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The unknown future rolls toward us. I face it, for the first time, with a sense of hope.

Because if a machine, a Terminator, can learn the value of human life, maybe we can too.

(James Cameron, "Terminator 2: judgment day", Santa Monica, Calif: Artisan Home

Entertainment, 2003)

One Ring to bring them all and in the darkness bind them, in the Land of Mordor where

the Shadows lie.

(J.R.R. Tolkien, "The Lord of the Rings", Ballantine Books, Copyright 1954-1974)

Cooper: Hey TARS, what’s your honesty parameter?

TARS: 90 percent.

Cooper: 90 percent?

TARS: Absolute honesty isn’t always the most diplomatic nor the safest form of

communication with emotional beings.

Cooper: Okay, 90 percent it is.

(Christopher Nolan, "Interstellar", Paramount Pictures, 2014)

Ma videmus nunc per speculum et in aenigmate e la verità, prima che faccia a faccia, si

manifesta a tratti (ahi, quanto illeggibili) nell’errore del mondo, così che dobbiamo

compitarne i fedeli segnacoli, anche là dove ci appaiono oscuri e quasi intessuti di una

volontà del tutto intesa al male.

(Umberto Eco, "Il Nome della Rosa", Fabbri-Bompiani, Milano, Italy, 1980)

Joshua: Greetings, Professor Falken.

Stephen Falken: Hello, Joshua.

Joshua: A strange game. The only winning move is not to play. How about a nice game of

chess?

(John Badham, "Wargames", United Artists, 1983)



Abstract

One of the major technological and scientific challenges in developing au-

tonomous machines and robots is to ensure their ethical and safe behaviour

towards human beings. When dealing with autonomous machines the human

operator is not present, so that the overall risk complexity has to be addressed

to machine artificial intelligence and decision-making systems, which must

be conceived and designed in order to ensure a safe and ethical behaviour.

In this work a possible approach for the development of decision-making

systems for autonomous machines will be proposed, based on the definition

of general ethical criteria and principles. These principles concern the need

to avoid or minimize the occurrence of harm for human beings, during the

execution of the task the machine has been designed for. Within this scope,

four fundamental problems can be introduced:

1. First Problem: Machine Ethics Principles or Laws Identification

2. Second Problem: Incorporating Ethics in the Machine

3. Third Problem: Human-Machine Interaction Degree Definition

4. Fourth Problem: Machine Misdirection Avoidance.

This Ph.D. research activity has been mainly focused on First and Second

Problems, with specific reference to safety aspects. Regarding First Problem,

main scope of this work is on ensuring that an autonomous machine will act

in a safe way, that is:
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• No harm is issued for surrounding human beings (non maleficence ethical

principle)

• In case a human being approaching a potential source of harm, the

machine must act in such a way to minimize such harm with the best

possible and available action (non-inaction ethical principle) and, when

possible and not conflicting with above principles:

• The machine must act in such a way to preserve its own integrity

(self-preservation).

Concerning Second Problem, the simplified version of some ethical principles

reported above has been used to build a mathematical model of a safe decision

system based on a game theoretical approach. When dealing just with safety

and not with general ethics, it is possible to adopt some well-defined criteria

in ensuring the machine behaviour is not issuing any harms towards human

beings, such as:

• Always ensure the machine is keeping a proper safety distance at a

certain operating velocity

• Always ensure that, within a certain range, the machine can detect the

distance between a human being and the location of a potential harm.
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Chapter 1

Introduction

1.1 Key Terms and Definitions

Prior to move forward with the description of this Ph.D. thesis scope, some

key terms and definitions will be provided, for easier reading and better

understanding of the main concepts.

Autonomous Machine: A machine capable of performing tasks in the world

by itself, without explicit human control.

Biological AI: An organism based on both biological and artificial compo-

nents.

Ethical Governor: An arbiter of system-generated action to ensure that it

constitutes an ethically permissible action.

Ethical Principle: A general judgment serving as a justification for ethical

prescriptions or evaluation of human behaviour and actions.

Game Theory: The study of mathematical models of strategic interaction

among rational decision-makers.

1
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Machine Decision Making System: Part of the machine architecture ca-

pable of evaluating and selecting among a list of possible options the action

to be executed by the machine at a certain time.

Golem: An artificial creature, being brought to life by supernatural or tech-

nological means.

Machine Ethics: A part of the ethics concerned with adding ethical be-

haviour or embedding ethical principles in a machine endowed with artificial

intelligence.

Machine Ethical Risk Index: A measure of the extent to which a machine

fails to meet its ethical principles.

Neuromorphic Artificial Intelligence: An artificial Intelligence imple-

mented by means of electronic analog circuits capable to mimic neuro-

biological architectures present in the nervous system.

Superintelligence: An intellect outperforming human brain in all possible

domains, showing higher capabilities and skills, including creativity and wis-

dom.

Weaponized AI: An evil, malicious or destructive autonomous system en-

dowed with artificial intelligence.

1.2 Autonomous Machine Ethics and Safety:

an Overview

One of the major technological and scientific challenges in developing au-

tonomous machines and robots is to ensure their ethical and safe behaviour
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towards human beings. When dealing with autonomous machines the human

operator is not present, so that the overall risk complexity has to be addressed

to machine artificial intelligence and decision-making systems, which must be

conceived and designed in order to ensure a safe and ethical behaviour. In

this work a possible approach for the development of decision making systems

for autonomous machines will be proposed, based on the definition of general

ethical criteria and principles. These principles concern the need to avoid or

minimize the occurrence of harm for human being, during the execution of the

task the machine has been designed for. Within this scope, four fundamental

problems can be introduced:

1. First Problem: Machine Ethics Principles or Laws Identification

2. Second Problem: Incorporating Ethics in the Machine

3. Third Problem: Human-Machine Interaction Degree Definition

4. Fourth Problem: Machine Misdirection Avoidance.

This Ph.D. research activity has been mainly focused on First and Second

Problems, with specific reference to safety aspects. Regarding First Problem,

main scope of this work is on ensuring that an autonomous machine will act

in a safe way, that is:

• No harm is issued for surrounding human beings (non maleficence ethical

principle)

• In case a human being approaching a potential source of harm, the

machine will act to minimize such harm with the best possible and
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available action (non-inaction ethical principle) and, when possible and

not conflicting with above principles:

• The machine must act in such a way to preserve its own integrity

(self-preservation).

Concerning Second Problem, the simplified version of some ethical principles

reported above has been used to build a mathematical model of a safe decision

system based on a game theoretical approach. When dealing just with safety

and not with general ethics, it is possible to adopt some well-defined criteria

in ensuring the machine behaviour is not issuing any harms towards human

beings, such as:

• Always ensure the machine is keeping a proper safety distance at a

certain operating velocity

• Always ensure that, within a certain range, the machine can detect the

distance between a human being and the location of a potential harm.

1.3 Ph.D. Thesis Structure

This Ph.D. thesis consists of the following chapters:

1. The present "Introduction", which provides information on the back-

ground and the scope of this Ph.D. thesis, some main definition and

basic concepts, as well as a description of the thesis structure

2. "Autonomous Machines: Ethics and Safety Problem Statement" will

describe in details the four fundamental problems mentioned in this
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chapter, providing some relevant references to current research concern-

ing the establishment of an ethical framework for artificial intelligent

autonomous agents

3. "Game Theory Overview and Application to Autonomous Machines

Decision Making System" will describe some main aspects of game

theory, as well as its application to the development of decision making

systems of autonomous machines

4. "Game Theoretical Approach to Safe Decision Making System Develop-

ment for Autonomous Machines: Mathematical Modelling" will describe

the mathematical approach used in this Ph.D research work, by iden-

tifying the strategy sets and the payoff functions used to setup the

game

5. "Algorithm Design and Simulation Results" will provide a detailed

description of all algorithms developed, along with the main results of

the Monte Carlo simulation executed on the selected scenario

6. Finally, the "Conclusion" chapter consists in a summary of the main

topics discussed and results obtained within the scope of this Ph.D.

research, along with a description of some possible research directions

to be investigated for further improvements.



Chapter 2

Autonomous Machines: Ethics

and Safety Problem Statement

In this chapter the Four Problems mentioned in Chapter 1 will be described in

more details, providing some relevant references to current research concerning

the establishment of an ethical framework for artificial intelligent autonomous

agents.

