are used for 

calculating the wind power of a chosen wind farm, given the characteristic 

power curve and the technical characteristics of the wind farm and the wind 

turbine. Subsequently, the case study is presented. In detail, the structure and 

the technical features of the chosen wind farm are described, focusing the 

attention on the wind turbines installed in the wind farm, and its characteristic 

power curves. 

This chapter ends with the obtained results analysis and hence, with the 

model performance evaluation. 

V.1 The Betz theory 

The Betz theory indicates the maximum possible energy obtainable from a 

wind turbine. The theory was firstly developed by Albert Betz in 1920. He 

applied the linear momentum theory to a simple one-dimension model to 

evaluate the ideal and frictionless efficiency of a wind turbine, modelling the 

rotor as a uniform “actuator disk”, which is confined in the assumed control 

volume (Figure V.1) (Cengel et al., 2017) (Manwell et al., 2010). 

The surface and the cross section of a stream tube, in which the fluid passes 

through the rotor, define the control volume. The rotor makes the pressure of 

the fluid that flows through it discontinuous (Figure V.2). 

The actuator disk model is based on a few assumptions: the fluid's flow is 

steady, homogenous, inviscid, incompressible and irrotational; the rotor 

blades are infinite, and the fluid's flow and thrust are uniform across the 
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actuator disk area. In addition, the speed of the air beyond the rotor is regarded 

as axial (Schmitz, July 2019) (Zhao et al., August 2019). 

 
Figure V.1 Wind rotor actuator disk model 

In the ideal rotor model shown in the Figure V.2, according to said 

assumptions, the wind speed passing through the turbine rotor is uniform as 

V; its values V1 and V2 are respectively the upwind speed and downwind speed, 

and they refer to the upwind air cross-section S1 and the downwind air cross-

section S2. As the extraction of mechanical energy by the rotor occurs by 

reducing the kinetic energy of the air stream from upwind to downwind, the 

speed V2 is lower than V1 and hence, the air stream cross actuator disk 

increases from the upwind surface S1 to downwind surface S2 (Carriveau, 

2011). If wind speed is regarded as an incompressible flow, the mass flow rate 

is constant, and the continuity equation can be written as follows: 

==== 2211 VSSVVSm  constant (V.1) 

where ρ is the air density. 

As is known, the power of free unobstructed air moving at a constant speed 

V depends on the variation of kinetic energy, which, in the case of wind 

stream, is proportional to the force exerted by the wind on the rotor: 

VF
dt

dx
F

dt

dE
P ===  (V.2) 

where, according to Euler’s Theorem, the force F depends on the mass and 

the time variation of the speed V: 



 Chapter 5 –From wind speed to wind power: an Italian case study 

71 

 

 
Figure V.2 Speed variation and pressure in the ideal wind turbine model 

)( 21 VVSVVm
dt

dV
mamF −====   (V.3) 

Hence, substituting the force F in eq. V.2, the extractable power from wind 

is: 

)( 21

2 VVSVP −=   (V.4) 

The power from the upwind surface to the downwind surface is calculated 

by applying the law of energy conservation: 
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Combining the two conservation equations (mass and energy) and equating 

the two expressions of power, the general wind speed V can be related to the 

upstream wind speed and the downstream wind speed: 

)(
2

1
21 VVV +=  (V.6) 

This means that the wind speed at the rotor may be considered as the 

average of the upstream wind speed and the downstream wind speed, and 

hence, eq. V.5 can be rewritten as follows: 

))((
2

1
21

2

2

2

1 VVVVSP +−=   (V.7) 

In order to measure the efficiency of a wind turbine at extracting the energy 

of a wind stream, Betz introduces the performance coefficient Cp, which is 

expressed as: 

W

P
Cp =  (V.8) 

where W is the available power in the undisturbed upstream over a cross 

sectional area S, when the wind speed V is equal to V1. The available power, 

W, is defined as: 

2

1
2

1
SVW =  (V.9) 

while, introducing the interference parameter a, which is the ratio of the 

upstream wind speed and the downstream wind speed: 

1

2

V

V
a =  (V.10) 

The wind power P becomes: 
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)1)(1(
4

1 23

1 aaSVP +−=   (V.11) 

