

To my wife Raffaella, who with her love supports every day of my life
and each step of my professional path. Without her patience, her
sacrifice and her encouragement, I would not have reached this

ambitious goal.

To my sons, Gabriele and Roberta. I hope that the time I have not
devoted them due to my PhD commitments, will be compensated by

the example I have given them.

ii

Acknowledgements

During the extraordinary experience of my PhD, I had the honour of
working with excellent professionals to whom I want to express my
gratitude.
I would like to thank my advisor, Professor Francesco Palmieri, for his
guidance and his help.
I would also like to express my great gratitude to Professor Raffaele
Cerulli, Chair of the Department of Mathematics, for his help, his pa-
tience and his precious suggestions, both professional and sometimes
personal.
I am infinitely grateful to Dr Ciriaco (Ciro) D’Ambrosio: during our
collaboration, I appreciated his professional skills and his intellectual
honesty. Ciro shared with me every moment of my research activity,
every single step, every reasoning, every hypothesis to verify, every
working weekend. His guidance, his encouragement, his patience, his
love for details were fundamental for the results achieved in this re-
search work.
Thanks, Ciro!

Abstract

Wireless sensor networks (WSNs) have been a relevant research topic
in recent years and, due to technological advances and to the hetero-
geneity of applicative contexts, today they represent one of the most
significant technologies of the 21st century. Environmental monitor-
ing, healthcare, transportation, infrastructure, agriculture are only a
subset of all possible application areas of a WSN. WSNs are gener-
ally composed of low-cost devices (sensors) which collect informa-
tion about the surrounding space (sensing area) that contains specific
targets of interest. Each sensor monitors targets that are located in its
sensing area and the targets in such area are said to be covered by the
sensor. Due to weight and size limitations, a sensor is usually powered
by a battery which determines a limited operating time. The simul-
taneous usage of all the sensors, thus, may lead to a faster depletion
of the available energy which cause a short network lifetime. Extend-
ing the network lifetime, i. e. the amount of time during which the
WSN is able to perform its monitoring task, represents a very relevant
issue. This problem, generally known as Maximum Lifetime Problem
(MLP), is a well known and challenging optimization problem which
has been addressed successfully with several approaches in the last
years. It essentially consists in finding an optimal schedule for sensors
activities in a WSN aiming at maximizing the total amount of time dur-
ing which the WSN is able to perform its monitoring task. The MLP
problem can be faced by designing efficient coverage algorithms that
exploit the sensor redundancy. Indeed, in WSNs applications involv-
ing a huge number of sensors, some of the sensor devices may result
to be redundant, that is a target is covered by more than one sensor.
A dynamic and coordinated use of the sensors allows to address the
limitations imposed by the restricted amount of energy available to the
sensors.

A lot of results can be found in literature on the MLP and variants
considering classical technical issues (as connectivity and multi-role
issues among others) while few research effort has been devoted to in-
vestigate specific operational requirements of the sensors. In this thesis
we focus on such scenario in which, in order to perform the monitor-
ing activity, each sensor must be active for a predefined period of time
defined as operating time slot. This context characterizes the periodic
sensing applications in which a WSN monitors the phenomenon under
observation according to a sensitivity cycle which is repeated period-
ically. A sensitivity cycle consists of a predefined activity time slot,
during which the sensors collect information about the targets, fol-
lowed by an idle period. The idle period is configurable and depends
on the application. The activity time slot duration, on the other hand,
is fixed a priori and is determined by the sensors operating principle.
Examples of periodic sensing applications with fixed activation times
can be found in different fields as in structural health monitoring, en-
vironmental monitoring, air pollution monitoring, agriculture sensing.

We formally define this problem as Maximum Lifetime Problem
with Time Slots (MLPTS). For this new scenario we derive an upper
bound on the maximum achievable lifetime and propose a genetic al-
gorithm for finding a near-optimal node activity schedule. The perfor-
mance evaluation results obtained on numerous benchmark instances,
show the effectiveness of the proposed approach. Further, we general-
ize MLPTS by taking into account the possibility to neglect the cov-
erage of a small percentage of the whole set of targets since, in some
applications, the status of the phenomenon under observation, can be
estimated or inferred by monitoring even only a subset of all targets.
We define such new problem as αc-MLPTS, where αc defines the per-
centage of targets that the WSN has to monitor in each time slot. For
this new scenario we propose three approaches: a classical greedy al-
gorithm, a modified version of the genetic algorithm already proposed
for MLPTS and a Carousel Greedy algorithm. The comparison of the
three approaches is carried out through extensive computational exper-
iments. The computational results show that the Carousel Greedy rep-
resents the best trade-off between solutions quality and computational
times, and confirm that the network lifetime, also in the case of sen-

sors with operational time constraints, can be considerably improved
by omitting the coverage of a modestly percentage of the targets.

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Wireless Sensor Network: Motivation 1
1.2 Contributions of this thesis 4
1.3 Thesis organization 4

2 Coverage Optimization in Wireless Sensor Networks 7
2.1 Introduction . 7
2.2 Wireless Sensor Networks overview 8

2.2.1 Coverage problems 11
2.3 Network Lifetime and Coverage Optimization 13

2.3.1 Covers Scheduling on WSN 14
2.3.2 Application scenario and operating time slot

constraints 16
2.4 MLPTS problem definition 18

3 Maximum Lifetime Problem with Time Slots: algorithms 21
3.1 Genetic algorithms 21

3.1.1 GA general scheme 23
3.2 Greedy algorithms 25
3.3 Carousel Greedy . 26

vii

4 A Genetic approach for the Maximum Network Lifetime
Problem with additional operating Time Slot constraints 33
4.1 Introduction . 33
4.2 MLPTS problem definition 35

4.2.1 Network lifetime upper bound in MLPTS . . . 37
4.3 A genetic algorithm for solving MLPTS 37

4.3.1 Solution representation and fitness function . . 39
4.3.2 Initialization and operators 42

4.4 Performance evaluation results 44
4.5 Conclusion . 47

5 Maximum Network Lifetime Problem with Time Slots and
Coverage Constraints: efficient approaches 49
5.1 Introduction . 49
5.2 MLPTS and α-MLPTS problem definitions 56
5.3 A greedy algorithm for solving the αc-MLPTS 61
5.4 A Carousel Greedy algorithm for

αc-MLPTS . 64
5.5 Experimental Evaluation 67

5.5.1 Test instances 68
5.5.2 Test results 68

5.6 Conclusion . 80

6 Conclusions 83

Bibliography 85

List of Figures

2.1 Coverage problems examples 11
2.2 Wireless Sensor Network and covers examples 19
2.3 Sensor activity scheduling example 20

3.1 Carousel greedy illustration 29

4.1 WSN example n. 2 36
4.2 GA: generic chromosome structure 40
4.3 GA: solutions representation 40
4.4 GA: crossover operation 44

5.1 WSN example n. 3 57
5.2 MLPTS: feasible cover examples 58
5.3 αc-MLPTS: feasible αc-cover examples 59
5.4 αc-GA, Greedy, CG - αc = 0.75, τs = 0.1: graphical

representation of solution and running time values . . . 73
5.5 αc-GA, Greedy, CG - αc = 0.75, τs = 0.3: graphical

representation of solution and running time values . . . 74
5.6 αc-GA, Greedy, CG - αc = 0.9, τs = 0.1: graphical

representation of solution and running time values . . . 77
5.7 αc-GA, Greedy, CG - αc = 0.9, τs = 0.3: graphical

representation of solution and running time values . . . 78

ix

List of Tables

4.1 GA: Deshinkel instances results 45
4.2 GA: Group 1 instances results 47
4.3 GA: Group 2 instances results 47

5.1 αc-GA, Greedy, CG - αc = 1: solution and running
time values . 69

5.2 αc-GA, Greedy, CG - αc = 1: comparison 70
5.3 αc-GA, Greedy, CG - αc = 0.75: solution and running

time values . 71
5.4 αc-GA, Greedy, CG - αc = 0.75: comparison 72
5.5 αc-GA, Greedy, CG - αc = 0.9: solution and running

time values . 75
5.6 αc-GA, Greedy, CG - αc = 0.9: solution and running

time values . 76
5.7 CG: comparison of lifetime values in function of αc . . 79
5.8 αc-GA: comparison of lifetime values in function of αc 80

xi

Chapter 1

Introduction

1.1 Wireless Sensor Network: Motivation

Nowadays there is a growing interest in wireless sensor networks, one
of the most significant technologies of the 21st century [1]. A wireless
sensor network (WSN) is essentially composed by a large number of
sensors whose aim is to detect physical phenomena such as heat, light,
air pollution, pressure, etc. Compared to wired networks, WSNs offer
simpler deployment and great flexibility of devices. In the context of
the Internet of Things [2][3], WSNs are the enabling technology that
allows to collect information about the environment in which people
live. The numerous application areas in environmental monitoring, au-
tomation, healthcare, oil and gas, transportation, infrastructure, insur-
ance services and smart home, among others, have driven the market
of WSNs to a staggering scale. Indeed the WSNs market was valued at
USD 46.76 billion in 2019 and it is expected to reach USD 123.93 bil-
lion by 2025 [4][5]. In addition to the heterogeneity of the WSN appli-
cations, market growth has been driven by the increasing adoption of
wireless technologies and by the reduced cost of the sensor nodes. In-
deed nowadays we are practically surrounded by sensors, ranging from
those aboard a simple smartphone to the most specialized sensors such
as those that detect air quality, vehicles position, persons heartbeat.
Generally speaking, the main goal of a WSN is to acquire knowledge
from the environment. The information acquired from the subjects

2 1. Introduction

under monitoring, defined targets in literature, can be used, for exam-
ple, to better study the impact that natural and man-made phenomena
can have on the environment, including effects on climate, pollution,
safety and many other aspects. There are also contexts where the use of
a WSN to acquire information is necessary because the human access
is not possible due to the hostility of the environment itself. This is the
case, for example, to natural disasters such as floods, earthquakes and
so on, where sensors can be deployed and controlled by flying drones
[6][7].

While the rapid technological development of sensors has made
the WSNs a consolidated technology, the management of the limited
energy resources available to the sensors, still represent an open topic
for which researchers have felt the need to identify solutions to pro-
long as much as possible the sensor operation. Since the progress of
battery technology in recent years has not shown significant changes,
although there are systems that make it possible to acquire part of the
energy from the environment [8][9], a targeted and intelligent use of
energy resources is still actually a theme to face. Indeed, in order to ex-
tend the lifetime of a sensor, it must be taken into account that a sensor
is equipped with a limited energy resource which, if exhausted, gen-
erally makes the sensor unoperational since it is difficult, and in some
cases impossible, replace or recharge its battery. These limits must be
taken into account in the design of a WSN because they have a direct
impact on the network operating time. The network operating time, i.
e. the time for which the network is able to perform the monitoring ac-
tivity for which it was designed, is usually defined as network lifetime.
The design of sensors management algorithms that allow to maximize
the possible network lifetime has been the subject of intense studies
that can essentially be divided into two approaches: power-aware and
duty scheduling. In the first case, to maximize the network lifetime,
the algorithms act on the network configuration and such approaches
can be used when there is a low density of sensors [10][11] and for
structured network (see Chapter 2.2.1). Algorithmic approaches based
on sensors activity scheduling are used for high density, or unstruc-
tured, network scenarios. Unstructured networks are those in which
a precise positioning of the sensors is not possible due to the hostil-

1. Introduction 3

ity of the environment in which they are deployed [12][13][14]. For
the same reason, obviously, it is not possible to provide additional en-
ergy to the sensors. However, since an exact positioning of the sensors
is not possible since they are usually scattered from above, a certain
sensor redundancy is created which is exploited by the scheduling al-
gorithms. This redundancy makes it possible to identify cover, subsets
of sensors that are able to autonomously perform the monitoring task
for which the network is designed. At any given time, only the sensors
belonging to a cover are active, heading off wasting the energy of use-
less sensors. Since it is usually possible to identify numerous of these
subsets in unstructured networks, the maximum lifetime can be ob-
tained by searching and activating them one at a time for an adequate
activation time. The identification of these subsets allows to plan the
activities of the sensors to ensure the operation of the WSN as much
as possible [13][15][16][17] [18][19][20].

The sensor activity scheduling algorithms give as output a collec-
tion of couples. Each couple is made by a cover and an activation time
for the cover itself. In some cases, the activation time of the cover
can be not supported by the technological characteristics of the sensor.
Indeed, can be necessary that the sensor is active for a fixed amount
of time due to the nature of the phenomenon to observe or due to the
sensor functioning principle. So, we will focus on periodic sensing
applications in which the WSN monitors a phenomenon according to
a sensitivity cycle which is repeated periodically. A sensitivity cycle
consists of a predefined activity time slot, during which the sensors
collect information about the targets, followed by an idle period. The
idle period is configurable and depends on the application. The activity
time slot duration, on the other hand, is fixed a priori and is determined
by the sensors operating principle. Examples of periodic sensing ap-
plications with fixed activation times can be found in different fields
as in structural health monitoring [21][22][23], environmental moni-
toring [24], air pollution monitoring [25][26][27], agriculture sensing
[28]. Given this motivations, in this thesis we study the current lit-
erature on wireless sensor networks to design and propose efficient
approaches to maximize the network life time in the case of periodic
sensing applications, under different coverage constraints.

4 1. Introduction

1.2 Contributions of this thesis
In this thesis we perform an in-depth study on the coverage problems
that arise in the design of wireless sensor networks. We will focus on
the problem of maximizing the network lifetime for WSN applications
where the sensor activity needs to be performed for a predetermined
time due to operational constraints and, also, the computational re-
sources available to the WSN are limited. We formally define this
problem as Maximum Lifetime Problem with Time Slots (MLPTS).
Focusing on the algorithmic aspects of MLPTS, we derive an upper
bound on the maximum lifetime and proposed a genetic algorithm to
find a near-optimal sensors activity schedule. Then, we perform ex-
tensive computational experiments on numerous benchmark instances
that show the effectiveness of the proposed approach.

Further, we generalize MLPTS by taking into account the possi-
bility, for each subset of active sensors, to neglect the coverage of a
small percentage of the whole set of targets. For this problem, de-
fined αc-MLPTS, we propose three approaches: a modified version of
the genetic algorithm already proposed for MLPTS, a classical greedy
algorithm, and a Carousel Greedy algorithm obtained by using the re-
cently developed homonym paradigm, that can be used to improve the
performances of a standard greedy algorithm. The comparison of the
three approaches is carried out through extensive computational ex-
periments. As will be shown in the analysis of the computational re-
sults, the Carousel Greedy represents the best trade-off between the
proposed approaches and the network lifetime can be considerably im-
proved by omitting the coverage of a percentage of the targets.

1.3 Thesis organization
This thesis is structured in such a way that the chapters can be read
independently of each other. Chapter 1 introduces the reader to the
research topic and describes the structure of the thesis. Those who
already have a background on WSN can directly read Chapters 4 and
5. Chapter 4 presents the genetic approach adopted for the problem
of maximum lifetime with operational constraints and describes our

1.3. Thesis organization 5

research published on the journal Soft Computing. Chapter 5 presents
efficient approaches devised for the maximum lifetime problem with
Time Slots and Coverage Constraints and it describes our research ac-
cepted for publication on The Journal of Supercomputing.

Below is a more detailed description of each chapter of the thesis.

• Chapter 2 introduces some general concepts about WSNs and
presents typical coverage problems that arise in the design of
a wireless sensor network. This chapter reports also the main
results of the literature related to this field.

• Chapter 3 describes the algorithmic approaches adopted to face
MLPTS and αc-MLPTS. In particular, in addition to an overview
of genetic algorithms and greedy approaches, the chapter de-
scribes the Carousel Greedy approach, which represents a re-
cently designed paradigm that can be used to improve the per-
formances of a standard greedy algorithm in terms of solution
quality.

• Chapter 4 presents our research work on the genetic approach to
the maximum lifetime problem with additional operating time
slot constraints. This chapter formally defines the MLPTS and
identifies an upper bound to the value of the optimal solution.
The chapter presents in detail the building blocks of the designed
genetic algorithm, describes the performed experimentation and
presents the analysis of the computational results.

• Chapter 5 presents our research work on the algorithmic ap-
proaches to a generalization of the MLPTS problem in which
is taken into account the possibility of neglecting the coverage
of a small percentage of the entire set of targets. The chapter de-
scribes three approaches: a classic greedy algorithm, a Carousel
Greedy algorithm and a modified version of the genetic algo-
rithm already proposed for MLPTS in Chapter 4. The chapter
also reports the comparison of the three algorithmic approaches
by considering the results of a deep phase of computational ex-
periments.

6 1. Introduction

• In Chapter 6 we present our conclusions on the research works
and presents some future research directions.

Chapter 2

Coverage Optimization in
Wireless Sensor Networks

2.1 Introduction

Wireless sensor networks represent a sophisticated technology that al-
lows monitoring an area through the use of sensors that detect informa-
tion from the environment in which they are installed [29][30][31], and
make such information available externally to such an environment
for further processing. The technological advances of the last years
in wireless communications and micro-electro-mechanical systems, in
conjunction with the miniaturization of computing and sensing de-
vices, have permitted to the WSN technology to reach an advanced
level of maturity. A further element that has stimulated the researchers
and allowed the development of these types of networks is represented
by the numerous fields of applications. Nowadays, there are WSN
installations that monitor infrastructures such as power grids, water
pipes, bridges, or even systems that monitor entire buildings to collect
information on the health of the structure itself. Air quality monitoring
[25][26], precision agriculture [28] and optimization of plant growth
[32], detection of floods [33], monitoring of vehicular traffic [34] are
further examples of WSN applications, among others. Many other ap-
plications are described and examined in [35][36][37][38]. A relevant
topic in the design of a WSN is represented by the network coverage

8 2. WIRELESS SENSOR NETWORKS OVERVIEW

problems on which we focus our attention. Generally speaking, the
concept of coverage essentially expresses how well an area of interest
is monitored by a sensor network [17]. Of course, different applica-
tions may have different coverage requirements. For example, if a
WSN is used for monitoring the environmental pollution of an urban
area, it may be sufficient to cover a certain percentage of the area to
obtain a meaningful measure of the pollution status. Therefore, the
network coverage is an application requirement to be considered when
designing a WSN. This requirement affects the power consumption of
the WSN which in turn determines the network lifetime, that is essen-
tially the time interval for which the network is operative.

More precisely, we define network lifetime as the time interval in
which the network is able to meet the coverage requirements of the
application for which it was designed [39]. This definition implies
that if the network is unable to meet the coverage requirements it is
considered inoperative.

The network operativity time is strongly influenced by the struc-
tural constraints of the sensors which, as explained in the next section,
are of limited size and weight and therefore have limited energy re-
sources. Furthermore, in some contexts, it is not possible to supply
additional energy to the sensors due to adverse environmental condi-
tions. For this reason, in the design of WSNs, it is of fundamental im-
portance to identify techniques that allow energy to be used efficiently
in order to extend the network lifetime. In this chapter we will provide
a general introduction to WSNs with a focus on designing networks
that are energy efficient.

2.2 Wireless Sensor Networks overview

Generally speaking, a WSN is a network of sensor nodes that cooper-
atively monitor the environment in which they are installed allowing
interaction between people or computers and the surrounding environ-
ment. A WSN is integrated in the environment for which it was de-
signed, in the sense that the sensor nodes register the phenomenon in
which they are immersed, monitoring the target points in surrounding

2. Wireless Sensor Networks overview 9

space. Also, the sensors itself communicate with each others, transmit-
ting detailed information on the environment under monitoring. The
sensors node are ones of the most important parts of a WSN. From
an architectural point of view, a sensor node consists of the follow-
ing functional components: a sensor, a microcontroller, a wireless
transceiver, a power supply and a power management module. The
power management module makes the power available for the opera-
tion of the entire system. The sensor represents the boundary of the
sensor node and it is able to detect the status of a phenomenon that oc-
curs in the environment under monitoring. Such sensor, or transducer,
is a device that converts physical phenomenon into electrical signals.
The sensor therefore has the task of transforming physical quantities
such as light, concentration of polluting particles in the air, vibrations,
chemical quantities into electrical signals. The microcontroller man-
ages the operation of the entire system. It deals with the interaction of
the sensor node with the other nodes of the WSN, processes the elec-
trical signals received by the sensor and allows to perform scheduling
activities of the node. The sensor node is equipped with a wireless
transceiver that allows a connection to the other nodes. The adop-
tion of the miniaturization technology based on microelectromechani-
cal systems (MEMS), allows to realize sensor nodes of small size and
limited power. Nowadays, there are numerous MEMS sensors avail-
able on the market that can be used to measure physical quantities such
as velocity, acceleration, atmospheric pressure, temperature, humidity,
sound, etc. Thanks to this miniaturization technology, all the func-
tional components described above as the miniature sensing device,
the associated power supply and so on, can packaged as a miniature
MEMS sensor. All these components are subject to constraints such as
low energy consumption, low production costs, operational capabili-
ties in hostile environments and, also, to strict dimensional constraints.
In some cases a sensor node is contained in a box of one cubic cen-
timeter [40][41]. Given these constraints, it is easy to understand that
the lifetime a WSN strongly depends on the battery life of the sensors
that compose it. In summary, a sensor node is the sensing unit which
includes tools such as battery, wireless transceiver, microcontroller and
have the main objective of preliminary processing and reporting of the

10 2. WIRELESS SENSOR NETWORKS OVERVIEW

information collected, while the sensor refers only to the hardware de-
vice which is able to perceive the state changes of phenomenon. In this
thesis we will use the term sensor node and sensor interchangeably.