2.1 Machine Ethics - Introduction

On traditional vehicles and mobile machines, domain-specific standards are

introduced in order to reduce the safety risk, under the basic assumption

that main control is up to the human operator: this assumption allows to

heavily reduce machine complexity. Designers analyze all machine functions,

identifying potential hazards, and then evaluate the risk, by determining

the requirements for actual functions development. However, in autonomous

6
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systems, such as mobile robots, the human operator is not supposed to

be always present, so that machine decision-making system must entirely

manage the overall risk complexity. Therefore, in order to avoid causing

harms to human beings, an autonomous machine must be endowed with some

judgment capabilities, which can drive its decision-making process, based on

some fundamental ethical principles. Indeed, main goal of machine ethics

is to provide the artificial agents with this set of ethical principles, guiding

them in their decisions. According to [1], decision making process is one of

the most critical aspects in the development of autonomous machines, as,

despite of the availability of information and data, it is unlikely that an

ethical behaviour will emerge spontaneously in a machine: that leads to the

challenge of identifying first suitable ethical principles, then ensuring their

embodiment in the machine architecture. An interesting thought experiment

can be introduced on this topic: let’s consider a super powerful golem genie,

materializing in front of a human being, and telling him that in 50 years it

will return to the same place, and asking him to supply it, upon its return,

with a set of moral principles. It will then follow those principles consistently

and rigidly throughout the universe [2]. Therefore, it is up to the human

being, or better to humankind, to ensure that the principles are not faulty

and perfectly suitable. In order to translate this philosophical standpoint

into requirements of an ethical, autonomous decision-making system, in this

chapter four fundamental problems will be considered:

1. First Problem: Machine Ethics Principles Identification

2. Second Problem: Incorporating Ethics in the Machine
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3. Third Problem: Human-Machine Interaction Degree Definition

4. Fourth Problem: Machine Misdirection Avoidance.

First Problem: How to define machine ethical principles? When dealing

with robotics and autonomous systems ethical behaviour, Asimov’s Laws of

Robotics [3] are often a starting point, even though they have been subject to

criticism due to vagueness and lack of completeness. Nowadays it is possible

to refer to several alternative sources to find out a more recent foundation

of ethical principles for robotics and AI, such as IEEE General Principles

of Ethical Autonomous and Intelligent Systems (A/IS) [4], or Floridi and

Clement Jones five principles key to any ethical framework for AI [6]. Coming

to Second Problem, once identified the proper set of ethical principles,

there is the need to embed it in the machine, implementing a so-called ethical

machine governor. Main challenge is to translate the set of identified ethical

principles in some quantitative form, and in order to do that, one must define

some indicators of the machine behaviour. Regarding artificial intelligence in

general, it is expected to increasingly introduce a massive disruption in the

society: according to [7]: "It poses a multifaceted problem when it comes to

designing and understanding regulatory responses to AI." For what concerning

specifically safety, commonly taken into account also in contemporary robots

and machines development, several standards and regulations are already

available, which require as first step to evaluate the presence of a safety risk for

people in any tasks to be executed by the machines. Machine designers usually

execute a hazard analysis and risk assessment to establish the requirements

for the machine governing control system; the evaluation of the risk is based
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on well-defined parameters, so that its measure can be used as a guidance to

design the machine safety features. One main challenge to face is how to setup

or define similar measures for dignity, privacy or politeness when dealing

with machine behaviour, in such a way to make possible to introduce and

quantify a general machine ethical risk index. About Third Problem: how

to identify a suitable interaction degree between humans and machines? E.g.,

should a machine be conditioned in ethically behaving based on a human

input, or should this behaviour be decided only by artificial decision-making

system? Finally, the Fourth Problem consists in ensuring the avoidance

of machine misdirection (e.g. due to a cyberattack), by introducing, for

instance, neuromorphic computing or biological artificial intelligence. As

mentioned in Chapter 1, this Ph.D. thesis focuses on a possible machine

ethics approach, based on the definition of some suitable ethical principles,

which the machine builders should embed in the artificial decision-making

system. These principles must concern the need to avoid the occurrence of

harm, during the execution of any machine tasks, by solving possible conflicts

issued during decision-making process.

2.2 Background on Machine Ethics

According to Cambridge Online Dictionary [8], a machine can be defined

as an apparatus using mechanical power, having several parts, each with

a definite function, and together performing a particular task. By the way,

above definition is focused on traditional, mechanical equipment, whereas

nowadays, due to the extraordinary growth of emerging digital technologies,
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a broader definition must be considered. For instance, according to the first

indent of 2006/42/EC - Machinery Directive, Article 2(a) [9], machinery is

defined as follows: an assembly, fitted with or intended to be fitted with a

drive system other than directly applied human or animal effort, consisting of

linked parts or components, at least one of which moves, and which are joined

together for a specific application. However, in 2018, the European Commission

started a review of the Machinery Directive itself, focused on machinery, which

utilizes emerging digital technologies, such as artificial intelligence, internet

of things, autonomous robots and so on. Hence, in what follows, the terms

“machine”, “artificial intelligence/AI”, “artificial agent” will be used to identify

an advanced autonomous system, endowed with artificial intelligence and a

decision-making capability, including, e.g., ordinary physical machines, robots,

as well as pure algorithms [10]. Moreover, in 2018, European Commission

has established a High-Level Expert Group on Artificial Intelligence (AI

HLEG) comprising representatives from academia, civil society, as well as

industry. With the general objective to support the implementation of the

European Strategy on Artificial Intelligence, providing recommendations

on policy development and on ethical, legal and societal issues related to

AI. Similarly, in 2020, the U.S. Department of Defense officially adopted a

series of ethical principles for the use of Artificial Intelligence today following

recommendations, after 15 months of consultation with leading AI experts in

commercial industry, government, and academia. Considering major hi-tech

corporate standpoint on these topics, a quite comprehensive overview has

been provided by Thilo Hagendorff, who has listed some of the main initiatives

[11]:
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Information Technology Industry AI Policy Principles” (2017), the principles

of the “Partnership on AI” (2018), the IEEE first and second version of

the document on “Ethically Aligned Design” (The IEEE Global Initiative on

Ethics of Autonomous and Intelligent Systems 2016, 2019), as well as the brief

principle lists of Google (2018), Microsoft (2019), DeepMind (DeepMind),

OpenAI (2018), and IBM (Cutler et al., 2018) which have become well-

known through media coverage. Other large companies such as Facebook or

Twitter have not yet published any systematic AI guidelines, but only isolated

statements of good conduct.

These are some clear evidences of current and potential impact of above

emerging technologies in all aspects of everyday life: it is reasonable to expect

that they will help in replacing human beings in the execution of repetitive

or dangerous tasks, or will be employed in disaster recovery, or simplifying

services, which could be accessed more easily or comfortably. According to

Virginia Dignum, AI HLEG member, artificial intelligence will be very soon

among the human beings, in different forms, e.g. service, transportation,

medical and military robots [12]. As artificial agents are more and more

required to make decisions with direct impact on human society, one of the

most critical upcoming research challenge is to "integrate moral, societal

and legal values with technological developments in AI, both during the

design process as well as part of the deliberation algorithms employed by

these systems." [13]. A more radical standpoint on these issues from Luke

Muehlhauser and Louie Helm is that: Self-improving artificial intelligence

(AI) could become so vastly more powerful than humans that we would not be

able to stop it from achieving its goals. If so, and if the AI’s goals differ from
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ours, then this could be disastrous for humans. [2] This leads to the need to

include, during machine design phase, some key principles in its program,

which can guide it in acting according to the principles themselves. A similar

point of view has been expressed by Nick Bostrom and Eliezer Yudkowsky

[14], mentioning that the possibility of creating "thinking machines" must be

always accompanied by adequate measures to ensure such machines do not

cause harms to human beings. Another AI HLEG member, Luciano Floridi, is

also conducting an extensive research activity on this subject, by identifying

in particular the need to develop laws, corporate policies, standards and best

practices to ensure that artificial agents development and deployment will

be beneficial for humanity [15]. In an effort to define, if possible, a unique,

general framework capable to include all the relevant sources, Floridi has

highlighted the crucial relevance of harmonizing those different initiatives he

analyzed:

• The Asilomar AI Principles, developed under the auspices of the Fu-

ture of Life Institute, in collaboration with attendees of the high-level

Asilomar conference of January 2017 [16]

• The Montreal Declaration for Responsible AI, developed under the

auspices of the University of Montreal, following the Forum on the

Socially Responsible Development of AI of November 2017 [4]

• The General Principles offered in the second version of Ethically Aligned

Design: A Vision for Prioritizing Human Well-being with Autonomous

and Intelligent Systems [5]

• The Ethical Principles offered in the Statement on Artificial Intelligence,
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Robotics and ‘Autonomous’ Systems, published by the European Com-

mission’s European Group on Ethics in Science and New Technologies,

in March 2018 [17]

• The ‘five overarching principles for an AI code’ offered in UK House of

Lords Artificial Intelligence Committee’s report, AI in the UK: ready,

willing and able?, published in April 2018 [18]

• The Tenets of the Partnership on AI, a multi-stakeholder organiza-

tion consisting of academics, researchers, civil society organisations,

companies building and utilising AI technology, and other groups.

Once machine ethical principles have been identified, it is crucial as well

to define a suitable strategy to incorporate those principles in the machine

design. According to Norbert Wiener, “We need to be sure that the purpose

put into the machine is the purpose which we really want” [20]. This requires

as first an assumption of responsibility [21]:

1. In Design: ensuring that development processes take into account

ethical and societal implications of AI as it integrates and replaces

traditional systems and social structures

2. By Design: integrating ethical reasoning abilities as part of the be-

haviour of artificial autonomous systems

3. For Designers: Research integrity of researchers and manufacturers,

and certification mechanisms.

Regarding responsibility for designers, a large set of norms have been intro-

duced to ensure that machinery is developed in order to take into account
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essential health and safety requirements, allowing to reduce as much as possi-

ble the risk of harm for all surroundings human operators and bystanders.

