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Introduction

This thesis aims at proposing a new method of solving the nonparametric and non-additive

regression problem in presence of ultra-high dimensional data. In this context, there are two

relevant aspects: variable selection and structure discovery, such as identification of the vari-

ables that affect the response variable and the type of effects (linear or non linear), respectively.

In this thesis we propose a nonparametric method of variable selection that works in two

stages. At the first stage, a screening procedure is performed: selecting a subset of variables

which contains the true covariates with probability 1. In the second, we transform the screening

step into variable selection using a non-penalized approach. In this way we take advantage of

the simplicity of screening and we overcome the problem of estimating penalty parameters.

Furthermore, our screening approach has the potential to distinguish linear and non-linear

covariates, therefore it also succeeds in structure discovery.

Chang et al. (2016a), without requiring a specific parametric form of the underlying data

model, proposed a screening method using empirical likelihood and local polynomials. Once

the estimate of the marginal function between a particular variable and the response is ob-

tained, they used empirical likelihood to test whether this function is significantly different

from zero. Despite the excellent results in terms of dimensionality achieved, the authors did

not perform any variable selection and structure discovery. To solve these problems, we pro-

pose to complicate their approach by estimating the first marginal derivative rather than the

marginal function. In this way, we obtain a new fully nonparametric screening method, called

Derivative Empirical Likelihood Sure Independence Screening(D-ELSIS). In order to transform

our screening selection procedure into variable selection procedure, we use the subsample tech-

nique. In particular, we propose to apply the subsample idea not on the results of a variable

selection procedure, as in Meinshausen and Bühlmann (2010), but after a screening proce-

dure. With this tool, the variables selected through the D-ELSIS are then further evaluated

to investigate their probability, in terms of relative frequency, to be chosen when the data are

randomly sampled. Furthermore, although thresholds are used in this approach, these do not

need to be estimated.

In summary, the potential of the proposed approach is threefold. First, we obtain a screen-

ing method that is totally non-parametric and that works in the context of nonparametric and
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non-additive regression. Second, we transform the screening into variable selection without

estimation of penalty parameters. Third, by estimating the first derivatives, we are able to

distinguish the effects of the selected covariates on the response variable.

In this thesis the theoretical properties of our new D-ELSIS approach as a screening method

will be analyzed. Moreover, simulation study and empirical application on real dataset will

be described to evaluate the performance of the proposal. In particular, the consistency

property is achieved with an exponential rate. Moreover, we pay something in order to estimate

the first marginal derivative. The theoretical results will also be presented to support the

transformation from a screening method to a variable selection method. We will aim at

analyzing the structure discovery property which opens up future research perspectives.

Furthermore, we extend our proposal to time-to-event analysis. High-dimensional data

are available due to the rapid growth of technology. In recent years, technology has also ex-

perienced strong growth in the medical and genetic fields. Variable selection is fundamental

in survival analysis, where we find time-to-event outcome variable, which is a different type

of outcome variables because the outcome of interest is not only whether event occurred, but

also when that event occurred. Most of the methods in the literature consider a conditional

estimate of the survival function, using the Kaplan and Meier estimator (Kaplan and Meier,

1958). Since this does not take into account the direct effect of covariate on survival proba-

bility, it has some disadvantages. We have managed to highlight and justify the possibility of

applying the D-ELSIS method also in this context. With our D-ELSIS procedure, we obtain

a fully nonparametric screening procedure without the use of the Kaplan and Meier estimate

of survival function. This is the fundamental difference among our method and the other

screening techniques. Furthermore, based on our knowledge, in survival context, a screening

method that combines empirical likelihood and local polynomial regression has never been

used.

The thesis is divided into two parts. In the first part, the regression problem will be

addressed with high-dimensional data, our proposal will be examined from a theoretical point

of view and the results of some simulations and an empirical study will be presented. In the

second part our proposal will be applied in the context of survival analysis. Also in this case

the results of the application of our new approach on simulated data will be reported.

2



Part I

Nonparametric regression

3



Introduction

The remarkable development of computing power and other technologies in recent decades

has allowed scientists to collect data of unprecedented size and complexity. High dimensional

data analysis has become increasingly frequent and important in various fields of sciences,

such as genomic, health sciences, economics, finance, engineering and machine learning. Such a

demand from applications presents many new challenges as well as opportunities for statistics.

Statistical accuracy, model interpretability and computational complexity are three impor-

tant pillars of any statistical procedures. In conventional studies, the number of observations

n is much larger than the number of variables p. In such cases, none of the three aspects has

to be sacrificed for the efficiency of others. The traditional methods, however, face significant

challenges when the dimensionality p is comparable to or larger than the sample size n. These

challenges include: (i) how to implement statistical procedures that are more efficient for in-

ference; (ii) how to derive the asymptotic or non-asymptotic theory; (iii) how to make the

estimated models interpretable; (iv) how to make the statistical procedures computationally

efficient and robust.

A mainstream statistical problem is to model the relationship between one or more output

variables Y and their associated covariates X = (X1, . . . , Xp)
T based on a sample of dimen-

sions n in the regression analysis. The textit variable selection problem occurs when there is

uncertainty about which subset of the covariates p we should use. This situation is particularly

interesting when p is large (or greater than n) and X1, . . . , Xp are believed to contain many

redundant or irrelevant variables. So, variable selection is the process of selecting a subset of

relevant variables to use in model construction: we detect the relevant variables all together

and, contextually, we also estimate the coefficients for the parametric model and the function

in the nonparametric setting. Sometimes, it is difficult to find the true set of relevant variables

because the number of candidate variables is very large. One possible solution is to first run

textit variable screening to reduce the number of predictors and then use a known variable

selection method. In fact, variable screening is the process of filtering out irrelevant variables,

with the aim to reduce the dimensionality of the problem, while all relevant variables survive

with probability tending to 1. In variable screening the problem is to consider each variable

one by one and to detect which variable is relevant in the explanation of the response. In this
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case we detect the set of important variables without estimating of each component. Since we

do not know which variables are relevant, the idea of screening procedure is to order all the

variables based on some measures of their effect on the response and to keep only the top ones.

The main difference between variable and screening procedures is in their results. The first

one aims to estimate the exact set of relevant variables, whereas the screening only reaches

a suboptimal result, because it finds a rough set of candidates which includes the relevant

covariates with high probability.

In order to analyse the variable selection problem it is necessary to consider different

aspects. First, we need to define the relation between the dimensionality p and the sample

size n, especially when p >> n. Second, we need to understand the relationships among the

explanatory variables, that is to pay particular attention to the design matrix. Third, we

need to check the conditions under which the procedure is able to have good estimation and

selection properties.

The purpose of the first part of this thesis is to find a completely nonparametric new

procedure capable of selecting the relevant covariates in the presence of ultra-high dimensional

data, without imposing conditions on the underlying model. To this end, we have considered a

very general model, that is, a nonparametric and non-additive one. Our new proposal, called

Derivative Empirical Likelihood Sure Independence Screening (D-ELSIS), works as follows.

First, it uses local polynomial regression to estimate the first marginal derivatives of the

regression function, with respect to all variables in X (so, p derivatives in total). Then, it

checks by the empirical likelihood (a nonparametric inference method, see Owen (2001)) if

these derivatives are uniformly zero (or not) on the support of each variable. Those variables

for which the test is passed are chosen as relevant covariates. Based on our knowledge, no other

screening method uses the marginal estimate of the first derivative and empirical likelihood

for screening purposes.

From a theoretical point of view, we will demonstrate that, under some regularity con-

ditions, D-ELSIS has screening and variable selection properties with a exponential growth

rate. This will also be demonstrated with simulations comparing our approach with those

existing in literature. Furthermore, we will show theoretically how it is possible to trans-

form our screening selection procedure into variable selection procedure, using the subsample

technique.

In Chapter 1 we introduce the variable selection problem both in linear regression and in

nonparametric regression models and we describe some of the structure discovery’s techniques.

We explain the idea of screening and the different methodologies that can be found in the

literature. In Chapter 2 we introduce our new estimator, called D-ELSIS , to carry out

screening in the context of nonparametric and non-additive models and the possibility of

using it to achieve variable selection. Chapter 3 studies its theoretical properties under some

regularity conditions. In Chapter 4, we carry out extensive numerical simulations to asses the
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performance of the proposed D-ELSIS screener and compare it with other existing approaches.

Finally we present an empirical study.
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Chapter 1

Variable selection problems

When p < n, there is a rich literature on variable selection that can be used to identify

non-zero components of the coefficient vector. The common approach is to use the Ordinary

Least Square (OLS) in linear setting. When p > n, we find two different definitions for the

dimensionality of the problem. High dimensional data is usually classified as the situation

where p tends to infinity as n tends to infinity at polynomial rate, p = O(nα), with some

α > 1. Ultra-high dimensional data is the situation where p grows at a exponential rate in n,

namely log(p) = O(nα) for α ∈ (0, 1).

In the high dimensional setting, the design matrix, which contains the observations for a set

on candidate explanatory variables, often denoted by X, has an important role. Each row of

this matrix represents an individual object, with the successive columns corresponding to the

variables and their specific values for that object. When p is greater than n, the design matrix

is rectangular, having more columns than rows. A notorious difficulty of high dimensional

model selection comes from the collinearity among the predictors, as shown for example in

Fan and Lv (2008). In their paper they showed how the collinearity can easily be spurious in

a high dimensional geometry, which can lead to selecting a wrong model. Any variable can be

well-approximated even by a couple of spurious variables, and can even be replaced by them

when the dimensionality is much higher than the sample size. If that variable is a signature

predictor and is replaced by spurious variables, we choose wrong variables to associate the

covariates with the response and, even worse, the spurious variables can be independent of

the response at population level, leading to completely wrong scientific conclusions. The

maximum spurious correlation grows with dimensionality. Collinearity also gives rise to issues

of over-fitting and model mis-identification. In variable selection we need to consider some

conditions on the design matrix, in order to have the oracle property. A method possess the

oracle property if it selects the correct subset of predictors with probability tending to one and

estimates the non-zero parameters as efficiently as could be possible if we knew in advance

which variables were uninformative (Fan and Li, 2001).
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A consistent estimation procedure in terms of parameter estimation will not necessarily

also be consistent in terms of selecting the correct model, where the opposite is also true, as

shown in Zhao and Yu (2006). The consistency in terms of parameter estimation requires

that the estimations tend in probability to the true parameters as the sample size n tends to

infinity. On the other hand, the consistency in model selection requires that the set of selected

variables tends to the true set of relevant variables, with probability 1, as n tends to infinity.

In general, we desire an estimator to have both kind of consistencies.

In variable selection problems it is possible to distinguish between two contexts: para-

metric regression and nonparametric regression. When we know the functional relationship

between the covariates and the response, we are in the parametric case. On the other hand,

when we have no information about such relationships, we are in the nonparametric setting.

In practice, there is often a little prior information that the effects of the covariates take a

linear form or belong to any other finite-dimensional parametric family, so it is possible to

use a nonparametric model to avoid incorrect specifications of the model. In the context of

nonparametric models, particular attention is given to additive models. These increase sub-

stantially the flexibility of the ordinary parametric model and allow a data-analytic transform

of the covariates to enter into the linear model. Also in the context of nonparametric regres-

sion, it is possible to define the oracle property: a nonparametric regression estimator has the

nonparametric oracle property if it selects the correct subset of predictors with probability

tending to one and estimates the regression functional form at the optimal nonparametric rate

(Storlie et al., 2011).

What makes high dimensional statistical inference feaseble is the assumption that the re-

gression function lies in a low dimensional manifold, as is shown in Fan and Lv (2010). In such

cases, the p-dimensional regression parameters are assumed to be sparse with many compo-

nents being zero, where non-zero components indicate the relevant variables. They assessed

that, with sparsity, variable selection can improve the estimation accuracy by effectively iden-

tifying the subset of important predictors and can enhance the model interpretability with

parsimonious representation. It can also help to reduce the computational cost when sparsity

is very high. Following this sparsity principle, numerous variable selection approaches have

been developed in the literature for high and ultra-high dimensional feature space.

1.1 Variable selection in linear regression models

In regression analysis, the linear model has been commonly used to link a response variable

to explanatory variables for data analysis. One major reason for this is that the resulting

OLS estimators have a closed form that is easy to compute. However, in the high-dimensional

setting this closed form breaks down. In this situation there are many methods that outperform

8



OLS. The traditional linear regression model has the following formulation

Yi = β0 +

p∑

j=1

βjXij + εi, i = 1, . . . , n (1.1)

where ε1, . . . , εn are i.i.d, independent of Xi, i = 1, . . . , n and such that E(εi) = 0. The vector

β = (βo, β1, . . . , βp)
T represents the vector of coefficients. We are going to focus our attention

in case when the number of predictors, p, is large relative to the number of observations,

n. Classical variable selection procedures perform model selection and parameter estimation

simultaneously. The majority of these procedures select variables by minimizing a penalized

objective function with the following form:

Lossfunction+ penalisation.

The penalty part is used to reduce the complexity of the model and to encourage sparsity

in the final model. The most well known of these procedures is the LASSO (Least Absolute

Shrinkage and Selection Operator) of Tibshirani (1996), which imposes an L1 penalty (|| · ||1)
on the coefficients under the assumption that the vector β is sparse. In fact, the LASSO

estimator β̂ minimizes the following penalized sum of squares

∑

i

(Yi −XT
i β)

2 + λ

p∑

j=1

|βj |, (1.2)

with XT
i = (Xi1, . . . , Xip).

The parameter λ ≥ 0 controls the amount of regularization applied to the estimate and

the penalty function is pλ(β) = λ
∑p

j=1 |βj |. Setting λ = 0 reverses the LASSO problem to

OLS which minimizes the unregularized empirical loss. On the other hand, a very large λ will

completely shrink the parameters to 0 thus leading to the empty or null model. In general,

moderate values of λ will cause shrinkage of the solutions towards 0, and some coefficients

may end up being exactly 0.