Intending with the term sensing all the activities of measurement
and control of changes in the state of the phenomenon or environment
under monitoring, it is possible to identify different sensing models. A
sensing model expresses a measure of detection capability and its qual-
ity by evaluating the relationship between environment, sensors and
target. As described in [42] and reported in [43] and other works, gen-
erally speaking , the sensing quality of a sensor node decreases with in-
creasing distance. Typical sensing models are based on the Euclidean
distance between sensors and target points in a two-dimensional space,
and as in most of the works we refer, they consider the concept of cov-
erage, which we now introduce. Let S = {s1,s2, ...,sn} be the set of
WSN sensors distributed in the area under monitoring and let z be any
point in that area. Let (zx,zy) and (sx,sy) be the Cartesian coordinates,
respectively, of the point z and of a generic sensor s. The Euclidean
distance between z and s is given by the following relation:

d(z,s) =
√︂
(zx− sx)

2 +(zy− sy)
2 (2.1)

In this thesis we refer to the most studied and simplified sensing
model, the binary coverage model which considers the following for-
mulation as a coverage function:

f (z,s) =

{︄
1, if d(z,s)≤ Rs

0, otherwise
(2.2)

where Rs is named sensing radius or sensing range. The coverage
function f (z,s) holds 1 when the point z is in the sensig range of the
sensor s, while hold 0 otherwise. The sensing range depends on the
sensor technology and it defines the sensor detection area, i.e. the area
within which the sensor is able to sense the phenomenon for which it
was designed.

This model is an omnidirectional coverage model and does not
consider the angle ϕ between the targets and the sensors with 0 ≤
ϕ(s,z) < 2π . However, we can adopt this model without any loss of

2. Wireless Sensor Networks overview 11

generality since, as reported in [44], by means of simple modifications
this model can be also used in three-dimensional contexts.

2.2.1 Coverage problems
Coverage problems can be of two types: target coverage problems and
area coverage problems [45]. In the first type, the objective is to moni-
tor only a set of distinct points which can be specific targets within the
environment, while in the second type the main objective is to monitor
an entire area of interest. Figure 2.1-a shows a WSN where the circles
represent sensor sensing ranges and the sensors completely cover the
irregular area. In the second case, the sensors cover the targets, repre-
sented by small rectangles, leaving some zones of the area uncovered.
In [46] it is shown that a target coverage problem instance can be trans-
formed into an area coverage problem instance, so we can refer to both
indifferently.

Figure 2.1: Coverage problems examples: (a) area coverage - (b) tar-
gets coverage

Generally speaking, in the design of a WSN there are further as-
pects to consider [31][44] of which the main ones are listed below:

• Coverage type: as previously mentioned a first issue arise from
the type of the subject under monitoring. If the subject is a con-
tinuous area then we refers to an area coverage type. If the sub-

12 2. WIRELESS SENSOR NETWORKS OVERVIEW

ject is a set of targets points (discrete points in an area) the we
refers to an target coverage type.

- Deployment type: there are two types of WSN deployments that
determine network topology: structured (or deterministic) and
unstructured (or random)[47]. In the first one, the monitored
area is easily accessible and the positioning of the sensors in the
surrounding environment can be planned in advance. The posi-
tioning can be planned in such a way to minimize the number
of sensors with a consequent reduction in management costs.
Generally speaking an unstructured deployment is preferable in
cases of hostile and inaccessible environments, such as in the
case of natural disasters, and when the deployment involves the
use of a high number of sensors.

- Coverage ratio: this aspect indicates what percentage of the
area, or how many points in the area the WSN must cover to
meet the coverage requirements. We generally refer to full cov-
erage when the WSN covers the entire set of targets or the entire
area. Instead, we will specify partial coverage when the WSN
needs to cover only a subset of points to meet coverage require-
ments.

- Network type: when a WSN is composed of sensors that commu-
nicate with a single node that collects information, called sink,
the network is defined simple. A WSN is instead layered when
in addition to the sensor nodes, there is more than one nodes that
collects the information detected by the sensor nodes.

- Activity scheduling: it refers to the ability of the WSN to change
the operating state of the sensor nodes, allowing any redundant
sensors to enter an energy saving state. This operating mode
allows energy savings which can have a positive impact on the
network lifetime. The activity scheduling algorithms can be cen-
tralized or distributed. Distributed algorithms allow each node
to decide its own state based on information distributed across
the network. This process generally reduces the energy due the
communication between nodes but increases the consumption of

2.3. Network Lifetime and Coverage Optimization 13

processing energy. In centralized scheduling algorithms, a sin-
gle node makes global decisions on the operating states of all
sensors. This type of algorithm significantly reduces the con-
sumption of processing energy and allows to extend the network
lifetime. More details on planning activities can be found in the
following sections.

We can recall that sensors are small resource constrained devices.
They can monitor a given target for an limited amount of time before
depleting all their energy. Hostile scenarios can make impossible to
supply other energy resources to these sensors. Therefore developing
energy efficient algorithms and operational scheme to prolonging the
network lifetime is one of the most important requirements common
to all previous design aspects.

2.3 Network Lifetime and Coverage Optimiza-
tion

A first definition of WSN network lifetime is available in [39]. In this
work, the network lifetime is defined as the amount of time between
the instant in which the WSN is activated and the instant of time in
which the first sensor failure occurs. In the case of unstructured high-
density networks, however, the network can continue to operate even if
one of the sensors is damaged or has run out of all its energy. A differ-
ent definition, more relevant to our research works (see Chapters 4 and
5), is those according to which the network lifetime is the time interval
for which the network is able to satisfy the specific coverage require-
ments of the application. We choose this type of definition because
it is a basic, better adapted to the coverage problems. Thanks to this
definition, whatever are the objectives under monitoring, the network
lifetime identifies the time interval for which the region of interest is
monitored by sensors. In [39] the reader can find a complete list of the
main definitions.

14 2. NETWORK LIFETIME AND COVERAGE OPTIMIZATION

2.3.1 Covers Scheduling on WSN

A crucial aspect to consider in order to extend the lifetime of the net-
work as much as possible is the optimization of the use of the limited
energy resource of a sensor. There are several approaches in the lit-
erature to address energy-efficient coverage to extend the lifetime of
the network. A first approach is based on adjusting the sensing range
of hte sensors to save energy. A second approach is to design an ef-
ficient coverage distribution plan, but it is not always feasible, espe-
cially in cases of adverse conditions of the WSN deploy environment.
A third approach, on which our research work is based, is to define a
sensor activity plan that leaves some sensors in an active state while
the others are in a state of sleep that does not consume energy. Such
approach requires to identify covers, i. e. subsets of sensors, that if
activated are able to achieve autonomously the coverage requirements
of the network [17][48][49][50][51][52]. Indeed, usually the deployed
sensors provide redundant coverage so that keeping them all simulta-
neously in an active state causes only a waste of energy without real
benefits. So, the identification of an efficient scheduling of their oper-
ational states (idle or active) could help in overcoming the limitations
in terms of battery duration which characterizes each individual sen-
sor. It is straightforward, indeed, to note that the identification of such
covers and their activation times can extend the amount of time over
which a WSN is able to perform its monitoring activity. The problem
to find an optimal schedule for sensor activities in a wireless sensor
network aiming to maximize the total amount of time during which
the WSN is able to perform its monitoring task, is known in litera-
ture as the Maximum Network Lifetime Problem (MLP). It essentially
consist in finding non-necessarily disjoint clusters of sensors, which
are autonomously able to surveil specific locations (targets) in an area
of interest, and activating each of them one at time in order to guar-
antee the network activity for as long as possible. The pioneering
work [17] shows that the MLP is NP-complete and presents an ap-
proximation algorithm able to overcome the performances of previous
approaches [52] by simply building not necessarily disjoint clusters of
sensors (covers). In [53] the authors builds a linear programming (LP)

2. Network Lifetime and Coverage Optimization 15

model for the MLP and they face it for the first time with a column gen-
eration technique, a well-known and widely practiced techniques for
solving large scale linear programs. However, we find several MLP
variants in the literature, each variant facing a different issue. In [48]
the authors present an extension of [17] and they propose to use sen-
sors with an adjustable sensing range in order to reduce interferences
at the MAC layer. They propose a mathematical model, two heuristics
and a model-based algorithm to find the maximum number of covers
and a specific sensing range for each sensor to guarantee the coverage
of all the targets. In [54] the authors consider WSNs where each sensor
can be activated with several power levels. For each power level they
consider different sensing ranges and power consumptions. They also
present some heuristic approaches and an exact approach based on the
column generation technique. The possible failure of the sensors with
a consequent uncovering of some targets is considered in several works
and it is generally treated as a variant of the MLP named k-MLP. In k-
MLP, the objective is to look for covers such that each target is covered
by at least k different sensors belonging to the cover. In [55] the au-
thors face the problem to minimize the possibility of uncovered targets
and maximizing the network lifetime. They studied and proposed an
LP-based algorithm and a greedy heuristic that represents a tradeoff
between the two problems. In [56] the authors consider that sensors
could be subject to unpredictable failures and they propose an alter-
native strategy to k-MLP problem by considering wireless networks
composed of sensors with adjustable sensing ranges. The Maximum
Network α-Lifetime Problem (α-MLP) is another interesting variant
of the classical MLP which was proposed in [49] and further investi-
gated in [57], [58] and [59]. In such a variant, a predefined portion
of the overall number of targets is allowed to be neglected in each
cover. In [49] the authors presented both an heuristic algorithm and
an exact one, showing that generally large improvements in terms of
overall network lifetime can be already achieved by neglecting a small
percentage of targets within each cover. In [57] the authors proposed
a hybrid exact approach for the α-MLP problem which combines a
column generation approach with a genetic algorithm. Computational
tests proved the high performances of the proposed hybrid approach

16 2. NETWORK LIFETIME AND COVERAGE OPTIMIZATION

in terms of requested computational time with respect to the previous
algorithms presented in literature for MLP and for α-MLP. In [59]
the authors considered α-MLP when sensors may assume more than
one role. Furthermore, the impact of connectivity issues has been ad-
dressed in several papers, [13][16][58][60], while interference con-
straints among sensors has been considered in [61] and [62]. In this
last work, the authors apply, for the first time in this context, a Carousel
Greedy approach [63], in order to speedup the column generation-
based algorithm presented in the manuscript. Carousel Greedy is a
generalized and promising meta-heuristic approach that we adopted
in our algorithm presented in Section 5.4. More classical heuristic
approaches based on local search techniques are adopted in [64][65]
and in [66]. In [67] the authors apply simulated annealing techniques
[68][69] while in the paper [70] the authors consider the possibility of
reconfiguring the network to maximize its duration. In [15] the authors
face the MLP by considering the scenario in which the monitoring area
can be discretized into sub-areas called zones and only recently, in [71]
the authors extended the MLP problem by taking into account the is-
sue of charging the sensor batteries in harvesting scenarios. In the next
section we describe the scenario on which we focused on, where in
order to monitor a target, each sensor needs to be active for a fixed
amount of time (operating time slot).

2.3.2 Application scenario and operating time slot con-
straints

In our thesis we consider high-density unstructured WSN with a ran-
dom deployment of sensors (see Section 2.2.1). The sensors are scat-
tered from above in the area of interest and they monitor the targets
placed in the area itself. The sensors collect information on the targets
and cooperate to deliver them to a node defined as central and located
near the WSN, which also has the function of coordinating the activity
of the sensors. We assume that a sensor can have the following oper-
ating states: receive, idle and transmit. As reported in previous works
[17][72], the energy consumption of a sensor node is similar when the
node is in the transmit and receive states, while it is lower when the

2. Network Lifetime and Coverage Optimization 17

sensor is in the state of inactivity. So, as in other works [49][54] we
consider for simplicity only two operating states, which we define idle
(or sleep) and active, which indicate when the sensor node consumes
battery power or not. Furthermore in this thesis we considered the
context where, in order to monitor a target, each sensor needs to be
active for a fixed amount of time (operating time slot). Such a context
characterizes periodic sensing applications, where the WSN monitors
the phenomenon under observation according to a periodic working
schedule that depends on the phenomenon itself. In such application
context, the WSN alternates periods of activity equal to a time slot, or
multiples of it, with idle periods [24][27][73][74]. The applications
described in these works are characterized by a sensitivity cycle which
is repeated periodically. A sensitivity cycle consists of a predefined
activity time slot, during which the sensors collect information about
the targets, followed by an idle period. The idle period is configurable
and depends on the application. The default activity time slot, on the
other hand, is fixed a priori and is determined by the sensors operating
principle. Examples of periodic sensing applications in environmental
monitoring context can be found in [27] and in [24]. In more detail,
in [27] the default activity time slot is equal to 30 seconds, during
which the sensor detects the concentration of particulate matter in the
air based on the laser scattering principle, and to do this it is neces-
sary a predefined amount of time, while the idle period is configured
equal to 5 minutes. In [24], the authors studied the long-term deploy-
ment of a WSN to explore the status and trends of soil moisture and
transpiration within a watershed. In such a case the activity time slot
was set equal to 50 milliseconds, while the idle period was config-
ured equal to 1 second. Other examples of periodic sensing applica-
tions can be found in several context as in structural health monitoring
[21][22][23][75][76][77], in vivo glucose sensing [78] and agriculture
sensing [28].

18 2. NETWORK LIFETIME AND COVERAGE OPTIMIZATION

2.4 MLPTS problem definition

Let N = {S,T} be a WSN in which S = {s1, . . . ,sm} is the set of sen-
sors and T = {t1, . . . , tk} is the set of targets. We consider that all
the sensors have the same sensing range and the same amount of bat-
tery lifetime (lti), normalized to 1 time unit. Also, as reported in the
previous section, we assume that the sensors can be in two different
operation modes, active and sleep. When a sensor si is in active mode,
it collects information about the targets that are in its sensing range.
Each sensor si can perform its monitoring tasks for a fixed amount
of time, named time slot (τs) with 0 < τs ≤ 1. Whenever a sensor is
in sleep mode, it does not perform any operation and the power con-
sumption is assumed to be equal to 0 while, when a sensor si is in
active mode, its battery lifetime is decreased by τs time units. A subset
C⊆ S is defined to be a feasible cover if the sensors si ∈C, all together,
are able to monitor, for a τs amount of time, all the targets when they
are in active mode. Given T , S and τs, the maximum lifetime prob-
lem with time slot (MLPTS) consists in finding a collection of feasible
covers Γ = {C1, . . . ,Cl}, such that the network lifetime is maximized
and each sensor is in an active mode for a total amount of time that
does not exceed its battery lifetime.

In Figure 2.2-a, a WSN with sensors s1, . . . ,s5, targets t1, . . . , t4 and
sensing ranges represented by circles is shown. We can see that the
sensor s1 covers the targets t1 an t2, the sensor s2 covers t3, and so on.
Let’s assume a time slot τs = 0.3. We can observe that, if we use all
the sensors in each time slot τs, we achieve a maximum lifetime equal
to 0.9 time units. Instead, it is possible to achieve a network lifetime of
1.5 time units by activating, individually, the covers shown in Figure
2.2, that is {s1, s2, s4}, {s3, s4}, {s1, s2, s5}, {s1, s3}, {s1, s2, s5}.
Figure 2.3 shows the activation of the sensors in each time slot and
next to each sensor label is shown its remaining lifetime (lti).

We observe that each of the above subsets covers all targets and
therefore meets the coverage requirements. Maximizing the number
of covers for a given WSN thus maximizes the lifetime of the network.
This is particularly true for unstructured networks where the targets are
covered in a redundant manner due to the high density of the sensors.

2.4. MLPTS problem definition 19

Figure 2.2: Wireless Sensor Network and covers examples

20 2. NETWORK LIFETIME AND COVERAGE OPTIMIZATION

In the next chapter we report a general description about the methods
that we will then use to face the MLPTS. In particular, in Chapter 4
we apply a genetic approach to MLPTS, while in Chapter 5 we face
a more general version of MLPTS, named αc-MLPTS, with a classic
greedy algorithm, a Carousel Greedy algorithm and a modified version
of the genetic algorithm already proposed for MLPTS in Chapter 4.

Figure 2.3: Sensor activity scheduling example

Chapter 3

Maximum Lifetime Problem
with Time Slots: algorithms

This chapter reports the algorithmic approaches used to face MLPTS.
In addition to an overview of genetic algorithms the chapter describes
the Carousel Greedy approach, which represents a recently designed
paradigm that can be used to improve the performances of a standard
greedy algorithm in terms of solution quality.

3.1 Genetic algorithms
A genetic algorithm (GA) emulates biological evolution and natural
selection and is a well-known and widely used meta-heuristic tech-
nique for optimization problems. Historically, the first algorithm in-
spired by the Darwin’s theory on natural evolution was developed by
Holland in 1957 in his work Adaption in Natural Artificial Systems
[79]. Holland’s ideas have been intensively studied and now genetic
algorithms represent a mature technique to solve optimization prob-
lems. Genetic algorithms can solve many problems in different fields
[80]. Scheduling, timetabling, data mining, pattern recognition among
others, are just some examples of genetic algorithms applications.

A GA emulates the natural evolution that is the process that alters
the genetic characteristics of individuals from generation to genera-
tion so that they adapt better to their environment. The evolutionary

22 3. GENETIC ALGORITHMS

process of a GA is based on chromosomes. In nature, a chromosome
represents the structure of a living individual while for a GA a chro-
mosome represents a possible solution to an optimization problem. In
nature, the fitness of an individual expresses how well the individual is
adapted to the environment in which he lives. Similarly, in the GA each
chromosome is evaluated through a fitness function that expresses a
measure of the quality of the solution, represented by the chromosome
itself, to an optimization problem. In nature, the evolution of individu-
als is linked to the reproduction process: 1) during their life, individu-
als (parents) mate producing new individuals (children) whose genetic
heritage is a combination of that of their parents; 2) once generated,
the children undergo mutations with respect to the genetic heritage
inherited from their parents as a result of environmental influences.
Analogously, in a GA the evolution of individuals is achieved through
the crossover, selection and mutation operators. The crossover op-
erator probabilistically combines the genetic material of two or more
individuals. Natural selection is the process by which the GA ensures
that new solutions are typically, step by step, better adapted to the en-
vironment. The mutation operator randomly changes the value of one
or little pieces (genes) of a chromosome derived from the crossover
phase. The goal of the mutation operator is to increase the diversity of
individuals which corresponds to a better exploration of the research
space. The whole process is repeated until a stop condition is reached
which may be a lack of improvement in the fitness function of the best
individual, the achievement of a maximum number of generations, or
other conditions related to the specific optimization problem.

Solving an optimization problem means looking for the best solu-
tion in the search space, i. e. the space of feasible solutions. Genetic
algorithms exploit the evolutionary concepts mentioned above to find
the best solution, that is the individual who has the best fitness value,
trying to avoid or escape the local optima. GA achieves this goal by
making individuals evolve from generation to generation, obtaining in-
dividuals who gradually have better fitness, i.e. a better solution to the
optimization problem. There are two key aspects upon which genetic
algorithms are based, namely randomness and actual population (i.e. a
set of feasible solutions). GAs are nondeterministic algorithms, which

3. Genetic algorithms 23

means that randomness is used within the selection, crossover and mu-
tation operators to better simulate the evolutionary process. They also
does not work on a single solution, but rather work on a large set of so-
lutions at the same time, which allows genetic procedures to consider
a significant amount of diversity at each iteration.

Despite their good characteristics, genetic algorithms also have
some drawbacks. Indeed, they represent a ”big picture”, a general
scheme that normally works without knowing specific notions about
the optimization problem, and this generality leaves them the oppor-
tunity to be applicable to a broad set of problems. Obviously, special-
ized algorithms designed for a given problem can outperform a more
generic GA in terms of computational effort and solution accuracy.
However, given their characteristics, genetic algorithms are often use-
ful to better investigate a large and complicated research space, or to
hybridize other approaches, exact or not.

3.1.1 GA general scheme

A genetic algorithm is composed of a series of steps that follow the
paradigm of the evolution of the species. The starting step for the ap-
plication of a GA is the choice of the representation of individuals, that
is the design of a structure that effectively represents a solution to our
problem. This structure is known as chromosome. GAs work with a
initial population of individuals of limited size. The initial population
of solutions can evolve towards better individuals (hence better solu-
tions for the optimization problem) through the combination of some
of their information and that of other individuals, allowing new solu-
tions to inherit better characteristics than previous ones. Therefore the
initial search space is reduced to this set of solutions. Given the current
population and the details of the optimization problem we would like
to solve, a GA uses specific operators that can combine two or more
solutions to obtain new ones. The fitness function, as reported above,
is used to give a measure of the quality of the solutions. Typically the
fitness function corresponds to the objective function of the optimiza-
tion problem. As in nature, the natural selection process favors the
best individuals, and genetic algorithms implement a selection process

24 3. GENETIC ALGORITHMS

on the current population in order to select only the best individuals,
based on the fitness value. However, during the evolutionary stages,
elements with worse fitness values could also be recombined with oth-
ers as a means of increasing diversity and exploring new portion of the
research space. This diversification is further guaranteed by the muta-
tion operator which randomly alters part of the information belonging
to the newly produced chromosomes. The following steps summarize
the general structure of a GA.