Substituting eq. V.9 and V.11 in eq. V.8, the relationship between the 

performance coefficient and the interference parameter is obtained: 

)1)(1(
2

1 2 aa
W

P
Cp +−==  (V.12) 

 
Figure V.3 Graph of the performance coefficient Cp 

According to the graph of Cp shown in Figure V.3, the performance 

coefficient decreases with the increase of the interference parameter; in fact, 

when the interference parameter reaches the maximum value (a=1), the 

upstream wind speed is equal to the downstream wind speed and the 

performance coefficient is zero. Conversely, when the interference parameter 

is zero the performance coefficient is 0.5. From the graph, it can be seen that 

Cp reaches the maximum value when the interference parameter is around 0.3.  

The maximum value of Cp represents Betz’s limit and it is the maximum 

extractable power fraction from an ideal wind turbine. 

Betz’s limit is obtained by deriving eq. V.12 and equating the derivate to 

zero and then substituting the calculated value of a. The maximum value of 

Cp is referred to a=1/3 and it becomes, from eq. V.12: 

%26.595926.0
27

16
)1)(1(

2

1 2

max, ===+−= aaC p
 (V.13) 
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Betz’s limit represents the theoretical value of the power fraction that can 

be extracted from a wind turbine. In general, the actual extractable wind power 

from a turbine depends on the building characteristics of the rotor and the 

actual operating conditions of the wind farm which influence the wind farm's 

production capacity. Hence, the actual wind turbines operate at a lower, non-

ideal performance coefficient, which varies between 35% and 50% (Ricerca 

sul Sistema Energetico – RSE SpA, 2012). 

V.2 Proposed forecasting approach 

The problem of wind energy forecasting can be tackled in two different 

ways: either by predicting wind energy, considering both the meteorological 

and production information of the wind farm, or by developing a two-stage 

forecasting model which forecasts the wind speed first and then the wind 

power. In this thesis, unlike other works from the literature, the proposed 

approach follows the second way. More in detail, a number of researchers in 

the literature propose power prediction models that use both weather and 

power information (Giebel et al., 2017) (Chen et al., 2018) (Santhosh et 

al., 2020). For example, Demolli et al. propose a wind power forecasting 

approach that uses wind speed data and old wind power data as inputs of five 

machine learning algorithms in order to model wind power on the long-term 

(Demolli et al., 2019). Other researchers propose models based on a two-stage 

approach and only on old wind power data. For example, in the latter models, 

the first stage is used for a composite prediction of a decomposed power 

sequence and optimized BP neural networks predict the general wind power 

trend and the correlation of various factors respectively. Then, in the second 

stage, another BP neural network, with the results of the first stage as input, is 

used to predict wind power (Zhang et al., 2015). On the other hand, Hao et al. 

propose, for wind power prediction, a two-stage forecasting architecture based 

on error factor, composed of two main stages: in the first one, in order to 

forecast the power components broken down by variational mode 

decomposition and forecast errors, an optimized extreme learning machine is 

used. Then, a nonlinear ensemble method based on the optimized extreme 

learning machine is utilized to integrate all the components and forecast error 

values and hence, to forecast multi-step wind power (Hao et al., 2019). 

Conversely, a few models use the modelling of power curves for predicting 

wind power, as in (Vahidzadeh et al., 2019), in which the authors propose a 

model based on the evolution of wind power, considering the Betz theory and 

the information about wind speed and the production capacity of WFs. In the 

proposed approach, the Betz theory is also used, but unlike the aforementioned 

models, in order to reduce the prediction error, the weather information and 

the historical series of wind power data are represented, respectively, by the 

input from the first and second stage (Figure V.4). 
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Figure V.4 Structure of wind power forecasting model 
 

In the proposed approach, in order to forecast wind speed, a hybrid PSO-

ANN model, which was described in the previous chapter, was implemented. 

As previously mentioned, the input data of the first stage are only 

meteorological information: barometric pressure (mb), air temperature (°C) 

and a historical series of wind speed data. According to the PSO-ANN model 

developed, the input data refer not only to the WF site, but also to sixteen 

chosen points around the WF site. In the second stage, according to the Betz 

theory and using the historical wind power data and the wind power curves of 

the WF, the wind power at the WF site is predicted. More in detail, the wind 
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power at the WF site is obtained, considering the wind speed forecasts in the 

first stage and the actual values of Cp referring to the wind power curves of 

the WF. 

