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Many books and/or papers have been published on linear generalizations of
Fourier’s equation in order to introduce relaxational and nonlocal effects for the
heat flux [1–9]. Describing a heat-pulse propagation with a finite speed [10–15],
in agreement with experimental observations, such works are of much conceptual
interest both because they may be applied to small systems (the characteristic size
of which is comparable to the mean-free path of the heat carriers) [16–23] or to
fast processes (as for instance response to short laser pulses) [24–28], and because
they have stimulated generalized formulations of non-equilibrium thermodynamics,
with generalized expressions of the entropy and of the entropy flux incorporating
heat-flux contributions [1–4, 7, 22, 29, 30].

The linear generalizations of Fourier’s equation should be only employed to ana-
lyze the propagation of small-amplitude waves. When the amplitude of temperature
waves (or of heat-flux waves) is not negligible, in fact, nonlinear effects cannot be ne-
glected: this is the case, for example, when short and intense laser pulses are applied
to heat a given material. Therefore, there is much interest in generalizing the linear
theory of heat waves which has been, up to now, a fruitful stimulus to generalizations
of non-equilibrium thermodynamics [1–4, 7, 9, 11, 12, 14, 29, 31–34] to nonlinear
situations, namely, for waves with sufficiently high amplitudes [18, 20, 35–39]; in-
deed, there are many possible nonlinear generalizations and, from a thermodynamic
point of view, it is of special interest selecting the forms which fit in a most direct
way with the requirements of the second law of thermodynamics.

The present thesis aims at being a contribution to the study of heat waves
when nonlinear and/or nonlocal generalizations of the Maxwell-Cattaneo equation
in the context of extended thermodynamics [1, 4, 7, 35, 40] are introduced. Whereas
nonlocal effects in heat transport have led to fruitful analogies with hydrodynamics,
especially in the so-called phonon hydrodynamics, in the present thesis we also
show how some particular nonlinear effects lead to fruitful analogies with nonlinear
optics. We think that these analogies of heat transport with hydrodynamics and
with optics are a nice illustration of the deep unity of physics, where results in
some field may also be helpful to other fields, provided that the connection between
both fields is found. The present thesis is a contribution in that direction, and the
results contained in it may be of interest to current researches aiming to find new
ways of control and applications of the heat flux, which is the main goal of the so-
called phononics [25, 27]. In particular, the interaction of intense laser pulses with
heat-conducting solids has motivated nonlinear phononics [24, 26, 28], requiring a
combination of nonlinear optics and nonlinear heat transport.

The plan of this thesis is the following.
In Chapter 1 we recall the basic mathematical definitions and concepts which will

be employed in this thesis, and briefly summarize the theoretical thermodynamic
background.

In Chapter 2 a theoretical model to describe heat transport in functionally graded
nanomaterials is developed in the framework of extended thermodynamics. The
heat-transport equation used in the proposed theoretical model is of the Maxwell-
Cattaneo type. We study the propagation of acceleration waves in functionally
graded materials. In the special case of functionally graded Si1−c Gec thin layers,
we point out the influence of the composition gradient on the propagation of heat
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pulses. A possible use of heat pulses as exploring tool to infer the inner composition
of functionally graded materials is suggested.

In Chapter 3 we analyze the role played by nonlocal and genuinely nonlinear
effects in the wave propagation. The study is performed both in the case of a rigid
body (i.e., for heat pulse propagation), and in the case of a non-rigid body (i.e., for
thermoelastic pulse propagation). In the framework of Extended Irreversible Ther-
modynamics the compatibility of our theoretical model with second law is proved.

In Chapter 4, starting from a nonlinear generalization of the Maxwell-Cattaneo
equation (derived in a conservation-dissipation formalism in the framework of ex-
tended thermodynamics), an analogy with the theory of nonlinear electromagnetic
waves is pointed out. This analogy emphasizes several physical aspects of the nonlin-
ear theory and allows a parallelism with nonlinear optics, which may be of interest
in nonlinear phononics. The proposed nonlinear equation for heat waves is used
to analyze how the amplitude of nonlinear heat wave may influence the speed of
propagation.

In Chapter 5 we finally study the influence of nonlocal and nonlinear effects on
the heat-wave propagation when a two-temperature model, which allows to describe
the different regimes which electrons and phonons can undergo in the heat-transfer
phenomenon, is used.
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to collective behavior in thermal transport on semiconductors and semiconduc-
tor nanostructures,” J. Appl. Phys., vol. 115, p. 164314, 2014.

[39] D.-S. Tang, Y.-C. Hua, B.-D. Nie, and B.-Y. Cao, “Phonon wave propagation
in ballistic-diffusive regime,” J. Appl. Phys., vol. 119, p. 124301, 2016.

[40] P. Ván, “Weakly nonlocal irreversible thermodynamics,” Ann. Phys., vol. 12,
pp. 146–173, 2003.

6