In order to have an accurate variable selection we have to require some restrictions: the

beta-min condition, which demands that the non-zero regression coefficients are sufficiently

large, and the irrepresentable condition for the design matrix. The irrepresentable condition

depends mainly on the covariance of the predictor variables and states that LASSO selects

the true model consistently if the variables present in the true model can neither be too

strongly correlated with each other nor with the noise variables. In fact, if there is a group

of variables among which the pairwise correlations are very high, then the LASSO tends to

select only one variable from the group and does not care which one is selected. Those two

conditions are restrictive but non-checkable, however are essentially necessary (Bühlmann and
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Van De Geer, 2011). Zhao and Yu (2006) showed that, under the irrepresentable condition,

the LASSO is consistent for variable selection provided p is not too large compared with n

and the penalty parameter λ grows faster than n1/2. Specifically, p is allowed to be as large

as exp(na) for some 0 < a < 1 when the errors have Gaussian tails. However, the value of λ

required for variable selection consistency over-shrinks the non-zero coefficients, which leads

to asymptotically biased estimates. Thus the LASSO is variable selection consistent if

lim
n→∞

P (M∗ = M̂n) = 1,

where M∗ = {j : βj 6= 0} is the set of indices of all variables present in the true model, and

M̂n = {j : β̂n 6= 0} is the set of indices with every parameter estimates unequal to zero.

Moreover, if the LASSO is variable selection consistent, it is not efficient for estimating the

non-zero parameters, so these considerations confirm that the LASSO does not possess the

oracle property (Fan and Li, 2001). However, retrieving all variables from the true model,

whether or not accompanied by some noise variables, is a desirable property in itself. We will

refer to this as the variable screening property :

lim
n→∞

P (M∗ ⊆ M̂n) = 1.

For this property to hold we again need the sparsity assumption and the beta-min condition,

but the irrepresentable condition can be relaxed, leaving us with a less strong assumption on

the design matrix, namely the restricted eigenvalue condition (Bühlmann and Van De Geer,

2011) which is technical but not overly restrictive in sparse problems. So, under the sparsity

assumption, where the true variables have corresponding coefficients above some detection

limit (the beta-min assumption), the LASSO has the ability to select them all. Even if there

are some variables in the true model with coefficients that are too small to detect, one could

still argue that the LASSO is able to find the influential and for that reason most relevant

variables.

Efron et al. (2004) proposed a fast and efficient Least Angle Regression (LARS) algorithm

for variable selection, a simple modification of which produces the entire LASSO solution path

{β̂(λ) : λ > 0} that optimizes (1.2). The computation is based on the fact that the LASSO

solution path is piecewise linear in λ. The LARS algorithm starts from a large value of λ

which selects only one covariate that has the greatest correlation with the response variable

and decreases the λ value until the second variable is selected, at which the selected variables

have the same correlation (in magnitude) with the current working residual as the first one.

Numerous alternatives and extensions have been suggested to deal with the problem of

variable selection in linear regression model, with different forms of penalisation function. A

few examples include SCAD (Fan and Li, 2001), the Elastic Net (Zou and Hastie, 2005) and

the Dantzig selector (Candes and Tao, 2007). Fan and Li (2001) proposed to use the Smoothly
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Clipped Absolute Deviation (SCAD) penalty function pλ, which is a non-decreasing quadratic

spline on [0,∞), linear on (0, λ) and constant on [aλ,∞) for some a > 2:

pλ(β) = λ

{
I(|β| ≤ λ) +

(aλ− |β|)+
(a− 1)λ

I(|β| > λ)

}
.

For the L1 penalty, a = λ. The authors showed that the root-n consistency for any penalized

approach requires that λ = O(n−1/2). On the other hand, the oracle property requires that
√
nλ→ ∞. These two conditions for LASSO cannot be satisfied simultaneously, so the oracle

property does not hold. The authors showed that this property holds for the SCAD. Kim

et al. (2008) proved the oracle property in the case where the dimension p grows at a certain

polynomial rate that depends on the moment condition of the noise, provided that the true

model is sparse. Moreover, with a Gaussian noise, they showed that the dimension p can grow

exponentially fast.

Zou and Hastie (2005) considered mixed norms in their approach called Elastic Net. The

penalty function in this case has the following formula:

pλ( β) = λ1||β||1 + λ2||β||22.

This method overcomes the issue of collinearity because it favours selection of correlated

regressors simultaneously while LASSO tends to select only one out of them. In fact, the

Elastic Net can be solved as a LASSO using slight modification of the LARS algorithm. Elastic

net irrepresentable condition (EIC) is crucial for the Elastic net’s model selection consistency.

In the standard case when the dimension p and the number of the relevant variables, s, are

fixed, EIC is necessary and sufficient for the Elastic net to consistently select the true model

(Yuan and Lin, 2007). When p and s both grow as n grows, EIC is not sufficient any more.

Some conditions on the relationship among p, s and n are required. For consistency results,

it is required that n grows at a rate faster than s log(p− s) (Jia and Yu, 2010).

The L1 regularization has also been used in the Dantzig selector proposed by Candes and

Tao (2007), which is defined as the solution to

min ‖ β ‖1 subject to ‖ n−1XT (Y −Xβ) ‖∞≤ λ,

where λ ≥ 0 is the regularization parameter. The Dantzig selector uses the L∞ norm of the

covariance vector n−1XT (Y −Xβ), i.e., the maximum absolute covariance between a covariate

and the residual vector Y − Xβ, for controlling the model fitting. This L∞ constraint can

be viewed as a relaxation of the normal equation XTY = XTXβ, finding the estimator that

has the smallest L1-norm in the neighbourhood of the least squares estimate. Under the

uniform uncertainty principle on the design matrix X, an assumption on the conditioning

number requiring that all sub matrices of X are uniformly close to orthonormal matrices,
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which can be stringent in high dimensions, Candes and Tao (2007) showed that, with high

probability, the Dantzig selector mimics the risk of the oracle estimator up to a logarithmic

factor log p. Although the Dantzig selector is in a certain sense asymptotically equivalent to

the LASSO (Bickel et al., 2009), their estimation consistency requires different conditions on

the correlations between predictors because the Dantzig selector is related to an estimating

equation, whereas the LASSO requires a specific likelihood or an objective function. The

two methods depend on different correlation structures of predictors for sign consistency.

Dicker and Lin (2013) considered random design of predictors and suggested Irrepresentable

Conditions for the Dantzig selector in the fixed p case. Their method, however, cannot be

extended to handle the case of p growing with n or the p > n paradigm. Gai et al. (2013)

considered fixed design with both fixed p and diverging p, even p = exp(na) for some constant

a > 0. Irrepresentable Conditions are provided for the sign consistency of model selection.

They established that these conditions are sufficient for a strong sign consistency and necessary

for a weak sign consistency. Moreover, after shrinking the ultra-high dimension to a value that

is smaller than the sample size, they also provided the conventional consistency of estimation

when the dimension s of significant predictors is of a rate of o(n).

1.2 Variable selection in nonparametric regression models

In practice, there is often little prior information that the effects of the covariates take a lin-

ear form or belong to any finite-dimensional parametric family. The nonparametric regression

model

Yi = m(Xi) + εi (1.3)

where m(·) is a general smooth function, relaxes the strong assumptions that are made by

a linear model but is much more challenging in high dimensions. In order to consider a

nonparametric setting, it is possible to use a flexible class of nonparametric models, such as

the additive model

Yi =

p∑

j=1

mj(Xij) + εi (1.4)

introduced by Stone (1985). This additive combination of univariate functions - one for each

covariate Xj - is less general than joint multivariate nonparametric models but can be more

interpretable and easier to fit. In fact, Stone (1985) showed that the estimates based on the

spline approximation achieve the optimal rate of convergence under a general fixed number of

components p as for p = 1, that is smaller than n, because each component can be expressed

as a linear combination of a set of basis functions whose coefficients must be either killed or

selected simultaneously.
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Lin and Zhang (2006) proposed the Component Selection and Smoothing Operator (COSSO)

method for model selection and estimation in multivariate nonparametric regression models in

the framework of smoothing spline ANOVA. For fixed p, they showed that the COSSO estima-

tor in the additive model converges at the rate n−l/(2l+1), where l is the order of smoothness

of the components. They also showed that, in the special case of a tensor product design, the

COSSO correctly selects the non-zero additive components with high probability. Considering

M the function space

M = 1⊕M1 with M1 =

p⊕

α=1

Mα

where M1, . . . ,Mp are p orthogonal subspaces of M, the COSSO procedure finds m ∈ M to

minimize
1

n

n∑

i=1

{Yi −m(Xi)}2 + τ2nJ(m) with J(m) =
n∑

α=1

‖ Pαm ‖

where τn is a smoothing parameter and Pαm is the orthogonal projection of m(·) into Mα.

The penalty term J(m) is a sum of Reproducing Kernel Hilbert Spaces (RKHS) norms, instead

of the squared norm employed in the traditional smoothing spline method.

The Sparse Additive Model (SpAM) approach of Ravikumar et al. (2009) imposed a spar-

sity constraint λ
∑p

j=1 ||mj ||2 on the index set of functions mj(·) that are not identically zero.

The SpAM has the selection property using a particular form of smoothing, a truncated or-

thogonal basis and some constraints on the design matrix. In their theoretical results, they

required that the eigenvalues of a design matrix must be bounded away from zero and infin-

ity, where the design matrix is formed from the basis functions for the non-zero components.

Another required condition is similar to the irrepresentable condition of Zhao and Yu (2006).

It is not clear for what type of basis functions this condition is satisfied (Huang et al., 2010).

A particular nonparametric and non-additive regression model is the Gaussian regression

model

Yi = m(Xi) + εi, i = 1, . . . , n (1.5)

where the input variables X1, . . . ,Xn are n i.i.d. random variables with values in Rp, the

error terms ε1, . . . , εn are n i.i.d. Gaussian random variables with mean zero, variance σ2

independent of the Xi’s and m(·) is the unknown regression function. Some procedures follow

similar approaches focusing on the point wise estimation of the regression function. The basic

idea is to start from a locally linear (or polynomial) point-wise estimator mn(x) at a point x

obtained from the minimizer of

1

n

n∑

i=1

(Yi − w(Xi − x))2KH(Xi − x), (1.6)

where KH(·) is a localizing window function depending on a matrix (or a vector) H of smooth-
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ing parameters. Different techniques are used to (locally) select variables.

Lafferty and Wasserman (2008) assumed the unknown regression function to be four times

continuously differentiable with bounded derivatives and the density f(·) of the covariates to be
uniform on the unit cube. The algorithm they proposed, called RODEO, is a greedy procedure

performing simultaneously local bandwidth choice, function estimation and variable selection.

RODEO is shown to converge when the ambient dimension p is O
(

logn
log(logn)

)
while the intrinsic

dimension s, the number of relevant variables, does not increase with n. In the RODEO

algorithm, the localizing window function depends on one smoothing parameter per variable

and the partial derivative of the local estimator with respect to the smoothing parameter is

used to select variables. It is based on the idea that bandwidth and variable selection can be

simultaneously performed by computing the infinitesimal change in a nonparametric estimator

as a function of the smoothing parameters, and then thresholding these derivatives to get a

sparse estimate. The statistic used is

Zj(h) =
∂m̂h(x)

∂hj

where m̂h(x) denote an estimator of m(x), with x fixed point, based on a vector of smoothing

parameters h = (h1, . . . , hp). Zj(h) should discriminate between relevant and irrelevant co-

variates: if Xj is irrelevant, then we expect that changing the bandwidth hj for that variable

should cause only a small change in the estimator m̂h(X); while, if Xj is relevant, then we

expect that changing the bandwidth hj for that variable should cause a large change in the

estimator.

Bertin and Lecué (2008) proposed a procedure based on the L1-penalisation of local poly-

nomial estimators and proved its consistency when s = O(1), but p is allowed to be as large

as log n, up to a constant. They used two steps in their approach. In the first one, they

determined the set of indices of relevant variables, and in the second they constructed an

estimator of the value m(x). To determine the set of indices, based on the principle of local

linear regression, under the assumption m to be α-Holderian around x with α > 0, denoted

by m ∈ Σ(α, x), they consider the following set of vectors:

Θ̄(λ) = arg min
θ∈Rp+1


 1

nhp

n∑

i=1


Yi −

p∑

j=0

mj(Xi)θj




2

K

(
Xi − x

h

)
+ 2λ ‖ θ ‖1


 ,

where h is a bandwidth, and K(·) is a symmetric kernel function. The convergence in the

second steps has rate n−2α/(2α+s), that is the fastest convergence rate. Indeed, in all the

above works the emphasis is in the theoretical analysis quantifying the estimation error of the

proposed methods. It is shown in Lafferty and Wasserman (2008) that the RODEO algorithm

is a nearly optimal point wise estimator of the regression function, these results are further

14



improved in Bertin and Lecué (2008) where optimal rates are derived.

Comminges and Dalalyan (2012) made a summary of the dimensionality that can be

achieved to have the consistency in the selection of the model in linear regression and in

nonparametric case. A careful statistical analysis is proposed considering different regimes for

n, p and s in nonparametric regression when both n and s tend to infinity, even if s grows

extremely slowly. The main results in this sense are the following:

• When the number of relevant variables s is fixed and the sample size n tends to infinity,

there exist positive real number c∗ such that no estimator of the sparsity pattern may

be consistent if (log p)/n ≥ c∗.

• When the number of relevant variables s tends to infinity with n→ ∞, then there exist

real number c̄i, i = 1, 2 such that c̄1 > 0, no estimator of the sparsity pattern may be

consistent if c̄1s+ log log(p/s)− log n > c̄2.

• In particular, if p grows not faster than a polynomial in n, an estimator of the sparsity

pattern may be consistent if s = o(log n).

1.3 Structure discovery

As we said in the previous sections, there are two important classes of regression models for the

analysis of statistical data, the linear and the nonparametric model. It is possible to consider

some advantages for each class. In the context of linear models, which is the simplest, the

interpretation of the parameters is very easy and the estimates are more efficient if the linear

assumption is valid. In nonparametric models the assumption on the functional form of the

model is less stringent. Indeed, not only can we find covariates with a linear effect on the

response variable, as in linear models, but variables can have nonlinear and intersection effects.

Between linear and nonparametric models there is another particular class of models, called

partially linear models. This type of models have wide applications thanks to their flexibility

and the advantages that derive from both linear and non-parametric model, allowing some

covariates to be linear and others to not be linear. One natural question about this model

is, given a set of covariates, how one decides which covariates have linear effects and which

covariates have nonlinear effects.

The structure selection problem is fundamentally important, as the validity of the fitted

model, and its inference heavily depends on whether the model structure is specified correctly.

The model selection problem is divided in identifying the kind of effect of each variable (linear

or non-linear) and the presence of interaction effect.