Genetic Algorithm general scheme:

1. Build an initial population randomly: after defined the chromo-
some structure, the GA generate an initial population randomly;

2. Compute the fitness value for each individual: once defined the
fitness function that typically corresponds to the objective func-
tion of the optimization problem, the GA can rank the quality of
each individual of the initial population;

3. Create a new population that replaces the old one by means of
the following steps:

(a) Select two chromosomes according to their fitness: here
two or more individuals are selected by means of specific
procedures, i.e. Roulette Wheel Selection, Random Selec-
tion, Rank Selection, Tournament Selection [81];

(b) Apply Crossover: the GA combines the genetic material of
the selected individuals to generate one or more offspring
individuals. Typically the selection and the crossover oper-
ator are applied on good individuals belonging to the popu-
lation since the hope is that by combining them even better
solutions could be obtained. There are several crossover
techniques such as Single point, Two Point, Multipoint, etc
[81];

(c) Apply Mutation: with a predefined probability the algo-
rithm applies a mutation operator on the generated off-
spring. This operator modifies some information in the
newly generated offspring in order to vary the solution and

3.2. Greedy algorithms 25

improve the search to avoid getting stuck in the local opti-
mal;

(d) Acceptance: each newly produced offspring, will be in-
serted in the new population that will replace the older pop-
ulation. In the described scheme, known as generational
GA, the new offspring will be used only in the new genera-
tion. Another option is represented by the steady-state GA
in which newly produced offspring is immediately added
to the current population and replaces an outgoing older
chromosome which is selected according to various crite-
ria, e.g. it might be the older one, the one with the worst
fitness or it might be selected through probabilistic tourna-
ments.

4. If any Stop condition is reached, the algorithm terminates, oth-
erwise a new iteration is carried out starting from step 2.

The above points represent the steps of a genetic algorithm in its
standard definition. In Chapter 4, we will apply this algorithm to the
MLPTS problem. In particular, in the Section 4.3.1 we will describe
the representation of the solution, while in Section 4.3.2 we will de-
scribe the operators used by the algorithm. Section 4.4 reports and
analyzes the results of the performed experimentation.

3.2 Greedy algorithms
Greedy algorithms have a long history and many applications through-
out computer science, and this is due to their intuitive appeal and con-
ceptual clarity. It is not easy to define exactly a greedy algorithm.
Generally speaking, the optimization algorithms work through a series
of steps and make a choice at each step. An algorithm for an optimiza-
tion problem follows a greedy approach if the choice that it makes
is the one that seems locally optimal. That is, the greedy algorithm
makes an optimal choice locally in the hope that this choice will lead
to a global optimal solution. The greedy method is powerful enough
and works well for a wide variety of problems. In the context of graph

26 3. CAROUSEL GREEDY

algorithms, the well known Kruskal’s algorithm [82] and Prim’s algo-
rithm [83] for the Minimum Spanning Tree problem provide classic
examples of the greedy method. Surveys of approaches to the Mini-
mum Spanning Tree Problem, together with historical background, can
be found in the seminal works [84] [85]. Further examples of greedy
approaches are represented by the Dijkstra’s algorithm for the shortest
paths from a single source [86] and by the Chvátal greedy heuristic for
the set covering problem [87]. Interval Scheduling and the problem of
scheduling to minimize the maximum lateness are two of a range of
basic scheduling problems for which a simple greedy algorithm can be
shown to produce an optimal solution. A collection of related prob-
lems can be found in the survey in [88]. Another well-known example
of a greedy algorithm is the Huffman algorithm that provides a method
for optimal prefix codes [89].

The Section 5.3 describes our greedy approach to face MLPTS.
The experimental results of the greedy implementation are reported
instead in Section 5.5. As we will see, our greedy approach to MPLTS
has excellent execution times, but a lower solution quality than the ge-
netic algorithm presented in the same Chapter 5 which, however, has
higher execution times. In the next section, we present an recently pre-
sented approach, named Carousel Greedy, that improves the solution
quality of a greedy algorithm with slightly higher execution times. We
describe the application of such approach in the Section 5.4.

3.3 Carousel Greedy

Greedy algorithms are often used to solve optimization problems be-
cause they are easy to describe and implement and usually have very
fast execution times. However, greedy algorithms offer a level of solu-
tion quality that is not always acceptable. On the other hand, it is not
always possible to apply exact approaches when the size of the prob-
lem is large. When the size of the problem is such that it does not allow
an exact approach, it is possible to apply the so-called metaheuristics
(genetic algorithms, tabu search, etc.) which, however, can be complex
to code and whose execution times grow rapidly with the size of the

3. Carousel Greedy 27

problem. Recently, in [63], the authors proposes the Carousel Greedy
paradigm which allows to obtain solution algorithms that have the ac-
curacy of metaheuristics with execution time comparable to greedy al-
gorithms. Carousel Greedy (CG) is essentially an enhanced greedy al-
gorithm that, compared to a greedy algorithm, examines a larger space
of possible solutions with a small and predictable increase in computa-
tional effort. More precisely, the CG is a generalized paradigm that can
be used to improve the performances of a standard greedy algorithm
in terms of solution quality. In [63], the authors demonstrated that
CG can be successfully applied to numerous classical optimization
problems such as the minimum vertex cover problem, the maximum
indipendent-set problem, the minimum weight vertex cover and the
minimum label spanning tree problem. The authors also demonstrate
that CG can be easily implemented through a simple and fast proce-
dure as a classic greedy algorithm. CG has been used in many other
works [15][61][90] showing the effectiveness of the proposed method.
In most cases the authors have shown that CG is able to obtain results
comparable to metaheuristics, while being much faster than them. In
[61], it can be seen that the CG performs even better than the previous
genetic algorithm used in [62].

Below is a high level scheme of the CG paradigm:

1) create a partial solution using a greedy algorithm;

2) modify the partial solution in a deterministic way using the same
greedy algorithm;

3) apply the greedy algorithm to produce a complete and feasible
solution.

Unlike metaheuristics, the CG does not improve the solution qual-
ity by passing from a feasible solution to another better solution. The
algorithm during its iterations constructs a single feasible solution start-
ing from the partial solution provided by the greedy. In fact, a require-
ment for the application of CG is the existence, for the problem to be
address, of constructive greedy algorithm, i. e. an algorithm that builds
the solution incrementally.

28 3. CAROUSEL GREEDY

It should be noted that the notion of a generalized greedy algo-
rithm is not new. Duin and Voss introduced the Pilot method in 1999
and applied it to Steiner’s problem in graphs [91]. The basic idea be-
hind the Pilot method is to repeatedly apply a greedy algorithm, each
time from a different starting point. There are also several other gen-
eralized greedy algorithms, such as randomized Greedy [92], iterated
greedy [93] which are all easy to implement and which all generate a
number of feasible solutions. The CG algorithm is also easy to imple-
ment. Since it generates a single feasible solution it is faster than other
generic greedy algorithms.

The underlying intuition of the CG is that during the execution of a
greedy algorithm, the early decisions taken to construct a solution are
likely to be less informed and valid that the later ones. During the first
steps of the construction of the solution, indeed, the greedy choices
could be even arbitrary or not very effective, since many choices may
lead to similar solutions. So, the overall quality of the solution can
be compromised by inadequate early choices. Given this intuition, the
CG approach operates in the following main steps, to extend a generic
greedy algorithm:

1. an initial solution is built, using the greedy algorithm;

2. a partial solution is obtained from the initial one. The partial so-
lution is built by discarding a given percentage of the last choices
made to build the initial solution;

3. the partial solution is then modified for a given number of itera-
tions. In each iteration the oldest choice is replaced with a new
one.

4. in the last step, the partial solution is completed to produce a
feasible solution by using the greedy heuristic.

Figure 3.1 illustrates how CG works. Each row is a step in the CG
algorithm. We will now explain the figure, row by row. CG requires
that two parameters, α and β , be specified, where α is an integer and
β is a percentage. We assume that α = 1 and β = 0,4 and we will
describe later these parameters. We suppose that I is a generic input

3. Carousel Greedy 29

Figure 3.1: Carousel greedy illustration for |Γ| = 5, α = 1, and β =
40%

instance of a MLPTS problem and G is a greedy algorithm that gives
as output a feasible solution Γ. In the first row, the CG begins exe-
cuting G and obtaining a solution Γ that is composed by the covers
C1, C2, C3, C4, C5 , indicated in sequence of selection. In the row 2,
the CG delete the last β = 40% of the covers contained in Γ, leaving
C1, C2, and C3, to postpone the last 40% of selections up to the very
end. The algorithm maintains thus a set of (1−β)|Γ| covers until the
last row. In the third row, CG eliminates the cover C1, the first selected
in row 1 (an early decision), and performs a single iteration of algo-
rithm I which selects C′4, obtaining the partial solution C2, C3, C′4. In
the next row 4, C2 is removed and the cover C′5 is selected yielding
C3,C′4,C

′
5. The algorithm proceeds in this way up to line number 7,

the one before the final step. We observe that at this point the partial
solution is C6, C7, C8 and we have completed α|Γ|= 5 iterations from
the beginning of the CG algorithm. In the last line, CG applies algo-

30 3. CAROUSEL GREEDY

rithm G to the partial solution from line 7, until a feasible solution is
obtained, then stops.

We observe some important aspects. As evident, CG maintains
only a single feasible partial solution and generates a complete one
only at the end. Furthermore, as the CG replace the covers that were
initially selected by the greedy algorithm G, it is clear that the eventu-
ally first errors, due to early decisions, can be corrected. However, the
CG is only slightly more complicated than the original greedy algo-
rithm. Regarding the parameters α and β , it is evident that increasing
α means increasing the number of basic iterations (rows in Figure 3.1)
and, therefore, the running time. The parameter β is related to each
partial solution whose size of (1−β)|Γ| is maintained throughout α

turns of the carousel within CG. In [63] the authors conducted vari-
ous experiments to identify the interaction between the two parameters
and the effects on the algorithm performance. Based on their exper-
iments, they observe that for alpha values that increase starting from
1, the running time increases and so does the quality of the solution,
until it stabilizes. The β parameter is instead linked to the quality of
the solution. Finally, based on the experiments results, they propose to
set α to a value between 5 and 20 and β between 1% and 10%.

We reported below a CG pseudocode description, assuming that I
is a generic input instance of a problem and G is a greedy algorithm
that produces a solution Γ. Note that in rows 5 and 7, using G, means
we select new elements to add to the partial solution R according to
the greedy algorithm G.

Input: I, G. (I is a generic input instance, G is a greedy algorithm)
1 Let Γ← the solution produced by G

(ordered by sequence of selection, the last selected elements are in the head)
2 R← the partial solution produced by removing from head of Γ, β |Γ| elements
3 for α|Γ| iterations
4 remove from tail of R an element
5 using G, add an element to head of R
6 end for
7 using G, add elements to R as long as the solution remains feasible
8 return R.

3. Carousel Greedy 31

About the computational complexity, in [63] the authors shown
that given a generic greedy algorithm that has complexity O(G), the
complexity of a CG approach is equal to (1+α) ·O(G).

In Chapter 5, we apply the CG to the MLPTS problem. In more
detail, in Section 5.3 we describe a generic greedy algorithm for the
MLPTS problem. This algorithm will be used as a basic algorithm by
the CG in the Section 5.4. The two approaches will be compared, in
terms of execution times and quality of the solution, in the 5.5 section.

32 3. CAROUSEL GREEDY

Chapter 4

A Genetic approach for the
Maximum Network Lifetime
Problem with additional
operating Time Slot constraints

4.1 Introduction
Maximum Network Lifetime Problem (MLP) is a well known and
challenging optimization problem which has been addressed success-
fully with several approaches in the last years. It essentially consists
in finding an optimal schedule for sensors activities in a wireless sen-
sor network (WSN) aiming at maximizing the total amount of time
during which the WSN is able to perform its monitoring task. In this
chapter we consider a new scenario in which, in order to monitor some
locations in a geographical area, the sensors need to be active for a
fixed amount of time, defined as operating time slot. For this new sce-
nario we derive an upper bound on the maximum lifetime and propose
a genetic algorithm for finding a near-optimal node activity schedule.
The performance evaluation results obtained on numerous benchmark
instances, show the effectiveness of the proposed approach.

Wireless Sensor Networks (WSNs) represent nowadays one of the
most advanced technologies able to collect and process information in

34 4. A GENETIC APPROACH TO MLPTS

heterogeneous contexts [17][94][95]. WSNs are generally composed
of low-cost devices (sensors) which collect information about the sur-
rounding space (sensing area) that usually contains specific targets of
interest. While advancements in wireless communications and micro-
electro-mechanical systems allowed the adoption of sensor networks
in many scenarios, battery technologies experienced much smaller im-
provements over time. Indeed, energy consumption is still one of the
most important issues that has generated a great research interest, es-
pecially in the last years due to the diffusion of Internet of Things
(IoT) applications and cyber physical systems. In more detail, one
of the most important aspects considered to face such issue concerns
scheduling sensors activities. The sensors are generally powered by
batteries that keep them fully functional only for a limited amount of
time. Given a WSN deployed with such sensors, the determination of
an efficient scheduling of their operational states (idle or active) could
help in overcoming the limitations in terms of battery duration which
characterizes each individual sensor. Usually the deployed sensors
provide redundant coverage so that keeping them all simultaneously
in an active state causes only a waste of energy without real benefits.
In this specific context the main aim is to find non-necessarily dis-
joint subsets of sensors (covers) which are able to provide coverage
for all the targets, while keeping all the other sensors in idle state. It is
straightforward to note that the identification of such covers and their
activation times can extend the amount of time over which a WSN
is able to perform its monitoring activity. This problem is known in
literature as the Maximum Network Lifetime Problem (MLP) and its
variants have been addressed with different approaches in the last two
decades. In [17], the authors show that the MLP is NP-complete. They
also propose an approximation algorithm that generates not necessar-
ily disjoint subsets of sensors that improve the lifetime obtained by
previous approaches [52] based on disjoint subset of sensors. In [53]
the author proposes a ILP formulation and a column generation-based
heuristic to solve the MLP. In the literature there are different variants
of the problem in which the MLP occurs different applications. Reli-
ability issues are considered in [56], while the experiences presented
in [48][54] take into account sensors with adjustable sensing ranges.

4.2. MLPTS problem definition 35

Furthermore, [13][16][60] consider the combination of coverage and
connectivity issues. In [61] the authors investigated interference issues
among close sensors, while in [15] the authors considered the context
in which the monitoring activity is related to zones. In this chapter we
considered the context where, in order to monitor a target, each sensor
needs to be active for a fixed amount of time (operating time slot). So
we aim to solve the MLP by activating not necessarily disjoint subsets
of sensors for fixed time intervals. This new problem has been de-
fined as Maximum Lifetime Problem with Time Slots (MLPTS). Such
a context characterizes periodic sensing applications, where the WSN
monitors the phenomenon under observation according to a periodic
working schedule that depends on the phenomenon itself. In such
working schedule the monitoring time slots could be alternated with
time periods in which the WSN is idle [73][74]. Examples of peri-
odic sensing applications with fixed activation times can be found in
different fields as in structural health monitoring [75][77][76], envi-
ronmental monitoring [24], in vivo glucose monitoring [78], etc. For
MLPTS we derive an upper bound on the maximum lifetime and pro-
pose a genetic algorithm that is able to determine a near-optimal sen-
sors activity schedule. The performance evaluationl results obtained
on numerous benchmark instances, show the effectiveness of the pro-
posed approach. The remaining of the paper is organized as follow: in
Section 4.2 we define formally MLPTS, and show some useful details
that we further use in the proposed resolutive approach; Section 4.3
describes the proposed method and Section 4.4 presents the performed
computational tests. Finally, in the last section we give some future
directions.

4.2 MLPTS problem definition

Let N = {T,S} be a WSN where T = {t1, . . . , tk} is the set of k tar-
gets and S = {s1, . . . ,sm} is the set of m sensors. We assume that all
sensors have the same technical characteristics in terms of operation
modes, sensing range and battery duration. In more detail, we assume
that each sensor can be in two different operation modes, sleep and ac-

36 4. A GENETIC APPROACH TO MLPTS

Figure 4.1: a WSN example composed of five sensors s1, s2, s3, s4, s5,
distinguished by theirs sensing ranges represented by circles and tar-
gets t1, t2, t3, t4.

tive. When a sensor is in sleep mode, it does not perform any operation
and its power consumption is assumed to be equal to zero. Conversely,
when a sensor is in active mode, it is able to perform its own task, by
collecting information about its monitoring targets. When a sensor is
active it can perform its monitoring tasks for a fixed amount of time,
that is a fixed time slot τs > 0, and we assume the power consumption
to be proportional to τs. The total activation time of a sensor cannot ex-
ceed the battery lifetime (lt) normalized to 1 time unit, lti = 1 for each
si. Let T (si)⊆ T be the subset of the targets within the sensing range
of a sensor si. A subset of activated sensors C ⊆ S is defined to be a
cover if

⋃︁
si∈C T (si) = T , that is, all the targets are kept under moni-

toring by the sensors belonging to C. Given T , S and τs, the MLPTS
consists in finding a collection of feasible covers C= {C1, . . . ,Cl}, that
maximizes the network lifetime ϕ = l ·τs, and such that each sensor is
in active mode for a total amount of time that does not exceed its bat-
tery lifetime. Figure 4.1 shows a WSN with sensors s1, . . . ,s5, targets
t1, . . . , t4 and sensing ranges represented by circles.

If we assume a τs = 0.5 time units and all sensors to be active at
once, the maximum network lifetime achievable is equal to 1 time unit,
by activating all sensors twice. However it is straightforward to note

4.3. A genetic algorithm for solving MLPTS 37

that it is possible to achieve a network lifetime of 1.5 time units by acti-
vating individually the following covers, {s1,s2,s4}, {s1,s5}, {s4,s5},
for a τs = 0.5 each. The optimal lifetime of 2 time units is achieved by
activating the cover in the collection C∗={{s1,s3}, {s1,s5}, {s2,s3,s4},
{s4,s5}}. Observe that an exhaustive research of feasible covers is not
applicable due to the high (potentially exponential) number of covers
(see [17]).

4.2.1 Network lifetime upper bound in MLPTS
Let ϕ̄τs

be the maximum lifetime of a WSN when a time slot of τs time
units is given and let us denote with S(t) ⊆ S the subset of sensors
covering a given target t ∈ T . We denote with tlc, the least covered
target, that is tlc=argmint∈T{|S(t)|}. It is easy to see that, given the
coverage constraint of the MLPTS each feasible cover must contain at
least a sensor belonging to S(tlc) and hence the following upper bound
on the maximum lifetime holds:

ϕτs¯ ≤ ts · ∑
i∈S(tlc)

⌊ lti
τs
⌋ (4.1)

Furthermore, given a solution C= {C1, . . . ,Cl}, it is easy to derive that
the number l of feasible covers is bounded by the following relation:

l ≤ ϕτs¯
τs

= l̄ (4.2)

Finally, we can observe that both ϕτs¯ and l̄ can be evaluated in polyno-
mial time by finding the least covered target S(tlc).

4.3 A genetic algorithm for solving MLPTS
A genetic algorithm (GA) is an iterative probabilistic algorithm in-
spired by biological evolution that it is generally used for finding good
solution for complex optimization problems through solution space ex-
ploration. GA iteratively emulates the typical steps of the biological
evolution, that is natural selection, crossover and mutation. The GA

38 4. A GENETIC APPROACH TO MLPTS

considers the evolution process based on chromosomes (i. e. individ-
uals), elements that represent feasible solutions for the optimization
problem. Starting from an initial set of random individuals, a typical
GA produces new solutions by applying the crossover operator, that
combines the genetic information of selected individuals. A mutation
operator is then applied in order to guarantee a proper diversification
of the genetic material of the new generated individuals. A fitness
function, that usually corresponds to the objective function of the opti-
mization problem, is used to rank the quality of each single individual,
in order to perform selection of the best solutions determined so far.
The natural selection together with the fitness function generally guar-
antee that the new generated individuals have better characteristics.
The overall process is generally repeated until one or more stop con-
ditions are reached, in order to perform a satisfactory exploration of
the solution space. The stopping conditions can be of different nature,
for example a specified amount of elapsed time, a maximum num-
ber of iterations of the evolutive process, a lack of improvements in
the fitness value of the best individual or other criteria connected to
the characteristics of the optimization problem. A detailed description
about genetic algorithms can be found in [96].

The main steps of our GA are listed in Algorithm 1. The GA takes
as input a WSN {T,S} where T is a set of k targets and S is a set of
m sensors, a time slot value τs, a population size pSize, a crossover
and a mutation probability, cProb and mProb respectively, and finally
a maximum iterations parameter maxIt as one of the stopping criteria.
Line 1 estimates the network lifetime upper bound ϕτs¯ , as described
in Section 4.2.1. In lines 2 and 3 the GA generates an initial popula-
tion P of individuals and identifies the best initial solution value. The
subroutine InitPopulation for the generation of the initial population
is described in Section 4.3.1. The while loop of lines 5-14 iteratively
applies Select, Crossover, and Mutation operators described in Sec-
tion 4.3.2. The while loop iterates until either the incumbent BestLT
reaches its upper bound ϕτs¯ , that is the optimal value of lifetime has
been found by the GA, or maxIt consecutive iterations without im-
provements of the incumbent value BestLT are performed. Finally the
chromosome with the best fitness value is returned as output of the

4.3. A genetic algorithm for solving MLPTS 39

input : {T,S}, τs, pSize, cProb, mProb, maxIt
output: A chromosome p

1 ϕτs¯ ← GetLifetimeUpperBound (T , S, τs);
2 P← InitPopulation (pSize);
3 BestLT ← BestLifetime (P);
4 It← 0 ;
5 while BestLT < ϕτs¯ and It < maxIt do
6 P← Select (P);
7 P← Crossover (P, cProb);
8 P← Mutate (P, mProb);
9 It← It +1 ;

10 if BestLifetime (P) > BestLT then
11 BestLT ← BestLifetime (P);
12 It← 0 ;
13 end
14 end
15 p← BestChromosome (P);
16 return p;

Algorithm 1: Genetic algorithm

GA.
The following sections describe the details of our GA. Section

4.3.1 illustrates the chromosome representation and the fitness func-
tion while Section 4.3.2 describes the generation of the initial popula-
tion and the operators used by the GA.