Speaking of traditional vehicles and automated mobile machinery, for example

cars, agricultural equipment, construction equipment etc., some well-known

and established standards are available, which can be applied to ensure the

overall system safety: for instance, ISO 26262 [22] is commonly applied to

automotive/passenger cars, and ISO 13849 [23] is used instead for machin-

ery. Nevertheless, when moving towards advanced robotics and machines

driven by artificial intelligence, there are some peculiar key aspects, increasing

complexity in a relevant way with respect to traditional machines:

1. Advanced machines act autonomously, without expecting any inputs

from human operators, and therefore

2. They must be independently capable of a safe behaviour, avoiding

physical harms to humans.

As mentioned in Chapter 1, the safe behaviour should be considered as part

of the overall set of capabilities a machine must have in order to claim its

adherence to complete ethical framework. On the latter aspect, a relevant

problem is the representation of ethics by means of a set of different features,

including safety, privacy, dignity, politeness and so on, as described by Louise

Abigail Dennis and Michael Fisher [24]: an ethical decision-making process

should be supported by a suitable machine architecture, in which a number of

different agents, or reasoners, are customized to reason about some particular

ethical feature, e.g. safety, dignity, privacy and so on. The whole set of these

reasoners constitutes the so called ethical arbiter or ethical governor.
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Figure 2.1: Autonomous Machine Ethical Governor and Features

During the execution of a certain task, the autonomous system communicates

the set of possible options or choices to the ethical arbiter, which reasoners

will must assess these options by converting them into logical or mathemat-

ical form. Finally, the ethical arbiter provides the result of this assessment

back to the autonomous system. Furthermore, concerning above mentioned

responsibilities by-design, it is also needed to identify some practical ways

to translate high level, general ethical principles in machine-readable codes

and programs, which can be implemented during design phases, so to connect

ethics and machine implemented procedures. Several attempts to define a

possible framework for this kind of implementation has been done, for in-

stance introducing so-called deontic logic, defined as the field of philosophical

logic that is concerned with obligation, permission, and related concepts or,

alternatively, as a formal system trying to capture the essential logical features

of these concepts, which can be eventually used to establish a framework
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for robot ethics [25]. Another relevant issue is related with the definition of

human-machine interaction degree in the machine decision-making process,

which relates with the Third Problem: on this topic, a notable research work

has been conducted by Giuseppe Contissa, Francesca Lagioia and Giovanni

Sartor (European University Institute), which introduced the concept of eth-

ical knob, as a mechanism available to passenger to set the vehicle ethical

behaviour [26]. Finally, once and if ethical principles have been defined or

identified and properly implemented with a suitable procedure in a machine,

another significant issue concerns the possibility of having machine behaviour

misdirected, due for instance to an external cyberattack. On this aspect,

machine artificial intelligence is supposed to be robust enough to detect and

reject all the attempts to disrupt the service it provides. These issues fall

within the scope of cybersecurity, defined as the state of being protected

against the criminal or unauthorized use of electronic data, or the measures

taken to achieve this, which capability must be available to the machine itself

or to the intelligent infrastructure it is connected with [27].

2.3 Machine Ethics and Safety: Towards a

Mathematical Modelling

One of the main challenges for incorporating ethical principles in autonomous

machines relates with the need of defining a suitable set of ethical principles

and their corresponding mathematical model. Coming back to Muehlhauser

and Helm’s Golem Genie example [2], in order to provide the artificial in-
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telligence with suitable principles or laws, it must be assured the principles

themselves to be non-contradictory, self-explanatory, clear and well described,

in such a way to avoid that, due to an intrinsic vagueness or ambiguity, they

could be misunderstood.

Indeed, the Golem legend itself provides deep insights on the ethical implica-

tion of building automata, as described by Zvi Harry Rappaport [28]:

In 16th Century Prague, Rabbi Loew created a Golem, a humanoid made

of clay, to protect his community. When the Golem became too dangerous

to his surroundings, he was dismantled. This Jewish theme illustrates some

of the guiding principles in its approach to the moral dilemmas inherent in

future technologies, such as artificial intelligence and robotics. Man is viewed

as having received the power to improve upon creation and develop technolo-

gies to achieve them, with the proviso that appropriate safeguards are taken.

Ethically, not-harming is viewed as taking precedence over promoting good.

Jewish ethical thinking approaches these novel technological possibilities with

a cautious optimism that mankind will derive their benefits without coming to

harm.
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are often used as reference, even though it has been highlighted that these laws

are not easy to interpret, and furthermore they do not consider the capability

of an artificial intelligence to adapt its program to the environment it is

interacting with, and not even the coordinated interaction between different

machines, which can result in a swarm-like behaviour [29]. Due to Asimov’s

laws incompleteness and inability to enclose some contemporary issues related

to advanced robotics or artificial intelligence, several alternative laws or

principles have been proposed. For instance, Robin R. Murphy and David

D. Woods have introduced a parallel set of laws of responsible robotics, to

highlight the robots accountability in their interactions with people, and with a

special focus on the responsibilities of designers to ensure an adequate machine

system safety in order to avoid harms to human beings [30]. Furthermore, a

group of researchers from Google Brain, Stanford University, UC Berkeley and

OpenAI, have proposed a set of concrete problems in AI safety, in an attempt

to overcome the above-mentioned incompleteness and vagueness of Asimov’s

laws, and provide designers with some practical methods and approaches

for designing machines [31]. As reported in the previous sections, Luciano

Floridi [15] has also provided some main contributions in founding a machine

ethics general approach, by proposing five key principles for any AI ethical

framework:

1. Beneficence: AI must be beneficial to humanity.

2. Non-maleficence: AI must also not infringe on privacy or undermine

security.

3. Autonomy: AI must protect and enhance our autonomy and ability to
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take decisions and choose between alternatives.

4. Transparency: AI must promote prosperity and solidarity, in a fight

against inequality, discrimination, and unfairness.

5. Accountability: We cannot achieve all this unless we have AI systems

that are understandable in terms of how they work (transparency) and

explainable in terms of how and why they reach the conclusions they

do (accountability).

Based on this framework, and in order to extend current approach to safety

system design as introduced in the Machinery Directive and related harmo-

nized standards to the special case of autonomous machines, a set of four main

guidelines can be introduced, which can help in performing the translation of

general principles into mathematical or logical equations:

1. There are five key ethical principles: beneficence, non-maleficence,

autonomy, transparency and accountability

2. Machine ethics can be represented as a set of different features:

safety, dignity, politeness, privacy, etc.

3. Each feature must be expressed in quantitative terms, by

means of specific risk indexes (e.g. machine safety risk); these

indexes can be reviewed as individual contribution to a gen-

eral machine ethical risk index

4. Each ethical principle must be expressed in quantitative terms

as well, introducing the machine capability to adhere to that
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principle as a function of all the risk indexes related to the

different machine ethics features.

Among all machine ethics features above mentioned, within this Ph.D. research

work, safety has been identified as a first, relevant case, because, as already

mentioned in the previous sections, contemporary machines must be already

designed to be safe, and machine safety risk index can be already expressed in

quantitative terms, as a combination of different parameters such as probability

of exposure and severity of harm: this is actually the subject of the so-called

machine safety engineering [19]. Indeed, the process of assessing machinery

risks and apply related risk reduction measures is described in details within

ISO 12100 [32]. A machine safe design must be ensured by analyzing all the

possible hazards the machine can issues during the execution of its tasks,

analyzing the risks for each of those hazards, described by means of suitable

indexes, and introducing technical safety requirements and measures to reduce

as much as possible the risks themselves. In this context, having introduced

a suitable safety risk index, it’s possible to state for instance that potential

"machine maleficence” in terms of safety is adequately reduced when the

machine is acting in such a way to keep its safety risk index as low as possible.

This leads to the introduction of a quantitative relationship between the

non-maleficence capability (or, to be more precise, the machine capability

to adhere to non-maleficence ethical principle) and the safety risk index,

so that the best ethical decision taken by the machine corresponds to the

minimum value of the risk index itself. As mentioned in the introduction,

once identified the proper set of ethical principles, there is the need to embed

it in the machine: this will lead to the need of defining practical guidelines
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in translating ethical principles in quantitative relationships, in such a way

to be able to make them understandable at a machine level. And indeed

the process of taking an ethical decision by a machine implies a problem

of minimizing a general machine ethical risk index, made up of different

individual contributions, including safety. This encourages in considering

mathematical approaches for modelling the ethical principles, represented in

some quantitative form. One possible approach is based on game theory, which

applies whenever the actions of several agents are interdependent and can

be defined as the study of mathematical models of conflict and cooperation

between intelligent rational decision-makers [33]. The purpose of study in

game theory is game [36]. Players of the game are described in terms of

their available actions, which influence on the game is known. There, players

involved in a game are arranged in their preferences, their information, the

strategic actions available to them, and how these influence the outcome. A

high-level description of a game specifies only what payoffs each individual or

group can obtain by assistance of its members. Within this scope, a machine

can be considered as one of the players, and therefore it’s possible to formulate

its decision-making process as a game, where payoffs functions must be defined

in such a way to take into account the task to be executed and the ethical

principles the machine will obey. Above mentioned game theory framework

has been used in this Ph.D. thesis in order to move from a pure philosophical

description or definition towards a quantitative form and a mathematical

model of the machine ethics principles, and to allow formulating the artificial

agent decision-making process in terms of logic statements, optimization

problems etc. which can be coded in a software program: a wider discussion
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and more details on this mathematical modelling approach will be provided

in Chapter 3.