Hence, the hourly wind power is the sum of the wind power of all wind 

turbines that compose the WF, and it is obtained as follows: 

)(
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i   (V.14) 

where the index i, referring to the wind turbine, is considered among the N 

wind turbines that compose the WF, and Ai is the technical characteristic of 

the wind turbine considered, while v3(t+1) indicates the wind speed values 

forecasted in the first stage. The real values of Cp are evaluated considering 

the relationship between the wind power data and the wind speed data, both 

referring to the WF test site and provided by IVPC. 

V.3 Case study 

The proposed approach is used for predicting hourly wind power on a WF 

sited in Southern Italy. The input dataset for the first stage is composed of 

hourly average weather data – barometric pressure (mb), air temperature (°C) 

and historical wind speed series – and it covers a period of four years. 

Following the hybrid PSO-ANN wind speed forecasting model described 

in the previous chapter, the dataset is divided into four clusters, and the 

meteorological data refer to the WF site and to the sixteen points sited around 

the WF site. The weather data have a sampling frequency of 1 hour/point.  

The real-world meteorological data have been provided by the Italian Air 

Force Meteorological Service – COMet - and by the IVPC, having been 

registered, respectively, on actual weather stations sited in each chosen site, 

and on a WF located in Southern Italy. The wind data of the considered 

weather stations are referred to 10 meters. Instead, the historical wind power 

data, i.e. the input from the second stage, refer to the WF and cover a period 

of one year (see Appendix A). 

In the next section, the characteristic of the WF are described. 

V.3.1 Italian wind farm 

The WF test site is located in Southern Italy, one of the areas with the 

highest concentration of wind energy. It is composed of two different 

typologies of wind turbines: the first one has a nominal power of 1.8 MW, and 

the second has a nominal power of 2 MW. In the figure below, the theoretical 

power curves of these two types of wind turbine are reported. 
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Figure V.5 Wind power curves of the two wind turbines 

The WF wind power production data are provided by IVPC and they have 

a sampling frequency of 10 min/point, but in the analysed case, in order to 

predict the hourly wind power, the hourly average value of each production 

data was calculated. The dataset covers a period of one year. 

V.3.2 Wind power forecasting results 

The test period refers to two particular times of the year. The first period 

covers four days and the second refers to the first week of spring. In these two 

times of the year, the weather undergoes significant changes and, as wind 

speed suffers strongly from meteorological changes, wind power becomes 

even more variable compared to other periods of the year. The model’s results 

refer to the time of day and each forecast begins at 1a.m. and ends 24 hours 

later. 

The effectiveness of the proposed approach is tested by comparing the 

obtained results with real-world wind power production data registered by 

IVPC in the simulation period considered. Moreover, the effectiveness of the 

model is also tested by the comparison between the forecasting results and the 

wind power forecasts obtained with the persistence method.  

The following figures report the obtained results and the comparison with 

both the real-world data and the persistence forecast values. 
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In both test periods, as shown in the figures above, the implemented model 

is able to predict wind power better than the persistence model. The high 

forecasting accuracy of the proposed approach is demonstrated especially in 

the first three cases, in which the proposed model follows the sudden changes 

of wind power better than the persistence model. The high forecasting capacity 

of the proposed model is also found in the case in which the wind power 

forecasting of the first week of spring is considered (Figure V.10). 

V.4 Model performance analysis 

The model's effectiveness is demonstrated by the evaluation of MAE and 

MAPE in both test periods, first for the wind power forecasts obtained in the 

most critical days (Table V.1) and then for the predictions in the first week of 

spring (Table V.2). In fact, as shown in Table V.1, the proposed approach 

forecasts wind power better than the persistence model: in the most critical 

days, the values of MAE and MAPE are lower when the proposed approach 

is considered. 

Table V.1 Evaluation metrics of the proposed approach and the persistence 

model 

DAY 

MODEL 

Persistence Model Proposed approach 

MAE MAPE MAE MAPE 

SPRING 101.31 23.95% 25.25 13.97% 

FALL 66.22 19.36% 39.99 17.30% 

SUMMER 23.76 26.84% 11.38 12.22% 

WINTER 427.49 17.42% 377.93 13.00% 

The model's performance analysis reveals that the proposed approach 

presents lower values for the figures of merit than the persistence model: in 

all four days, the maximum forecasting error changes from 26.84%, when the 

persistent model is applied, to 12.22 % in the proposed approach. 