4.3.1 Solution representation and fitness function
As shown in Section 4.2.1 a MLPTS feasible solution cannot contain
more than l̄ covers (4.2). Hence we designed a chromosome composed
of at most l̄ distinct components C1, . . . ,Cl̄ . Each component Cl cor-
responds to a gene gl and represents a feasible cover for the MLPTS.
So as shown in Figure 4.2, each gene is a sequence of m binary values
each of them associated to a sensor of the network. In more detail,
each position i of a gene gl is equal to 1 (gl

i = 1) if the sensor si is

40 4. A GENETIC APPROACH TO MLPTS

Figure 4.2: Generic chromosome structure

(a) Chromosome p1 (b) Chromosome p2

Figure 4.3: Solutions representation

active in the cover Cl , and 0 otherwise. By construction, the length of
a chromosome p is at most equal to |p|= m · l̄. We observe that, given
a chromosome p composed by lp genes, the network lifetime ϕ(p)
achieved by p, is equal to τs · lp. Let us now consider the WSN re-
ported in Figure 4.1 and suppose a time slot τs = 0.5 time units. Since
the least covered target is t4 and S(t4) = {s1,s4}, by the relation 4.1 the
maximum network lifetime ϕ̄ cannot be greater than 2 units of time.
Figure 4.3 shows two chromosomes, p1 and p2, the former relative to
the solution C1 = {{s1,s2,s4},{s1,s5},{s4,s5}}, the latter relative to
the solution C2 = {{s1,s3},{s1,s5},{s2,s3,s4},{s4,s5}}.

It is easy to see that lp1 = 3 and ϕ(p1) = 1.5 time units, while
lp2 = 4 and ϕ(p2) = 2 time units.

The fitness function has two components ϕ(p) and ρ(p) combined
by using a weighted sum approach [97] :

f (p) = w1 ·ϕ(p)+w2 ·ρ(p) (4.3)

where w1+w2 = 1 and 0≤ w1,w2 ≤ 1. The first component ϕ(p),
corresponds to the network lifetime achievable by p, while ρ(p) is
an ad-hoc designed component that lets the GA to distinguish among
solution with same lifetime value but different residual battery lifetime
distribution.

4.3. A genetic algorithm for solving MLPTS 41

Given p, we define rlti(p) as the residual battery lifetime of a sen-
sor si, that is:

rlti(p) = lti−
lp

∑
l=1

gl
i
τs i = 1, . . . ,m (4.4)

and we denote with rlt(p) the vector of the residual battery life-
time, in which the i− th entry is the residual battery lifetime of si. Let
us now consider the example chromosome shown in Figure 4.3 (a) rel-
ative to the WSN reported in Figure 4.1, where we assume a τs = 0.5
time units. We note that, rlt(p1) = {0.0,0.5,1.0,0.0,0.0} that is, the
residual battery lifetime of sensors s1, s4 and s5 is equal to 0, while the
residual lifetime of s2 and s3 is equal to 0.5 and 1, respectively.

The second component of the fitness function estimates the differ-
ence between the mean value E[rlt(p)] and the variance value σ2[rlt(p)],
and it is equal to:

ρ(p) = E[rlt(p)]−σ
2[rlt(p)] (4.5)

We observe that since 0 ≤ rlti(p) ≤ 1 i = 1, . . . ,m the following
relations hold, where the 4.7 derives from the Popoviciu’s inequality
on variances [98]:

0≤ E[rlt(p)]≤ 1 (4.6)

0≤ σ
2[rlt(p)]≤ 1

4
(4.7)

Indeed ρ(p) corresponds to a measure about uniformly distributed
residual battery lifetime, among two chromosomes with the same net-
work lifetime ϕ(p), the bigger is its value the better are distributed the
residual battery lifetime values. The motivation of such distinction is
related to the crossover operator and it is described in detail in Section
4.3.1. Furthermore we choose w1 and w2 in such a way that ϕ(p) has
a greater relevance than ρ(p), as stated in the following proposition.

Let p1 and p2 be two chromosomes and let f be the fitness function
defined by equation (4.3) where w1 = 1− 1

4 · τs and w2 =
1
4 · τs. Then

42 4. A GENETIC APPROACH TO MLPTS

f (p1)> f (p2) if and only if one of the following conditions holds:

lp1 > lp2 (ϕ(p1)> ϕ(p2)) (4.8)

lp1 = lp2 and ρ(p1)> ρ(p2) (4.9)

4.3.2 Initialization and operators
The initial population P is composed of pSize chromosomes. Each
chromosome p is built by selecting uniformly at random |p| binary
values. In order to guarantee the feasibility of p a makeFeasible op-
erator is then applied on p. The Algorithm 2 shows the pseudocode
of the makeFeasible operator. The operator builds a feasible chromo-
some p′ starting from a not necessarily feasible one p. The while loop
of the lines 3-9 tries to add to p′ randomly, all the feasible genes of
p by checking the residual lifetime of the sensors at each insertion. If
the operator is not able to add at least a feasible gene to p′, lines 10-16
build and add a feasible gene to p′. Then line 18 tries to switch off ac-
tive sensors of p′ by preserving its feasibility. The procedure iterates
until pSize feasible chromosomes are generated.

Given an initial population of individuals, a roulette wheel selec-
tion step [99] is then applied in order to randomly choose pSize/2
couples of chromosomes on which the GA applies the crossover oper-
ator defined next. The crossover operator generates new chromosomes
by combining the genetic material of the selected chromosomes. Our
crossover is a variation of the two-points crossover [99]. It takes as
input two chromosomes p and q, composed by lp and lq genes respec-
tively, and builds two offspring chromosomes o f1 and o f2 as shown
in Figure 4.4. In more details, once extracted two random integer
crossover points cp1 and cp2, the first offspring o f1 is obtained com-
bining the firsts cp1−1 genes of p with the lasts lq− (cp2−1) genes
of q. The offspring o f2 is obtained combining p and q analogously.
In order to guarantee the feasibility of the generated individuals make-
Feasible is then applied on each offspring. The two chromosomes with
the highest fitness among the offsprings and their parents, are then in-
serted in the current population P.

4.3. A genetic algorithm for solving MLPTS 43

input : A chromosome p = {g1,g2, . . .glp} not necessarily
feasible

output: A feasible chromosome p′

1 p′← Ø;
2 L←{1, ..., lp};
3 while L ̸= Ø do
4 i← Random(L);
5 L← L\{i};
6 if gi is feasible and rlt(p′

⋃︁
{gi})≥ 0 then

7 p′← p′
⋃︁
{gi};

8 end
9 end

10 if p′ = Ø then
11 while g1 is not feasible do
12 i← Random(S);
13 S← S\{i};
14 g1

i← 1;
15 end
16 p′← p′

⋃︁
{g1};

17 end
18 p′← CheckRedundancy(p′);
19 return p′;

Algorithm 2: MakeFeasible operator

The mutation operator is then applied on the chromosomes in order
to guarantee a properly perturbation of the genetic material and hence
a better and wider exploration of the solution space. The chromosomes
to be mutated are randomly chosen accordingly to a mutation proba-
bility value mProb that the algorithm takes as input. Once extracted
to be mutate, a single random binary value of each of the genes of the
selected chromosome is randomly changed in the opposite.

Finally, the GA gives as its output the chromosome with the highest
fitness value obtained by calling the procedure BestChromosome.

44 4. A GENETIC APPROACH TO MLPTS

Figure 4.4: Crossover operation: generation of offspring o f1 o f2 start-
ing from parents p and q

4.4 Performance evaluation results
We performed an extensive performance analysis by working on in-
stances proposed in literature by [53] and by [49] for the classical
Maximum Lifetime Problem. Technical details about the instances can
be found in the related papers. Our GA was coded in C++ and the tests
were performed on a macOS platform running on an Intel Core i5 2.5
GHz processor with 8GB RAM. We carried out a preliminary tuning
test phase in order to estimate the best values for the GA parameters.
The pSize parameter was set equal to 50 while the stopping criterion
maxIt was set to 10. Finally the crossover and mutation probabilities,
cProb and mProb were set to 0.3 and 0.05 respectively. All the tests
were performed by considering time slot τs values equal to 0.1 and
0.3. Table 4.1 reports the results obtained by our GA on benchmark
instances proposed in [53]. Each line in the Table 4.1 corresponds to
a test scenario composed of 10 different instances (different topolo-
gies) with the same number of sensors and targets and shows the av-
erage computational time and average lifetime obtained on these 10
instances. The first three columns report the time slot value, the num-
ber of sensors and targets considered in the scenarios. The column
UB reports the average upper bound for the scenarios while column
Lifetime and Time report respectively the solution values measured in
time units and the CPU runtime in seconds. Finally the GAP col-
umn shows the average percentage gap between the solution found
by GA and the upper bound value. The percentage GAP is estimated
as 100× (UB−GA)/UB. First of all we can observe from the Time

4.4. Performance evaluation results 45

Table 4.1: Deshinkel results
GA

|S| |T| UB Lifetime Time GAP

τs = 0.1

50 30 3.80 3.73 0.05 1.84%
60 3.00 2.98 0.08 0.67%
90 2.80 2.75 0.10 1.79%

120 2.70 2.64 0.14 2.22%
100 30 8.70 8.62 0.29 0.92%

60 7.20 7.09 0.39 1.53%
90 6.90 6.77 0.53 1.88%

120 6.70 6.59 0.71 1.64%
150 30 14.70 14.64 0.95 0.41%

60 12.30 12.07 1.40 1.87%
90 11.80 11.52 1.84 2.37%

120 11.30 11.11 2.33 1.68%
200 30 19.60 19.52 1.84 0.41%

60 17.30 17.16 2.87 0.81%
90 16.60 16.39 3.15 1.27%

120 15.50 15.20 3.46 1.94%

τs = 0.3

50 30 3.42 3.33 0.02 2.63%
60 2.70 2.64 0.02 2.22%
90 2.52 2.46 0.03 2.38%

120 2.43 2.40 0.04 1.23%
100 30 7.83 7.65 0.09 2.30%

60 6.48 6.36 0.12 1.85%
90 6.21 6.10 0.17 1.77%

120 6.03 5.91 0.23 1.99%
150 30 13.23 13.23 0.31 0.00%

60 11.07 10.86 0.44 1.90%
90 10.62 10.47 0.60 1.41%

120 10.17 9.96 0.75 2.06%
200 30 17.64 17.52 0.46 0.68%

60 15.57 15.39 0.90 1.16%
90 14.94 14.82 1.22 0.80%

120 13.95 13.86 1.40 0.65%

46 4. A GENETIC APPROACH TO MLPTS

columns that GA is very fast on all the instances proposed by [53] with
a running time lower than 0.95 seconds on 23 test scenarios out of 32.
In more details the running time grows up to 3.46 seconds on the in-
stances when τs = 0.1, and up to 1.4 when τs = 0.3. Indeed having a
τs = 0.1 let a larger quantity of energy to be used and and so a wider
solution space that leads to a higher computational effort. Furthermore
we can note that on 25 test scenarios the percentage GAP is lower than
1.99%. While on 9 test scenarios it is lower than 0.92%. This clearly
demonstrates the effectiveness of the approach that produces very good
solutions on this data set in at most 3.46 seconds.

We also analyzed the results obtained by our GA on the Group
1 and Group 2 sets of benchmark instances proposed in [49]. Table
4.2 shows the results of our GA when used to solve the MLPT S on the
Group 1 instances. The description of the Table 4.2 heading is the same
of Table 4.1. However, in this set, each instance contains 15 targets.
Furthermore each line in the tables shows the average values obtained
over 5 different test scenarios. This set of instances is the easiest to
solve. The running time is lower than 0.38 seconds on 7 out of 8 test
scenarios. In the worst case the average running time grows up to 1.22
seconds. Even in this case the average computational effort is bigger
when the GA is used to solve the problems with τs = 0.1 rather when
τs = 0.3. If we take a look to the GAP column we observe that on 7
out of 8 test scenarios the percentage gap is lower than 0.43% and this
further confirms the effectiveness of the approach. On the other side,
the Group 2 set of instances is the hardest to solve. This set contains
instances with 100 targets, while the number of sensors is not fixed a
priori. Because of this the number of the sensors is not reported in the
headings of the Table 4.3.

The instances are distinguished by the type of the sensors deploy-
ment named Design and Scattering respectively, whose technical de-
tails can be found in [49]. On these two sets even if the running time
is always less 0.15 seconds, the GAP column reports a percentage gap
that ranges from 1.11%, on the Scattering instances, up to 2.67% on
the Design instances. Among all, Group 2 is the hardest set of in-
stances to solve and we think that this is because of the greater number
of sensors considered in this case which leads to a higher number of

4.5. Conclusion 47

Table 4.2: Group 1 results
GA

|S| |T| UB Lifetime Time GAP

τs = 0.1 25 15 3.60 3.60 0.01 0.00%
50 9.40 9.38 0.07 0.21%

100 15.40 15.38 0.35 0.13%
150 25.00 24.98 1.22 0.08%

τs = 0.3 25 15 3.24 3.24 0.00 0.00%
50 8.46 8.28 0.02 2.13%

100 13.86 13.80 0.11 0.43%
150 22.50 22.44 0.38 0.27%

Table 4.3: Group 2 results
GA

τs |T| UB Lifetime Time GAP

Design 0.1 100 3 2.92 0.06 2.67%
0.3 2.7 2.64 0.02 2.22%

Scattering 0.1 100 3 2.97 0.15 1.11%
0.3 2.7 2.67 0.05 1.11%

feasible covers. However, we can observe that these results prove that
our GA is a fast and effective algorithm for the MLPTS problem, able
to solve within 3.46 seconds, at most on average, all the test scenarios
of the instances proposed in the literature for the classical MLP.

4.5 Conclusion
In this chapter we considered the maximum lifetime problem in a new
scenario in which sensors must be active for a specific period of time,
defined as a time slot. For solving such a maximum lifetime problem
with additional time slot constraints, we have developed a genetic algo-

48 4. A GENETIC APPROACH TO MLPTS

rithm and derived an upper bound on the maximum value of lifetime.
The performance evaluation results obtained by an extensive experi-
mentation on the numerous benchmark instances existing in literature
show the effectiveness of the proposed approach. Future research will
focus on the study of heuristic solution approaches to the aforemen-
tioned problem, and on the analysis of variants of the problem itself.

Chapter 5

Maximum Network Lifetime
Problem with Time Slots and
Coverage Constraints: efficient
approaches

5.1 Introduction
In Wireless Sensor Networks applications involving a huge number of
sensors, some of the sensor devices may result to be redundant. As
a consequence, the simultaneous usage of all the sensors may lead
to a faster depletion of the available energy and to a shorter network
lifetime. In this context, one of the well known and most important
problems is the Maximum Network Lifetime Problem (MLP). MLP
consists in finding non-necessarily disjoint subsets of sensors (covers),
which are autonomously able to surveil specific locations (targets) in
an area of interest, and activating each cover, one at a time, in order to
guarantee the network activity for as long as possible. MLP is a chal-
lenging optimization problem and several approaches have been pro-
posed to address it in the last years. A recently proposed variant of the
MLP is the Maximum Lifetime Problem with Time Slots (MLPTS),
where the sensors belonging to a cover must be operational for a fixed
amount of time, called operating time slot, whenever the cover is ac-

50
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

tivated. In this chapter, we generalize MLPTS by taking into account
the possibility, for each subset of active sensors, to neglect the cover-
age of a small percentage of the whole set of targets. We define such
new problem as αc-MLPTS, where αc defines the percentage of targets
that each cover has to monitor. For this new scenario we propose three
approaches: a classical greedy algorithm, a Carousel Greedy algorithm
and a modified version of the genetic algorithm already proposed for
MLPTS. The comparison of the three heuristic approaches is carried
out through extensive computational experiments. The computational
results show that the Carousel Greedy represents the best trade-off be-
tween the proposed approaches and confirm that the network lifetime
can be considerably improved by omitting the coverage of a percent-
age of the targets.

Wireless Sensor Networks (WSNs) nowadays represent one of the
most advanced technologies for collecting and processing information
in heterogeneous contexts such as air quality monitoring [95][94], ob-
ject tracking [100][101], healthcare monitoring [102][103][104], struc-
tural health checking [21][22][23]. In addition, a lot of projects are ex-
periencing an increasing usage of wireless devices in environmentally
friendly programs worldwide, from personal to industrial and hetero-
geneous environments and Internet of Things (IoT) technologies are
becoming more and more easily accessible from people all around
the globe. A clear example is represented by a project named luft-
daten.info [27]. In such a project, volunteers, from Germany and now,
day by day, all around the world, have deployed thousands of particu-
late matter sensors in urban areas to check, with specific time intervals
(time slots), the air quality. The project is based on a “sensor commu-
nity” whose aim is the construction of a contributor-driven global sen-
sor network that creates a big dataset of open environmental data. The
mission of such a project is giving people access to a platform for the
easy collection and sharing of environmental data. In such a context
is clear that the use of IoT technologies makes air pollution monitor-
ing less complex and helps in better understanding the environment.
Furthermore, it is easy to see that such worldwide distributed appli-
cation can be easily adopted in industrial environment making the air
pollution monitoring more and more detailed.

5. MLP with Time Slots and Coverage Constraints: Efficient approaches 51

The rapid and great evolution of IoT technologies has led to the
reduction of sensor devices in terms of size, energy consumption, and
cost and now they are integrated in almost every object. However bat-
tery technology, which is still essentially linked to a chemical reaction,
has had a much lower development curve and, it is well known that en-
ergy consumption is still one of the most important issues that impacts
on the network lifetime of a WSN. As a consequence, the optimization
of the usage of the limited energy resources is a crucial aspect to be
considered in order to extend the network lifetime [17][52]. Indeed,
one of the most important and largely studied problem is the Maxi-
mum Network Lifetime Problem (MLP) which consist in finding non-
necessarily disjoint clusters of sensors, which are autonomously able
to surveil specific locations (targets) in an area of interest, and activat-
ing each of them one at time in order to guarantee the network activity
for as long as possible. However, since the sensors are powered by bat-
teries, especially in harvesting environment, they can be active only for
an amount of time given by their battery capacity. Therefore it is fun-
damental to decide for how long it is possible to schedule the activity
of such clusters (covers) by avoiding to exceed the battery capacity of
each sensor.

One of the pioneering work of the MLP problem is [17]. In this pa-
per the authors propose an Integer Programming (IP) formulation for
the MLP. In particular they define the Maximum Set Problem MSC
and they show that the MLP is NP-complete [105]. They also design
two heuristics that are able to overcome the performances of previ-
ous approaches [52] by building not necessarily disjoint clusters of
sensors (covers). In more detail, the two proposed heuristics aim to
maximize the number of covers, solving MSC problem using a linear
programming and a greedy approach respectively. The idea behind the
algorithms is to select sensors that have the highest battery life and that
cover the maximum number of uncovered targets.

In [53] the authors builds a linear programming model for the MLP
and they face it for the first time with a column generation technique,
a well-known and widely practiced techniques for solving large scale
linear programming problems. However, in the literature are present
several MLP variants, each of them facing different issues with differ-

52
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

ent approaches. In [48] the authors present an extension of [17] and
they propose to use sensors with an adjustable sensing range in order
to reduce interferences at the MAC layer. They show that even this
variant is a NP-complete problem; furthermore, they propose an Inte-
ger Programming (IP) model, two model-based heuristics and a greedy
algorithm to find the maximum number of covers and a specific sens-
ing range for each sensor to guarantee the coverage of all the targets.
The proposed heuristics are based on a relaxation and rounding mecha-
nism. The IP model is first relaxed into a linear programming problem
(LP). The solutions of the LP model are then rounded to obtain a fea-
sible solution for the IP. The other proposed greedy approach, builds
a solution incrementally and selects sensors considering two criteria.
The first criterion gives priority to sensors that cover multiple targets
per unit of energy. Furthermore, since the algorithm must also detect
the sensing ranges, a smaller detection range is preferred as long as the
target coverage objective is reached, allowing the sensor to be opera-
tional longer.

In [54] the authors consider WSNs where each sensor can be ac-
tivated with several power levels. For each power level they consider
different sensing ranges and power consumptions. They also present
some heuristic approaches and an exact approach based on the column
generation technique.

The possible failure of the sensors with a consequent uncovering of
some targets is considered in several works and it is generally treated
as a variant of the MLP named k-MLP. In k-MLP, the objective is to
look for covers such that each target is covered by at least k different
sensors belonging to the cover. In [55], the authors face the problem
to minimize the possibility of uncovered targets and maximizing the
network lifetime. They studied and proposed an LP-based algorithm
and a greedy heuristic that represents a tradeoff between the two prob-
lems. In [56], the authors consider that sensors could be subject to un-
predictable failures and they propose an alternative strategy to k-MLP
problem by considering wireless networks composed of sensors with
adjustable sensing ranges able to adapt their sensing capability in re-
sponse to sensor failures. The authors provide an exact algorithm and
perform computational experiments to demonstrate the performances

5. MLP with Time Slots and Coverage Constraints: Efficient approaches 53

of the proposed approach.
The Maximum Network α-Lifetime Problem (α-MLP) is another

interesting variant of the classical MLP which was proposed in [49]
and further investigated in [57], [58] and [16]. In such a variant, a
predefined portion of the overall number of targets is allowed to be
neglected in each cover. In [49], the authors presented both a heuris-
tic algorithm and an exact one, showing that generally large improve-
ments in terms of overall network lifetime can be already achieved by
neglecting a small percentage of targets within each cover. In [57],
the authors proposed a hybrid exact approach for the α-MLP problem
which combines a column generation approach with a genetic algo-
rithm. Computational tests proved the high performances of the pro-
posed hybrid approach in terms of requested computational time with
respect to the previous algorithms presented in literature for MLP and
for α-MLP. In [58], the authors considered α-MLP when sensors may
assume several roles. They provide a mathematical formulation for the
α-MLP and propose a column generation based approach. In [16], the
authors consider connectivity issues when a communication link exists
between each couple of sensors. The authors developed an exact and
a heuristic algorithm, both based on column generation. They used
an appropriately designed genetic algorithm to overcome the difficulty
of solving the subproblem to optimality in each iteration of the exact
approach. Moreover, they devise the heuristic by stopping the exact
column generation procedure as soon as the genetic algorithm does
not improve the incumbent solution.