Compared to the linear model selection, the structure selection for partially linear models

is much more challenging because the models involve multiple linear and non-linear functions

and a model search needs to be conducted within some infinite-dimensional function space.
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Furthermore, the difficulty level of model search increases dramatically as the data dimension

grows due to the curse of dimensionality. Most works assume the partially linear model. The

formula of this model is

Yi = b+XT
i β + f(Xi) + εi

where b is the intercept, β is a vector of unknown parameters for linear terms, f(·) is an

unknown function from Rs to R, and εi’s are i.i.d. random errors with mean zero and variance

σ2, is given or known. In practice, data analysts often-times have to rely on their experience,

historical data, or some screening tools to make an educated guess on the function forms for

individual covariates. Two methods in common use are the screening and hypothesis testing

procedures. The screening method first conducts univariate nonparametric regression for each

covariate or unstructured additive models and then determines linearity or non-linearity for

each term by visualizing the fitted function. This method is useful in practice but lacks

theoretical justifications. The second method is to test linear null hypotheses against non-

linear alternatives, sequentially or simultaneously, for each covariate. However, proper test

statistics are often hard to construct and the tests may have low power when the number of

covariates is large. In addition, these methods handle the structure selection problem and

the model estimation separately, making it difficult to study inferential properties of the final

estimator.

The main purpose of Zhang et al. (2011) was to distinguish linear and non-linear terms

for partially linear models automatically and consistently, proposing an approach, called the

LAND (Linear And Non-linear Discoverer), to identify model structure and estimate the re-

gression function simultaneously. By solving a regularization problem in the frame of smooth-

ing spline ANOVA, the LAND is able to distinguish linear and non-linear terms, remove

uninformative covariates from the model, and provide a consistent function estimate. Under

some assumptions, the LAND estimator has a rate of convergence n−2/5 if the tuning pa-

rameters are chosen appropriately. Finally, adding the requirement that the density for X is

bounded away from zero, assuming a tensor product design for the observations, the LAND

achieve the property of selection consistency in the space of periodic component function, with

fixed number of covariates and non-high dimensional setting.

Huang et al. (2012) proposed a semi-parametric regression pursuit method for identifying

linear and non-linear effects. They embed partially linear models into a nonparametric addi-

tive model. By approximating the nonparametric components using spline series expansions,

they transformed the problem of model specification into a group variable selection problem.

They then determined the linear and non-linear components with a penalized approach, using

a minimax concave penalty imposed on the norm of the coefficients in the spline expansion.

They referred to this penalized approach as the group MCP method. In fact, they considered a

truncated series expansion for approximating the function in the additive model. They showed
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that the proposed approach is model pursuit consistent, meaning that it can correctly deter-

mine which covariates have a linear effect and which do not, with high probability under some

conditions. The proposed approach has the same asymptotic property as the nonparametric

estimator in the nonparametric additive model. They also showed that the estimated coeffi-

cients of linear effects are asymptotically normal, with the same distribution as the estimator

assuming the true model were known in advance.

Promising as these methods are, they share a couple of drawbacks. Firstly, they only

considered predictors of a fixed dimension which may not be an appropriate assumption in

applications with high dimensional data. Secondly, their model only dealt with continuous

response variables and thus excluded many interesting cases with binary or count responses.

Lian et al. (2014) considered the double penalty structure recovery in a much more general

regression setting. Besides the exponential family distribution generalization for the response,

they also allowed the dimension p of the covariates growing at an exponential order of the

sample size n. The estimation procedure is carried out in the framework of optimizing a

doubly penalized quasi-likelihood. Similar to Huang et al. (2012) they started with a non-

parametric additive model and used a spline series approximation to the component functions.

The SCAD penalties (Fan and Li, 2001) on L2-norms of the component functions and their

second derivatives are used to identify respectively the zero and linear components. The spline

series approximation transforms these L2-norms to the norms of the coefficient vectors. An

iterated procedure, combining the local quadratic approximation to the SCAD penalties and

the reiterated weighted least squares, is used to obtain the final estimate. Considering some

assumptions they showed that the method achieves selection consistency as well as the optimal

convergence rates for the estimates of the non-zero components and the asymptotic normality

for the estimates of the linear components, allowing a dimensionality log p = o(nd/(2d+1)),

where d > 1/2 is the smoothness of the component functions.

All of the previous works face with the problem of the type of covariates that we have to

include in the model. In many contests one wishes to allow for the possibility of interactions

among the predictors. This poses serious statistical and computational difficulties when p is

large, as the number of candidate interaction terms is of order p2. The approach named Vari-

able selection using Adaptive Non-linear Interaction Structure in High dimension (VANISH),

of Radchenko and James (2010), combined the interaction terms and the additive non-linear

model. This criterion enforced the heredity constraint, so if an interaction term is added to

the model, then the corresponding main effect is automatically included. It is possible to

express the additive non-linear model as

Y =

p∑

j=1

mj +

p∑

j=1

p∑

k=j+1

mjk + ε (1.7)
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where mj = (mj(X1j), . . . ,mj(Xnj))
T are the main effect terms, for j = . . . , p, mjk =

(mjk(X1j , X1k), . . . ,mjk(Xnj , Xnk))
T are the two-way interaction terms, and Y and ε are n-

dimensional vectors corresponding to the response and the error terms, respectively. The

penalised function, added to the loss function, is

pλ(m) = λ1

p∑

j=1


||mj ||2 +

p∑

k:k 6=j

||mjk||2



1/2

+ λ2

p∑

j=1

p∑

k=j+1

||mjk||, (1.8)

where ||·|| is the Euclidean norm. In this case, λ1 can be interpreted as the weight of the penalty

for each additional predictor included in the model, while λ2 corresponds to an additional

penalty on the interaction terms for the reduction in interpretability of a non-additive model.

In the linear setting VANISH has the selection property for p as large as exp(n1−ε), with

arbitrarily small positive ε, while in non linear setting for p as large as exp(n3/5−ε). VANISH

could be extended to higher order interaction term, for example including the third order

interactions. The main practical limitation is that one would need to fit of order p3 terms

which may not be possible for large p.

1.4 Screening

Although the previous methods have been successfully applied in many high-dimensional

analyses, it is difficult to apply them directly to those ultra-high dimensional statistical prob-

lems, due to their computational complexity. For example, the irrepresentable condition for

the LASSO can be rather stringent in ultra-high dimension.

Fan and Lv (2008) proposed a Sure Independent Screening (SIS) procedure in linear re-

gression models with Gaussian covariates and responses which screens variables by ranking

their marginal correlations with the response variable. Differently from existing methods that

minimize a penalized objective function, SIS uses the statistic wj =
1
nX

T
j Y which represents

a simple marginal correlation between response and standardized covariate. Considering the

covariate one by one, the procedure calculates the statistic and provides a ranking of the Xj .

The set M̂ of relevant features is determinated by a simple threshold:

M̂ = {1 ≤ j ≤ p : |wj | is among the top d largest ones}.

The SIS is method in which screening is first applied to reduce the dimensionality from p to a

moderate one d, say, below sample size n, and inference is then conducted on the much reduced

feature space. Fan and Lv (2008) established the desirable sure screening property, that is,

most of the important features are retained with probability approaching one as the sample size

diverges to ∞, even if the dimensionality of the features is allowed to grow exponentially fast
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with the sample size. Assuming that 2κ+ τ < 1, with κ ∈ [0, 1/2) and τ > 0, they proved the

screening property achieving a dimensionality log p = O(nξ) with ξ ∈ (0, 1−2κ) and Gaussian

noise ε ∼ N(0, σ2) for some σ > 0. They assume that var(Y ) = O(1), λmax(Σ) = O(nτ ),

minj∈M∗
| βj |≥ c1n

−κ, and minj∈M∗
| cov(β−1

j Y,Xj) |≥ c2, where Σ = cov(X), with

c1, c2 > 0 and the p-dimensional covariate vector has an elliptical distribution with the random

matrix XΣ1/2 having a so called concentration property that holds for Gaussian distributions.

The condition on λmax, the maximum eigenvalue of the covariance matrix Σ of predictors X,

rules out the case of strong collinearity, τ controls the rate of probability error in recovering

the true sparse model, κ controls the signals of the parameters and the last condition, on the

covariance, rules out the situation in which an important variable is marginally uncorrelated

with Y , but jointly correlated with Y . Under the above conditions, Fan and Lv (2008) showed

that

P (M∗ ⊂ M̂) → 1 as n→ ∞

where M∗ = {1 ≤ j ≤ p : βj 6= 0} is the true set of relevant covariates. Fan and Lv (2008)

suggested to be conservative in the choice of d, for instance n−1 or n/ log n: a larger d means

larger probability of including the true model M∗ in the final model M̂ .

Since the marginal utilities are employed to rank the importance of features, SIS can

suffer from some potential issues associated with independence learning. First, some noise

covariates strongly correlated with the important ones can have higher marginal utilities than

other important ones. Second, some important covariates that are jointly correlated but

marginally uncorrelated with the response can be missed after the screening step. To address

these issues, Fan and Lv (2008) further introduced an extension of the SIS method, called the

Iterative SIS (ISIS). The main idea is to iteratively update the estimated set of important

variables using SIS conditional on the estimated set of variables from the previous step.

Independence feature screening is a class of rapidly developing approaches that is par-

ticularly useful in preliminary analysis for pre-processing data to reduce the scale of high-

dimensional statistical problems. Since the work of Fan and Lv (2008), feature screening for

ultra-high-dimensional data received a lot of attentions in the literature. Many authors have

developed various sure independence screening procedures, many of which can be classified

into two categories: model-based and model-free.

1.4.1 Model-based Screening

Fan and Song (2010) extended the SIS procedure to generalized linear models and pre-

sented a more general version of the independent learning by ranking the maximum marginal

likelihoods or the maximum marginal likelihood estimates. Consider the generalized linear
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model (GLM) with canonical link. That is, the conditional density is given by

f(y|x) = exp {yθ(x)− b(θ(x)) + c(y)}

for some known functions b(·), c(·), and θ(x) = xTβ. The penalized likelihood is

−n−1
n∑

i=1

l(XT
i β, Yi)−

p∑

j=1

pλ(|βj |)

where l(θ, y) = b(θ)−yθ. The maximum marginal likelihood estimator (MMLE) β̂M∗

j is defined

as the minimizer of the component wise regression

β̂M∗

j = arg min
β0,βj

n∑

i=1

l(β0 + βjXij , Yi)

where Xij is the ith observation of the jth variable. Fan and Song (2010) select a set of

variables whose marginal magnitude exceeds a predefined threshold value γn:

M̂γn = {1 ≤ j ≤ p : |β̂M∗

j | ≥ γn}.

This is equivalent to ranking features according to the magnitude of MMLEs |β̂M∗

j |. Taking

the population version of the minimizer of the component wise regression

βM∗

j = arg min
β0,βj

E{l(β0 + βjXj , Y )}

they show that βM∗

j = 0 if and only if cov(Xj , Y ) = 0, and under some additional conditions

if |cov(Xj , Y )| ≥ c1n
−κ for j ∈M∗, for given positive constants c1 and κ ∈ [0, 1/2), then there

exists a constant c2 such that

min
j∈M∗

|βM∗

j | ≥ c2n
−κ.

So, as long as Xj and Y are somewhat marginally correlated, the marginal signal βM∗

j is

detectable. They proved further the sure screening property:

P (M∗ ⊂ M̂γn) → 1

if γn = c3n
−κ with a sufficiently small c3. For the Gaussian linear model with sub-Gaussian

covariate tails, the dimensionality can be as high as log p = o(n(1−2κ)/4), a weaker result than

that in Fan and Lv (2008) in terms of condition on p, but a stronger result in terms of the

conditions on the covariates. For logistic regression with bounded covariates, the dimension-

ality can be as high as log p = o(n1−2κ). The authors also discussed the size of the selected
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model M̂γn in the asymptotic sense. Under some regularity conditions, they showed that

with probability approaching one, |M̂γn | = O{n2κλmax(Σ)}, where the constant κ determines

how large the threshold λn is, and λmax(Σ) controls how correlated the predictors are. If

λmax(Σ) = O(nτ ), the size of M̂γn has the order O(n2κ+τ ).

A general transformation regression model is defined to be

H(Yi) = XT
i β + εi.

Li et al. (2012a) proposed the rank correlation as a measure of the importance of each predictor

by imposing an assumption on strict monotonicity on H(·). They proposed the marginal rank

correlation

ωj =
1

n(n− 1)

n∑

i 6=l

I(Xij < Xlj)I(Yi < Yl)−
1

4

to measure the importance of the jth predictor Xj . According to the magnitudes of all ωj ’s,

the feature screening procedure based on the rank correlation selects a sub model

M̂γn = {1 ≤ j ≤ p : |ωj | > γn}

where γn is the predefined threshold value. Li et al. (2012a) referred this rank correlation based

feature screening procedure to as a Robust Rank Correlation Screening (RRCS) procedure to

deal with ultra-high-dimensional data. From the definition of the marginal rank correlation,

it is robust against heavy-tailed distributions and invariant under monotonic transformation,

which implies that there is no need to estimate the transformation H(·). When H(·) is an

unspecified strictly increasing function, supposing that the minimum of the mean of the true

covariates is a positive constant free of p, Li et al. (2012a) proved that the RRCS enjoys the

sure screening property, provided that γn = c3n
−κ for some constant c3. The dimensionality

achieved is p = O(exp(nδ)) for some δ ∈ (0, 1) satisfying δ + 2κ < 1 for any κ ∈ (0, 1/2).

Fan et al. (2011) developed a Nonparametric Independence Screening (NIS) method by

ranking the importance of predictors via the magnitude of nonparametric components in

sparse ultra-high dimensional additive models. They suggested estimating the nonparametric

components marginally with spline approximation, and ranking the importance of predictors

using the magnitude of nonparametric components. An intuitive population level marginal

screening utility is E(f2j (Xj)), where fj(Xj) = E(Y |Xj) is the projection of Y onto Xj . With

the sample {(Xi, Yi), i = 1, . . . , n}, fj(x) can be estimated via a normalized B-spline basis

Bj(x) = {Bj1(x), . . . , Bjdn(x)}T , with

f̂nj(x) = β̂Tj Bj(x), 1 ≤ j ≤ p,
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where β̂j = (βj1, . . . , βjdn)
T is obtained through the component wise least squares regression:

β̂j = arg min
βj∈Rdn

n∑

i=1

(Yi − βTj Bj(Xij)).