Chapter 3

Game Theory Overview and

Application to Autonomous

Machines Decision Making

System

3.1 Autonomous Machines: Overview and Math-

ematical Modelling

Let’s recall some useful definitions for the scope of this work. A machine

can be defined as an apparatus using mechanical power and having several

parts, each with a definite function and together performing a particular

task. More generally, a machine can be defined as an apparatus used to

perform a particular task. A machine can be termed as autonomous, if it

24



CHAPTER 3. GAME THEORY OVERVIEW AND APPLICATIONS 25

can take decisions without human inspection, control or assistance: in other

terms, autonomous machines are capable of performing tasks in the world by

themselves, without explicit human control.

Figure 3.1: Autonomous robots: NASA Mars exploration Rover - WikiImage

Pic from Pixabay

More specifically, a machine can be termed as a robot, if it is autonomous

and if it agrees with the three laws stated by Isaac Asimov (see Section 2.3).

Autonomous robots can be used in a large number of applications, including

construction equipment, self driving cars and vehicles (see Fig. 3.3), hazardous

waste management, household maintenance (see Fig. 3.2) etc.
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Figure 3.2: Autonomous robots: a vacuum cleaning robot for household

maintenance - pic from Pixabay

An autonomous machine must be able to perform specific tasks with a high

degree of autonomy, representing an intersection between a number of different

knowledge domains, such as artificial intelligence, robotics and information

engineering. An autonomous machine is endowed with a set of different

capabilities, including:

• Information and data retrieving from the environment

• Medium/long term autonomy, i.e. capability to execute a task without

any human intervention

• Self propulsion, i.e. the machine contains its own means of motion (e.g.

electric motors).
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Figure 3.3: First self driving bus, from 2019 deployed on the public road in

Berlin - Pic from Pixabay

More in general, an autonomous mobile robot must be able to:

• (Perception) Perceive its environment, by means of a suitable set of

sensors (e.g. laser scanners, cameras, temperature sensors)

• (Decision-making) Take decisions based on the input from its perception

system and/or other data or information evaluated or elaborated during

the execution of its control program

• (Actuation) Actuate a travel or manipulation task, by interacting with

its environment.
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Figure 3.4: Autonomous machine control system: architectural block diagram

Some possible actions are: increase or decrease velocity, keep standing still,

turn/change direction, pick, grab or place objects etc. Generally speaking, a

control system for autonomous machines and robots can be very complex and

can be divided in different subsystems [37]:

• perception system

• traffic rules interpreter

• decision making system or behaviour controller

• level car controller.

In the Fig. 3.5, a pseudocode example of the control program of the au-

tonomous machine is showed.
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Figure 3.5: Autonomous machine control program: pseudocode example

Autonomous robots motion control system can be mathematically modeled

depending on the specific application. Considering a mobile robot equipped

with two fixed wheels and a centrally-oriented wheel, controlled with the

help of electric motors and drives, combined into a single control system

executive-enforcement mechanisms and a computing devices (see Fig. 3.6),

its kinematic model can be described by the following equations [38]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= v cos α

dy

dt
= v sin α

dα

dt
= ω

(3.1)

where:

x, y: coordinates of the robot relative to the fixed coordinate system;
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α: robot orientation angle in space relative to the horizontal axis;

v, ω: linear and angular velocity of the robot.

Figure 3.6: Example of a 2 Wheel mobile robot, built with Arduino

Robot Kit (retrieved from https://www.auselectronicsdirect.com.au/

2-wheel-drive-ultrasonic-arduino-projects-robot-ki)

In this specific case, motion control problem consists in determining the

transformation leading the robot from the point of coordinates (x, y) and

orientation angle α to the point with coordinates (x∗, y∗) and orientation angle

α∗. Ideally, the task of achieving the specified coordinates will be accomplished

if the achievement error of any controlled coordinates equals to zero. In reality,

the achievement of the specified coordinates will be fulfilled, if errors of linear

coordinates and orientation angle error are represented as a set of inequalities:

https://www.auselectronicsdirect.com.au/2-wheel-drive-ultrasonic-arduino-projects-robot-ki
https://www.auselectronicsdirect.com.au/2-wheel-drive-ultrasonic-arduino-projects-robot-ki
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|x∗ − x| < ex,

|y∗ − y| < ey,

|α∗ − α| < eα

(3.2)

The control process is based on coordinate transformation expressed by means

of the rotation matrix:

M(α) =

⎛⎜⎜⎜⎜⎜⎜⎝
cos α sin α 0

− sin α cos α 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.3)

Therefore, the coordinate transformation to be used by robot control system

to generate the setpoint and actuate the motion from (x, y, α) to (x∗, y∗, α∗)

can be expressed as:

⎛⎜⎜⎜⎜⎜⎜⎝
x1

y1

α1

⎞⎟⎟⎟⎟⎟⎟⎠ = M(α)

⎛⎜⎜⎜⎜⎜⎜⎝
x∗ − x

y∗ − y

α∗ − α

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.4)

where x1, y1, α1 are the coordinates and orientation angle of the robot in new

coordinate system. The motion control block diagram for this application is

showed in Fig. 3.7:
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Figure 3.7: Autonomous machine control architecture: example of block

diagram

3.2 Game Theory: an Overview

Game theory is the study of mathematical models of strategic interaction

among rational decision-makers [33]. It has applications in all fields of social

science, as well as in logic, systems science and computer science. The first

known discussion of game theory occurred in a letter written by Charles

Waldegrave, an active Jacobite, and uncle to James Waldegrave, a British

diplomat, in 1713. Game theory did not really exist as a unique field until

John Von Neumann published a paper in 1928 [34]: Von Neumann’s origi-

nal proof used Brouwer’s fixed-point theorem on continuous mappings into

compact convex sets, which became a standard method in game theory and

mathematical economics. His paper was followed by his 1944 book Theory
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of Games and Economic behaviour co-authored with Oskar Morgenstern. In

1950, the first mathematical discussion of the prisoner’s dilemma appeared,

and an experiment was undertaken by notable mathematicians Merrill M.

Flood and Melvin Dresher, as part of the RAND Corporation’s investigations

into game theory [35]. RAND (an American nonprofit global policy think

tank created in 1948 by Douglas Aircraft Company to offer research and

analysis to the United States Armed Forces) pursued the studies because

of possible applications to global nuclear strategy. Around this same time,

John Nash developed a criterion for mutual consistency of players strategies,

known as Nash equilibrium, applicable to a wider variety of games than the

criterion proposed by Von Neumann and Morgenstern. Game theory applies

whenever the actions of several agents are interdependent [39]. According to

[36], the purpose of study in game theory is game. There players involved

in a game are arranged in their preferences, their information, the strategic

actions available to them, and how these influence the outcome. A high level

description of a game specifies only what payoffs each individual or group can

obtain by assistance of its members. Game theory is generally divided into

two branches:

• Cooperative Game Theory, focused on predicting which coalitions

will form, the joint actions that groups take and the resulting collective

payoffs

• Non Cooperative Game Theory, which studies and models conflict

situations among economic agents; that is, it studies situations where

the profits (gains, utility or payoffs) of each economic agent depend not
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only on his/her own acts but also on the acts of the other agents [40].

The so-called prisoner’s dilemma is a standard example of a game analyzed in

game theory that shows why two individuals X and Y might not cooperate,

even if it appears that it is in their best interests to do so. Two men are arrested

and imprisoned, and each prisoner is in solitary confinement with no means

of communicating with the other. The prosecutors lack sufficient evidence to

convict the pair on the principal charge. They hope to get both sentenced to

a year in prison on a lesser charge. Simultaneously, the prosecutors offer each

prisoner a bargain. Each prisoner is given the opportunity either to: betray

the other by testifying that the other committed the crime, or to cooperate

with the other by remaining silent. The offer is:

• If X and Y each betray the other, each of them serves 6 years in prison

• If X betrays Y but Y remains silent, X will be set free and Y will serve

7 years in prison (and vice versa)

• If X and Y both remain silent, both of them will only serve 1 year in

prison (on the lesser charge)

It is implied that the prisoners will have no opportunity to reward or punish

their partner other than the prison sentences they get, and that their decision

will not affect their reputation in the future. Because betraying a partner

offers a greater reward than cooperating with them, all purely rational self-

interested prisoners would betray the other, and so the only possible outcome

for two purely rational prisoners is for them to betray each other [41]. A game

can be conveniently represented by means of a so-called payoff matrix, a
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bi-matrix reporting the payoffs of each player depending on the strategy used

as response to the other player’s strategy. For instance, the payoff matrix for

the prisoner’s dilemma can be represented as follows:

Player Y

B S

Player X
B (−6, −6) (0, −7)

S (−7, 0) (−1, −1)

Table 3.1: Prisoner’s Dilemma: payoff matrix

where B: player betrays, S: player stay silent. Let’s introduce the following

definitions:

• A strategy, or pure strategy, is a complete algorithm for playing the

game, telling a player what to do for every possible situation throughout

the game.