Furthermore, the impact of connectivity issues has been addressed
in several others papers, [13][58][60], while interference constraints
among sensors has been considered in [61] and [62]. In this last work,
the authors apply, for the first time in this context, a Carousel Greedy
approach [63], in order to speedup the column generation-based algo-
rithm presented in the manuscript. Carousel Greedy is a generalized
and promising meta-heuristic approach that it is adopted in our algo-
rithm presented in Section 5.4. More classical heuristic approaches
based on local search techniques are adopted in [64][65] and in [66]. In
[67], the authors apply simulated annealing techniques [68][69] while
in the paper [70] the authors consider the possibility of reconfiguring

54
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

the network to maximize its duration. In [15], the authors face the
MLP by considering the scenario in which the monitoring area can be
discretized into sub-areas called zones and only recently, in [71] the
authors extended the MLP problem by taking into account the issue of
charging the sensor batteries in harvesting scenarios.

Among the MLP variants, in this chapter it is further investigated
the problem presented in [106]. Here the authors addressed the MLP
when the activity of each sensor needs to be performed for a fixed
amount of time because of the operational constraints. The authors
defines formally such problem as Maximum Lifetime Problem with
Time Slots (MLPTS). They derived an upper bound on the maximum
lifetime and proposed a genetic algorithm to find a near-optimal node
activity schedule. In such application context, the WSN alternates pe-
riods of activity equal to a time slot, or multiples of it, with idle periods
[24][27][73][74]. The applications described in these works are char-
acterized by a sensitivity cycle which is repeated periodically. A sen-
sitivity cycle consists of a predefined activity time slot, during which
the sensors collect information about the targets, followed by an idle
period. The idle period is configurable and depends on the application.
The default activity time slot, on the other hand, is fixed a priori and is
determined by the sensors operating principle. Examples of periodic
sensing applications in environmental monitoring context can be found
in [27] and in [24]. In more detail, in [27] the default activity time slot
is equal to 30 seconds, during which the sensor detects the concentra-
tion of particulate matter in the air based on the laser scattering prin-
ciple, while the idle period is configured equal to 5 minutes. In [24],
the authors studied the long-term deployment of a WSN to explore the
status and trends of soil moisture and transpiration within a watershed.
In such a case the activity time slot was set equal to 50 milliseconds,
while the idle period was configured equal to 1 second. Other exam-
ples of periodic sensing applications can be found in several context as
in structural health monitoring [21][22][23][75][76][77], in vivo glu-
cose sensing [78] and agriculture sensing [28].

As can be seen from the literature, a lot of results can be found on
the MLP and variants considering classical technical issues (as con-
nectivity and multi-role issues among others) while few research ef-

5. MLP with Time Slots and Coverage Constraints: Efficient approaches 55

fort has been devoted to investigate specific operational requirements
of the sensors (as the amount of time required by a sensor to perform
its sensing task). Given such background and the interest in the peri-
odic sensing applications, we further investigated the Maximum Life-
time Problem with Time Slots. The contribution of this chapter can be
summarized as follow:

• we generalize the Maximum Lifetime Problem with Time Slots
(MLPTS) presented in [106], taking into account the possibility
to neglect a small percentage of targets in each cover and then
further prolong the network lifetime, as in [49] and [57] for the
classical MLP;

• we formally define such problem as αc-MLPTS, where αc is a
parameter that defines the percentage of targets that the WSN
must monitor in each cover;

• we present a new greedy heuristic and an improved version that
implements the recent Carousel Greedy paradigm;

• we modify the genetic algorithm presented in [106], to consider
the partial coverage of the targets.

Our computational experiments show that the Carousel Greedy al-
gorithm represents the best tradeoff in terms of computational time and
quality of the solution.

The remaining of the chapter is organized as follow: Section 5.2
defines formally the αc−Maximum Lifetime Problem with Time Slot
(αc-MLPTS), and shows some useful details that are further used in
the proposed approach; Section 5.3 describes the proposed greedy al-
gorithm and Section 5.4 shows the Carousel Greedy approach; Section
5.5 presents the performed computational tests. Finally, the last Sec-
tion presents conclusions and some future research directions.

56
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

5.2 MLPTS and α-MLPTS problem defini-
tions

Let N = {S,T} be a WSN where S = {s1, . . . ,sm} is the set of m sen-
sors and T = {t1, . . . , tk} is the set of k targets. Each sensor si has a
battery lifetime (lti), and a sensing range that determines the targets
that can be monitored by the sensor si. It is assumed that the sensors
have the same amount of battery lifetime, normalized to 1 time unit.
Furthermore, it is supposed that the sensors can be in two different op-
eration modes, active and sleep. When a sensor si is in active mode, it
collects information about the targets that are in its sensing range and
this subset of targets is denoted by T (si) ⊆ T . As defined in [106],
each sensor si can perform its monitoring tasks for a fixed amount of
time, named time slot (τs) with 0 < τs ≤ 1. Whenever a sensor si is
in active mode, its battery lifetime is decreased by τs time units while,
when a sensor is in sleep mode, it does not perform any operation and
the power consumption is assumed to be equal to 0. A subset C ⊆ S is
defined to be a feasible cover if |

⋃︁
si∈C T (si)|= |T | that is, the sensors

si ∈ C, all together, are able to monitor all the targets when they are
in active mode. As originally defined in [106], given T , S and τs, the
maximum lifetime problem with time slot (MLPTS) consists in finding
a collection of feasible covers Γ = {C1, . . . ,Cl}, such that the network
lifetime, given by ϕ = l · τs, is maximized and each sensor is in an ac-
tive mode for a total amount of time that does not exceed its battery
lifetime.

In Figure 5.1, a WSN with sensors s1, . . . ,s4, targets t1, . . . , t5 and
sensing ranges represented by circles is shown. Let’s assume a time
slot τs = 0.3. Since the targets t1 and t4 are within the sensing range of
s1, it holds that T (s1) = {t1, t4}. Similarly T (s2) = {t1, t2, t3, t4}, and
so on. The sets {s1, s3, s4} and {s2, s3}, are feasible covers as well
as the whole set S, as it can be seen in Figure 5.2. However, if all the
sensors are used, that is C = {s1, s2, s3, s4}, for each time slot τs, it is
possible obtain a network lifetime equal to 0.9 time units. Instead, it is
possible to achieve a network lifetime of 1.2 time units by activating,
individually, the covers in the collection Γ∗ = {{s1, s2, s3}, {s2, s4},
{s2, s3}, {s1, s3, s4}}. It is easy to note that it is not possible add

5.2. MLPTS and α-MLPTS problem definitions 57

Figure 5.1: a WSN example composed of four sensors s1, s2, s3, s4,
distinguished by theirs sensing ranges represented by circles and tar-
gets t1, t2, t3, t4, t5.

additional feasible covers to Γ∗ without exceeding the sensor lifetimes.
The classical MLPTS requires the coverage of the entire set of tar-

gets. However, in some practical cases, like in air monitoring, fire
detection and underwater monitoring, it is possible to neglect some
targets. Indeed, in these cases, it can be observed that the status of
the phenomenon related to the uncovered targets can be estimated or
inferred from the covered targets. Let us consider, for example, the
air quality monitoring in a civil context. It is easy to see, for example,
that the pollution level relative to a specific target point left intention-
ally uncovered, may be determined by the pollution level of the nearest
covered targets. Another interesting case study is represented by fire
prevention applications where a WSN generally may use sensors to
monitor smoke and/or heat levels. In such a case it would be ideal
to gather information for all target points, however, detections with a
proper degree of correctness are still possible if some targets are left
uncovered. In this way, by choosing a proper amount of targets to
be left uncovered it is also possible to achieve a desirable balance be-
tween network lifetime and the degree of detection accuracy. Finally,
another relevant scenario in which it could be convenient to left some

58
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

Figure 5.2: two examples of classical feasible covers (a) {s1, s3, s4}
and (b) {s2, s3}.

5.2. MLPTS and α-MLPTS problem definitions 59

Figure 5.3: two examples of αc-covers (a) C0.8
1 = {s1, s2} and (b)

C0.8
2 = {s1, s3} when αc = 0.8.

60
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

targets uncovered in favor of the network lifetime is underwater mon-
itoring. Indeed, in such a case is even more difficult or unpractical to
supply energy to a sensor or to replace some damaged sensors in the
network. Generally speaking, in many WSN applications, it is accept-
able to leave some targets uncovered to find a fair balance between the
quality of the sensing mission and the network lifetime.

In [49] and [57], the authors face the classic maximum lifetime
problem (MLP) and they show that by neglecting even a small per-
centage of the targets, a significant improvement of the network life-
time can be obtained. In the following, the MLPTS problem studied
in [106] is generalized to applications where some targets can be ne-
glected during the monitoring activity. Given a value αc ∈ (0,1], Cαc ⊆
S is said to be a feasible αc-cover if |

⋃︁
si∈Cαc T (si)| ≥ αc · |T |, that is,

the sensors belonging to Cαc are able to monitor at least αc · k targets.
The maximum αc-lifetime problem with time slot (αc-MLPTS) consist
then in finding a collection of feasible αc-covers Γ = {Cαc

1 , . . . ,Cαc
l },

such that the network lifetime ϕ = l · τs is maximized and the bat-
tery lifetime capacity of each sensor is not exceeded. Let us now
consider again the WSN in Figure 5.1, with τs = 0.3 and let us as-
sume that αc = 0.8, that is, it is necessary to guarantee the coverage
of 4 out of 5 targets with each αc-cover. The sets C0.8

1 = {s1, s2} and
C0.8

2 = {s1, s3} are examples of feasible αc-covers since, it holds that
|
⋃︁

si∈C0.8
j

T (si)| ≥ 4 , where j ∈ {1,2} as it can be see in Figure 5.3.
A feasible solution is represented by the following collection of αc-
covers, Γ

αc
1 = {{s1, s2}, {s1, s3}, {s2, s3, s4}, {s2, s3}, {s1, s4}}.

Such collection is able to guarantee a lifetime of 1.5 time units. How-
ever, it is possible to achieve the optimal lifetime of 2.1 time units
by activating individually the αc-covers in the collection Γα∗c = {{s2},
{s3, s4}, {s2}, {s3, s4}, {s2}, {s1, s4}, {s1, s3}}.

It is easy to observe that the problem αc-MLPTS is a general-
ization of MLPTS, furthermore, when αc = 1, αc-MLPTS coincides
with MLPTS. Therefore, from now on, the chapter focuses on the αc-
MLPTS that considers the MLPTS as a special case. The next section
describes a greedy algorithm for the αc-MLPTS. It will be embed-
ded into a novel and generalized greedy approach known as Carousel
Greedy [63] which allow us to improve the quality of the solutions of

5.3. A greedy algorithm for solving the αc-MLPTS 61

the greedy procedure. Furthermore, in order to perform a complete
analysis of αc-MLPTS, the proposed approaches are compared with a
modified version of the genetic algorithm presented in [106]. Finally,
in order to avoid complicating the notation, the apex αc is not used
when it is clear from the context.

5.3 A greedy algorithm for solving the αc-
MLPTS

The proposed approaches are based on the residual battery lifetime,
as defined in [106]. Given a collection of αc-covers Γ = {C1, . . . ,Cl},
the boolean variable xi

j states that a sensor si belongs to a cover C j.
Specifically, xi

j = 1 if the sensor si belongs to the cover C j, and xi
j = 0

otherwise. The residual battery lifetime of a sensor si is denoted by
rlti(Γ), and it is defined as follow:

rlti(Γ) = lti−
l

∑
j=1

xi
jτs i = 1, . . . ,m. (5.1)

Specifically, (5.1) refers to the residual battery life of a sensor si
after it has been used in the collection Γ. Clearly, if the collection
Γ is empty, rlti(Γ) = 1, i = 1, . . . ,m. Let us denote with rlt(Γ) the
whole vector of the residual battery lifetimes, in which the i-th entry
represents the residual battery lifetime of si.

The greedy algorithm takes in input a WSN {S, T}, a time slot
value τs, a value αc ∈ (0,1] and, finally, the vector rlt, containing the
residual lifetime of each sensor. Starting from an empty collection Γ,
the algorithm builds a collection of feasible covers Γ = {C1, . . . ,Cl}
where the sensors in each cover are selected with a greedy criterion. A
detailed description of the greedy algorithm follows.

In the line 1, the subroutine GetFeasibleCoversNumberUB cal-
culates the upper bound l̄ on the number of feasible covers, as de-
scribed in [106] for the case αc = 1. When αc < 1, the GetFeasible-
CoversNumberUB returns as upper bound the value ∑i∈S⌊ lti

τs
⌋. Line

2 initializes Γ to the empty set while line 3 initializes the flag value

62
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

input : {S,T}, τs, αc, rlt
output: A collection Γ of feasible covers

1 l̄← GetFeasibleCoversNumberUB (S, T , τs, αc);
2 Γ← /0;
3 coverFound← true;
4 while coverFound and |Γ|< l̄ do
5 coverFound← false;
6 C← /0;
7 S′←{si ∈ S | rlti(Γ)≥ τs} ;
8 while S′ ̸= /0 and not isFeasibleCover (C, αc) do
9 s← argmax

si∈S′
(| T (si)\

⋃︁
k∈C

T (k) | ·rlti(Γ));

10 C←C∪{s};
11 S′← S′ \{s};
12 end
13 if isFeasibleCover (C, αc) then
14 Γ← Γ∪C;
15 updateResidualLifeTimes (C, rlt);
16 coverFound← true;
17 end
18 end
19 return (Γ, l̄);

Algorithm 3: Greedy algorithm for αc-MLPTS

coverFound to true in order to manage the iterations of the loop 4-18.
Each iteration of the external loop 4 - 18, builds a feasible cover C,
until it is possible. This loop iterates until a feasible cover is found,
and the size of the current collection Γ is less than l̄. So the algorithm
stops if it is not able to find a feasible cover or when a solution, con-
taining l̄ covers, has been found. In the line 6 the algorithm initializes
the cover under construction C, which will contain the sensors selected
in the current iteration of the external while loop. Since each cover is
activated each time for an amount of time equal to τs, in the line 7 the
algorithm selects and stores into S′ the sensors that can potentially be
chosen to belong to C, that is sensors with a residual lifetime greater or

5.3. A greedy algorithm for solving the αc-MLPTS 63

equal to τs. The greedy selection is implemented by the while loop at
the lines 8 - 12. In each iteration of this loop, the algorithm computes,
for each sensor si ∈ S′, a value | T (si) \

⋃︁
k∈C

T (k) | ·rlti(Γ), that is the

product between the amount of uncovered targets that si can cover if
added to C and the residual lifetime of si. The greedy algorithm se-
lects then the sensor for which such product is maximum. The aim
of this choice is twofold because we want to select sensors that cover
many uncovered targets and we want to preserve the sensors with a
limited residual lifetime. Indeed, the residual battery lifetime value
of a sensor over a collection Γ, allow us to discriminate sensors that
cover the same number of targets but have a different residual battery
lifetime. In such situations, a sensor with a greater lifetime is selected,
in order to preserve the lifetime of a sensor with a lower residual bat-
tery lifetime value. Lines 10 and 11 add the selected sensor s to the
cover under construction C and removes the same sensor from the set
S′, respectively. The internal while loop of the lines 8 - 12 ends when
S′ becomes empty or a feasible cover is found. The feasibility of a
cover is checked by isFeasibleCover(C,αc). Such subroutine checks
if the sensors in the set C cover at least αc · k targets. In this case,
lines 14 and 16 add the built cover C to the collection Γ, update the
residual lifetimes with updateResidualLi f etime subroutine and assert
the coverFound flag. Otherwise, if the algorithm exits the while loop,
because S′ has become empty, it means that all sensors with a residual
lifetime greater than or equal to τs added to C are not able to cover
the required number of targets. It means that there are no new feasible
covers compared to those already included in Γ. In this case, since
the coverFound flag remains false, the algorithm ends and returns the
collection found and the value l̄ to the caller.

Regarding the computational complexity, it is possible to observe
that the number of iterations of the external loop 4 - 18 is limited by
l̄. The internal loop 8 - 12, is performed O(m) times because in each
iteration an element is extracted from S′, whose cardinality can be at
most m. The calculation of the union and the extraction of the maxi-
mum and the subsequent rearrangement of the data structures in line 9
have a complexity of O(m+ logm). Therefore, the complexity of the
aforementioned Greedy algorithm is O(l̄ ·m · (m+ logm)). The pre-

64
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

sented Greedy algorithm is used both as the main procedure for solv-
ing αc-MLPTS instances and as a subroutine of the Carousel approach
presented in the next section.

5.4 A Carousel Greedy algorithm for
αc-MLPTS

Carousel Greedy is a generalized paradigm that can be used to improve
the performances of a standard greedy algorithm in terms of solution
quality. Carousel Greedy has been presented for the first time in [63].
Here, the authors showed that the Carousel Greedy can be successfully
applied on a wide set of classical optimization problems such as the
minimum vertex cover problem, the maximum indipendent-set prob-
lem, the minimum weight vertex cover and the minimum label span-
ning tree problem. Furthermore they showed that Carousel Greedy
can be easily implemented through a procedure which is almost as
simple and fast as a classical greedy algorithm. Carousel Greedy has
been used in several other works [15][61][90] that show the effective-
ness of the proposed method, in particular in most cases the authors
showed that Carousel Greedy is able to obtain results comparable to
metaheuristics, while being much faster than them. In more detail, in
[61] the authors presented an improvement of a column generation al-
gorithm proposed for the classical MLP with conflict constraints [62],
by facing the pricing subproblem with a Carousel Greedy algorithm
instead of a genetic algorithm. In [61], it can be observed that the
Carousel exhibits even better performances of the previous genetic al-
gorithm used in [62].

The underlying intuition of the Carousel Greedy is that during the
execution of a greedy algorithm, the early decisions taken to construct
a solution are likely to be less informed and valid that the later ones.
During the first steps of the construction of the solution, indeed, the
greedy choices could be even arbitrary or not very effective, since
many choices may lead to similar solutions. So, the overall quality
of the solution can be compromised by inadequate early choices.

Given this intuition, the Carousel Greedy (CG) approach operates

5.4. A Carousel Greedy algorithm for
αc-MLPTS 65

in the following main steps, to extend a generic greedy algorithm:

1. An initial solution is built, using the greedy algorithm.

2. A partial solution is obtained from the initial one. The partial so-
lution is built by discarding a given percentage of the last choices
made to build the initial solution.

3. The partial solution is then modified for a given number of iter-
ations. In each iteration the oldest choice is replaced with a new
one.

4. In the last step, the partial solution is completed to produce a
feasible solution by using the greedy heuristic.

Algorithm 4 presents the steps of the proposed Carousel Greedy
(CG) approach. CG uses Greedy presented in section 5.3 and imple-
ments the previous four steps as follows:

1. Lines 1 and 2 initialize the collection of covers Γ to the empty set
and each entry of the residual lifetime vector rlt(Γ) to 1, respec-
tively. Line 3 builds a full initial solution by using Greedy which
returns, also, the upper bound on the number of feasible covers
according to the method proposed in [106], that it is stored in l̄.
In the next line, the total number of the covers contained in the
solution Γ is stored in l. Line 5 checks if l is equal to l̄, in that
case the algorithm has found the optimum and ends by returning
Γ.

2. The for loop of lines 8 - 11 builds a partial solution by dropping
the latest ⌊β · l⌋ covers from the collection Γ, where 0 < β < 1 is
a input parameter of the Carousel Greedy paradigm. The proce-
dure increaseResidualLifeTimes increases the residual lifetime
of the sensors in each dropped cover by a value τs.

3. This step is iterated α · l times, where α ≥ 1 is a Carousel Greedy
input parameter. In each iteration of the for loop of the lines 12
- 17, the cover corresponding to the oldest choice performed by
Greedy, is removed from Γ and replaced with a new cover C.

66
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

input : {S,T}, τs, αc, α , β

output: A collection Γ of feasible covers

1 Γ← /0;
2 rlti(Γ)← 1 i = 1, . . . ,m ;
3 (Γ, l̄)← Greedy ({S,T}, τs, rlt, Γ);
4 l← |Γ| ;
5 if l = l̄ then
6 return Γ;
7 end
8 for i← l to l−⌊β · l⌋ do
9 Γ← Γ\{Ci};

10 increaseResidualLifeTimes (Ci, rlt, τs);
11 end
12 for i← 1 to α · l do
13 Γ← Γ\{Ci};
14 increaseResidualLifeTimes (Ci, rlt, τs);
15 C← GreedySingleIteration ({S,T}, τs, rlt, Γ);
16 Γ← Γ∪{C};
17 end
18 Γ← Greedy ({S,T}, τs, rlt, Γ);
19 return Γ;

Algorithm 4: Carousel Greedy algorithm for αc-MLPTS

Such a new cover C is built by calling GreedySingleIteration,
that executes a single iteration of Greedy, taking as input the
current solution Γ and the actual residual lifetimes.