Thus the screened model index set is

M̂γn = {1 ≤ j ≤ p :‖ f̂nj ‖2n≥ γn}

for some predefined threshold value γn, with ‖ f̂nj ‖2n= n−1
∑n

i=1 f̂nj(Xij)
2. Fan et al. (2011)

advocated the sure screening property of NIS based on a set of conditions: the r-th derivative

of fj is Lipschitz of order α for some r > 0, α ∈ (0, 1] and q = r + α > 1/2, the marginal

density function of Xj is bounded away from 0 and infinity, the signal of the active components

do not vanish, i.e., minj∈M∗
E{f2j (Xj)} ≥ c1dnn

−2κ with 0 < κ < q/(2q + 1) and c1 > 0, the

sup norm ‖ m(·) ‖∞ is bounded, the number of spline basis dn satisfies dn = o(n1/3) for some

c2 > 0 and the i.i.d. random error εi satisfies the sub-exponential tail probability, so for any

B1 > 0, E{exp(B2|εi|)|Xi} < B2 for some B2 > 0. Under this conditions,

P (M∗ ⊂ M̂γ) → 1

for p = exp{n1−4κd−3
n + nd−3

n }. In addition, if var(Y ) = O(1), then the size of the selected

model |M̂γ | is bounded by the polynomial order of n and depends on the largest eigenvalue of

the covariance matrix. In the special case in which λmax(Σ) = O(nτ ), the size of the selected

variables is of order O(n2κ+τ ), that is the same result of Fan and Song (2010).

The empirical likelihood approach (Owen, 2001) is demonstrated effective in scenarios

with less restrictive distributional assumptions for statistical inferences, but this approach

encounters substantial difficulty when data dimensionality is high. More specifically, the data

dimensionality p cannot exceed the sample size n in the conventional empirical likelihood

construction. The properties of marginal empirical likelihood approach, where the available

features are assessed one at a time individually, are systematically studied in Chang et al.

(2013a) for linear regression models and generalized linear models, proposing a screening

procedure based on the marginal Empirical Likelihood approach (EL-SIS). In this case the

dimensionality problem of the empirical likelihood is solved, because they use one covariate

after the other. The study of Chang et al. (2013a) contributes to the sure independence

feature screening for high-dimensional data analysis from the following two aspects. First, a

fundamental difference of this approach compared to all the previous approaches in literature

is that the marginal empirical likelihood ratio statistic is a self-studentized quantity (Owen,

2001) while other screening methods usually rely on the ranking of covariates based on mag-
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nitudes of some marginal estimators. The EL-SIS approach manages to further integrate the

level of uncertainty resulting from the use of the conditions of finite sample. This special

quality is of fundamental importance because in practice the levels of uncertainty correspond-

ing to the different covariates may be different when contributing to the response variable of

interest. Not considering standard errors could confuse the ranking for screening of character-

istics based on the marginal estimators themselves, especially in high-dimensional statistical

problems. Second, this screening procedure does not require restrictive assumptions about the

distribution of errors or of the response variable. The authors show that EL-SIS represents

a unified framework for feature screening in linear regression models and generalized linear

models. Thanks to this second characteristic, errors can not be normally distributed in linear

models, while in generalized linear models the response does not necessarily have to follow

a distribution that belongs to the exponential family. To apply a marginal empirical likeli-

hood approach for the linear regression model, Chang et al. (2013a) considered the marginal

moment condition of the least squares estimator:

E{Xj(Y −Xjβ
M∗

j )} = 0 (j = 1, . . . , p) (1.9)

where βM∗

j is interpreted as the marginal contribution of covariate Xj to Y . From (1.9),

considering that the explanatory variables are standardized, it is possible to see that βM∗

j =

E(XjY ) is the covariance between Xj and Y so that βM∗

j = 0 is equivalent to that Y and Xj

are marginally uncorrelated. Therefore, because E(X2
j ) = 1, (1.9) is equivalent to

E(XjY − βM∗

j ) = 0. (1.10)

Let {(Xi, Yi)}ni=1 be collected independent data, gij(β) = XijYi − β (j = 1, . . . , p). Based on

(1.10), Chang et al. (2013a) defined the following marginal empirical likelihood:

ELj(β) = sup

{
n∏

i=1

ωi : ωi ≥ 0,
n∑

i=1

ωi = 1,
n∑

i=1

ωigij(β) = 0

}

for j = 1, . . . , p. The empirical likelihood estimates are calculated by maximizing the empirical

likelihood function subject to constraints based on the estimating function and the trivial

assumption that the probability weights wi of the likelihood function sum to 1 (details about

empirical likelihood are in section 2.3 of this thesis). For any given β in the convex hull of

{XijYi}ni=1, the marginal empirical likelihood ratio was defined as

lj(β) = −2 log{ELj(β)} − 2n log n = 2

n∑

i=1

log{1 + λgij(β)}
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where λ is the Lagrange multiplier satisfying

0 =
n∑

i=1

gij(β)

1 + λgij(β)
.

The authors proved that the same function gij(·) can be applied for both linear models and

generalised linear models with centred response variable Y . The value lj(0), the marginal

empirical likelihood ratio evaluated ad β = 0, should not be large if βM∗

j = 0, so Chang et al.

(2013a) used lj(0) as a device for variable screening. In fact, lj(0) has a very clear practical

interpretation by noting that it can be used to test the null hypothesis H0 : βM∗

j = 0. The

authors evaluated lj(0) for all j = 1, . . . , p, and, given a threshold γn, they selected a set of

variables by

M̂γn = {1 ≤ j ≤ p : lj(0) ≥ γn}.

The authors also showed that this approach has the screening property under some conditions:

the variable Y must to have bounded variance, there exists a positive constant c1 such that

min
j∈M∗

|E(XjY )| = min
j∈M∗

|cov(Y,Xj)| ≥ c1n
−κ,

with κ ∈ [0, 1/2), and there are positive constants K1,K2, γ1 and γ2 such that

P{|Xj | ≥ u} ≤ K1 exp(−K2u
γ1) for each j = 1, . . . , p and any u > 0,

P{|Y | ≥ u} ≤ K1 exp(−K2u
γ2) for any u > 0.

In case of linear model, the dimensionality may grows as log(p) = o(n1/2−κ), which is weaker

than in Fan and Lv (2008) where log(p) = o(n1−2κ), because in this case the authors payed the

price for allowing non-normal covariates and a more general error distribution; in generalised

linear models the allowed dimensionality is log(p) = o(n(1−2κ)γ1/(2γ1+2)), which is a stronger

result than that in Fan and Song (2010). The EL-SIS is also selection consistent, so

P{M̂γn =M∗} → 1 as n→ ∞

if ρj = E(XjY ) = 0 for any j /∈M∗, with log p = o(nmin((γ/6),((1−2κ)γ/(γ+2))), where γ = γ1γ2
γ1+γ2

.

In case in which maxj /∈M∗
|ρj | = o(n−η), where η > κ, minj /∈M∗

E(X2
j Y

2) ≥ c2 for some c2 > 0,

for any τ ∈ (1/2−η, 1/2−κ), the size of the selected model |M̂γn | is under control, considering
γn = c2n

2τ .

If there is some additional knowledge about the importance of a certain set of covariates, it

is helpful to use this prior information and rank the importance of features by replacing simple

marginal correlations with the marginal correlations conditional on such a set of variables. In

many applications, researchers often know this set of certain predictors XC related to the
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response Y in advance. As shown in Barut et al. (2016), conditional information can help

reducing the correlation among the variables. They proposed a Conditional Sure independence

Screening (CSIS) from known active predictors which allows to recover the hidden importance

variables and reduce the number of false negatives. But the CSIS has a strongly restrictive

assumption for distributional model and needs to estimate βC repeatedly when individually

measuring the strength of the conditional contribution of the remaining variables given XC .

Hu and Lin (2017) proposed a Conditional Sure Screening feature procedure by Conditional

Marginal Empirical Likelihood Ratio (CMELR - CSIS), which can be equally applied in both

linear models and generalized linear models. This screening procedure gives better results

than both EL-SIS and CSIS when the heteroscedastic models have hidden important variables

or unimportant variables that are highly marginal correlated with the response. As a result,

the procedure not only inherits the advantages of EL-SIS and CSIS, but also has flexibility in

practice. In fact, it is able to identify the remaining features that contribute to the response

when their number grows exponentially with the sample size. Hu and Lin (2017) define two

index sets as

A = {k : βk 6= 0}, Ā = {k : βk = 0}

where A is the active index set that corresponds to the active predictors, and Ā is the com-

plement set of A. Without loss of generality, they suppose that these known active pre-

dictors are the first sC components X1, . . . , XsC of X. Denoting XC = (X1, . . . , XsC )
T ,

XD = (XsC+1 , . . . , Xp)
T , and partitioning the parameters β as β = (βTC , β

T
D)

T , correspond-

ingly, CMELR - CSIS tries to identify the set D ∩ A = {j ∈ D : βj 6= 0}. They show that

it is possible to use a unified conditional marginal moment condition for linear model and

generalised linear model as

E{[Xj − E(Xj |XT
CβC)]Y } − αj = 0

where αj is denoted as the correlation coefficient between the centralized variable Xj −
E(Xj |XT

CβC) and the response Y . The authors show that αj can be used as a tool for

recruiting the corresponding index j. In fact, if the centralized variables, Xj − E(Xj |XT
CβC)

and Xk − E(Xk|XT
CβC), are uncorrelated, where j 6= k, j ∈ D and k ∈ D ∩A, then

E{[Xj − E(Xj |XT
CβC)][Xk − E(Xk|XT

CβC)]} = 0, j 6= k, j ∈ D, k ∈ D ∩A.

Since E(Xj |XT
CβC) is unknown, Hu and Lin (2017) constructed an estimator of this quantity

and then they used the function ĝ
(c)
ij (α) = [Xij−Ê(Xj |XT

iCβC)]Yi−αj to obtain the estimated
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conditional marginal empirical likelihood ratio at zero as

l̂j(0) = 2

n∑

i=1

log{1 + λ̂ĝ
(c)
ij (0)}

where λ̂ is the Lagrange multiplier satisfying

0 =

n∑

i=1

ĝ
(c)
ij (0)

1 + λ̂ĝ
(c)
ij (0)

.

So, they selected the index set of active variables as

D̂ ∩Aγn = {j ∈ D : λ̂(0) ≥ γn}.

Finally, Hu and Lin (2017) established the sure screening property under some conditions. If

there are positive constants K1,K2, γ1 and γ2 such that

P{|Xj − E( Xj |XT
CβC)| > u} ≤ K1 exp{−K2u

γ1}

for any j ∈ D and any u > 0 and

P{|Y | > u} ≤ K1 exp{−K2u
γ2}

for any u > 0, maxi |XikYi| = Op(n
ω) where ω < 1/2− κ, for τ ∈ (0, 1/2− κ) and γn = c21n

2τ ,

it is possible to show that

P{D ∩A ⊂ D̂ ∩Aγn} → 1 as n→ ∞

achieving the same dimensionality of Chang et al. (2013a). However, adding some condi-

tions, maxj /∈D∩A |E{[Xj − E(Xj |XT
CβC)]Y }| = O(n−η) where η > κ and minj /∈D∩AE{[Xj −

E(Xj |XT
CβC)]

2Y 2} ≥ c3 for some c3 > 0, for any j /∈ D ∩ A and any τ ∈ (max((1/2 −
η), ω), 1/2− κ), they also controlled the size of the selected set of variables.

A popular model selection method is Best Subset Regression. However, one downfall of

this method is that the computational cost increases exponentially in p. Thus, one can imagine

the difficulty this would propose in an ultra-high dimensional setting. An alternative to best

subset selection is Forward Regression. Wang (2009) proposed using Forward Regression (FR)

in ultra-high dimensional settings as a way to shrink the dimension down to a manageable size

in a classical linear regression model. All of the preceding methods employ an independent

screening process where the utility for a given predictor does not depend on any other predictor.
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FR deviates from this trend. Using FR, the result is a sequence of nested models each with one

more predictor than the last. These variables are added according to which one will decrease

the regression sum of squares the most. Defined C0 = ∅, for each k = 1, . . . , n the author

repeats the following steps. With each j ∈ F\Ck−1, with F = {1, . . . , p}, Wang (2009) fitted

a model using Ck−1 ∪ {j} as the set of predictors. From this model the author computed the

residual sum of squares

RSS
(k−1)
j = Y T (In −Hj(k−1))Y

whereHj(k−1) = XCk−1∪{j}(X
T
Ck−1∪{j}

XCk−1∪{j})
−1XT

Ck−1∪{j}
is the projection matrix. Now,

a smaller RSS is more desirable. The author selected

ak = arg min
j∈F\Ck−1

RSS
(k−1)
j

and created the next set in the solution path Ck = Ck−1 ∪ {ak}. The final result is C = {Ck :
1 ≤ k ≤ n} where Ck = {a1, . . . , ak}. Wang (2009) imposed some technical conditions to

prove the screening property with a dimensionality that diverges to infinity at an exponential

rate: the normality assumption for X and ε, a constraint on the smallest and the largest

eigenvalues of the covariance matrix, i.e. with 0 < τmin < τmax < ∞, 2τmin < λmin(Σ) ≤
λmax(Σ) < 2−1τmax and the minimal size of the non-zero coefficients minj∈M∗

|β| ≥ νβn
−ξmin ,

with some constant ν and ξmin. The author proved that the FR algorithm can detect all

relevant predictors within a finite number of steps, much smaller than the sample size n.

Another option is to select a set based on some criterion. A possible option would be the BIC

criterion proposed by Chen and Chen (2008)

BIC(M∗) = log σ̂2(M∗)
+ n−1 |M∗ | (log n+ 2 log d)

where σ̂2(M∗)
= n−1RSS(M∗). Let m̂ = argmin1≤m≤nBIC(C

(m)) and Ĉ = C(m̂), Wang (2009)

pointed out that this criterion has only been proven to have the consistency in selection when

p = O(nα) for some α > 0, but has the screening property for log(p) = O(nξ), ξ > 0, when

q ≤ νnξ0 , so

P (M∗ ⊂ Ĉ) → 1.