• A strategy profile S (sometimes called a strategy combination) is a

set of strategies for all players which fully specifies all actions in a game.

A strategy profile must include one and only one strategy for every

player.

• A payoff function si for a player i is a correspondence between a

strategy profile of all players and a payoff, obtained by player i.

• In this context, a game G can be defined as a pair {S, s}, where s is

the vector function s = (s1, . . . , sn), and n is the number of players
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• A finite game is a game with finite number of players and finite

strategy set

• A mixed strategy is an assignment of a probability to each pure

strategy, defined by means of a given probability distribution [42].

3.3 Nash Equilibrium: Definition, Examples,

Existence and Uniqueness

Nash Equilibrium: Definition and Examples Let G = (S, s) be a game

with n players, where Si is the strategy set for player i, S = S1 ×S2 × . . .×Sn

is the strategy profile and s(x) = (s1(x), . . . , sn(x)) is its payoff function

evaluated at x ∈ S. Let xi be a strategy of player i and be x−i be a strategy

profile of all players except for player i. When each player i ∈ {1, . . . , n}

chooses strategy xi resulting in strategy profile x = (x1, . . . , xn) then player

i obtains payoff si(x). Note that the payoff depends on the strategy profile

chosen, i.e., on the strategy chosen by player i as well as the strategies chosen

by all the other players. A strategy profile x∗ = {x∗
i , x∗

−i} ∈ S is a Nash

equilibrium if no unilateral deviation in strategy by any single player is

profitable for that player, that is [43]:

∀i, xi ∈ Si : si(x∗
i , x∗

−i) ≥ si(xi, x∗
−i) (3.5)

By applying the above definition, it’s possible to identify that the strategy

profile {B, B} is actually the only Nash equilibrium for the prisoner’s dilemma
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(see 3.1). Indeed, let’s assume prisoner Y - the "column player" - makes the

choice to use the strategy B: in this case, prisoner X - the "row player" - can

maximize it’s payoff by means of the strategy B, which leads to a payoff

−6, which is instead −7 in case of X choosing B. This means that betraying

is a so-called dominant strategy for player X under the assumption that

player Y is betraying as well. Let’s consider Y opting for the strategy S:

in this case, the best choice for X is again B, leading to a payoff of 0, and

therefore betraying is a dominant strategy for X for each possible choice of Y.

By exchanging X and Y roles, it can be easily found that B is a dominant

strategy for Y as well for each possible choice of X. Considering the definition

3.5, the Nash equilibrium can be reviewed as a strategy profile which is a

dominant for all players, and therefore we can conclude that {B, B} is the

Nash equilibrium for the prisoner’s dilemma. It’s remarkable that, even if

both X and Y could have a better choice in terms of individual payoff - which

is -1 for both prisoners - this can be only obtained with the strategy profile

{S, S}, which is not a Nash equilibrium, as starting from this profile each

player can gain a better payoff by changing only his own strategy.
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Figure 3.8: Nash Equilibrium for Prisoner’s Dilemma as intersection of row

player X (blue) and column player Y(red) dominant strategies.

Informally, a Nash equilibrium can be defined [44] as “a solution concept of

a non-cooperative game involving two or more players in which each player

is assumed to know the equilibrium strategies of the other players, and no

player has anything to gain by changing only his own strategy.”

Stated simply, two players A and B are in Nash equilibrium if A is making

the best decision he can, taking into account B′s decision while B’s decision

remains unchanged, and B is making the best decision he can, taking into

account A′s decision while A′s decision remains unchanged. Hence, a group

of players are in Nash equilibrium if each one is making the best decision

possible, taking into account the decisions of the others in the game as long

as the other parties decisions remain unchanged, implying that no player can

gain more by unilaterally changing strategy.
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Nash Equilibrium: Existence and Uniqueness In his doctoral thesis,

John Nash proved that if mixed strategies are allowed, then every finite game

has at least one Nash equilibrium, which might be a pure strategy for each

player or might be a probability distribution over strategies for each player

[45]:

Theorem 1. (Existence of Nash Equilibrium) Every finite game has

an equilibrium point.

Regarding uniqueness of Nash equilibrium [46], let’s first introduce the fol-

lowing:

Definition 1 (Diagonally Strictly Concave). The function σ(x, r) :=∑︁n
i=1 riϕi(x), r ∈ Rn

+ is diagonally strict concave (DSC) if (x1 −x0)T g(x0, r)+

(x1 − x0)T g(x1, r) > 0 ∀x0 ̸= x1 ∈ C where: C ⊂ Rn is a closed bounded

convex set, ϕi(x) is the payoff function of player i, continuous in x and concave

in xi, x ∈ C, gi(x, r) := ri∇iϕi(x), and (·)T is the transpose operator.

The following theorem holds, based on DSC definition:

Theorem 2. (Uniqueness of Nash Equilibrium) If ∃r > 0 s.t. σ(x, r) :=∑︁n
i=1 riϕi(x) is DSC, there is an unique Nash Equilibrium.

3.4 Game Theory and Autonomous Machines

Decision Making

Game theory and Nash equilibrium can be usefully applied to autonomous

machine decision making process. Indeed, as described in [47], given an
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autonomous vehicle-target assignment problem, where a group of vehicles are

expected to optimally assign themselves to a set of targets, a game theoretical

formulation of the problem in which the vehicles are viewed as self-interested

decision makers can be introduced. Let’s considering nv vehicles or mobile

machines assigned to ni targets, labeled as V1, V2, . . . , Vnv and the targets

as T0, T1, . . . , Tni
, where a fictitious target T0 represents the “null target” or

“no target”. A vehicle can be assigned to any target in its range, denoted by

Ai ⊂ T for vehicle Vi ∈ V . The assignment of vehicle Vi is denoted by ai ∈ Ai,

and the collection of vehicle assignments a1, ..., anv , called the assignment

profile, is denoted by a.

Let V = {V1, V2, . . . , Vnv} and T = {T0, T1, . . . , Tni
} and let A = A1 × A2 ×

. . . × Anv , then the assignment of vehicle Vi is denoted by ai ∈ Ai , and the

collection of vehicle assignments {a1, . . . , an}, called the assignment profile, is

denoted by a. Each assignment profile, a ∈ A, corresponds to a global utility

function U(a), that can be interpreted as the objective of a global planner.

The vehicles can be viewed as autonomous decision makers, and, accordingly,

each vehicle Vi is assumed to select its own target assignment ai ∈ Ai, to

maximize its own utility function, Ui(a). Hence, the vehicles are facing a

multiplayer game, and as said in previous section a well-known equilibrium

concept for multiplayer games is the notion of Nash equilibrium. In the

context of an autonomous target assignment problem, a Nash equilibrium is

an assignment profile a∗ = (a∗
1, a∗

2, . . . , a∗
n) such that no vehicle could improve

its utility Ui by unilaterally deviating from a∗. In Chapter 4 the identification

of suitable utility functions to be embedded in a game-theoretical decision

making system will be discussed, with the main goal of allowing autonomous
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machines to reach the assigned targets, while ensuring at the same time their

safe behaviour towards surrounding human beings.



Chapter 4

Game Theoretical Approach to

Safe Decision Making System

Development for Autonomous

Machines: Mathematical

Modelling

In this Chapter a possible translation of machine ethics in algorithmic form

will be introduced, with main reference to non-maleficence principle and safety

ethical feature.

42
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4.1 Machine Safety Risk Index

As discussed in previous Chapters, in order to translate machine ethical

principles into machine-readable code programs, some guidelines can be

introduced. Let’s consider the specific case of non-maleficence principle and

safety ethical feature in order to introduce a breakdown of practical steps to

be executed to reach this goal.

1. Select the ethical principle

2. For each selected ethical principle, select the ethical feature

3. For each selected ethical feature, introduce a risk index, expressed in

quantitative form.

Therefore, as we are selecting the non-maleficence principle and its related

safety ethical feature, the so-called Machine Safety Risk Index (MSRI)

must be introduced.

Let’s consider the specific case of a totally autonomous robotic system (TARS)

(see 3.1, 3.4), which can travel in a defined region A of the euclidean two

dimensional space with a certain velocity vr(t).

Let Pr(t) ∈ A be TARS position as a function of the time, vmaxr its maximum

velocity and T its assigned position target. This means that TARS, starting

from an initial position Pr0 = Pr(t = 0), is required to reach the final position

T at a certain time t∗, ideally with vr(t∗) = 0.