4. In the line 18, the partial solution Γ is completed by invoking the
Greedy.

In [63] the authors shown that given a generic greedy algorithm that
has complexity O(I), the complexity of a Carousel Greedy approach is
equal to (1+α) ·O(I). So, considering the Greedy algorithm presented
in the previous section, the CG complexity is equal to (1+α)O(l̄ ·m ·
(m+ logm)). As shown in the next Section, since the α will not be

5.5. Experimental Evaluation 67

too large, the CG will have a running time not much greater than our
Greedy.

5.5 Experimental Evaluation

The objective of our computational tests is to evaluate the performances
of the proposed algorithms in terms of solution quality and execution
time. So, this section presents a comparison among Greedy presented
in Section 5.3, Carousel Greedy (CG) presented in Section 5.4, and a
genetic algorithm (αc-GA) which is a slightly modified version of the
genetic algorithm (GA) for MLPTS presented in [106], that is able to
solve αc-MLPTS. αc-GA, essentially, implements the same evolution-
ary algorithm described in [106] but here it deals with αc-covers in-
stead of simple covers as for MLPTS. It is straightforward to consider
that when α = 1, αc-GA can be used to solve the classical MLPTS.
In more detail, in [106] the authors design a chromosome where each
gene represents a cover for the MLPTS, that is, a subset of sensors
able to cover all the targets. Here, in our αc-GA, has been used the
same chromosome structure of GA with the only difference that each
gene represents an αc-cover. Hence, in order to adapt GA to face
αc-MLPTS it has been sufficient to modify the feasibility test of the
chromosome to check that each gene represents a feasible αc-cover.
The feasibility check now verifies that the active sensors of each cover
monitor at least α · |T | targets and that each sensor is not used for an
amount of time that exceeds its battery capacity. Further details about
the GA can be found in [106] while for a detailed description about ge-
netic algorithms and recent evolutions see [107][108][109][110][111].

The algorithms were implemented in C++ and the tests were per-
formed on a iMac platform configured with a 2.5 GHz Intel Core i5
processor and 8GB of RAM. Has been performed a preliminary tun-
ing phase of the CG and of αc-GA, in order to setup the parameters
of each algorithm for the final test phase. Regarding the CG algorithm
has been chosen the following values, α = 5 and β = 0.1. While re-
garding the α-GA the size of the population has been set equal to 50.
The maximum number of iterations has been set equal to 10 while the

68
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

crossover and mutation probabilities were set to 0.3 and 0.05 respec-
tively.

5.5.1 Test instances
An extensive performance analysis was performed by running the al-
gorithms on randomly built instances. For each one of |S|x|T | = 10
different combinations of sensors and target values, has been gener-
ated 10 different instances, with |S|∈{500, 750, 1000, 1250, 1500} and
|T |∈{15, 30}. In more detail, for each instance, were first generated at
random the coordinates of the targets within a square area of 500x500.
Then were generated the coordinates of the sensors. All the coordi-
nates have been generated such that each sensor covers at least a target
and each target is covered by at least one sensor, by assuming that each
sensor has a sensing range equal to 100. During our test phase were
considered two different time slot values with τs ∈ {0.1, 0.3} and three
different coverage levels with αc ∈ {1, 0.9, 0.75} for a total number
of 60 scenarios and 600 performed tests for each algorithm.

5.5.2 Test results
Each table is divided in two parts. The first part reports the results
obtained with τs = 0.1 and a second part that reports the results when
τs = 0.3. Each line, in all the tables, corresponds to a scenario and re-
ports the average values obtained on 10 instances. Tables 5.1 and 5.2
report the comparison of the three proposed approaches when αc = 1.
In more detail, Table 5.1 shows the computational data about the three
algorithms. Table 5.2, instead, carries out a comparison by consider-
ing the average percentage gaps among the solutions and the compu-
tational times of the algorithms. In Table 5.1, the first two columns
report the characteristics of each scenario, that is the number of sen-
sors (|S|), the number of targets (|T |). The third column (UB) re-
ports the upper bound value on the lifetime of the scenario proposed
in [106]. The remaining columns report the lifetime (LT) and the
computational time in seconds (Time). As in Table 5.1, the first two
columns of Table 5.2 report the characteristics of each scenario, the

5.5. Experimental Evaluation 69

Table 5.1: Solution and running time values, case αc = 1
αc = 1 αc-GA Greedy CG

|S| |T| UB LT Time LT Time LT Time

τ
s
=

0.
1

500 15 40.10 39.33 21.72 39.05 0.84 40.10 2.84
500 30 29.80 29.43 16.79 29.05 1.25 29.78 4.70
750 15 59.40 58.44 66.83 57.73 1.80 59.39 6.89
750 30 43.50 42.71 49.21 42.14 2.64 43.48 8.92

1000 15 85.10 83.64 151.43 82.20 3.67 85.10 12.06
1000 30 58.10 56.99 123.49 56.11 4.71 58.07 22.70
1250 15 114.60 112.87 416.52 110.01 6.16 114.60 18.34
1250 30 74.90 73.92 190.86 72.79 7.96 74.84 28.74
1500 15 139.80 138.39 648.47 136.02 9.04 139.80 30.69
1500 30 93.30 91.80 514.11 90.77 12.30 93.30 44.74

τ
s
=

0.
3

500 15 36.09 35.65 6.74 34.78 0.25 36.06 0.64
500 30 26.82 26.49 5.26 25.98 0.38 26.79 1.39
750 15 53.46 52.92 20.54 51.31 0.52 53.46 1.59
750 30 39.15 38.67 14.97 37.73 0.81 39.06 2.15

1000 15 76.59 75.81 45.95 73.52 1.09 76.53 3.01
1000 30 52.29 51.76 38.24 50.92 1.38 52.29 5.13
1250 15 103.14 102.00 126.47 99.31 1.80 103.11 4.62
1250 30 67.41 66.39 58.16 64.97 2.37 67.26 8.33
1500 15 125.82 123.29 196.74 121.66 2.68 125.82 5.69
1500 30 83.97 82.36 156.03 81.86 3.52 83.82 12.73

meaning of the headings is the same. The following three columns
(αc-GA, Greedy, CG), under the multi-column GAP % UB, report
the average percentage gap of the lifetimes when compared with the
average UB value computed for the scenario. The average gap is com-
puted as 100 · (UB− LT)/UB, where LT is the lifetime obtained by
the algorithm indicated in the header of the column. The follow-
ing multi-column (αc-GA vs Greedy), report the average percentage
gap (GAP%) between the solutions and the average percentage gap
(Time%) between the computational times of the αc-GA and Greedy.
The average percentage gap (GAP%) between the solutions of αc-GA
and Greedy is equal to 100 · (LTαc−GA− LTGreedy)/LTαc−GA. In the
same way, the next two multi-columns (CG vs Greedy), (CG vs αc-

70
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

Table 5.2: Comparison among αc-GA, Greedy and CG, case αc = 1
αc = 1 GAP % UB αc-GA vs Greedy CG vs Greedy CG vs αc-GA

|S| |T| αc-GA Greedy CG GAP % Time % GAP % Time% GAP % Time%

τ
s
=

0.
1

500 15 1.92 2.62 0.00 0.72 3.84 2.70 29.39 1.96 13.08
500 30 1.23 2.53 0.07 1.33 7.47 2.53 26.69 1.18 28.00
750 15 1.62 2.82 0.02 1.23 2.70 2.88 26.17 1.63 10.31
750 30 1.82 3.12 0.05 1.34 5.37 3.18 29.63 1.81 18.13

1000 15 1.71 3.41 0.00 1.76 2.42 3.53 30.40 1.74 7.96
1000 30 1.92 3.42 0.05 1.55 3.81 3.48 20.74 1.90 18.38
1250 15 1.51 4.01 0.00 2.60 1.48 4.18 33.59 1.53 4.40
1250 30 1.31 2.81 0.08 1.54 4.17 2.81 27.70 1.25 15.06
1500 15 1.01 2.71 0.00 1.75 1.39 2.78 29.47 1.02 4.73
1500 30 1.61 2.71 0.00 1.13 2.39 2.79 27.48 1.64 8.70

τ
s
=

0.
3

500 15 1.23 3.63 0.08 2.49 3.75 3.68 39.43 1.16 9.51
500 30 1.24 3.14 0.11 1.96 7.14 3.12 27.06 1.14 26.39
750 15 1.02 4.02 0.00 3.13 2.55 4.19 33.01 1.03 7.73
750 30 1.23 3.63 0.23 2.49 5.41 3.52 37.57 1.01 14.39

1000 15 1.01 4.01 0.08 3.13 2.38 4.10 36.36 0.94 6.55
1000 30 1.02 2.62 0.00 1.64 3.61 2.69 26.88 1.03 13.43
1250 15 1.11 3.71 0.03 2.70 1.42 3.82 38.88 1.09 3.66
1250 30 1.51 3.61 0.22 2.18 4.08 3.52 28.46 1.31 14.32
1500 15 2.01 3.31 0.00 1.34 1.36 3.42 47.05 2.05 2.89
1500 30 1.91 2.51 0.18 0.62 2.26 2.39 27.69 1.77 8.16

GA) report a comparison among the respective algorithms, and the
average percentage gap is calculated analogously. The percentage gap
between the computational times is always calculated as the percent-
age of time taken by the faster algorithm between the two considered,
with respect the slowest one. More in detail, in the multi-column
αc-GA vs Greedy, Time% is equal to 100 · TimeGreedy/Timeαc−GA,
in the next multi-column named CG vs Greedy, Time% is equal to
100 ·TimeGreedy/TimeCG, while in the last multi-column named CG vs
αc-GA, Time% is equal to 100 ·TimeCG/Timeαc−GA.

The first thing that it is possible to observe, from Table 5.1, is that
the number of targets impacts differently on the computational time of
the algorithms. The αc-GA exhibits a lower computational time when
the number of targets increases. This behaviour, probably, is a con-
sequence of the nature of the genetic meta-heuristic and intuitively, it
spends less time in optimization since it has a lower number of so-
lution improvements. While given, the choices of the greedy-based
algorithms, it is possible to see that the more are the targets to cover

5.5. Experimental Evaluation 71

Table 5.3: Solution and running time values, case αc = 0.75
αc = 0.75 αc-GA Greedy CG

|S| |T| LT Time LT Time LT Time

τ
s
=

0.
1

500 15 85.85 68.65 85.18 1.63 91.19 8.85
500 30 74.07 82.22 73.19 2.74 77.89 15.34
750 15 137.03 234.88 135.45 3.87 145.75 21.42
750 30 111.35 272.51 110.08 6.15 117.44 34.59

1000 15 164.00 576.31 162.45 6.43 177.49 35.32
1000 30 150.36 665.91 148.47 10.79 158.10 60.76
1250 15 217.66 1097.51 216.81 10.74 232.61 58.21
1250 30 181.96 1304.99 180.85 17.30 195.73 97.61
1500 15 266.77 2381.87 263.52 15.03 278.06 83.19
1500 30 216.46 2963.60 214.99 24.67 230.88 139.24

τ
s
=

0.
3

500 15 76.26 20.66 75.57 0.48 80.79 2.68
500 30 64.32 24.92 63.90 0.85 69.12 4.66
750 15 119.67 70.86 118.95 1.15 129.60 6.45
750 30 98.85 82.21 97.86 1.95 104.01 10.46

1000 15 147.84 173.97 147.75 1.99 158.31 10.87
1000 30 131.82 200.60 130.89 3.37 140.61 18.43
1250 15 196.62 330.05 194.01 3.11 207.06 17.17
1250 30 163.35 390.72 162.72 5.58 174.36 29.12
1500 15 231.78 755.29 229.50 4.54 247.17 24.71
1500 30 194.52 866.99 192.60 7.93 205.32 41.33

the bigger is the computational time. This behaviour seems to be quite
normal since the more are the targets to cover the more are the choices
to be made and hence the computational time increases too. As ex-
pected, the computational time of the CG algorithm is always bigger
than Greedy algorithm. The same trend can be observed with both
τs = 0.1 and τs = 0.3. τs influences the computational times of all the
algorithms in the same way and can be noticed that the lower it is the
bigger are the values reported in the Time columns. Furthermore, but
is easy to comprehend, for each scenario the lifetime computed when
τs = 0.3 is always lower then the lifetime when τs = 0.1. Continu-
ing to stress the analysis on the computational time, can be seen that,
in the best case the αc-GA requires at least 5.26 seconds and in the
worst case around 650 seconds. While, in the worst case, the Greedy
requires at most 12.30 seconds and the CG at most 44.74 seconds.
Looking at Table 5.2, can be performed a more detailed analysis on

72
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

Table 5.4: Comparison among αc-GA, Greedy and CG, case αc = 0.75
αc = 0,75 αc-GA vs Greedy CG vs Greedy CG vs αc-GA

|S| |T| GAP % Time % GAP % Time% GAP % Time %

τ
s
=

0.
1

500 15 0.78 2.37 7.05 18.37 6.22 12.90
500 30 1.21 3.33 6.43 17.84 5.16 18.66
750 15 1.16 1.65 7.60 18.07 6.36 9.12
750 30 1.16 2.26 6.69 17.79 5.47 12.69

1000 15 0.95 1.12 9.26 18.22 8.23 6.13
1000 30 1.27 1.62 6.49 17.77 5.15 9.12
1250 15 0.39 0.98 7.29 18.45 6.87 5.30
1250 30 0.61 1.33 8.23 17.72 7.57 7.48
1500 15 1.23 0.63 5.52 18.06 4.23 3.49
1500 30 0.68 0.83 7.39 17.72 6.66 4.70

τ
s
=

0.
3

500 15 0.91 2.34 6.91 18.05 5.94 12.99
500 30 0.66 3.41 8.17 18.24 7.46 18.72
750 15 0.61 1.63 8.95 17.89 8.30 9.11
750 30 1.01 2.37 6.28 18.63 5.22 12.73

1000 15 0.06 1.14 7.15 18.26 7.08 6.25
1000 30 0.71 1.68 7.43 18.31 6.67 9.19
1250 15 1.35 0.94 6.73 18.09 5.31 5.20
1250 30 0.39 1.43 7.15 19.18 6.74 7.45
1500 15 0.99 0.60 7.70 18.38 6.64 3.27
1500 30 1.00 0.91 6.60 19.19 5.55 4.77

the algorithms. Looking at multicolumn GAP % UB, can be seen that
the percentage GAP of the αc-GA is at least 1.01% and at most 2.01%.
Greedy exhibits worst results since the GAP value ranges from 2.51%
up to 4.01%. The best approach, in terms of quality of solutions, when
αc is equal to 1, is CG since it is able to find the optimal solution for 8
out of 20 scenarios while, for 16 out 20 scenarios the percentage gap
is at most 0.1%. CG exhibits a worst case solution with a GAP equal
to 0.23%. Furthermore, looking at multi-columns αc-GA vs Greedy
it is possible to see that Greedy requires at most 7.47% of the com-
putational time required by the αc-GA, indeed Greedy is faster than
αc-GA, however αc-GA finds solution with a greater lifetime up to
3.13% if compared to Greedy. While looking at CG vs αc-GA, can
be seen that CG requires at most the 28% of the computational time of
αc-GA however it finds better solutions than αc-GA, up to 2.05%. So,
even if the computational time required by CG is bigger than Greedy,
it is at least lower than the 72% of the αc-GA, furthermore CG finds

5.5. Experimental Evaluation 73

Figure 5.4: solution and running time values, case αc = 0.75, τs = 0.1

always better solutions. Indeed, in the end, looking to CG vs Greedy
multicolumn we discover that CG improves the Greedy solutions from
2.39% up to 4.19%, providing solutions of higher quality.

Table 5.3 and 5.4 report the comparison of the three proposed ap-
proaches when αc = 0.75. In more detail, Table 5.3 shows the compu-
tational data about the three algorithms the same values are also plotted
in the figures 5.4 and 5.5. The x-axis reports the instance characteris-
tics, while the Lifetime and Time values are reported on the primary
and secondary y-axis, respectively. The structure of the Table 5.3 and
the meaning of its headings are the same of Table 5.1. The first thing
that can be observed is that, by simply requiring the coverage of 75%
of the targets, the problem becomes more and more challenging. The
number of solutions grows exponentially and the computational time
required by the algorithms increases too. In this case the number of

74
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

Figure 5.5: solution and running time values, case αc = 0.75, τs = 0.3

the targets impacts all the algorithms in the same way, the bigger is the
number of the targets the bigger is the computational times. The same
trend can be observed on all the algorithms. The computational time
of αc-GA ranges grows up to 2963.60 seconds, that is almost 4.6 times
worst than the worst case when αc = 1. The Greedy just doubled the
computational time required in the worst case while CG is almost 3.2
times worst. However CG exhibits a computational time such that, for
15 out of 20 scenarios, is lower than 41.33 seconds that is a compu-
tational time lower than the worst case when αc = 1. In the case of
partial coverage is not available a have a good upper bound that can
be used to evaluate the quality of the solutions. So we compared the
solutions found among the algorithms in Table 5.4. In such table the
first two columns report the characteristics of each scenario in terms
of number of sensors and targets. The following multi-columns (αc-

5.5. Experimental Evaluation 75

Table 5.5: Solution and running time values, case αc = 0.9
αc = 0,9 αc-GA Greedy CG

|S| |T| LT Time LT Time LT Time

τ
s
=

0.
1

500 15 58.83 46.38 58.32 1.36 63.15 7.08
500 30 53.22 70.78 52.62 2.32 56.34 12.46
750 15 97.14 157.42 96.10 3.26 103.71 16.91
750 30 79.55 208.81 79.53 5.05 85.60 27.76

1000 15 118.15 388.24 117.40 5.51 127.29 28.49
1000 30 105.55 396.23 104.47 8.90 112.77 48.32
1250 15 159.90 662.94 157.58 9.30 167.59 47.31
1250 30 131.80 899.03 131.33 14.46 139.43 77.59
1500 15 189.14 1456.82 185.87 12.53 199.02 66.03
1500 30 156.46 1974.62 154.96 20.39 167.20 111.65

τ
s
=

0.
3

500 15 52.86 14.08 52.35 0.38 56.58 2.02
500 30 46.74 21.90 46.44 0.67 49.68 3.61
750 15 86.94 47.64 85.53 0.91 92.85 4.92
750 30 72.06 63.85 71.16 1.45 75.90 8.10

1000 15 106.77 117.58 105.24 1.55 113.55 8.18
1000 30 93.87 120.26 92.64 2.49 99.69 13.73
1250 15 139.50 200.42 138.48 2.59 149.31 13.71
1250 30 114.63 271.63 114.21 4.08 122.85 22.46
1500 15 167.70 411.62 166.74 3.61 178.41 19.29
1500 30 138.24 633.51 136.41 5.91 147.27 32.43

GA vs Greedy), (CG vs Greedy) and (CG vs αc-GA) have the same
meaning as in Table 5.2. It can be observed from αc-GA vs Greedy
multicolumn that the quality of the solution found by αc-GA is always
better than the Greedy, with an improvement that ranges from 0.39%
up to 1.27%. However this improvement results to be lower than the
case when αc = 1. While looking at CG vs αc-GA, it can be seen that
CG requires at most the 18.72% of αc-GA however it finds better so-
lutions than αc-GA, up to 8.30%. It is possible to note that even if the
computational time required by CG is bigger than Greedy, it is at least
lower than the 81% of the αc-GA, furthermore CG finds always better
solutions. In the end, looking to CG vs Greedy multicolumn can be
discovered that CG improves the Greedy solutions from 5.52% up to
9.26%.

Table 5.5 and 5.6 report the comparison of the three proposed ap-
proaches when αc = 0.9. Table 5.5 shows the computational data about

76
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

Table 5.6: Comparison among GA, Greedy and Carousel, αc = 0.9
αc = 0,9 αc-GA vs Greedy CG vs Greedy Carousel vs αc-GA

|S| |T| GAP % Time % GAP % Time% GAP % Time %

τ
s
=

0.
1

500 15 0.88 2.93 8.28 19.16 7.34 15.27
500 30 1.14 3.28 7.06 18.60 5.86 17.61
750 15 1.08 2.07 7.91 19.27 6.76 10.74
750 30 0.03 2.42 7.64 18.20 7.61 13.30

1000 15 0.64 1.42 8.42 19.35 7.74 7.34
1000 30 1.03 2.25 7.94 18.42 6.84 12.19
1250 15 1.47 1.40 6.35 19.66 4.81 7.14
1250 30 0.36 1.61 6.17 18.63 5.79 8.63
1500 15 1.76 0.86 7.08 18.97 5.22 4.53
1500 30 0.97 1.03 7.90 18.26 6.86 5.65

τ
s
=

0.
3

500 15 0.97 2.68 8.08 18.74 7.04 14.31
500 30 0.65 3.06 6.98 18.57 6.29 16.48
750 15 1.65 1.92 8.56 18.59 6.80 10.32
750 30 1.26 2.27 6.66 17.89 5.33 12.68

1000 15 1.45 1.32 7.90 18.98 6.35 6.96
1000 30 1.33 2.07 7.61 18.16 6.20 11.42
1250 15 0.74 1.29 7.82 18.92 7.03 6.84
1250 30 0.37 1.50 7.57 18.17 7.17 8.27
1500 15 0.58 0.88 7.00 18.72 6.39 4.69
1500 30 1.34 0.93 7.96 18.22 6.53 5.12

the three algorithms, the same values are also plotted in the figures 5.6
and 5.7. The x-axis reports the instance characteristics, while the Life-
time and Time values are reported on the primary and secondary y-
axis, respectively. The meaning of the Table 5.5 headings are the same
of Table 5.3. The structure and the meaning of the heading of Table
5.6 are instead the same of the Table 5.4. The behaviour of the algo-
rithms follows the same trend expressed in the case αc = 0.75. Indeed,
looking to αc-GA vs Greedy multicolumn it is possible to observe that
the quality of the solution found by αc-GA is always better than the
Greedy, while looking to the multi-columns αc-GA vs CG and CG vs
Greedy it can be seen that even if the computational time required by
CG is bigger than Greedy, CG is more fast and finds better solutions
with respect to the αc-GA.