The evaluation of MAE and MAPE, calculated in the second test period, 

also confirms the effectiveness of the proposed approach. According to the 

analysis of the evaluation metrics, the proposed approach predicts the wind 

power that the WF produces in the first week of spring, with a mean MAPE - 

calculated on the whole week - which is much lower than the persistence 

model. In fact, this changes from about 27% in the case of the persistence 

model to 14% in the proposed approach, with an improvement of about 40% 

(Table V.2). 
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Table V.2 Proposed approach and persistence model forecasting 

performance and wind power prediction improvement 

MODEL 
Evaluation metrics 

MAE MAPE 

Persistence Model 135.97 51.82% 

Proposed approach 26.94 14.11% 

Improvement [%] 61.89% 47.65% 

In conclusion, according to performance analysis, the proposed approach, 

based on tackling the WPF problem into two sub-problems, is more able to 

accurately forecast wind power than the persistence model. As weather 

information and wind power production data are used in two different phases 

of the model separately, as in a few models in the literature, wind power 

forecasting uncertainty is reduced. In detail, in the proposed approach the 

main uncertainty of wind power is investigated in the first phase, in which, in 

order to predict wind speed, only weather information is used as the input of 

the PSO-ANN model. After this phase, considering the WPG historical data 

and hence the WF power curve, the wind speed forecast values are used for 

obtaining wind power with a mean MAPE around 14%, which is considerably 

lower than the persistence model. 

 



 

 

Conclusions 

 

 

 

 
Environmental issues and the depletion of raw materials have led to an 

increasing interest in sustainable energy sources. Due to the volatility of RESs, 

especially wind energy, an accurate integration of the latter into the power 

system has become necessary. In order to solve the wind integration problem, 

an optimal wind power forecasting model is crucial. 

In the literature, researchers have proposed wind power forecasting models 

based on local information referring to a single forecasting point, without 

considering the information regarding the surrounding areas. However, by 

observing the meteorological phenomena that contribute to wind formation 

and that affect its speed and by understanding how such phenomena evolve 

over time and across space, it is easy to see that an accurate wind power 

forecast has to take into consideration the dependence of wind power, at any 

given point, on the phenomena occurring in the surrounding areas. 

In this PhD dissertation, new wind speed forecasting models which 

consider the temporal and spatial evolution of the meteorological phenomena, 

and a new wind power prediction model, based on the structural and 

production characteristics of a WF, have been proposed. The models here 

developed and presented show how the dependence on the surrounding areas 

on a mesoscale basis strongly influences the performance of the forecasting 

models. In fact, the prediction errors typically found in the models from the 

literature, based on local forecasting systems, are greater than those of models 

that consider the evolution of wind under the influence of meteorological 

phenomena over time and across space such as those here proposed.  

In addition, a two-stage model has been shown to predict the power 

produced by a wind farm. In the first stage, the wind speed prediction is 

determined and then, starting from the wind prediction, the wind power 

forecasting from the wind farm power plant is obtained. This approach further 

improves the forecasting performance. 

In addition to the formalization of the models, their implementation was 

presented. In particular, two forecasting models for two time-horizons, daily 

and hourly, were developed and implemented. The implementations of both 

models have shown that taking into account the spatio-temporal evolution of 

wind strongly improves the forecasting quality of the wind prediction models. 
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In order to test the model’s performance, weather data from meteorological 

stations of the National Air Force Meteorological Service - C.O.Met. (Centro 

Operativo per la Meteorologia), and by IVPC (Italian Vento Power 

Corporation), one of Europe’s most important wind energy companies, were 

used. Moreover, the wind production data, the wind power curves and the 

structural characteristics of a WF were provided by IVPC. 

The core of the work was divided into two parts, the first dedicated to the 

implementation of the daily wind speed forecasting model for estimating the 

availability of energy from wind sources, and the second focusing on the 

hourly wind speed forecasting model for estimating the quarter-hour power 

available from wind sources to organize the dispatching service. 