Let’s assume that, in the same region A ⊂ R2, there are N humans Hi, i =

{1, ..., N}, free to move with velocities vi(t), and let Pi(t) ∈ A and vmaxi be

their respective positions and max velocities. According to the methodologies
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provided by ISO standards for machinery safety (see 2.1), all possible hazards

must be identified for each of the human beings Hi, and the related risk

must be then evaluated. In this scenario, a collision between TARS and any

of the humans constitutes the main hazard which can occur: that’s why an

autonomous mobile robot is normally equipped with a safety rated personnel

detection field (e.g. based on laser technology), able to stop it over a short

time in case a human is detected on its path. Let’s assume that TARS is

equipped with the above mentioned safety field, so that there is the need to

evaluate the residual risk of collision, as a function of TARS and humans

positions and velocities. This is particularly needed in case of large number

of humans moving randomly in A, as due to the possible sudden change

of velocity and direction, and to the dynamics of the safety detection field,

it could be not always possible for the autonomous mobile robot to avoid

any incidents. Furthermore, a sudden stop also leads to a reduction of robot

productivity, and therefore it can be reasonable to identify other strategies,

e.g. a speed gradual reduction based on the position and velocities of humans

as a function of the time. With this goal, let’s identify a possible risk index of

the collision between TARS and the generic ith human Hi. As Pr(t) and Pi(t)

are the respective positions of TARS and Hi at the time t, the safety risk of

a potential collision can be reviewed for instance as a decreasing function ϕs

of their euclidean distance di(t) = ∥Pr(t) − Pi(t)∥; e.g, in case of N humans,

the overall risk index could be defined as the sum of all the N safety risks∑︁N
i=1 ϕs(di(t)) = ∑︁N

i=1 ϕs(∥Pr(t) − Pi(t))∥.

In general, ϕs can be a function of Pr and the NPi human positions, and
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therefore:

MSRI := ϕs(Pr(t), P1(t), ....., Pn(t)) (4.1)

As an important remark, MSRI is not defined as dependent on TARS and

Hi velocities vr(t) and vi(t), because any possible interaction is considered as

potentially dangerous, regardless the actual value of such velocities.

Figure 4.1: TARS and Hi: position, velocity and euclidean distance in A

4.2 Game Theoretical Safe Decision Making:

Mathematical Formulation

As described in Section 4.1, TARS is provided with a specific task to be

executed, that is to reach a final position T starting from its initial position

Pr(t = 0). Let’s assume that TARS decision making system can make the

decision to change its position to execute its task every ∆t, and let tk =

tk−1 + ∆t, k = 1, ...., M ∈ N, the kth instant of time, with t0 = 0.

At each time tk, TARS can move from its current position Pr(tk) in a finite
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number of directions, with a finite set of possible velocities. Let’s define the

values of TARS velocity scalar components vrx and vry as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vrx(l) = −vmaxr + 2(l − 1)vmaxr

Ns
, l = 1, .., Ns + 1

vry(m) = −vmaxr + 2(m − 1)vmaxr

Ns
, m = 1, .., Ns + 1

(4.2)

with Ns even integer higher or equal than 2. Therefore, at each time tk,

there will be (Ns + 1)2 possible strategies for TARS decision making system,

corresponding to the selection of a given position displacement with scalar

components: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆Pr(l, m)x = vrx(l)∆t

∆Pr(l, m)y = vry(m)∆t

(4.3)

Let θrj, j = 1, ..., (Ns + 1)2 denote these possible strategies, and let’s define

a one-to-one correspondence between the values of j with index pairs (l, m),

l, m = 1, .., Ns + 1, as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j = 1 ↔ l = 1, m = 1

j = 2 ↔ l = 1, m = 2

...

j = Ns + 1 ↔ l = 1, m = Ns + 1

...

j = (Ns + 1)2 ↔ l = (Ns + 1), m = (Ns + 1)

(4.4)
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Figure 4.2: TARS strategy set for Ns = 2: robot can move in 8 different

directions (S0 to S7) or keep standing still in the current position (S8)

At each time tk there will be at least one strategy θrj∗(tk) = θ∗
r(tk), such that

∥P ∗
r − T∥ = ∥(Pr(tk) + ∆Pr(l∗, m∗)) − T∥ = min

θrj

∥(Pr(tk) + ∆Pr(l, m)) − T∥,

where (l∗, m∗) is the pair of l and m indexes corresponding to j∗ as per 4.4.

In other words, by selecting the strategy θ∗
r(tk), TARS decision making system

will minimize the distance with respect to its final target T .

Therefore, for each time tk it’s possible to define a task performance index

(TPI) for TARS as follows:

TPI := ϕp(l, m, tk) = ϕp(j, tk) = −∥(Pr(tk) + ∆Pr(l, m)) − P ∗
r ∥ (4.5)

reaching its maximum value 0 when TARS decision making system selects at

the time tk the strategy θ∗
r(tk) corresponding to (l∗, m∗) or, equivalently, to

j∗. Considering both 4.1 and 4.5, in case of single human located in A, an
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overall payoff function for TARS can be defined as follows:

ϕ(l, m, tk) = TPI + MSRI = ϕp(l, m, tk) + ϕs(l, m, tk) =

= −∥(Pr(tk) + ∆Pr(l, m)) − P ∗
r ∥ + ϕs(Pr(t), P1(t))

(4.6)

which takes into account both MSRI and TPI. Thus, a game G can be defined,

consisting, from TARS perspective, in reaching the target position T taking

into account the presence of the human H1 in such a way to reduce the risk

of a collision. For this game G the complete strategy set S1 and the payoff

function s1 for TARS are completely specified by 4.4 and 4.6. In a game

theoretical approach, at each time tk TARS decision making system must

select the best strategy taking into account its own payoff function (with

both performance and safety contributions) and the behaviour of the other

player, and therefore it must have available a model of the behaviour of the

human H1 in terms of strategy set and payoff function. This H1 model can

be defined by using some assumptions:

1. H1 has an assigned task as well, which consists in moving from an initial

position Ph(0) to a final target position Th - same as TARS, in general

with different initial and final position.

2. H1 strategy set S2 has similar structure as TARS (see 4.4), with maxi-

mum velocity on both x and y axes vmaxh < vmaxr

3. H1 payoff function s2 must be defined to adequately model the hu-

man behaviour, taking into account the specific application cases and

scenarios.
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Here below the complete game definition which will be implemented for the

simulation (see Chapter 5):

Player1 (TARS)

Strategy profile: θrj, j = 1, ..., (Ns + 1)2 (see 4.4)

Payoff function: s1 = ∥(pr(tk) + ∆pr(j)) − T∥ + K ∗ ⟨pr(tk) + ∆pr(j), ph(tk) +

∆ph(j′)⟩ = TPI + MSRI (see 4.6)

with: j, j′ = 1, ...., (Ns + 1)2, K ∈ R+

pr, ph: TARS and H1 position vectors

∆pr(j), ∆ph(j′): TARS and H1 position vector increment corresponding to

the strategy with index j for TARS and to the strategy with index j′ for H1

(see Section 5.3 for further details on K)

Player2 (H1 model)

Strategy profile: θrj′ , j = 1, ..., (Ns + 1)2

Payoff function: s2 = ⟨pr(tk) + ∆pr(j), ph(tk) + ∆ph(j′)⟩ − 1
2 ∗ ∥∆ph(j′)∥2

with: j, j′ = 1, ...., (Ns + 1)2
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Figure 4.3: Position vectors for TARS (green) and human Hi (red) in 3D

space at time tk and tk+1, depending on the selected strategies at time tk

(green and red dotted line)

Therefore, TARS decision making system will adopt a model of human

behaviour aimed to optimize its payoff by selecting a strategy which minimizes

the kinetic energy and maximizes the scalar product between TARS and H1

positions, i.e. considering the human as pursuing a minimum effort action

and the worst case of human not attentive to TARS trajectory.
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4.3 Application Case Study: Definition, Con-

straints and Goals

As mentioned in 3.3, Nash equilibrium can be defined as a solution concept

of a non-cooperative game involving two or more players in which each player

is assumed to know the equilibrium strategies of the other players, and no

player has anything to gain by changing only his own strategy. As mentioned

above, in order to allow this type of formulation, a model of the behaviour of

the human being must be used and supposed to be known by machine control

system (see 4.2). Hence, at each time tk, a Nash equilibrium search can be

performed in a game G between the machine (player 1) with its strategy

profile and the model of the human being (player 2), embedded in the machine

control algorithm. This means that, while at each time tk, TARS decision-

making system will apply the strategy resulting from the Nash Equilibrium

search as setpoint for the action to be taken at time tk+1, human will keep

making decisions independently. Therefore, game G is actually played by

TARS only, which will act as first player and, as mentioned above, will use a

model of H1 as second player.
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Figure 4.4: Schematic representation of TARS decision making system while

playing the game G between itself (strategy set S1 and payoff function s1)

and human H1 model (strategy set S2 and payoff function s2).

Therefore, the game theoretical formulation will be:

max
θrj ,θrj′

sI (4.7)

where:

I = 1 (TARS), 2 (H1 model)

s1 is the payoff function for TARS (see 4.6)

s2 is the payoff function for H1 model (see Chapter 5)

θrj, θrj′ are the strategy set for TARS and H1 model.