Table 5.7 allows to highlight the network lifetime improvement
obtained by the CG when αc is equal to 0.75 or 0.9. The first two
columns have the same meaning as the previous tables. The third

5.5. Experimental Evaluation 77

Figure 5.6: solution and running time values, case αc = 0.9, τs = 0.1

column, LT shows the average value of network lifetime obtained by
the CG in the case αc = 1, while the fourth and sixth columns re-
port the average value of network lifetime obtained by the CG algo-
rithm in the cases αc = 0.9 and αc = 0.75, respectively. The fifth col-
umn, Impr%, reports the percentage improvement of the LT obtained
when αc = 0.9, compared to the case of total coverage, calculated
as 100 · (LTαc=0.9− LTαc=1)/LTαc=1. The seventh column, similarly,
reports the percentage improvement of the network lifetime obtained
with αc = 0.75 compared to the case of total coverage. It is possible
to observe that when αc = 0.9 and τs = 0.1, the improvement of the
lifetime ranges from a minimum of 42.36% to a maximum of 96.87%,
with an average value of 71.61%. Similarly, when τs = 0.3 the life-
time improvement goes from 41.80% up to 94.32% and on average it
is equal to 69.43%. It is possible to deduce that the neglecting the 10%

78
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

Figure 5.7: solution and running time values, case αc = 0.9, τs = 0.3

of the targets, leads an improvement of the network lifetime of about
the 70% for both τs = 0.1 and τs = 0.3. When αc = 0.75 and τs = 0.1,
the lifetime improvement increases from the 98.90% up to 172.26%
with an average value of 139.62%. While, when τs = 0.3, the lifetime
improvement rages between the 96.45% and 168.90%, whit a mean
value of 136.80%. Furthermore, it easy to observe from this table that,
τs influences the lifetime computed by CG and it is possible to see that
the lower τs is the bigger is the lifetime.

To deepen the analysis of the lifetime improvement in the case of
partial coverage, consider the Table 5.8 that highlights the network
lifetime improvement obtained by the αc-GA, in the cases αc = 0.75
and αc = 0.9. The structure of the Table 5.8 and the meaning of its
headings are the same of Table 5.7. When αc = 0.9 and τs = 0.1, the
lifetime improvements ranges from a minimum of 36.67% to a maxi-

5.5. Experimental Evaluation 79

Table 5.7: CG: comparison of lifetime values in function of αc

αc = 1 αc = 0.9 αc = 0.75
|S| |T| LT LT Impr % LT Impr %

τ
s
=

0.
1

500 15 40.1 63.15 57.48 91.19 127.41
500 30 29.78 56.34 89.19 77.89 161.55
750 15 59.39 103.71 74.63 145.75 145.41
750 30 43.48 85.6 96.87 117.44 170.10

1000 15 85.1 127.29 49.58 177.49 108.57
1000 30 58.07 112.77 94.20 158.1 172.26
1250 15 114.6 167.59 46.24 232.61 102.98
1250 30 74.84 139.43 86.30 195.73 161.53
1500 15 139.8 199.02 42.36 278.06 98.90
1500 30 93.3 167.2 79.21 230.88 147.46

τ
s
=

0.
3

500 15 36.06 56.58 56.91 80.79 124.04
500 30 26.79 49.68 85.44 69.12 158.01
750 15 53.46 92.85 73.68 129.6 142.42
750 30 39.06 75.9 94.32 104.01 166.28

1000 15 76.53 113.55 48.37 158.31 106.86
1000 30 52.29 99.69 90.65 140.61 168.90
1250 15 103.11 149.31 44.81 207.06 100.81
1250 30 67.26 122.85 82.65 174.36 159.23
1500 15 125.82 178.41 41.80 247.17 96.45
1500 30 83.82 147.27 75.70 205.32 144.95

mum of 86.27%, with an average value of 63.65%. When τs = 0.3 the
lifetime improvement goes from 36.02% up to 86.35% and on average
it is equal to 61.09%. So, neglecting the 10% of the targets, the αc-GA
allows to obtain an improvement of the network lifetime on average
equal to 62,37% for both τs = 0.1 and τs = 0.3. In the case αc = 0.75
and τs = 0.1, the lifetime improvement increases from the 92.76% up
to 163.85% with an average value of 129.27%. While, when τs = 0.3,
the minimum lifetime improvement is 87.99% and the maximum life-
time improvement is 155.62%, whit a mean value of 125.12%. Simi-
larly to the CG, τs influences the lifetime computed by αc-GA and it
can be seen that the lower τs is the bigger is the lifetime.

80
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

Table 5.8: αc-GA: comparison of lifetime values in function of αc

αc = 1 αc = 0.9 αc = 0.75
|S| |T| LT LT Impr % LT Impr %

τ
s
=

0.
1

500 15 39.33 58.83 49.59 85.85 118.29
500 30 29.43 53.22 80.82 74.07 151.66
750 15 58.44 97.14 66.22 137.03 134.48
750 30 42.71 79.55 86.27 111.35 160.73

1000 15 83.64 118.15 41.25 164 96.07
1000 30 56.99 105.55 85.22 150.36 163.85
1250 15 112.87 159.9 41.67 217.66 92.84
1250 30 73.92 131.8 78.31 181.96 146.17
1500 15 138.39 189.14 36.67 266.77 92.76
1500 30 91.80 156.46 70.44 216.46 135.80

τ
s
=

0.
3

500 15 35.65 52.86 48.29 76.26 113.93
500 30 26.49 46.74 76.46 64.32 142.83
750 15 52.92 86.94 64.30 119.67 126.15
750 30 38.67 72.06 86.35 98.85 155.62

1000 15 75.81 106.77 40.83 147.84 95.00
1000 30 51.76 93.87 81.37 131.82 154.69
1250 15 102.00 139.5 36.77 196.62 92.77
1250 30 66.39 114.63 72.66 163.35 146.05
1500 15 123.29 167.7 36.02 231.78 87.99
1500 30 82.36 138.24 67.84 194.52 136.17

5.6 Conclusion

In this chapter we investigated and generalized the maximum lifetime
problem with additional time slots constraints (MLPTS) introduced in
[106]. We considered the possibility to neglect a small percentage of
targets in each subset of active sensors. We defined such new prob-
lem as αc-MLPTS, where αc represents the percentage of targets that
we have to monitor constantly. For this new scenario we proposed
two new greedy based approaches, that is a classical greedy algorithm
and an enhanced greedy algorithm based on a novel greedy paradigm
known as Carousel Greedy. In order to deeply investigate the problem
we also considered the implementation of a modified version of the
genetic algorithm already proposed for MLPTS in the literature. The

5.6. Conclusion 81

comparison of the three approaches is carried out through an exten-
sive computational test phase. The experimental evaluation shows that
the Carousel Greedy results to be the best choice in terms of quality
of the solutions and of computational times. Carousel Greedy always
finds better solutions than both Greedy and Genetic Algorithm with a
computational time that is slightly higher than the computational time
required by Greedy but much lower than the computational time re-
quired by the Genetic Algorithm. Furthermore, as already proved for
the classical MLP, the partial coverage of the targets, when possible,
results to be a valid strategy to considerably improve the network life-
time.

82
5. MLP WITH TIME SLOTS AND COVERAGE CONSTRAINTS:

EFFICIENT APPROACHES

Chapter 6

Conclusions

In this research thesis we presented an overview of wireless sensor net-
works, their applications and typical coverage problems. One of the
most important issues in this field is the maximization of the amount
of time during which the WSN is able to perform its monitoring task.
This problem, generally known as Maximum Lifetime Problem (MLP),
is a well known and challenging optimization problem which has been
addressed successfully with several approaches in the last years. While
a lot of results can be found in literature on the MLP and variants
considering classical technical issues (as connectivity and multi-role
issues among others), few research effort has been devoted to inves-
tigate specific operational requirements of the sensors. In this thesis
we focus on such scenario in which, in order to perform the monitor-
ing activity, each sensor must be active for a predefined period of time
defined as operating time slot. This context characterizes the periodic
sensing applications in which a WSN monitors the phenomenon under
observation according to a sensitivity cycle which is repeated periodi-
cally.

We formally defined this problem as Maximum Lifetime Problem
with Time Slots (MLPTS). For this new scenario we derived an up-
per bound on the maximum achievable lifetime and proposed a ge-
netic algorithm for finding a near-optimal node activity schedule. The
performance evaluation results obtained on numerous benchmark in-
stances, showed the effectiveness of the proposed approach. Further,

84 6. CONCLUSIONS

we generalized MLPTS by taking into account the possibility to ne-
glect the coverage of a small percentage of the whole set of targets
since, in some applications, the status of the phenomenon under obser-
vation, can be estimated or inferred by monitoring even only a subset
of all targets. We defined such new problem as αc-MLPTS, where
αc defines the percentage of targets that the WSN has to monitor in
each time slot. For this new scenario we proposed three approaches:
a classical greedy algorithm, a modified version of the genetic algo-
rithm already proposed for MLPTS and a Carousel Greedy algorithm.
The comparison of the three approaches is carried out through exten-
sive computational experiments. The computational results showed
that the Carousel Greedy represents the best trade-off between solu-
tions quality and computational times, and confirm that the network
lifetime, also in the case of sensors with operational time constraints,
can be considerably improved by omitting the coverage of a modestly
percentage of the targets.

To the best of our knowledge, the two problems MLPTS and αc-
MLPTS, variants of the MLP problem, have not been previously stud-
ied in the literature. Therefore we believe that this study represents an
important contribution in this research area.

With respect to future research there are many directions that can
be followed. In particular, several well known design issues deriving
from well known variants of the classical MLP problem such as con-
nectivity, routing and robustness (i.e. fault tolerance), which may arise
in specific periodic sensing applications will be faced. The use of mul-
tiple sensor families, each with a different time slot, will be addressed.

Bibliography

[1] Y. et al., “Internet of things: Wireless sensor networks,” International
Electrotechnical Commission (IEC), Tech. Rep., 2019.

[2] P. P. Ray, “A survey on internet of things architectures,” Journal of
King Saud University-Computer and Information Sciences, vol. 30,
no. 3, pp. 291–319, 2018.

[3] D. E. Kouicem, A. Bouabdallah, and H. Lakhlef, “Internet of things
security: A top-down survey,” Computer Networks, vol. 141, pp. 199–
221, 2018.

[4] ReportsnReports, “Global wireless sensor networks
(wsn) market size, status and forecast 2020-2026,”
https://www.reportsnreports.com/reports/3153645-global-wireless-
sensor-networks-wsn-market-size-status-and-forecast-2020-
2026.html, 2020.

[5] MordorIntelligence, “Wireless sensors network mar-
ket - growth, trends, and forecast (2020 - 2025),”
https://www.mordorintelligence.com/industry-reports/wireless-
sensor-networks-market, 2020.

[6] B. Etikasari, S. Kautsar, H. Riskiawan, D. Setyohadi et al., “Wireless
sensor network development in unmanned aerial vehicle (uav) for wa-
ter quality monitoring system,” in IOP Conference Series: Earth and
Environmental Science, vol. 411, no. 1. IOP Publishing, 2020, p.
012061.

[7] I. Deaconu and A. Voinescu, “Mobile gateway for wireless sensor net-
works utilizing drones,” in RoEduNet Conference 13th Edition: Net-

86 BIBLIOGRAPHY

working in Education and Research Joint Event RENAM 8th Confer-
ence, 2014. IEEE, 2014, pp. 1–5.

[8] F. Deng, X. Yue, X. Fan, S. Guan, Y. Xu, and J. Chen, “Multisource
energy harvesting system for a wireless sensor network node in the
field environment,” IEEE Internet of Things Journal, vol. 6, no. 1, pp.
918–927, 2018.

[9] H. Sharma, A. Haque, and Z. A. Jaffery, “Maximization of wireless
sensor network lifetime using solar energy harvesting for smart agri-
culture monitoring,” Ad Hoc Networks, vol. 94, p. 101966, 2019.

[10] A. Abdulla, H. Nishiyama, and N. Kato, “Extending
the lifetime of wireless sensor networks: A hybrid
routing algorithm,” Computer Communications, vol. 35,
no. 9, pp. 1056–1063, 2012. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-84860481685&
partnerID=40&md5=67b4869a432f836647d030b76d39e38c

[11] A. Santos, C. Duhamel, L. Belisário, and L. Guedes, “Strategies for
designing energy-efficient clusters-based wsn topologies,” Journal of
Heuristics, vol. 18, no. 4, pp. 657–675, 2012. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-84865206102&
partnerID=40&md5=a48d9d87aab963d68790a586ac87b45c

[12] T. Bokareva, W. Hu, S. Kanhere, B. Ristic, T. Bessell, M. Rutten, and
S. Jha, “Wireless sensor networks for battlefield surveillance,” in in
Proc. of the Land Warfare Conference, 2006.

[13] F. Castaño, A. Rossi, M. Sevaux, and N. Velasco, “A column gen-
eration approach to extend lifetime in wireless sensor networks with
coverage and connectivity constraints,” Computers & Operations Re-
search, vol. 52, no. B, pp. 220–230, 2014.

[14] A. Rossi, A. Singh, and M. Sevaux, “Column generation algorithm for
sensor coverage scheduling under bandwidth constraints,” Networks,
vol. 60, no. 3, pp. 141–154, 2012.

[15] F. Carrabs, R. Cerrulli, C. D’Ambrosio, and A. Raiconi, Maximizing
Lifetime for a Zone Monitoring Problem Through Reduction to Target
Coverage. Springer International Publishing, 2018, pp. 111–119.

http://www.scopus.com/inward/record.url?eid=2-s2.0-84860481685&partnerID=40&md5=67b4869a432f836647d030b76d39e38c
http://www.scopus.com/inward/record.url?eid=2-s2.0-84860481685&partnerID=40&md5=67b4869a432f836647d030b76d39e38c
http://www.scopus.com/inward/record.url?eid=2-s2.0-84860481685&partnerID=40&md5=67b4869a432f836647d030b76d39e38c
http://www.scopus.com/inward/record.url?eid=2-s2.0-84865206102&partnerID=40&md5=a48d9d87aab963d68790a586ac87b45c
http://www.scopus.com/inward/record.url?eid=2-s2.0-84865206102&partnerID=40&md5=a48d9d87aab963d68790a586ac87b45c
http://www.scopus.com/inward/record.url?eid=2-s2.0-84865206102&partnerID=40&md5=a48d9d87aab963d68790a586ac87b45c

BIBLIOGRAPHY 87

[16] F. Carrabs, R. Cerulli, C. D’Ambrosio, and A. Raiconi, “Exact and
heuristic approaches for the maximum lifetime problem in sensor net-
works with coverage and connectivity constraints,” RAIRO - Opera-
tions Research, vol. 51, no. 3, pp. 607–625, 2017.

[17] M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-efficient target cov-
erage in wireless sensor networks,” in Proceedings of the 24th con-
ference of the IEEE Communications Society, vol. 3, 2005, pp. 1976–
1984.

[18] F. Castaño, A. Rossi, M. Sevaux, and N. Velasco, “On the
use of multiple sinks to extend the lifetime in connected
wireless sensor networks,” Electronic Notes in Discrete Math-
ematics, vol. 41, pp. 77–84, 2013. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-84879706424&
partnerID=40&md5=0ccae4b8dada22daae2da246e9304390

[19] A. Raiconi and M. Gentili, “Exact and metaheuristic approaches to ex-
tend lifetime and maintain connectivity in wireless sensors networks,”
in Network Optimization, ser. Lecture Notes in Computer Science,
J. Pahl, T. Reiners, and S. Voss, Eds. Berlin/Heidelberg: Springer,
2011, vol. 6701, pp. 607–619.

[20] D. Zorbas, D. Glynos, P. Kotzanikolaou, and C. Douligeris,
“Solving coverage problems in wireless sensor net-
works using cover sets,” Ad Hoc Networks, vol. 8,
no. 4, pp. 400–415, 2010. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-75149197226&
partnerID=40&md5=0fabfc89e2e02624d7fa671bd840d9e0

[21] M. Z. A. Bhuiyan, G. Wang, J. Wu, J. Cao, X. Liu, and T. Wang, “De-
pendable structural health monitoring using wireless sensor networks,”
IEEE Transactions on Dependable and Secure Computing, vol. 14,
no. 4, pp. 363–376, 2017.

[22] A. B. Noel, A. Abdaoui, T. Elfouly, M. H. Ahmed, A. Badawy, and
M. S. Shehata, “Structural health monitoring using wireless sensor net-
works: A comprehensive survey,” IEEE Communications Surveys Tu-
torials, vol. 19, no. 3, pp. 1403–1423, 2017.

http://www.scopus.com/inward/record.url?eid=2-s2.0-84879706424&partnerID=40&md5=0ccae4b8dada22daae2da246e9304390
http://www.scopus.com/inward/record.url?eid=2-s2.0-84879706424&partnerID=40&md5=0ccae4b8dada22daae2da246e9304390
http://www.scopus.com/inward/record.url?eid=2-s2.0-84879706424&partnerID=40&md5=0ccae4b8dada22daae2da246e9304390
http://www.scopus.com/inward/record.url?eid=2-s2.0-75149197226&partnerID=40&md5=0fabfc89e2e02624d7fa671bd840d9e0
http://www.scopus.com/inward/record.url?eid=2-s2.0-75149197226&partnerID=40&md5=0fabfc89e2e02624d7fa671bd840d9e0
http://www.scopus.com/inward/record.url?eid=2-s2.0-75149197226&partnerID=40&md5=0fabfc89e2e02624d7fa671bd840d9e0

88 BIBLIOGRAPHY

[23] C. Tang, H. F. Rashvand, G. Y. Tian, P. Hu, A. I. Sunny, and
H. Wang, Structural Health Monitoring with WSNs. John Wiley
and Sons, Ltd, 2017, ch. 18, pp. 381–408. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119126492.ch18

[24] M. Navarro, T. W. Davis, Y. Liang, and X. Liang, “A study of long-
term wsn deployment for environmental monitoring,” in 2013 IEEE
24th Annual International Symposium on Personal, Indoor, and Mo-
bile Radio Communications (PIMRC), Sep. 2013, pp. 2093–2097.

[25] B. Bathiya, S. Srivastava, and B. Mishra, “Air pollution monitoring us-
ing wireless sensor network,” in 2016 IEEE International WIE Confer-
ence on Electrical and Computer Engineering (WIECON-ECE), Dec
2016, pp. 112–117.

[26] P. Arroyo, J. L. Herrero, J. I. Suárez, and J. Lozano, “Wireless sensor
network combined with cloud computing for air quality monitoring,”
Sensors, vol. 19, no. 3, p. 691, 2019.

[27] “Lufdaten.info,” http://www.luftdaten.info.

[28] T. Ojha, S. Misra, and N. S. Raghuwanshi, “Wireless sensor networks
for agriculture: The state-of-the-art in practice and future challenges,”
Computers and Electronics in Agriculture, vol. 118, pp. 66 – 84, 2015.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0168169915002379

[29] A. P. Abidoye and I. C. Obagbuwa, “Models for integrating wireless
sensor networks into the internet of things,” IET Wireless Sensor Sys-
tems, vol. 7, no. 3, pp. 65–72, 2017.

[30] J. Elson and D. Estrin, “Wireless sensor networks,” C. S. Raghavendra,
K. M. Sivalingam, and T. Znati, Eds. Norwell, MA, USA: Kluwer
Academic Publishers, 2004, ch. Sensor Networks: A Bridge to the
Physical World, pp. 3–20.

[31] M. Cardei, “Coverage problems in sensors networks,” in Handbook of
Combinatorial Optimization (2nd edition), P. M. Pardalos, D. Z. Du,
and R. Graham, Eds. New York: Springer, 2013, pp. 899–927.

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119126492.ch18
 http://www.luftdaten.info
http://www.sciencedirect.com/science/article/pii/S0168169915002379
http://www.sciencedirect.com/science/article/pii/S0168169915002379

BIBLIOGRAPHY 89

[32] J. Hwang, C. Shin, and H. Yoe, “A wireless sensor network-based
ubiquitous paprika growth management system,” Sensors, vol. 10,
no. 12, pp. 11 566–11 589, 2010.

[33] A. A. Pasi and U. Bhave, “Flood detection system using wireless sen-
sor network,” International Journal of Advanced Research in Com-
puter Science and Software Engineering, vol. 5, no. 2, 2015.

[34] J. Fernández-Lozano, M. Martı́n-Guzmán, J. Martı́n-Ávila, and
A. Garcı́a-Cerezo, “A wireless sensor network for urban traffic charac-
terization and trend monitoring,” Sensors, vol. 15, no. 10, pp. 26 143–
26 169, 2015.