The daily prediction model is based on weather information and on one of 

the most widespread machine learning methods, the ANN. In order to consider 

the spatio-temporal evolution of weather fronts, a nesting grid was built. 

Unlike the advanced global numerical weather prediction models, where 

large-scale weather predictions are obtained through the identification of 

hundreds or even thousands of sites located around the prediction point, in the 

implemented model, considering the eight main directions of the compass rose 

and two different distances from the prediction site, a simplified grid version 

was used. According to the mesoscale model, in order to describe the daily 

evolution of the weather fronts, the data used for the model’s training are 

shifted in time of a τ-factor, identified through an optimization process. In 

order to obtain a good performance in terms of a low prediction error, the 

implemented model was trained with three datasets, two seasonal and one 

dynamic, the last one moving as a dynamic temporal window according to the 

forecast horizon. After a comparative analysis, the dynamic set was chosen. 

The effectiveness of the implemented model was demonstrated by the 

evaluation of the main figures of merit and by the comparison with the results 

obtained from the persistence model, the typical benchmark for prediction 

models. The implemented ANN-MLP model represents an improvement over 

the persistence model of about 35% in terms of MAPE. 

To forecast the hourly wind speed, instead, a hybrid model, based on 

ANNs, clustering and optimization algorithms, was implemented. The 

implemented neural predictor is an optimized ANN-MLP, in which the ANN 

parameters are optimized by the PSO algorithm. The basic idea for the model 

developed, much like the one for daily forecasting, was to construct a nesting 

grid to consider the evolution of weather phenomena. However, in the hourly 

model the two distances are different, and hence the data used refer to a 

different type of mesoscale. In order to optimize the dataset, the weather data 

were clustered into four groups according to the k-means algorithm, and for 

each group a correlation analysis was considered. The effectiveness of the 

proposed model was confirmed by the model’s performance, in terms of the 

main figures of merit and by the comparison with the persistence model, 

which showed that the maximum value of MAPE was reduced by about 16%. 
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The last part of the work is dedicated to the hourly wind power 

forecasting – the most interesting type of forecast for both wind producers and 

TSOs – at a WF located in Southern Italy. The forecasting methods proposed 

in the literature were discussed, then the implemented two-stage forecasting 

approach was described. 

Unlike the approaches proposed in the literature, the implemented model 

forecasts wind power using the meteorological data and the wind power data 

separately. The first stage of the proposed approach is dedicated to wind speed 

forecasting and it is based on the optimized ANN model previously described; 

the second stage, on the other hand, is dedicated to the evaluation of the wind 

power. The Betz theory was analysed to explain the wind power expression 

considered and, using the historical production data of the WF, the WF’s 

structural characteristics and the wind speed predicted at the first stage, the 

wind power was obtained. 

The implemented approach was tested in several test cases: four 

representative days of the year and the first week of spring. The performance 

and the comparative analysis have confirmed the effectiveness of the 

implemented forecasting approach: the proposed model performs better than 

the persistence model for all the four days, with a MAPE reduction of about 

14% and an improvement, in terms of average MAPE over a week period, of 

about 40% in the second test case. 

The good performance of the proposed approach may open up new 

development scenarios for the scientific community and for applications to 

electrical systems aimed at a better integration of non-programmable 

renewable sources such as wind power, which can lead to further improving 

or extending the methodology presented in this thesis. In the proposed 

approach, it was assumed that at a given time-step a single prevailing wind 

direction was sufficient to describe the weather evolution over the whole area 

considered. However, if large areas with various and sudden local wind 

changes are chosen, it could be beneficial to take into account several 

dominant wind directions instead of only one. In this case, varying correlation 

models or clustering techniques could be employed.  

Another possible development could be constructing a denser nesting grid 

to include other meteorological phenomena such as rain events, humidity, 

convection clouds etc., which indirectly influence wind formation. These data 

could be provided by radar or satellite images and become new inputs of the 

model which, although more complex, could better follow and predict wind 

fluctuations and hence power fluctuations: the evaluation of the expected error 

of wind power fluctuations could be investigated in respect to wind speed 

fluctuations. 