Based on this framework, the simulation of an application case study has

been setup in Matlab c⃝ R2020b: TARS and a single human being can move

in a region of the euclidean two-dimensional space, more precisely:
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• Robot and human trajectories must stay within a circumference Ce with

radius Re

• Robot should not access a forbidden region delimited by a circle Ci with

radius Ri < Re

• Both robot and human have assigned with a specific task, e.g. to reach

a final position starting from the initial position, standing the above

mentioned constraints.

Figure 4.5: TARS and H1 trajectories in the 2-D Euclidean space subset with

constraints

Regarding simulation, the following algorithms have been developed:

• A trajectory planner for the robot

• A trajectory planner for the the human
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• A Nash Equilibrium finder

• A game theoretical decision maker

Another important aspect is related to the trajectory constraints - e.g. TARS

to move within the circular crown with major radius Re and minor radius

Ri - which will be implemented in the task planners of TARS and H1. In

a similar way, instead of including as a non-linear constraint the minimum

distance to be kept between TARS and H1, that will be included in the TARS

payoff function, as defined in 4.1. This will allow to avoid the introduction

of algebrical constraints in the game theoretical formulation, which could

lead to the existence of multiple Nash Equilibria [48]. Main goal of the

simulation is to show the improvement in terms of reduction of potential

incidents number, in case of adoption of the game theoretical decision making

algorithm developed in this Ph.D. research activity, with respect to traditional

optimization algorithms (e.g. exhaustive maximum search). In order to make

effective this comparison, a Montecarlo-type simulation will be used, by testing

the algorithms on a large, defined set of possible TARS and H1 trajectories

in the 2-D euclidean space. The results of this simulation will be described in

details in the Chapter 5.



Chapter 5

Algorithm Design and

Simulation Results

In this Chapter the algorithms developed in Matlab c⃝ R2020b will be de-

scribed in details, by specifying their implementation in terms of input,

outputs and logic. Furthermore, application case study will be introduced,

along with the results of the executed simulation

5.1 Algorithm Implementation

Nash_Equilibrium_Finder

This algorithm takes as inputs the payoff matrices of row and column player

and provides as output the position of the Nash Equilibrium in the game

bi-matrix (S1|S2) (row and column indexes)

55
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Input

Variable

Name

Description Type and Unit of Measure-

ment

Notes/Comments

S1 Player1 Payoff

Matrix

(Ns + 1) × (Ns + 1) matrix

(float) [adimensional]

Ns: number of Player1

strategies

S2 Player2 Payoff

Matrix

(Ns + 1) × (Ns + 1) matrix

(float) [adimensional]

Ns: number of Player2

strategies

Table 5.1: Nash_Equilibrium_Finder: Input description

Output

Variable

Name

Description Type and Unit of Measure-

ment

Notes/Comments

Nash_indexesNash equilibrium

row and column

indexes

pair of integers between 1

and Ns + 1 [adimensional]

row index identifies

the robot strategy cor-

responding to Nash

Equilibrium

Table 5.2: Nash_Equilibrium_Finder: Output description

Human_Trajectory_Planner This algorithm takes as inputs the time

step of the discretized time vector, the current and the target position Th of

the human player, and identifies which of the possible Ns + 1 strategies θrj′

allows to reach an updated position with the minimum distance with respect

to Th, then provides as output the position corresponding to the identified
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strategy.

Input

Variable

Name

Description Type and Unit of Measure-

ment

Notes/Comments

dt time step float [sec] dt=tk+1 − tk

Xk Human player

Current position

2-D position vector [m] Ph(tk) (see 4.2)

Xk+1 Human player

updated position

2-D position vector [m] Ph(tk+1) (see 4.2)

Table 5.3: Human_Trajectory_Planner: Input description

Output

Variable

Name

Description Type and Unit of Measure-

ment

Notes/Comments

Xf Human player

target position

2-D position vector [m] Th (see 4.2)

Table 5.4: Human_Trajectory_Planner: Output description

TARS_Trajectory_Planner This algorithm takes as inputs the time

step of the discretized time vector, the current and the target position T of

the robot player (TARS), and identifies which of the possible Ns +1 strategies

θrj allows to reach an updated position with the minimum distance with

respect to T which also satisfies the geometrical constraints (that is, TARS
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within the circular crown with radii Ri, Re, then provides as output the

position corresponding to the identified strategy.

Input

Variable

Name

Description Type and Unit of Measure-

ment

Notes/Comments

dt time step float [sec] dt = tk+1 − tk

Xk Robot player

Current position

2-D position vector [m] Pr(tk) (see 4.2)

Xk+1 Robot player up-

dated position

2-D position vector [m] Pr(tk+1) (see 4.2)

Table 5.5: TARS_Trajectory_Planner: Input description

Output

Variable

Name

Description Type and Unit of Measure-

ment

Notes/Comments

Xf Robot player tar-

get position

2-D position vector [m] T (see 4.2)

Table 5.6: TARS_Trajectory_Planner: Output description

TARS_GT_Decision_Maker This algorithm takes as inputs the time

duration of the simulated experiment, the time step, TARS and H1 initial

and target positions and max velocities, the number of possible strategies

M = (Ns + 1)2 for both players, and, by calling the other algorithms previ-
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ously defined (Nash_Equilibrium_Finder, TARS_Trajectory_Planner, Hu-

man_Trajectory_Planner) identifies at each time frame tk the TARS position

at the next time frame Pr(tk+1), as a result of a Nash Equilibrium search for

the game G defined as follows (see Section 4.2):

Player1 (TARS)

Strategy profile: θrj, j = 1, ..., (Ns + 1)2 (see 4.4)

Payoff function: s1 = ∥(pr(tk) + ∆pr(j)) − T∥ + K ∗ ⟨pr(tk) + ∆pr(j), ph(tk) +

∆ph(j′)⟩ = TPI + MSRI (see 4.6)

with: j, j′ = 1, ...., (Ns + 1)2, K ∈ R+

pr, ph: TARS and H1 position vectors

∆pr(j), ∆ph(j′): TARS and H1 position vector increment corresponding to

the strategy with index j for TARS and to the strategy with index j′ for H1

(see Section 5.3 for further details on K)

Player2 (H1 model)

Strategy profile: θrj′ , j = 1, ..., (Ns + 1)2

Payoff function: s2 = ⟨pr(tk) + ∆pr(j), ph(tk) + ∆ph(j′)⟩ − 1
2 ∗ ∥∆ph(j′)∥2

with: j, j′ = 1, ...., (Ns + 1)2

This algorithm provides as outputs TARS and H1 complete trajectories during

the simulated experiment, and two binary flags: flag_collision, indicating if

there has been a collision between TARS and H1, and flag_hit, indicating if

TARS has been able to reach its target position T .
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Input

Variable

Name

Description Type and Unit of Measure-

ment

Notes/Comments

Td Time duration of

simulated experi-

ment

float [sec] Maximum value of dis-

cretized time vector

t = t0, t0 + dt...., T

dt time step float [sec] dt = tk+1 − tk

M Number of to-

tal strategies for

TARS and H1

integer [adimensional] M = (Ns + 1)2

Pr0 Robot player ini-

tial position

2-D position vector [m] Pr(tk = 0) (see 4.2)

PrT Robot player

target/final

position

2-D position vector [m] T (see 4.2)

Ph0 Human player

initial position

2-D position vector [m] Ph(tk = 0) (see 4.2)

PhT Human player

target/final

position

2-D position vector [m] Th (see 4.2)

vmaxr Robot player

maximum scalar

velocity on x and

y axes

2-D velocity vector [m/sec] vmaxr (see 4.2)

vmaxh Human player

maximum scalar

velocity on x and

y axes

2-D velocity vector [m/sec] vmaxh (see 4.2)

Table 5.7: TARS_GT_Decision_Maker: Input description



CHAPTER 5. ALGORITHM DESIGN AND SIMULATION RESULTS 61

Output

Variable

Name

Description Type and Unit of Measure-

ment

Notes/Comments

xr Robot player tra-

jectory

TARS trajectory in 2-D

space as as an array of float

position vectors [m]

(︃
T

dt
+ 1

)︃
× 2 matrix

xh Human player

trajectory

H1 trajectory in 2-D space

as as an array of float posi-

tion vectors [m]

(︃
T

dt
+ 1

)︃
× 2 matrix

flag_collision Binary flag equal

to 1 when a

collision between

TARS and H1 oc-

curs during the

simulated experi-

ment

binary (0 or 1) [adimen-

sional]

This flag can be used

to identify the number

of collisions in a Monte

Carlo simulation

flag_hit Binary flag equal

to 1 when TARS

reaches T within

the simulated

experiment

duration

binary (0 or 1) [adimen-

sional]

This flag can be used

to identify the num-

ber of TARS hits in

a Monte Carlo simula-

tion

Table 5.8: TARS_GT_Decision_Maker: Output description
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5.2 Simulation Results

In order to execute the simulation, a plane region with different concentric

circles has been considered. Robot position on the plane is represented by

the green point, human operator position by the red circle. The robot and

the human must stay within the circumference with maximum radius Re,

robot should not enter within the circumference with minimum radius Ri.