[35] S. J. Ramson and D. J. Moni, “Applications of wireless sensor
networks - a survey,” in 2017 international conference on innova-
tions in electrical, electronics, instrumentation and media technology
(ICEEIMT). IEEE, 2017, pp. 325–329.

[36] T. Ojha, S. Misra, and N. S. Raghuwanshi, “Wireless sensor networks
for agriculture: The state-of-the-art in practice and future challenges,”
Computers and Electronics in Agriculture, vol. 118, pp. 66 – 84, 2015.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0168169915002379

[37] P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin, “Wireless sen-
sor networks: a survey on recent developments and potential syner-
gies,” The Journal of Supercomputing, vol. 68, no. 1, pp. 1–48, 2014.

[38] M. Pejanovic Durisic, Z. Tafa, G. Dimic, and V. Milutinovic, “A survey
of military applications of wireless sensor networks,” in Proceedings
of the Mediterranean Conference on Embedded Computing, 2012, pp.
196–199.

[39] I. Dietrich and F. Dressler, “On the lifetime of wireless
sensor networks,” ACM Transactions on Sensor Net-
works, vol. 5, no. 1, 2009. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-60449083692&
partnerID=40&md5=1cd3d215145edc8b047962235c55706a

[40] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
a scalable and robust communication paradigm for sensor networks,”

http://www.sciencedirect.com/science/article/pii/S0168169915002379
http://www.sciencedirect.com/science/article/pii/S0168169915002379
http://www.scopus.com/inward/record.url?eid=2-s2.0-60449083692&partnerID=40&md5=1cd3d215145edc8b047962235c55706a
http://www.scopus.com/inward/record.url?eid=2-s2.0-60449083692&partnerID=40&md5=1cd3d215145edc8b047962235c55706a
http://www.scopus.com/inward/record.url?eid=2-s2.0-60449083692&partnerID=40&md5=1cd3d215145edc8b047962235c55706a

90 BIBLIOGRAPHY

in Proceedings of the 6th annual international conference on Mobile
computing and networking. ACM, 2000, pp. 56–67.

[41] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Communications of the ACM, vol. 43, no. 5, pp. 51–58, 2000.

[42] S. Megerian, F. Koushanfar, G. Qu, G. Veltri, and M. Potkonjak, “Ex-
posure in wireless sensor networks: theory and practical solutions,”
Wireless Networks, vol. 8, no. 5, pp. 443–454, 2002.

[43] C. Zhu, C. Zheng, L. Shu, and G. Han, “A survey on coverage and
connectivity issues in wireless sensor networks,” Journal of Network
and Computer Applications, vol. 35, no. 2, pp. 619–632, 2012.

[44] B. Wang, “Coverage problems in sensor networks: A survey,” ACM
Computing Surveys (CSUR), vol. 43, no. 4, p. 32, 2011.

[45] M. Cardei and J. Wu, “Coverage in wireless sensor networks,” Hand-
book of Sensor Networks, pp. 422–433, 2004.

[46] S. Slijepcevic and M. Potkonjak, “Power effi-
cient organization of wireless sensor networks,”
vol. 2, 2001, pp. 472–476. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-0034865562&
partnerID=40&md5=324c52c8abf6f225ab82abd4d5828450

[47] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network sur-
vey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[48] M. Cardei, J. Wu, and M. Lu, “Improving network lifetime using sen-
sors with adjustable sensing ranges,” International Journal of Sensor
Networks, vol. 1, no. 1-2, pp. 41–49, 2006.

[49] M. Gentili and A. Raiconi, “α−coverage to extend network lifetime
on wireless sensor networks,” Optimization Letters, vol. 7, no. 1, pp.
157–172, 2013.

[50] Y. Gu, B.-H. Zhao, Y.-S. Ji, and J. Li, “Theoretical
treatment of target coverage in wireless sensor networks,”
Journal of Computer Science and Technology, vol. 26,
no. 1, pp. 117–129, 2010. [Online]. Available: http:

http://www.scopus.com/inward/record.url?eid=2-s2.0-0034865562&partnerID=40&md5=324c52c8abf6f225ab82abd4d5828450
http://www.scopus.com/inward/record.url?eid=2-s2.0-0034865562&partnerID=40&md5=324c52c8abf6f225ab82abd4d5828450
http://www.scopus.com/inward/record.url?eid=2-s2.0-79951504703&partnerID=40&md5=b6e2c0bb45d3d4d93e9c5c892b6976fa
http://www.scopus.com/inward/record.url?eid=2-s2.0-79951504703&partnerID=40&md5=b6e2c0bb45d3d4d93e9c5c892b6976fa
http://www.scopus.com/inward/record.url?eid=2-s2.0-79951504703&partnerID=40&md5=b6e2c0bb45d3d4d93e9c5c892b6976fa

BIBLIOGRAPHY 91

//www.scopus.com/inward/record.url?eid=2-s2.0-79951504703&
partnerID=40&md5=b6e2c0bb45d3d4d93e9c5c892b6976fa

[51] A. Singh, A. Rossi, and M. Sevaux, “Matheuristic ap-
proaches for q-coverage problem versions in wireless
sensor networks,” Engineering Optimization, vol. 45,
no. 5, pp. 609–626, 2013. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-84876401704&
partnerID=40&md5=94e6c2758a3564f68e95f189ccc26b6d

[52] S. Slijepcevic and M. Potkonjak, “Power efficient organization of
wireless sensor networks,” in IEEE International Conference on Com-
munications, vol. 2, 2001, pp. 472–476.

[53] K. Deschinkel, “A column generation based heuristic for maximum
lifetime coverage in wireless sensor networks,” in SENSORCOMM 11,
5th Int. Conf. on Sensor Technologies and Applications, vol. 4, 2011,
pp. 209 – 214.

[54] R. Cerulli, R. De Donato, and A. Raiconi, “Exact and heuristic meth-
ods to maximize network lifetime in wireless sensor networks with ad-
justable sensing ranges,” European Journal of Operational Research,
vol. 220, no. 1, pp. 58–66, 2012.

[55] C. Wang, M. T. Thai, Y. Li, F. Wang, and W. Wu, “Minimum coverage
breach and maximum network lifetime in wireless sensor networks,”
in Proceedings of the IEEE Global Telecommunications Conference,
2007, pp. 1118–1123.

[56] R. Cerulli, M. Gentili, and A. Raiconi, “Maximizing lifetime and han-
dling reliability in wireless sensor networks,” Networks, vol. 64, no. 4,
pp. 321–338, 2014.

[57] F. Carrabs, R. Cerulli, C. D’Ambrosio, and A. Raiconi, “A hybrid exact
approach for maximizing lifetime in sensor networks with complete
and partial coverage constraints,” Journal of Network and Computer
Applications, vol. 58, pp. 12–22, 2015.

[58] ——, “Extending lifetime through partial coverage and roles
allocation in connectivity-constrained sensor networks,” IFAC-
PapersOnline, vol. 49, no. 12, pp. 973–978, 2016.

http://www.scopus.com/inward/record.url?eid=2-s2.0-79951504703&partnerID=40&md5=b6e2c0bb45d3d4d93e9c5c892b6976fa
http://www.scopus.com/inward/record.url?eid=2-s2.0-79951504703&partnerID=40&md5=b6e2c0bb45d3d4d93e9c5c892b6976fa
http://www.scopus.com/inward/record.url?eid=2-s2.0-79951504703&partnerID=40&md5=b6e2c0bb45d3d4d93e9c5c892b6976fa
http://www.scopus.com/inward/record.url?eid=2-s2.0-79951504703&partnerID=40&md5=b6e2c0bb45d3d4d93e9c5c892b6976fa
http://www.scopus.com/inward/record.url?eid=2-s2.0-84876401704&partnerID=40&md5=94e6c2758a3564f68e95f189ccc26b6d
http://www.scopus.com/inward/record.url?eid=2-s2.0-84876401704&partnerID=40&md5=94e6c2758a3564f68e95f189ccc26b6d
http://www.scopus.com/inward/record.url?eid=2-s2.0-84876401704&partnerID=40&md5=94e6c2758a3564f68e95f189ccc26b6d

92 BIBLIOGRAPHY

[59] ——, “Extending lifetime through partial coverage and roles
allocation in connectivity-constrained sensor networks,” IFAC-
PapersOnline, vol. 49, no. 12, pp. 973–978, 2016.

[60] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connec-
tivity in large sensor networks,” Ad Hoc & Sensor Wireless Networks,
vol. 1, no. 1-2, pp. 89–124, 2005.

[61] F. Carrabs, C. Cerrone, C. D’Ambrosio, and A. Raiconi, “Column gen-
eration embedding carousel greedy for the maximum network lifetime
problem with interference constraints,” in Optimization and Decision
Science: Methodologies and Applications. ODS 2017., ser. Springer
Proceedings in Mathematics & Statistics, S. A. and S. C., Eds., vol.
217. Springer, Cham, 2017, pp. 151–159.

[62] F. Carrabs, R. Cerulli, C. D’Ambrosio, and A. Raiconi, “Prolong-
ing lifetime in wireless sensor networks with interference constraints,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
10232 LNCS, pp. 285–297, 2017.

[63] C. Cerrone, R. Cerulli, and B. Golden, “Carousel greedy: A general-
ized greedy algorithm with applications in optimization,” Computers
and Operations Research, vol. 85, pp. 97 – 112, 2017.

[64] K. Trojanowski, A. Mikitiuk, F. Guinand, and M. Wypych, “Heuristic
optimization of a sensor network lifetime under coverage constraint,”
in Computational Collective Intelligence, N. T. Nguyen, G. A. Pa-
padopoulos, B. Jkedrzejowicz, Piotrand Trawinski, and G. Vossen,
Eds. Cham: Springer International Publishing, 2017, pp. 422–432.

[65] K. Trojanowski, A. Mikitiuk, and M. Kowalczyk, “Sensor network
coverage problem: A hypergraph model approach,” in Computational
Collective Intelligence, N. T. Nguyen, G. A. Papadopoulos, P. Jedrze-
jowicz, B. Trawinski, and G. Vossen, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 411–421.

[66] K. Trojanowski, A. Mikitiuk, and K. J. M. Napiorkowski, “Applica-
tion of local search with perturbation inspired by cellular automata for

BIBLIOGRAPHY 93

heuristic optimization of sensor network coverage problem,” in Par-
allel Processing and Applied Mathematics, R. Wyrzykowski, J. Don-
garra, E. Deelman, and K. Karczewski, Eds. Cham: Springer Inter-
national Publishing, 2018, pp. 425–435.

[67] A. Tretyakova, F. Seredynski, and F. Guinand, “Heuristic and
meta-heuristic approaches for energy-efficient coverage-preserving
protocols in wireless sensor networks.” New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3132114.3132119

[68] K. Brezinski, M. Guevarra, and K. Ferens, “Population based equilib-
rium in hybrid sa/pso for combinatorial optimization: Hybrid sa/pso
for combinatorial optimization,” International Journal of Software Sci-
ence and Computational Intelligence, vol. 12, pp. 74–86, 04 2020.

[69] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated annealing.
Dordrecht: Springer Netherlands, 1987, pp. 7–15. [Online]. Available:
https://doi.org/10.1007/978-94-015-7744-1 2

[70] E. Fitzgerald, M. Pioro, and A. Tomaszewski, “Network lifetime
maximization in wireless mesh networks for machine-to-machine
communication,” Ad Hoc Networks, vol. 95, p. 101987, 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1570870519303415

[71] C. Francesco, C. D’Ambrosio, and A. Raiconi, “Optimization of sen-
sor battery charging to maximize lifetime in a wireless sensors net-
work,” Optimization Letters, 2020.

[72] M. Cardei and J. Wu, “Energy-efficient coverage problems in wireless
ad-hoc sensor networks,” Computer communications, vol. 29, no. 4,
pp. 413–420, 2006.

[73] S. Jevtic, M. Kotowsky, R. P. Dick, P. Dinda, and C. Dowding, “Lu-
cid dreaming: Reliable analog event detection for energy-constrained
applications,” 04 2007, pp. 350–359.

[74] X. Vilajosana, P. Tuset-Peiro, F. Vazquez-Gallego, J. Alonso-Zarate,
and L. Alonso, “Standardized low-power wireless communication
technologies for distributed sensing applications,” Sensors, vol. 14,

https://doi.org/10.1145/3132114.3132119
https://doi.org/10.1007/978-94-015-7744-1_2
http://www.sciencedirect.com/science/article/pii/S1570870519303415
http://www.sciencedirect.com/science/article/pii/S1570870519303415

94 BIBLIOGRAPHY

no. 2, pp. 2663–2682, 2014. [Online]. Available: https://www.mdpi.
com/1424-8220/14/2/2663

[75] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey,
R. Govindan, E. Johnson, and S. Masri, “Monitoring civil structures
with a wireless sensor network,” IEEE Internet Computing, vol. 10,
no. 2, pp. 26–34, March 2006.

[76] Jeongyeup Paek, K. Chintalapudi, R. Govindan, J. Caffrey, and
S. Masri, “A wireless sensor network for structural health monitor-
ing: performance and experience,” in The Second IEEE Workshop on
Embedded Networked Sensors, 2005. EmNetS-II., May 2005, pp. 1–9.

[77] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon, “Health monitoring of civil infrastructures using wireless
sensor networks,” in 2007 6th International Symposium on Informa-
tion Processing in Sensor Networks, April 2007, pp. 254–263.

[78] M. M. Ahmadi and G. A. Jullien, “A wireless-implantable microsys-
tem for continuous blood glucose monitoring,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 3, no. 3, pp. 169–180, June
2009.

[79] J. Holland, “Adaption in natural and artificial systems,” Ann Arbor MI:
The University of Michigan Press, 1975.

[80] S. Sivanandam and S. Deepa, Introduction to genetic
algorithms. Springer, 2008. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-84890007909&
partnerID=40&md5=9428a3197d84e5b2265771201673a6a2

[81] L. N. d. Castro, Fundamentals of Natural Computing (Chapman &
Hall/Crc Computer and Information Sciences). Chapman & Hal-
l/CRC, 2006.

[82] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathemat-
ical society, vol. 7, no. 1, pp. 48–50, 1956.

[83] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401,
1957.

https://www.mdpi.com/1424-8220/14/2/2663
https://www.mdpi.com/1424-8220/14/2/2663
http://www.scopus.com/inward/record.url?eid=2-s2.0-84890007909&partnerID=40&md5=9428a3197d84e5b2265771201673a6a2
http://www.scopus.com/inward/record.url?eid=2-s2.0-84890007909&partnerID=40&md5=9428a3197d84e5b2265771201673a6a2
http://www.scopus.com/inward/record.url?eid=2-s2.0-84890007909&partnerID=40&md5=9428a3197d84e5b2265771201673a6a2

BIBLIOGRAPHY 95

[84] R. L. Graham and P. Hell, “On the history of the minimum spanning
tree problem,” Annals of the History of Computing, vol. 7, no. 1, pp.
43–57, 1985.

[85] J. Nešetřil, “A few remarks on the history of mst-problem,” Archivum
mathematicum, vol. 33, no. 1, pp. 15–22, 1997.

[86] E. W. Dijkstra et al., “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[87] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of operations research, vol. 4, no. 3, pp. 233–235, 1979.

[88] E. L. Lawler, J. K. Lenstra, A. H. R. Kan, and D. B. Shmoys, “Se-
quencing and scheduling: Algorithms and complexity,” Handbooks in
operations research and management science, vol. 4, pp. 445–522,
1993.

[89] D. A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–
1101, 1952.

[90] C. Cerrone, C. D’Ambrosio, and A. Raiconi, “Heuristics for the strong
generalized minimum label spanning tree problem,” Networks, vol. 74,
no. 2, pp. 148–160, 2019.

[91] C. Duin and S. Voß, “The pilot method: A strategy for heuristic rep-
etition with application to the Steiner problem in graphs,” Networks,
vol. 34, no. 3, pp. 181–191, 1999.

[92] T. A. Feo and M. G. Resende, “Greedy randomized adaptive search
procedures,” Journal of global optimization, vol. 6, no. 2, pp. 109–
133, 1995.

[93] R. Ruiz and T. Stützle, “A simple and effective iterated greedy algo-
rithm for the permutation flowshop scheduling problem,” European
Journal of Operational Research, vol. 177, no. 3, pp. 2033–2049,
2007.

[94] S.-C. Hu, Y.-C. Wang, C.-Y. Huang, and Y.-C. Tseng, “Measuring air
quality in city areas by vehicular wireless sensor networks,” Journal of

96 BIBLIOGRAPHY

Systems and Software, vol. 84, no. 11, pp. 2005 – 2012, 2011, mobile
Applications: Status and Trends.

[95] B. Bathiya, S. Srivastava, and B. Mishra, “Air pollution monitoring us-
ing wireless sensor network,” in 2016 IEEE International WIE Confer-
ence on Electrical and Computer Engineering (WIECON-ECE), Dec
2016, pp. 112–117.

[96] L. Davis, Ed., Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold, 1991.

[97] A. Konak, D. Coit, and A. Smith, “Multi-objective optimization using
genetic algorithms: A tutorial,” Reliability Engineering and System
Safety, vol. 91, no. 9, pp. 992–1007, 9 2006.

[98] T. Popoviciu, “Sur les équations algébriques ayant toutes leurs racines
réelles,” Mathematica, vol. 9, pp. 129–145, 1935.

[99] L. N. d. Castro, Fundamentals of Natural Computing (Chapman &
Hall/Crc Computer and Information Sciences). Chapman & Hal-
l/CRC, 2006.

[100] S. M. Dehnavi, M. Ayati, and M. R. Zakerzadeh, “Three dimensional
target tracking via underwater acoustic wireless sensor network,” in
2017 Artificial Intelligence and Robotics (IRANOPEN), 2017, pp.
153–157.

[101] J. Luo, Z. Zhang, C. Liu, and H. Luo, “Reliable and cooperative target
tracking based on wsn and wifi in indoor wireless networks,” IEEE
Access, vol. 6, pp. 24 846–24 855, 2018.

[102] N. Dey, A. S. Ashour, F. Shi, S. J. Fong, and R. S. Sherratt, “Devel-
oping residential wireless sensor networks for ecg healthcare monitor-
ing,” IEEE Transactions on Consumer Electronics, vol. 63, no. 4, pp.
442–449, 2017.

[103] A. Dı́az-Ramı́rez, F. A. Bonino, and P. Mejı́a-Alvarez, Human
Detection and Tracking in Healthcare Applications Through the Use
of a Network of Sensors. Cham: Springer International Publishing,
2014, pp. 171–190. [Online]. Available: https://doi.org/10.1007/
978-3-319-10807-0 8

https://doi.org/10.1007/978-3-319-10807-0_8
https://doi.org/10.1007/978-3-319-10807-0_8

BIBLIOGRAPHY 97

[104] S. Tennina, M. Santos, A. Mesodiakaki, P. . Mekikis, E. Kartsakli,
A. Antonopoulos, M. Di Renzo, A. Stavridis, F. Graziosi, L. Alonso,
and C. Verikoukis, “Wsn4qol: Wsns for remote patient monitoring
in e-health applications,” in 2016 IEEE International Conference on
Communications (ICC), 2016, pp. 1–6.

[105] M. R. Garey and D. S. Johnson, “Computers and intractability,” A
Guide to the, 1979.

[106] C. D’Ambrosio, A. Iossa, F. Laureana, and F. Palmieri, “A genetic
approach for the maximum network lifetime problem with additional
operating time slot constraints,” Soft Computing, 2020.

[107] C. Cerrone, R. Cerulli, and M. Gaudioso, “Omega one multi
ethnic genetic approach,” Optimization Letters, vol. 10, no. 2, pp.
309–324, Feb 2016. [Online]. Available: https://doi.org/10.1007/
s11590-015-0852-0

[108] D. B. Fogel, Evolutionary computation: toward a new philosophy of
machine intelligence. John Wiley & Sons, 2006, vol. 1.

[109] D. E. Goldberg, Genetic algorithms. Pearson Education India, 2006.

[110] J. H. Holland et al., Adaptation in natural and artificial systems: an in-
troductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[111] V. Toğan and A. T. Daloğlu, “An improved genetic algorithm with
initial population strategy and self-adaptive member grouping,” Com-
puters & Structures, vol. 86, no. 11-12, pp. 1204–1218, jun 2008.

https://doi.org/10.1007/s11590-015-0852-0
https://doi.org/10.1007/s11590-015-0852-0

	Contents
	List of Figures
	List of Tables
	Introduction
	Wireless Sensor Network: Motivation
	Contributions of this thesis
	Thesis organization

	Coverage Optimization in Wireless Sensor Networks
	Introduction
	Wireless Sensor Networks overview
	Coverage problems

	Network Lifetime and Coverage Optimization
	Covers Scheduling on WSN
	Application scenario and operating time slot constraints

	MLPTS problem definition

	Maximum Lifetime Problem with Time Slots: algorithms
	Genetic algorithms
	GA general scheme

	Greedy algorithms
	Carousel Greedy

	A Genetic approach for the Maximum Network Lifetime Problem with additional operating Time Slot constraints
	Introduction
	MLPTS problem definition
	Network lifetime upper bound in MLPTS

	A genetic algorithm for solving MLPTS
	Solution representation and fitness function
	Initialization and operators

	Performance evaluation results
	Conclusion

	Maximum Network Lifetime Problem with Time Slots and Coverage Constraints: efficient approaches
	Introduction
	MLPTS and α-MLPTS problem definitions
	A greedy algorithm for solving the αc-MLPTS
	A Carousel Greedy algorithm for αc-MLPTS
	Experimental Evaluation
	 Test instances
	 Test results

	Conclusion

	Conclusions
	Bibliography