The partially linear model,

Y = XTβ + g(U) + ε (1.11)

where U is an univariate explanatory variable in [0, 1] (for simplicity), and g(U) is an unknown

smooth function of U , with (XT , U)T and ε independent, is important in the context of semi-

parametric regression. In regression analysis, the profile least squares approach is useful to

convert the semi-parametric model to the least squares setting. Following this approach, it is

27



possible to verify that

Yi − E(Yi|Ui) =
d∑

j=1

βj{Xij − E(Xij |Ui)}+ εi.

Then, defining the profiled response and the profiled predictor as Y ∗
i = Yi − E(Yi|Ui) and

X∗
i = Xi − E(Xi|Ui) respectively, the partial linear model (1.11) reduces to the classical

linear regression model

Y ∗
i = X∗T

i β + εi. (1.12)

To implement the linear model (1.12) in practice, however, the unknown functions E(Yi|Ui)
and E(Xi|Ui) need to be estimated nonparametrically. Liang et al. (2012) used the local linear

regression technique of Fan and Gijbels (1996) to estimate E(Yi|Ui), and using the same steps

of Wang (2009), they proposed a Profiled Forward Regression (PFR) to variable screening.

Adding some conditions on nonparametric regression to that assumed in Wang (2009), Liang

et al. (2012) showed that the performance of PFR can be asymptotically as good as FR and

the screening property can hold at a rate sharper than the rate given in Wang (2009).

Hao and Zhang (2014) considered Interaction-selection procedure featured with FORward

selection, which is referred as iFOR, in a regression model with linear and second order terms

Yi = β0 +Xt
iβ

(1) + ZTi β
(2) + εi

where the vector Z contains quadratic and two-way interaction terms. They proposed an

algorithm, called iFORT. This is a two stage procedure, which at first stage selects only main

effects by FS, obtaining a set M̂ , while in the second stage, the interaction terms generated

under the heredity condition are considered, so they expanded the set M̂ , adding all the

two-way interactions within M̂ and then implemented FS on the extended set. Also in this

case, to select the optimal model from the path, they used the BIC proposed by Chen and

Chen (2008). Under the same condition of Wang (2009), adding a strong heredity condition

βkl 6= 0 ⇒ βkβl 6= 0, Hao and Zhang (2014) stated the sure screening property for interaction

selection for ultra-high dimensional setting, with log p = νnξ, ξ < 1/2.

1.4.2 Model-free Screening

The aforementioned screening methods only work well when the models are correctly

specified, but, in the presence of incorrect model specifications, they are unable to select

all the relevant variables. In particular, these models focus on identifying covariates that

have a particular effect on the response variable, not taking into account the possibility that

different covariates give different effects. In practice, we typically have data with a huge

number of candidate variables, but we have little information that the actual model is linear
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or follows any other specific parametric, nonparametric or semi parametric form. Thus, it is

of great interest to develop model-free feature screening procedures for ultra-high-dimensional

data. By model-free, it means that one does not need to impose a specific model structure on

regression functions to carry out a screening procedure. One way to achieve the model-free

goal is to develop feature screening procedures for a general class of models which include

most commonly-used parametric, nonparametric and semi parametric models as special cases.

Zhu et al. (2011) proposed a Sure Independent Ranking and Screening (SIRS) procedure to

screen the significant explanatory variables under a unified model framework, which includes

a lot of parametric and nonparametric models. This flexibility is achieved by using a marginal

utility measure that is concerned with the entire conditional distribution of the response given

the predictors. Another strategy to achieve model-free is to employ the measure of inde-

pendence to efficiently detect linearity and non-linearity between predictors and the response

variable and construct feature screening procedures for ultra-high-dimensional data. Li et al.

(2012b) proposed a SIS procedure based on the Distance Correlation (DC-SIS) and showed

the sure screening property without assuming any particular regression function. Nonpara-

metric quantile regression is useful to analyse the heterogeneous data, by separately studying

different conditional quantiles of the response given the predictors. The Quantile-Adaptive

screening (QA) (He et al., 2013) improved the robustness of NIS by allowing heteroscedasticity

in the model.

Model-free using the conditional distribution function

The Kolmogorov filter (KF) of Mai and Zou (2013) is a fully nonparametric robust screen-

ing method. It deals with binary classification problems and uses the Kolmogorov–Smirnov

test statistic to screen covariates. Considering F+j(x) and F−j(x) the conditional cumulative

probability functions of Xj given Y = c(1,−1), respectively, and defining

Kj = sup
−∞<x<∞

|F+j(x)− F−j(x)|

for which the sample version is defined as Knj = sup−∞<x<∞ |F̂+j(x)− F̂−j(x)|, Mai and Zou

(2013) ranked all variables by the Knj statistics and selected the subset

M̂dn = {j : Knj is among the first dn largest of all Knj}

where the default value for dn = n/ log(n) or, with a more conservative choice, dn = n.

The Kolmogorov filter significantly outperforms other existing screening methods for binary

classification problems, it works with all types of covariates and is invariant under univariate

monotone transformations of the covariates. It have the sure screening property even when

the covariates are strongly dependent on each other. In fact, the screening property holds
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with probability going to one if

δM∗
= min

j∈M∗

Kj − max
j∈Mc

∗

Kj � {log(p)/n}1/2.

This result is very promising because it was commonly believed before Mai and Zou (2013)

that marginal screening methods tend to work well if and only if the noise variables are weakly

correlated with the relevant variables. The limitation of KF is that this procedure is designed

for binary classification problems and is inapplicable when the response variable can take more

than two values.

Mai and Zou (2015) developed the Fused Kolmogorov Filter (FKF), a fully nonparametric

model-free variable screening method that could provide a unified solution to variable screen-

ing problems emerging from a wide variety of applications such as binary classification, multi

class classification, regression and Poisson regression, among others. This method should also

work with discrete, categorical or continuous covariates and it is invariant under univariate

monotone transformations of response variable or covariates or both. As the name suggests,

the fused Kolmogorov filter is built upon two main ideas, the Kolmogorov–Smirnov test statis-

tic, as used in Mai and Zou (2013), and fusion. When the response variable is binary, the

fused Kolmogorov filter is exactly the KF proposed in Mai and Zou (2013), and fusion is not

needed. The fusion part becomes critically important when the response variable is continuous.

Following the KF, Mai and Zou (2015) considered

K∗
j = sup

y1,y2
sup
x

|Fj(x|Y = y1)− Fj(x|Y = y2)|

where K∗
j is a natural generalization of Kj . In fact, K∗

j = 0 if and only if Xj is independent

of Y . In order to use K∗
j , they found an empirical version of K∗

j . This step is trivial for

the binary response case, but it is much more difficult when Y takes infinite values because

it requires the knowledge of Fj(x|y) for all possible values y. Mai and Zou (2015) found an

approximation of K∗
j by slicing the response into multiple slices, considering a partition

G =

{
[al, al+1) : al < al+1, l = 0, . . . , G− 1 and

G−1⋃

l=1

[al, al+1) \ {a0} = R

}

where a0 = −∞, aG = ∞ and R is the support of Y. They then defined a random variable

H ∈ {1, . . . , G} such that H = l + 1 if and only if Y is in the lth slice. Mai and Zou

(2015) computed a Kolmogorov–Smirnov test statistic for each pair of slices and then took

the supreme of all pairwise Kolmogorov–Smirnov test statistics:

KG

j = max
l,m

sup
x

|Fj(x|H = l)− Fj(x|H = m)|
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where Fj(x|H = l) = P (Xj ≤ x|H = l). In fact, Xj is independent of Y if and only if KG
j = 0

when Y takes finite values and each possible value forms a slice. The authors showed that it

is possible to use KG
j to evaluate the dependence between Y and Xj even if Y is continuous

and they stated that KG
j is a better measure for variable screening than K∗

j . Mai and Zou

(2015) estimated KG
j for all p variables using a partition G by

K̂G

j = max
l,m

sup
x

|F̂j(x|H = l)− F̂j(x|H = m)|

where

F̂j(x|H = l) =
1

nl

∑

Hi=l

I(Xi
j ≤ x),

nl is the sample size within the lth slice and H i = l if Yi is in the lth slice. To make

the method insensitive to the slicing scheme, Mai and Zou (2015) repeated the procedure

for different ways of slicing and then took the sum of their outcomes as the final screening

statistic. They considered N different partitions Gi for i = 1, . . . , N , where each partition

Gi contains Gi intervals. They suggested an intuitive uniform slicing to partition data into

G slices. If Y is categorical with levels 1, . . . , G, or Y is discrete with finite possible values

1, . . . , G, they set H = Y . If Y is discrete and can take infinite values, they set H = Y + 1

if Y < G − 1 and H = G if Y ≥ G − 1. When Y is continuous, they consider the intervals

bounded by the l
Gth sample quantiles of Y for l = 0, . . . , G. They considered multiple uniform

slicing Gi, 1 ≤ i ≤ N where Gi has Gi many slices. At the end, Mai and Zou (2015) combined

the information of all Gi and computed the final Kolmogorov Filter statistic as

K̂j =
N∑

i=1

K̂
Gj

j .

Finally, they ranked each covariate by its fused Kolmogorov statistic and screened out those

covariates at the bottom of the rank list:

M̂ = {j : K̂j is among the dn’th largest }.

Under the following two conditions:

• there exists a set S such that M∗ ⊂ S

∆S = min
i

(
min
j∈S

K
(o)
j (Gi)−max

j /∈S
K

(o)
j (Gi)

)
> 0

where the slicing is built on the theoretical quantiles of Y , when the distribution of Y

is known, so the jointly important predictors should also be marginally important;

31



• considering Gmin = miniGi, then for any b1, b2 such that P (Y ∈ [b1, b2)) ≤ 2/Gmin, it

is

|Fj(x|y1)− Fj(x|y2)| ≤
∆S

8

for all x, j and y1, y2 ∈ [b1, b2), so the sample quantiles of Y are close enough to the

population quantiles of Y ;

the sure screening property holds with probability tending to one if

∆S �
√

log n log(pN log n)

n
.

In addition, if there exist 0 < κ < 1 such that ∆s � n−κ, the FKF can handle the same order

of dimension as SIS

log p� nξ with ξ ∈ (0, 1− 2κ)

without imposing any parametric assumptions. But the FKF screening procedure is com-

putationally heavy since the calculation of the Kolmogorov–Smirnov statistic involves the

numerical optimization problem and it is sensitive to the selection of the number of slices.

Cui et al. (2015) proposed a sure independence screening using Mean Variance index

(MV-SIS) for ultra-high-dimensional discriminant analysis based on the empirical conditional

distribution function. The procedure is robust to model misspecification, heavy-tailed dis-

tributions of explanatory variables and outliers, but they only studied the scenario where

response variable is categorical and explanatory variables are continuous. It not only retains

the advantages of the Kolmogorov filter, but also allows the categorical response having a

diverging number of classes in the order of O(nκ) with some κ ≥ 0. The MV-SIS is applicable

for the setting in which the response is continuous, but the feature variables are categorical,

in a nonparametric additive model. The authors considered Y a categorical response with R

classes {y1, y2, . . . , yR}, and Xj a continuous covariate with a support RXj
. To investigate

the dependence relationship between Xj and Y , they considered the conditional distribution

function of Xj given Y , denoted by F (x|Y ) = P (Xj ≤ x|Y ). Denoting by F (x) = P (Xj ≤ x)

the unconditional distribution function of Xj and Fr(x) = P (Xj ≤ x|Y = yr) the conditional

distribution function of Xj given Y = yr, if Fr(x) = F (x) for any x ∈ RXj
and r = 1, 2, . . . , R,

then Xj and Y are independent. This motivated Cui et al. (2015) to consider the index

MV (Xj |Y ) = EXj
[Var Y (F (Xj |Y ))]

to measure the dependence between Xj and Y . They showed that MV (Xj |Y ) = 0 if and only

if Xj and Y are statistically independent, so they used the MV (Xj |Y ) as a marginal utility
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for feature screening. They also found an estimator of this quantity

M̂V (Xj |Y ) =
1

n

R∑

r=1

n∑

j=1

p̂r[F̂r(Xj)− F̂ (Xj)]
2

where p̂r =
1
n

∑n
i=1 I{Yi = yr}, F̂ (x) = 1

n

∑n
i=1 I{Xi ≤ x}, and F̂r(x) = 1

n

∑n
i=1{Xi ≤ x, Yi =

yr}/p̂r. Without specifying a regression model, they defined the active predictor subset by

M∗ = {k : F (y|x) functionally depends on Xk for some y = yr}

They applied the MV index for each pair (Xk, Y )

ωk =MV (Xk|Y )

and used

ω̂k = M̂V (Xk|Y )

to choose the index set

M̂ = {k : ω̂k ≥ cn−κ, for 1 ≤ k ≤ p}.

Therefore, Cui et al. (2015) showed the sure screening property :

P{M∗ ⊂ M̂} → 1

imposing that there exist two positive constants c1 and c2 such that c1/Rn ≤ min1≤r≤Rn pr ≤
max1≤r≤Rn pr ≤ c2/Rn, assuming that Rn = O(nκ) for κ ≥ 0 is the diverging number of

classes for the response, and that there exist positive constants c > 0 and 0 ≤ τ < 1/2 such

that mink∈D ωk ≥ 2cn−τ , the minimum true signal. MV-SIS can handle a dimensionality equal

to log p = O(nα), where α < 1 ≤ 2τ − κ with 0 ≤ κ < 1 − 2τ . If Rn is fixed, that is, κ = 0,

then MV-SIS can handle the even larger dimensionality log p = O(nα), where α < 1− 2τ .

In Yan et al. (2018) the purpose is to develop an effective and computationally feasible

feature screening procedure for ultra-high dimensional data analysis. The proposed screen-

ing procedure can be available for various types of covariates and response variable including

discrete, categorical and continuous variables, and is robust to model misspecification, out-

liers and heavy-tailed distributions of explanatory variables. It is also model-free, without

specifying a regression model of explanatory variables and response variable, and is easily

implemented without involving the numerical optimization problem. To this end, the authors

proposed a marginal slicing feature screening procedure, which is referred to as the slicing

Fused Mean-Variance Filter (FMV) screening, based on the empirical conditional distribution

function of explanatory variable given response variable. They tried to combine two ideas:
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the measure of the dependence between each covariate and the response variable of Cui et al.

(2015), and the slicing technique of Mai and Zou (2015). In fact, they extended the MV-

SIS method for a categorical response to a continuous response variable and then they used

an empirical version of the distribution functions (for the explanatory variables and for the

response) to estimate their index. Yan et al. (2018) defined the following index:

MVj = EXj
[VarY F (Xj |Y )] =

∫ ∫
{Fj(x|Y = y)− Fj(x)}2dFj(x)dFY (y).