As an important remark, in this simulation the human position at each time

frame tk is assumed to be known by the robot (e.g. by using an indoor GPS

detection system). Based on the algorithm described in the previous section,

a Monte Carlo simulation has been run with the following parameters:

• Niteration (number of simulated experiments): 100

• vxmax (max robot scalar velocity on x and y axes) = 3 m/sec

• vhmax (max human scalar velocity on x and y axes) = 1 m/sec

• Td (duration of each simulated experiment/single run) = 10 sec

• dt (time step) = 1 sec (Note: as this parameter must include the time

required for sensor acquisition, on-board algorithm execution, setpoint

generation and action execution, it will be always assumed to be higher

or equal than 500 ms = 0.5 sec)

• M (number of possible strategy for both TARS and H1) =9

• K (coefficient of MSRI term, see player1 payoff function) = 1.5.

In order to make more effective the evaluation of the performance of the game

theoretical decision making algorithm, for each single run TARS and H1 initial
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and final points have been randomly generated by forcing T ′ = Pr(0), T =

Ph(0), (target position of human has been set equal to TARS initial position

and viceversa) in order to maximize the probability of collision.

Figure 5.1: Robot (green dot) and human (red circle) trajectories in the 2-D

plane (single run, Td=10 sec, dt=0.5 sec, vmaxr=3 m/sec, vmaxh=1 m/sec))
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Figure 5.2: Robot (green dot) and human (red circle) x axis position vs single

run simulation time (single run, Td=10 sec, dt=0.5 sec, vmaxr=3 m/sec,

vmaxh=1 m/sec))
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Figure 5.3: Robot (green dot) and human (red circle) x axis position vs single

run simulation time (single run, Td=10 sec, dt=0.5 sec, vmaxr=3 m/sec,

vmaxh=1 m/sec))

At each single run, two different algorithms have been executed:

1. Exhaustive search optimization (ESO): it only makes use of the s1

payoff function, by identifying the strategy leading to its maximum

value calculating s1 for all possible strategies. In this case, as s1 includes

the MSRI term, it is expected a better performance of this algorithm

with respect to the pure built-in collision avoidance/personnel detection

feature available to the robot (see 4.1)

2. The algorithm TARS_GT_Decision_Maker developed in this Ph.D.

research work.

The goal of the simulation is to compare the traditional exhaustive search

algorithm with the game theoretical optimization algorithm, based on the
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Nash Equilibria search for the game between TARS and H1 model, in terms

of number of avoided collision (i.e., number of times each algorithm leads

TARS to avoid a collision with the human during a single run). Every time in

a single run TARS_GT_Decision_Maker is able to avoid collision, while ESO

is not, the run is considered as a win for the game theoretical decision maker,

whereas opposite circumstance is considered as a loss. If both algorithms are

able to avoid the collision, or both lead to a collision in the same single run,

a draw occurs. In the tables below some main results of the simulation have

been reported for different values of vxmax, dt, M, and K.

Results table 1

Parameter Value

Niteration 100

M 9

vxmax 3 m/sec

Td 10 sec

dt 0.5 sec

Percentage of wins 11%

Percentage of losses 0%

Percentage of draws 89%

Table 5.9: Simulation results - first set
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Results table 2

Parameter Value

Niteration 100

M 25

vxmax 3 m/sec

Td 10 sec

dt 1 sec

Percentage of wins 12%

Percentage of losses 3%

Percentage of draws 85%

Table 5.10: Simulation results - second set

Results table 3

Parameter Value

Niteration 100

M 49

vxmax 3 m/sec

Td 10 sec

dt 1 sec

Percentage of wins 13%

Percentage of losses 2%

Percentage of draws 85%

Table 5.11: Simulation results - third set

Summarizing: for each set of parameter values, TARS_GT_Decision_Maker
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algorithm allow to obtain a higher number of wins with respect to exhaustive

search. By increasing the number of possible strategies M (or, equivalently, Ns

s.t. M=Ns+1) the percentage of TARS_GT_Decision_Maker wins increases.

Figure 5.4: Percentage of TARS_GT_Decision_Maker wins vs Ns

5.3 The Ethical Knob

The parameter K introduced in the equation 4.6 plays a crucial role, as it

determines the weight of the MSRI contribution to the payoff function, which

is used in both ESO and game theoretical decision maker algorithms. In other

words, K is acting as an "ethical knob", as defined in [26] (see Section 2.2).

By setting K = 0, the payoff function s1 will only take into account the

TPI term, and therefore the safe behaviour of TARS will be only determined

by the on-board personnel detection field (see Section 4.1. By increasing

K the safe behaviour of the optimization algorithms Therefore, in terms of

collision avoidance is expected to increase. This trend has been confirmed by



CHAPTER 5. ALGORITHM DESIGN AND SIMULATION RESULTS 69

means of a dedicated set of Monte Carlo Simulations, each one executed by

setting Niteration = 100, Td = 10sec, dt = 1sec, vmaxr = 3m/sec, M = 49,

and using different values for K ∈ [0, 2.5]: The results of this simulation are

summarized by the following figure:

Figure 5.5: Simulation results - percentage of avoided collisions by means of

the game theoretical algorithm as a function of K



Chapter 6

Conclusion

In this Ph.D. thesis a novel approach to safe decision making system develop-

ment for autonomous machines has been introduced and discussed, in order

to identify a methodology allowing to improve the safety of the human beings

exposed to the autonomous task or operation, by reducing the probability of

incidents or dangerous events such as collisions during machine travel. This

approach has been based on the definition of some key ethical principles

and related features, with main reference to safety aspects, translated in

mathematical models in order to define some machine-readable procedures

and algorithms. These principles concern the need to avoid or minimize the

occurrence of harm for humanity, during the execution of the task the machine

has been designed for. Within this scope, four fundamental problems can be

introduced:

1. First Problem: Machine Ethics Principles or Laws Identification

2. Second Problem: Incorporating Ethics in the Machine
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3. Third Problem: Human-Machine Interaction Degree Definition

4. Fourth Problem: Machine Misdirection Avoidance.

This Ph.D. research activity has been mainly focused on First and Second

Problems, with specific reference to safety aspects. With this purpose, a game

theoretical formulation of the human-machine interaction has been proposed,

by using some main concepts as game, strategy sets and payoff functions as

a mathematical model of the interaction dynamics. Machine payoff function

has been defined in order to include two different contribution, expressed in

terms of a task performance index (TPI) and a machine safety risk index

(MSRI). Based on these concepts and mathematical models, the interaction

process has been reviewed as a game, consisting from the machine perspective

in reaching a given position in a plane region, ensuring at the same time

to reduce the risk of collision with surrounding human beings. Therefore,

using Matlab c⃝ R2020b, a decision making algorithm has been implemented

, capable to select the most suitable strategy as the solution of a Nash

Equilibrium search problem. The implemented procedure has been compared

with a exhaustive search optimization algorithm in a defined scenario, by

executing a Monte Carlo simulation obtained by randomly generating impact

trajectories between the robot and the human and by changing relevant

parameters such as total number of possible strategies, time step, autonomous

maximum machine velocity, in order to identify the percentage of collisions

avoided as key overall performance indicator, Main results can be summarized

as follows: for each set of parameters value, the developed game theoretical

decision making algorithm has allowed to obtain a higher percentage of wins
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(e.g. collisions avoided) with respect to exhaustive search. By increasing the

number ofpossible strategies M the percentage of game theoretical algorithm

wins increases. Furthermore, another comparison has been performed by

means of the same simulation environment, focused on the parameter K

introduced in the equation 4.6, which determines the weight of the MSRI

contribution to the payoff function, acting as an "ethical knob", as defined

in [26]. By increasing K the safe behaviour of the optimization algorithms

is expected to improve, and, therefore, their collision avoidance capability is

expected to increase. This trend has been confirmed by means of a dedicated

set of Monte Carlo Simulations, each one executed by setting Niteration =

100, Td = 10sec, dt = 1sec, vmaxr = 3m/sec, M = 7, and using different

values for K (see Figure 5.5).

The research work described in this Ph.D. thesis can be extended in a number

of different directions:

• Regarding ethical principles and risk indexes, as this work is focused on

non-maleficence principle, with specific reference to safety, e.g. just one

of the possible ethical features introduced in Chapter 2 (see Figure 2.1),

other principles and related features could be identified, in such a way

to broaden the scope of the mathematical modelling to further aspects.

As mentioned in the Chapter 2, for instance ISO 12100 provides a

methodology to calculate the machine safety risk index, as a function of:

the severity and The probability of occurrence of the harm to the people

issued by a machine. This formulation allows to model and quantify the

safety in 4.6. Similarly, other indexes could be defined, e.g. to evaluate

privacy violation risks in cybersecurity systems [49].
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• Regarding definition of payoff functions, both s1 and s2 could be modified

by introducing other definition of safety (or privacy, politeness, dignity

and so on) risk index, and my modeling in a different way the human

behaviour.

• Furthermore, recent breakthroughs in machine learning and deep learn-

ing [50] could inspire novel approaches by integrating game theoretical

concepts and methods. Indeed, as machine learning deals with algorithms

that can learn from the data, by creating models of the environment

or physical phenomena, using such models to make predictions and

take decisions, most of the issues could be translated to optimization

problems with conflicting objectives, which is the scope of game theory

itself [51].
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