Moreover, in order to improve the model, the optimization phase, which in 

the proposed model only concerns the ANN parameters, could be extended to 

the data used for training the model. A possibility could be implementing a 

new hybrid model based on GAs and the PSO algorithm to optimize both the 
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dataset and the model’s parameters. In this way, false or inaccurate data could 

be removed, and the training phase could get faster. Moreover, if a larger WF 

made up of different types of wind turbines is considered, the new 

optimization phase could be included in the second stage of the proposed 

methodology to identify the best production power curves and hence the most 

useful data for evaluating wind power. 
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Datasets description 

 

 

 

 
In the thesis, two different predictors are proposed: one for the forecast of 

the wind in the site where the wind farm is located – here called wind 

predictor; and a second one – here called wind farm power predictor – which, 

starting from the wind forecasted by the first predictor, provides information 

related to the power produced by the whole wind farm. 

As for the wind predictor, two types have been developed and described: 

one operating on a daily scale, and the other operating on an hourly basis, both 

using the same inputs. The difference between the two wind predictors is 

related to the way in which the datasets are constructed. 

 
Figure A.1 a) Schematic illustration of the sites along the principal and 

secondary cardinal directions. b) Time forecast horizon 
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The following describes the datasets of the wind predictor in detail, starting 

with the description of the common parts first, and then analyzing the 

differences between them. 

The datasets used as input to the proposed forecasting models include 

weather information obtained from measured data. The measured 

meteorological data refer to sixteen sites individuated at two distances, r1 and 

r2 respectively, distributed in two circles around the point S0, where the wind 

is to be predicted (Figure A.1a), and the point S0. 

In order to consider the spatio-temporal evolution of the weather fronts, the 

weather data used for training the model are time-shifted by a proper delay, 

called τ-factor, according to the following relationships: 
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where t-1
r1,j and t-2

r2,j are the temporal instants preceding t+1, the forecast time 

horizon, t0 is the current instant (Figure A.1b). The time delay factor, τ, 

changes according to the type of forecasting: it is equal to 1 day, if the daily 

forecast is considered, and to 1 h if the forecast is hourly. Likewise, the two 

different distances, r1 and r2, change according to the forecasting type: they 

are respectively 500 km and 250 km if the forecast is daily, and to 50 km and 

20 km if the forecast is hourly. 

The total number of points considered is, therefore, 16 + 1. The dataset for 

the 17 points contains the following data: 

• date and time group; 

• wind speed measured 10 meters above the ground; 

• air temperature; 

• barometric pressure. 

All the data used for the setting-up of the dataset are obtained from real 

data provided by National Air Force Meteorological Service – C.O.Met. 

(Centro Operativo per la Meteorologia), as regards the meteorological data of 

the 16+1 points around S0. IVPC (Italian Vento Power Corporation), one of 

Europe’s most important wind energy companies, also provided wind speed 

data at point S0 and wind farm power production. The wind speed data from 

IVPC were verified by comparing them with those provided by C.O.Met., with 

which it coincided. 

It should be noted that the data provided by C.O.Met. and IVPC had a 

higher resolution than those used by neural networks. Indeed, the measured 

meteorological data are the average values over 10 minutes and are thus 

provided 6 times in one hour; likewise, both the wind speed and the power 

production data, provided by IVPC every 15 minutes, represent the average of 

the respective data measured continuously in the fifteen minutes preceding the 

instant to which they refer (Figure A.2). 
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Hence, the new dataset is composed by 51 = 3 x (16 + 1) input, where 3 is 

the kind of data (wind speed, air temperature, barometric pressure), and 16+1 

is the points considered. 

 
Figure A.2 a) Extract from the original weather dataset; b) Extract from the 

original wind production dataset 
 

With reference to the hourly forecast, the ANN input dataset for it is built 

on an hourly basis: for each hour h, the elements of the input vector are ob-

tained as the average values from the measured data in the interval 

[h-30 min; h+30 min]. The two-thirds of the data were gathered to form the 

ANN-training procedure, whereas one-third was used to test the proposed 

procedure. Furthermore, the dataset for the ANN-training procedure was also 

divided into two different sub-sets: 70% for the training and 30% for the 

validation phase. 

As for the dataset of the wind farm power predictor, the data provided by 

the IVPC were used. Specifically, the data, which refer to one year (2017), 

were divided into three sub-sets with the same criterion as above: 42.7% for 

the training phase, 20% for the validation phase, and the remaining 33% for 

the test. 