It is possible to use this index for identify the significant explanatory variables in ultra-high

dimensional data analysis because MVj = 0 if and only if Xj is independent of Y . In order

to solve the integral problem of continuous variable, they transformed it into a tractable sum

problem using the slicing method of FKF. In fact, it is quite difficult to estimate MVj when

Y is a continuous random variable or a discrete random variable having countable values

because it involves evaluating Fj(x|y) for all possible values y. To address the issue, the

authors approximated MVj by slicing the response Y on its support RY . To this end, they

defined the following partition of the support RY for a given positive integer S:

S = {[ag, ag+1) : ag < ag+1, g = 1, . . . , S}

where a1 = inf{y : FY (y) < 1} and aS+1 = sup{y : FY (y) < 1}. They also defined a

random variable G = {1, . . . , S} such that G = g if and only if Y is in the gth slice [ag, ag+1)

for g = 1, . . . , S. In particular, when Y is a discrete variable, they took G = Y . Although

they cannot evaluate Fj(x|Y = y) for all possible values y under our considered case, they

approximate Fj(x|Y = y) on a slice G = g (i.e., ag ≤ Y < ag+1) by using FSj (x|G = g), where

FSj (x|G = g) = P (Xj ≤ x|G = g). Thus, the sliced MVj can be approximated by

MV S
j =

S∑

g=1

pSg

∫
{FSj (x|G = g)− Fj(x)}2dFj(x)

where pSg = P (G = g) and FSj (x|G = g) = P (Xj ≤ x,G = g)/pSg = P (Xj ≤ x, ag ≤ Y <

ag+1)/P (ag ≤ Y < ag+1). MV S
j enjoys the same property as MVj since MV S

j = 0 if and only

if Xj is independent of Y when Y takes countable values and each possible value of Y forms

a slice. However, when Y is a continuous random variable, MV S
j is a consistent estimator of

MVj for feature screening, assuming Fj(x|y) continuous in y, maxg=1,...,S P (G = g) → 0 and

limS→0 SP (G = g) → 1. The sample version of MV S
j can be estimated by

M̂V
S

j =
1

n

n∑

i=1

S∑

g=1

p̂Sg {F̂Sj (Xij |G = g)− F̂j(Xij)}2.
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Following the fusion in Mai and Zou (2015), Yan et al. (2018) considered K different slicing

schemes, computed theMV S
j for eachK and then they took the sum. The fused mean variance

filter FMVj =
∑K

k=1MV S
j is approximated by

F̂MV j =
K∑

k=1

M̂V
S

j .

The authors showed the sure screening property under some regularity conditions:

• there exists a set E such that M∗ ⊂ E and

∆E = min
k

{min
j∈E

MV Sk

j −max
j /∈E

MV Sk

j } > 0;

• given Smin = mink Sk, for any b1 and b2 such that P (Y ∈ [b1, b2)) ≤ (1+∆E)/Smin, the

sup
x∈RXj

|Fj(x|y1)− Fj(x|y2)| ≤ ∆E/8

for any j ∈ 1, . . . , p and y1, y2 ∈ [b1, b2); and moreover Sk = O(nκ) for κ ≥ 0.

If ∆E ≥ Cnτ with some positive constant C, the FMV procedure can be used to deal with the

dimensionality log p = O(nξ), where ξ < 1− 2τ − κ, 0 ≤ τ ≤ 1/2 and 0 ≤ κ < 1− 2τ , which

depends on the minimum true signal strengthen and the number of slices. If the number of

slices is not growing with n, namely κ = 0, the dimensionality achieved is log p = O(nξ), where

ξ < 1−2τ with 0 ≤ τ < 1/2 . If Sk = O(log(n)) (Mai and Zou, 2015), the FMV filter enjoys the

sure screening property with the probability tending to one only if ∆E �
√
log(n) log(Kp)/n.

Model-free using empirical likelihood

Chang et al. (2016a) considered an independence feature screening method for a gen-

eral class of regression problems covering the nonparametric and semi-parametric families.

This approach directly targets at quantifying the strength of data evidence against the null

hypothesis that explanatory variables are not locally contributing to the response variable.

Moreover, the statistic in this approach is self-studentized, automatically incorporating vari-

ance of the marginal statistical approach. The authors considered the set M∗ = {1 ≤ j ≤
p : E(Y |X) varies with the value of Xj} as the set of contributing explanatory variables, and,

without loss of generality, they assumed E(Y ) = 0 that implies E{m(X)} = 0, since X is

high-dimensional. Without any prior information on which of the covariates are contributing

in explaining Y , Chang et al. (2016a) investigated the marginal contribution from each ex-

planatory variable in explaining Y to justify whether it is relevant. For such a purpose, they
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considered marginal nonparametric regression problems:

min
fj∈L2

E[{Y − fj(Xj)}2] with j = 1, . . . , p

where L2 denotes the class of square integrable functions. Noting that E(Y |Xj) is the min-

imizer of the nonparametric regression, they used fj(x) = E(Y |Xj = x) to evaluate the

marginal contribution of Xj locally at Xj = x. If an explanatory variable Xj is not contribut-

ing to Y marginally, then fj(x) = 0 for all x in the support of Xj , X . The authors considered

the Nadaraya–Watson (NW) estimator for fj(x)

f̂j(x) =
n−1

∑n
i=1Kh(Xij − x)Yi

n−1
∑n

i=1Kh(Xij − x)

although this choice does not compromise the general applicability of the marginal empiri-

cal likelihood with other nonparametric approaches, for example, the local linear estimator

(Fan and Gijbels, 1996), etc. For assessing fj(x) = 0 at a given x without distributional

assumptions, they constructed the following empirical likelihood:

ELj(x, 0) = sup

{
n∑

i=1

ωi : ωi ≥ 0,
n∑

i=1

ωi = 1,

n∑

i=1

ωiKh(Xij − x)Yi = 0

}
.

By applying the Lagrange multiplier method, the authors obtained the empirical likelihood

ratio:

lj(x, 0) = −2 log{ELj(x, 0)} − 2n log n = 2

n∑

i=1

log{1 + λKh(Xij − x)Yi}.

Since the denominator of NW converges to the density of Xj evaluated at x, a large value of

lj(x, 0) is taken as evidence against fj(x) = 0 provided that the density of Xj is bounded away

from 0 at x. Hence, lj(x, 0) is indeed a statistic for testing whether or not the numerator of

NW has zero mean locally at x. For assessing E(Y |Xj) ≡ 0, Chang et al. (2016a) proposed

to use

lj(0) = sup
x∈Xn

lj(x, 0)

for each j = 1, . . . , p, where Xn is a partition of the support X into several intervals. For

feature screening purposes, they proposed selecting the set of explanatory variables by

M̂γn = {1 ≤ j ≤ p : lj(0) ≥ γn}.

The screening property holds in this case under some conditions:

• the continuity of each fj(x), in fact each fj has to belong in Cr(X ) with bounded

derivative, and, if r = 0, fj ’s satisfy the Lipschitz condition with an order α ∈ [0, 1);
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• the density of each Xj does not vanish on its support and it implies bounded support of

the explanatory variables;

• the minimal signal strength of M∗, measured by ‖ fj ‖∞, cannot be too weak and

depends on the continuity of fj via r, so minj∈M ‖ fj ‖∞≥ c1n
−κ, with κ ∈ [0, g1

2g1+2);

• the partition of the support X has to be of size at least O(n−ξ), with ξ > 0;

• a condition on the tail distribution of Y , such that P (|Y | ≥ u) ≤ K1 exp−K2u
γ , with

K1,K2 and γ > 0;

• the requirement for the kernel function so that the bias due to kernel smoothing is not

dominating and h � n−ω with ω ∈ [ κg1 , 1);

with a dimensionality log p = o(nε) for ε = min
{
1− 2κ− κ

g1
,
(
1
2 − κ− κ

g1

)
γ
}
, with g1 =

max {r, α}. If Y follows a normal or sub-normal distribution, then γ = 2, and the highest

dimensionality achieved is log p = o(n
1−2κ− 2κ

g1 ), while if fj has derivatives of all the orders,

such that g1 = r = ∞, then the highest dimensionality become log p = o(n1−2κ). Chang et al.

(2016a) show that this procedure can control the size of M̂γn and has the selection consistency

in the ideal case where

max
j /∈M∗

‖ fj ‖∞= o(n−κ)

and imposing ω = κ
g1
. In particular, when Y has a compact support, the selection consistency

holds if log p = o(n
1−2κ− 2κ

g1 ); when all fj ∈ C∞(X ) the selection consistency holds if log p =

o(n1−2κ). When Y has a normal o sub-normal distribution and in presence of orthogonal

condition (Huang et al., 2010), the selection consistency holds if log p = o(n
min{ 1

2
−κ− κ

g1
, 1
3
− κ

3g1
}
).

Chu and Lin (2018) proposed a method by combining EL, conditional technique and SIRS.

They took the correlation among the variable into account and applied the marginal empirical

likelihood method on the conditional SIRS: this method is called CSIRS.
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Chapter 2

Independence screening by marginal

empirical likelihood and local

polynomial derivatives

2.1 Introduction of the method

Suppose that we have a random sample {(Xi, Yi)}ni=1 from the data model

Yi = m(Xi) + εi (2.1)

where Y is the response variable, X is the vector of p candidate variables and ε is the error,

with E(ε|X) = 0. Finally, m(·) is the unknown regression function. In our method, we don’t

impose any particular form to the function m(·), so we consider a general class of regression

problems, including parametric and nonparametric, additive and non-additive models. As

regard the dimensionality p of the variable vector X, this can grow exponentially with the

sample size n, and, without loss of generality, we assume that E(Y ) = 0 implying that

E{m(X)} = 0. Let us denote with

M∗ = {1 ≤ j ≤ p : the j-th variable in X is relevant for explanation of Y }

the set of s true relevant covariates in model (2.1). Moreover, we consider a very sparse model:

only a small fraction of the explanatory variables contribute to the response (s� p).

In order to identify the s relevant covariates inM∗ that contribute to the response variable

in high-dimensional nonparametric regression analysis, we propose an independence model-

free feature screening technique that combines two different elements: the local polynomial

regression and the empirical likelihood. We apply the local polynomial regression to estimate
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a marginal derivative with respect to the covariate Xj , for j = 1, . . . , p (so, p derivatives

in total) in the regression model (2.1). Once we have this estimation, we use the empirical

likelihood to verify if this derivative is zero uniformly in the covariate’s support. Until now,

based on our knowledge, no other screening method uses marginal derivatives to evaluate the

effective incidence of covariates on the dependent variable.

With the use of derivatives, we investigate the marginal contribution from each explanatory

variable in explaining Y to justify whether it is relevant or not. In fact, the partial derivative
∂m(X)
∂Xj

says in what way the value ofm(X) changes if you increaseXj by a small amount, while

holding the rest of the arguments fixed. We can evaluate partial derivatives using the tools

of single-variable calculus: to calculate ∂m(X)
∂Xj

simply compute the (single variable) derivative

with respect to Xj , treating the rest of the arguments as constants. If an explanatory variable

Xj is not contributing to Y marginally, then the derivative ∂m(X)
∂Xj (x) = 0 for all x ∈ Xj , where

Xj is the support of Xj . With this idea in mind, we attempt a feature screening procedure

that it is capable to determine whether ∂m(X)
∂Xj

≡ 0 or not for each j = 1, . . . , p. The details

will be given in section 2.4.

Because we impose no restriction on the structure of the model, we need a nonparametric

statistical tool to estimate this partial derivatives. Our choice has fallen on the use of local

polynomial regression: with this method we are able to evaluate the contribution of the

explanatory variable Xj locally at Xj = x.

2.2 Derivative estimation by local polynomials

Local polynomial fitting method has many notable features both from theoretical and

practical point of view. Local polynomial fitting adapts to various types of designs (random

and fixed, highly clustered and nearly uniform), and there is an absence of boundary effects.

In fact, compared to other kernel estimators, with local polynomial fitting no boundary modi-

fications are required. Furthermore, the local polynomial approximation method is appealing

on general scientific grounds because it uses the least squares principle.

We now start the exploration of the method of local polynomial fitting. We introduce

the framework for this particular smoothing technique in the case of one-dimensional ex-

planatory variables X1, . . . , Xn, following the notation of Fan and Gijbels (1996). Consider

the bivariate data (Xi, Y i), . . . , (Xn, Yn), which form an independent and identically dis-

tributed sample from a population (X,Y ). Of interest is to estimate the regression function

m(x0) = E(Y |X = x0) and its derivatives m′(x0), . . . ,m
(d)(x0). To help us understand the

estimation methodology, we can regard the data as being generated from the model

Y = m(X) + σ(X)ε,
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where E(ε) = 0, V ar(ε) = 1, and X and ε are independent. We always denote the conditional

variance of Y given X = x0 by σ2(x0) and the marginal density of X, i.e. the design density,

by f(·). Suppose that the (d+1)th derivative of m(x) at the point x0 exists and is continuous.

We approximate locally the marginal function m(x) using Taylor’s Expansion by a polynomial

of order d (Fan and Gijbels, 1996):

m(x) ≈ m(x0) +m(1)(x0)(x− x0) + · · ·+ m(d)(x0)

d!
(x− x0)

d.

Then, we can estimate the expansion terms using weighted least squares by minimizing the

following equation for βv := βv(x0) = m(v)(x0)/v!:

n∑

i=1

[
Yi −

d∑

v=0

βv(x0)(Xi − x0)
v

]2
Kh(Xi − x0) (2.2)

where h, called the bandwidth, controls the size of the neighbourhood around x0,Kh(·) controls
the weights, with Kh(x) ≡ K(x/h)/h and K a kernel function satisfying

∫
K(x)dx = 1. Let

β̂ = (β̂1, . . . , β̂d) be the solution of the minimization problem in (2.2), then m̂(v)(x0) = v!β̂v is

an estimator for m(v)(x0), with v = 0, . . . , d. In matrix notation, let X be the design matrix

centred at x0:

X =




1 (X1 − x0) . . . (X1 − x0)
d

...
...

...

1 (Xn − x0) . . . (Xn − x0)
d


 , (2.3)

Y = (Y1, . . . , Yn)
T and W a diagonal matrix of weights with diagonal elements Kh(Xi − x0),

for i = 1, . . . , n. Then, the local estimate of m(v)(x) with a dth degree polynomial is

m̂(v)(x; d, h) = v!eTv+1(X
TWX)−1XTWY = v!

n∑

i=1

Wid(x)Yi (2.4)

for v = 0, . . . , d, where Wi,d(x) = eTv+1(X
TWX)−1XTWei. Here er is the (d + 1) × 1 vector

having 1 in the rth entry and zeros elsewhere.

To estimate the function m(v)(·) we need to solve the weighted least square problem for

all points x0 in the domain of interest. We remark that we do not need to know whether

V ar(Y |X = x) remains constant or not, because we fit (2.2) locally and the variance is

approximately the same in a local neighbourhood. This is a great advantage of the local

polynomial fitting. The matrix XTWX is positive definite as long as there are at least d+ 1

local effective design points. This assumption is granted with probability tending to one since

we always assume that nh→ ∞ (Masry and Fan, 1997).
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The estimate for m(x) (when we consider v = 0) is therefore computed as

m̂(x; d, h) := β̂ = eT1 (X
TWX)−1XTWY =

n∑

i=1

Wi,d(x)Yi

where

Wi,d(x) := eT1 (X
TWX)−1XTWei

and ei is the i-th canonical vector. So, the local polynomial estimator for the function m(x)

is a weighted combination of the responses. When d = 0, the local polynomial estimator is

the Nadaraya-Watson estimator with this explicit weights formulation

Wi,0(x) =
Kh(Xi − x)∑n
l=1Kh(Xl − x)

,

when d = 1, it is the local linear estimator, which has weights equal to

Wi,1(x) =
1

n

ŝ2 − ŝ1(Xi − x)

ŝ2ŝ0 − ŝ21
Kh(Xi − x)

where ŝr = ŝr(x;h) :=
1
n

∑n
i=1(Xi − x)rKh(Xi − x).

The extension of local polynomial fitting ideas to estimation of the vth derivative is

straightforward. One can estimate m(v)(x) via the intercept coefficient of the vth deriva-

tive of the local polynomial being fitted at x, assuming that v ≤ d. For example, the local

polynomial estimate of m′(x) is simply the slope of the local polynomial fit. In general, the

local estimate of m(v)(x) with a dth degree polynomial is

m̂(v)(x; d, h) = v!eTv+1(X
TWX)−1XTWY (2.5)

for all v = 0, . . . , d. As before, ev+1 is the (d + 1) × 1 vector having 1 in the (v + 1)th entry

and zeros elsewhere.

There are three critical parameters whose choice can have an effect on the quality of the

fit. These are the bandwidth, h, the order of the local polynomial being fit, d, and the kernel

or weight function, K (often denoted Kh to emphasize its dependence on the bandwidth):

• a too large bandwidth under-parametrizes the regression function, causing a large mod-

elling bias, while a too small bandwidth over-parametrizes the unknown function and

results in noisy estimates. Ideal theoretical choices of the bandwidth are easy to obtain,

but is not directly practically usable since it depends on unknown quantities;

• for a given bandwidth h, a large value of d would expectedly reduce the modelling bias,

but would cause a large variance and a considerable computational cost. Fan and Gijbels

(1996) showed that there is a general pattern of increasing variability: for estimating
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m(v)(xo), there is no increase in variability when passing from an even (i.e. d− r even)

d = v + 2q order fit, with q ∈ N, to an odd d = v + 2q + 1 order fit, but when passing

from a odd d = v+2q+1 order fit to the consecutive even d = v+2q+2 order fit there is

a price to be paid in terms of increased variability. Therefore, even order fits d = v+2q

are not recommended. Since the bandwidth is used to control the modelling complexity,

it is recommend the use of the lowest odd order, i.e. d = v+1, or occasionally d = v+3;

• since the estimate is based on the local regression, no negative weight K should be used.

In fact, for all choices of d and v the optimal weight function is K(z) = 3
4(1 − z2)+,

the Epanechnikov kernel, which minimizes the asymptotic MSE of the resulting local

polynomial estimators (Fan and Gijbels, 1996).

It is possible to use the notation in (2.2) to express the conditional mean and variance of

β̂:

E(β̂|X) = β + (XTWX)−1XTW r

V ar(β̂|X) = (XTWX)−1(XTΣX)(XTWX)−1

where r = (m(X1), . . . ,m(Xn)) − Xβj is the vector of residuals of the local polynomial

approximation, and Σ = diag{K2
h(Xi−x0)σ2(Xi)}. These exact bias and variance expressions

are not directly usable, since they depend on unknown quantities: the residuals r and the

diagonal matrix Σ.

When (Xi, Yi), . . . , (Xn, Yn) is an i.i.d. sample from the population (X,Y ), Theorem 3.1 of

Fan and Gijbels (1996) shows the following result on the approximation of bias and variance,

using this notation. The moments of K and K2 are denoted respectively by µj =
∫
ujK(u)du

and νj =
∫
ujK2(u)du. Considering some matrices and vectors of moments

S = (µj+l)0≤j,l≤d cd = (µd+1, . . . , µ2d+1)
T

S̄ = (µj+l+1)0≤j,l≤d c̄d = (µd+2, . . . , µ2d+2)
T

S∗ = (νj+l)0≤j,l≤d

and the unit vector ev+1 = (0, . . . , 0, 1, 0, . . . , 0)T with 1 on the (v+1)th position. Assume

f(x0) > 0, f(·), m(d+1)(·) and a σ2(·) are continuous in a neighbourhood of x0. Further,

assume that h → 0 and nh → ∞. Then the asymptotic conditional variance of m̂v(x0) is

given by

V ar{m̂(v)(x0)|X} = eTv+1S
−1S∗S−1ev+1

v!σ2(x0)

f(x0)nh1+2v
+ oP

(
1

nh1+2v

)
.
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The asymptotic conditional bias for d− v odd is given by

Bias{m̂(v)(x0)|X} = eTv+1S
−1cd

v!

(d+ 1)!
m(d+1)(x0)h

d+1−v + oP (h
d+1−v).

Further, for d− v even the asymptotic conditional bias is

Bias{m̂v(x0)|Xj} = eTv+1S
−1c̄d

v!

(d+ 2)!

{
m(d+2)(x0) + (d+ 2)m(d+1)(x0)

f ′(x0)

f(x0)

}
hd+2−v+op(h

d+2−v)

provided that f ′(·) and m(d+2)(·) are continuous in a neighbourhood of x0 and nh3 → ∞.

From the above result it is possible to see that there is a theoretical difference between the

cases d − v odd and d − v even. For d − v odd the asymptotic bias has a simpler structure

and does not involve f ′(x0), a factor appearing in the asymptotic bias when d− v is even. For

this reason, the Nadaraya-Watson estimator, that is a special case of polynomial regression

that uses the local constant fit (d = 0) for estimating the regression function (v = 0), has an

additional term in the asymptotic bias.

In order to give an exhaustive summary on the theoretical results in the literature on the

use of local polynomials, we consider the case of dependent data. When the data are dependent

and d − v is odd, Masry and Fan (1997) obtain the expression of bias and variance of this

estimator using some additional conditions. First of all, they introduce the mixing coefficients.

Let Fki be the σ-algebra of events generated by the random variables {(Xj , Yj), i ≤ j ≤ k} and

denote by L2(F
k
i ) the collection of all random variables which are Fki -measurable and have

finite second moment. The stationary process {(Xj , Yj)} is called strongly mixing or α-mixing

if

sup
A∈F0

−∞
,B∈F∞

k

|P (AB)− P (A)P (B)| = α(k) → 0 as k → ∞.

The mixing conditions indicate basically the maximum dependence between two time

events at least k steps apart. Local polynomial fitting techniques continue to apply under

the weak dependence in medium or long term, namely, when k is large. The short term

dependence does not have much effect on the local smoothing method. The reason is that for

any two given random variables Xi and Xj and a point x, the random variables Kh(Xi − x)

and Kh(Xj − x) are nearly uncorrelated as h → 0. This property is, however, not shared by

parametric estimators.

Masry and Fan (1997) in their Theorem 5 state that under certain mixing conditions, local

polynomial estimators for dependent data have the same asymptotic behaviour as for inde-

pendent data. Note that the bias arguments are unaffected, whereas the variance calculations

are affected under dependence. Let f(x) be the density of Xl and σ
2(x) = V ar(Y |Xl = x).

Let S, S∗ and cp denote the same moment matrices and vector as those introduced before.

Under conditions:

43



1. the kernel K is bounded with bounded support;

2. fXo,Xl|Y0,Yl(x0, xl|y0, yl) ≤ A− 1 <∞ ∀l ≥ 1;

3. with α-mixing processes for some δ > 2 and α < 1− 2/δ ,

∑

l

lα[α(l)]1−2δ <∞, E|Y0|δ <∞, fX0|Y0(x|y) ≤ A2 <∞

4. for α-mixing processes there exists a sequence of positive integers satisfying sn → ∞
and sn = o{(nhn)1/2} such that

(n/hn)
1/2α(sn) → 0, as n→ ∞

if hn = O(n1/(2d+3)), then as n→ ∞,

√
nh2v+1

n

{
m̂(v)(x)−m(v)(x)− eTv+1S

−1cdv!m
(d+1)(x)

(d+ 1)!
hd+1−v
n

}
d−→ N

(
0,
eTv+1S

−1S∗S−1ev+1(v!)
2σ2(x)

f(x)

)

at continuity points of σ2, f with f(x) > 0.

With this consideration, we need a polynomial of order two to estimate the marginal first

derivative for our nonparametric model. In fact, for v = 1 (the order of the derivative that

we consider), we need a polynomial of order d = v + 1. When d = 2 the local polynomial

estimator is called local quadratic estimator and it has this formulation for its weights

Wi,2(x) =
1

n
S(x;h)Kh(Xi − x) (2.6)

where

S(x;h) =
ŝ2ŝ3 − ŝ1ŝ4 + [ŝ0ŝ4 − ŝ22](Xi − x) + [ŝ1ŝ2 − ŝ0ŝ3](Xi − x)2

ŝ0ŝ2ŝ4 + 2ŝ1ŝ2ŝ3 − ŝ32 − ŝ0ŝ23 − ŝ21ŝ4

Following the previous formulas, the bias and the variance are equal both in the case of

dependent data and in that of independent data and have those expressions:

Bias{m̂′(x0)|X} =
1

3!
eT2 S

−1c2m
(3)(x0)h

2 + oP (h
2)

V ar{m̂′(x0)|X} = eT2 S
−1S∗S−1e2

σ2(x0)

f(x0)nh3
+ oP

(
1

nh3

)
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2.2.1 The choice of the bandwidth

A theoretical optimal local bandwidth for estimating m(v)(x0) is obtained by minimizing

the conditional Mean Squared Error (MSE) given by

[Bias{m̂(v)(x0)|X}]2 + V ar{m̂(v)(x0)|X}

This ideal choice of a local bandwidth can be approximated by the asymptotically optimal local

bandwidth, i.e. the bandwidth which minimizes the asymptotic MSE. Using the expressions

for the bias and variance introduced before, it is possible to obtain the asymptotic MSE, whose

minimization leads to

hopt(x0) = Cv,d(K)

[
σ2(x0)

{m(d+1)(x0)}2f(x0)

]1/(2d+3)

n−1/2d+3

where

Cv,d(K) =

[
(d+ 1)!2(2v + 1)

∫
K∗2
v (t)dt

2(d+ 1− v){
∫
td+1K∗

v (t)dtP}2
]1/(2d+3)

and K∗ is the equivalent Kernel (Fan and Gijbels, 1996).

A commonly used, simple measure of global loss is the weighted Mean Integrated Squared

Error (MISE). Minimization of the conditional weighted MISE

∫ ([
Bias{m̂(v)(x)|X}

]2
+ V ar{m̂(v)(x)|X}

)
w(x)dx

with w(·) ≥ 0 some weight function, leads to a theoretical optimal constant bandwidth. Using

again the asymptotic expressions for bias and variance we find an asymptotically optimal

constant bandwidth given by

hopt = Cv,d(K)

[ ∫
σ2(x)w(x)/f(x)dx∫

{m(d+1)(x)}2w(x)dx

]1/(2d+3)

n−1/(2d+3).

It is understood that the integrals are finite and that the denominator does not vanish.

These asymptotically optimal bandwidths depend on unknown quantities such as the design

density f(·), the conditional variance σ2(·) and the derivative function m(d+1)(·), and hence

further work is needed for achieving practical bandwidth selection procedures.

In Wand and Jones (1994) there is a rich review of the different type of bandwidth selector

based on the minimization of the MISE. Since the purpose of this thesis is not to find the

optimal bandwidth, we will use the Leave-one-out method that is a conceptually simple and

appealing bandwidth selector. Leave-one-out cross validation uses a single observation from

the original sample as the validation data, and the remaining observations as the training

data. This is repeated such that each observation in the sample is used once as the validation
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data. Although this method often leads to an overestimation of the bandwidth, the results of

our simulations encourage us to consider that this problem does not affect the results in terms

of relevant variables screening.

2.3 Empirical likelihood

Empirical likelihood is a nonparametric method of statistical inference that uses likelihood

methods, without having to assume that the data come from a known family of distributions.

An excellent review on this topic can be found in Owen (2001).

Likelihood methods can be used to find efficient estimators, to construct tests with good

power properties and when the data are incompletely observed, or distorted, or sampled with

a bias, they can be used to offset or correct for these problems. Likelihood can be used to pool

information from different data sources. In fact, it is possible to incorporate knowledge arising

from outside of the data. This knowledge may take the form of constraints that restrict the

domain of the likelihood function, or it may be in the form of a prior distribution to be multi-

plied by the likelihood function. In parametric likelihood methods, the joint distribution of all

available data is assumed to have a known form, apart from one or more unknown quantities.

The problem behind parametric approaches lies in the choice of the parametric family to use.

Indeed, there is no reason to suppose that a newly encountered dataset belongs to one of

the well-known parametric families. Such incorrect specification can render likelihood-based

estimates inefficient and, consequently, the confidence intervals and the corresponding tests

may completely fail. To solve this problem, many statisticians have turned to nonparametric

inferences to avoid having to specify a parametric family for the data.

The advantages of empirical likelihood arise because it combines the reliability of the

nonparametric methods with the flexibility and effectiveness of the likelihood approach. The

name “empirical likelihood” was adopted because the empirical distribution of the data plays

a central role. It was not called nonparametric likelihood, so as not to assume that it would

be the only way to extend nonparametric maximum likelihoods to likelihood ratio functions.

The empirical cumulative distribution function is a nonparametric maximum likelihood

estimate (NPMLE). In fact, for a random variable X ∈ R, the cumulative distribution function

(CDF) is the function F (x) = P (X ≤ x), for −∞ < x < ∞. We use F (x−) to denote

P (X < x) and so P (X = x) = F (x)− F (x−). Let X1, . . . , Xn ∈ R, the empirical cumulative

distribution function (ECDF) of X1, . . . , Xn is

Fn(x) =
1

n

n∑

i=1

I(Xi ≤ x)

for −∞ < x < ∞. Moreover, assumed X1, . . . , Xn ∈ R independent with common CDF F0,
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the nonparametric likelihood of the CDF F is

L(F ) =
n∑

i=1

(F (Xi)− F (Xi−)).

This is the probability of getting exactly the observed sample values X1, . . . , Xn from the CDF

F . One consequence is that L(F ) = 0 if F is a continuous distribution. To have a positive

nonparametric likelihood, a distribution F must place positive probability on every one of the

observed data values. Owen (2001) in Theorem 2.1 proves that the nonparametric likelihood

is maximized by the ECDF. Thus the ECDF is the NPMLE of F.

There are some analogies between parametric and nonparametric likelihood methods. In

parametric models, given η̂ the MLE of η, the MLE of θ(η), where θ is a particular function,

will be θ̂ = θ(η̂). In the nonparametric setting, it is possible to consider θ = T(F), where F is

a continuous distribution and T is a real-valued function of distributions. The true unknown

parameter is θ0 = T(F0). Proceeding by analogy, the NPMLE of θ will be θ̂ = T (Fn).

Thus, if the function T is the mean function of X when X has the distribution F0, i.e.

θ0 =
∫
xdF0(x), then by analogy the NPMLE of θ0 will be the mean of Fn. This mean is of

course X̄ = (1/n)
∑n

i=1Xi. For a subset A ⊂ R, the NPMLE of P (X ∈ A) will be the sample

fraction of Xi in A.

In parametric inference we may base hypothesis tests and confidence regions on the likeli-

hood ratio. If L(η) is much smaller than L(η̂), then we reject the hypothesis that η0 = η, and

exclude η from our confidence region for η0. Wilks’s theorem provides that −2 log(L(η0)/L(η̂))

tends to a chi-squared distribution as n→ ∞, under mild regularity conditions, allowing us to

decide just how small L(η) must be in order for η to get rejected. The degrees of freedom in

the chi-squared distribution are usually equal to the dimension of the set of η values. When

we want a confidence region for θ we take the image of a confidence region for η. That is

{θ(η)|L(η) ≥ cL(η̂)}

where the threshold c is chosen using Wilks’s theorem, with degrees of freedom equal to the

dimension of the set of θ values. We may also use ratios of the nonparametric likelihood as a

basis for hypothesis tests and confidence intervals. For a distribution F, define

R(F ) = L(F )/L(Fn)

through the nonparametric likelihood L(F ). We proceed by analogy with parametric like-

lihood. Suppose that we are interested in a parameter θ = T (F ) for some function T of

distributions. This F is a member of a set F of distributions. Define the profile likelihood
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ratio function:

R(θ) = sup{R(F )|T (F ) = θ, F ∈ F }.

Empirical likelihood hypothesis tests reject H0 : T (F0) = θ0, when R(θ0) < r0 for some

threshold value r0. Empirical likelihood confidence regions are of the form

{θ|R(θ) ≥ r0}.

In many settings, the threshold r0 may be chosen using an empirical likelihood theorem

(ELT), a nonparametric analogue of Wilks’s theorem. In particular, the Theorem 2.2 of

Owen (2001) for the empirical likelihood used to the univariate mean shows this result: con-

sidering X1, . . . , Xn independent random variables with common distribution F0, µ0 = E(Xi),

and supposing that 0 < V ar(Xi) < ∞, then −2 log(R(µ0)) converges in distribution to χ2
(1)

as n→ ∞. It is possible to consider two aspects of this theorem. First, the chi-squared limit

is the same as we typically find for parametric likelihood models with one parameter. Second,

there is no assumption that Xi are bounded random variables. They only need to have a

bounded variance, which constrains how fast the sample maximum and minimum can grow as

n increases.

Supposing that there are no ties in the data, let wi = F (Xi), wi ≥ 0 and
∑n

i=1wi = 1, the

nonparametric likelihood has the form

L(F ) =
n∏

i=1

wi and L(F̂ ) =
n∏

i=1

1

n
,

the nonparametric likelihood ratio is

R(F ) =
n∏

i=1

nwi

and the profiled likelihood is

R(θ) = sup

{
n∏

i=1

nwi|T (F ) = θ

}
.

2.3.1 Empirical likelihood for the mean

To test whether µ = µ0, we need to compute R(µ0). To set confidence limits for µ, we

need to find the two values of µ that solve the equation R(µ) = r0, given a threshold value

r0. To compute the curve R(µ), let the ordered sample values be X(1) ≤, . . . ,≤ X(n). First

we eliminate the trivial cases: if µ < X(1) or µ > X(n) then there are no weights wi ≥ 0

summing to 1 for which
∑n

i=1wiXi = µ. In such cases we take logR(µ) = −∞, and R(µ) = 0
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by convention. Similarly if µ = X(1) < X(n) or µ = X(n) > X(1) we take R(µ) = 0, but if

X(1) = X(n) = µ, we take R(µ) = 1.

Considering the non trivial case, with X(1) < µ < X(n), we seek to maximize
∏n
i=1 nwi,

or equivalently
∑n

i=1 log(nwi) over wi ≥ 0 subject to the constraints that
∑n

i=1wi = 1 and∑n
i=1wiXi = µ. So, the profiled likelihood has the form

R(µ) = sup
w

{
n∏

i=1

nwi|wi > 0,
n∑

i=1

wi = 1,
n∑

i=1

wiXi = µ

}
.

The objective function
∑n

i=1 log(nwi) is a strictly concave function on a convex set of

weight vectors. Accordingly, a unique global maximum exists. We also know that the maxi-

mum does not have any wi = 0, so it is an interior point of the domain.

Proceeding with the method of Lagrange multipliers, it is possible to find that

wi =
1

n

1

1 + λ(Xi − µ)

and the value λ depends on the value of µ, and solves

1

n

n∑

i=1

Xi − µ

1 + λ(Xi − µ)
= 0

2.4 The proposed procedure

As mentioned before, we estimate the first marginal derivative of our nonparametric model

(2.1) using the local quadratic estimator (2.5) with weights (2.6). In order to use the univariate

local quadratic estimator, we consider fj(x) = E(Y |Xj = x), that is the marginal contribution

of Xj locally at Xj = x. On one hand, if m(·) is an additive function as in (1.4), then

∂m(X)

∂Xj
|Xj=x =

∂mj(X)

∂Xj
|Xj=x = f ′j(x), (2.7)

where mj(·) is the part of m(·) relative to the Xj variable alone and f
′
j(·) is the first derivative

of fj(·). On the other hand, if m(·) is not additive, the equality (2.7) is not true, but we can

evaluate again the marginal incidence of the explanatory variable Xj by fj(·). In fact, for an

explanatory variable Xj that is not contributing to Y marginally, f ′j(x) = 0 for all x ∈ Xj , with
Xj is the support of Xj . This suggests to investigate a feature screening procedure by assessing

whether f ′j ≡ 0 or not for each j = 1, . . . , p. We remark that we have chosen to work on the

univariate marginal derivative to efficiently apply the univariate estimate of the derivative

using local polynomials. This, although it significantly alters the regression function, does

not entail significant consequences in terms of the choice of variables, since both the original
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(non-additive) model and the one on which we work (its marginalized additive approximation)

depend on the same set of relevant variables.

For assessing f ′j(x) = 0 at given x without distributional assumptions, we construct the

following empirical likelihood, miming the same steps of Chang et al. (2016a):

ELj(x, 0) = sup
w

{
n∏

i=1

wi : wi ≥ 0,

n∑

i=1

wi = 1,

n∑

i=1

wiWi,2(x)Yi = 0

}
. (2.8)

By applying the Lagrange multiplier method for solving (2.8), we obtain the empirical likeli-

hood ratio

lj(x, 0) = −2 log{ELj(x, 0)} − 2n log n = 2
n∑

i=1

log{1 + λWi,2(x)Yi} (2.9)

where λ is the univariate Lagrange multiplier solving
∑n

i=1
Wi,2(x)Yi

1+λWi,j,2(x)Yi
= 0.

Since
∑n

i=1Wi,2(x)Yi converges to the marginal derivative of Xj evaluated ad x, a large value

of lj(x, 0) is taken as evidence against f ′j(x) = 0. Then, lj(x, 0) is a statistic for testing whether

or not (2.5) with Wi,2 defined in (2.6) has zero mean locally at x. For assessing f ′j(x) ≡ 0

uniformly on Xj , we use

lj(0) = sup
x∈Xj

lj(x, 0)

for each j = 1, . . . , p.

For feature screening purpose, we sort lj for all j = 1, . . . , p in decreasing order, and we

take the first γn covariates. In this way, we create a set

M̂γn = {1 ≤ j ≤ p : lj ≥ γn}

We will specify later the value of γn for which the proposed approach is capable to identify

the true relevant covariates, the so called sure screening property.

In order to implement the proposed method, we evaluate the statistic lj using lj(0) =

max1≤i≤n lj(Xij , 0), whereXij is the ith observation of the jth explanatory variable. With this

expedient, we can use the univariate optimisation to solve (2.9) using the Lagrange multiplier

method.

2.5 From screening to variable selection

The substantial difference between variable selection and screening selection lies in the

specification of a threshold γn. In fact, using variable selection procedure, a set of covariates

that is exactly the true one is selected. Thus the exact value of γn is known. The so called

screening property ensures that the result of the screening procedure is a set of covariates
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which contains the true relevant ones. This set relies on the threshold γn, but its value is

not known exactly because depends on some unknown quantities. Since independence feature

screening was introduced by Fan and Lv (2008), in every method proposed in literature, it

has always been difficult to choose the γn value in practice.

In variable selection literature, nonparametric and non-additive methods present some

drawback. For example, in the Rodeo procedure (Lafferty and Wasserman, 2008) the vari-

ables have uniform distribution and the dimensionality of p is O( logn
log(logn)) while the intrinsic

dimension s, the number of relevant variables, does not increase with n. We propose to

transform our screening method in a variable selection method that also works with a larger

dimensionality and, moreover, allows the relevant covariates to grow with n. Furthermore, it

can be used with any type of covariate’s distribution.

As suggested by Hall and Miller (2009), it is possible to use the variable screening results

for variable selection. In each variable screening method, model-based or model-free, the

important covariates are likely to be ranked ahead of the irrelevant ones. Usually, to obtain

exactly the relevant covariates, two steps are performed. In the first one a variable screening

is performed, in the second one a variable selection is made on the top ranked covariates

resulting from the screening. Instead of using this two step procedure, we propose a method

that uses the subsample idea to transform a screening selection technique in a variable selection

technique.

Meinshausen and Bühlmann (2010) proposed the Stability selection in order to find an

estimation of the λ value in the LASSO of Tibshirani (1996), using the subsample technique.

Stability selection is based on subsampling in combination with (high dimensional) selection

algorithms. The method is extremely general, in fact, in the first stage, a chosen variable

selection technique is applied to randomly picked subsamples of the data of size bn/2c. In

the second one, the variables which are most likely to be selected at the first stage, using a

prespecified threshold, are taken as the final estimate of the set of important variables. They

prove for the randomized lasso that stability selection will be variable selection consistent,

even if the necessary conditions for consistency of the original method are violated. Moreover,

stability selection will asymptotically select the right model in scenarios where the lasso fails.

In short, stability selection is the marriage of subsampling and high dimensional selection

algorithms.

We propose to use the same sumbsample idea not on the result of a variable selection

procedure, as in Meinshausen and Bühlmann (2010), but after a screening procedure in order

to evaluate the stability of the top ranked screened variables. With this method, the variables

selected through the D-ELSIS are then further evaluated to investigate their probability to

be chosen when the data are randomly sampled. Some considerations motivate this proposal.

As the screening property suggests, in each screening result the probability that the true

51



covariates fill the first positions in the ranking tends to 1:

P (M∗ ⊆ M̂γn) → 1.

For every subset of I ⊆M∗, the probability still tends to 1:

P (I ⊆ M̂γn) → 1.

While if we consider a subset I 6⊂ M∗, so a subset of the variables containing also irrelevant

covariates, this probability tends to zero

P (I ⊆ M̂γn) → 0.

In fact, when we consider a subsample of the variables containing also irrelevant covariates (as

a result after screening), the probability that they will consistently exhibit an high influence

over the dependent variable Y over many subsamples of the data is small. Following this

considerations, we can choose a threshold π greater than zero and less that 1 to discriminate

between relevant and not relevant covariates.

In order to identify the true set of relevant covariates, we implement the following pro-

cedure. At the first step, we perform D-ELSIS screening using all the observations in the

dataset, obtaining a ranking of covariates. We choose only the first p∗ of these, where p∗ is a

previously chosen threshold, obtaining the set M̂p∗. At the second step, we randomly create

G subsample of the dataset of size m = bn/2c. On these G sets, we carry out the screening

procedure again, obtaining a G different ranking of the p covariate. As done for the ranking

on the whole dataset, we consider only the first p∗ ranked covariates from each subsample,

obtaining the sets M̂
(i)
p∗ for i = 1, . . . , G. At the third step, we consider a set K with only k

covariates included in M̂p∗ for k = 1, . . . , p∗. For every set K (that includes at most the p∗
screened variables) it is computed the probability :

πn(K) = P (K ⊆ M̂p∗). (2.10)

where πn(K) is estimated as the relative frequency that K ⊂ M̂p∗ over all G subsets of size m.

To obtain an estimator of (2.10), we compute the relative frequency that the same variables

that are in K, they are also in M̂
(i)
p∗ for i = 1, . . . , G:

π̂n,m,G(K) =

∑G
i=1 I(K ⊆ M̂

(i)
p∗ )

G
. (2.11)

Defining a further threshold, π, between 0 and 1, the set of variablesK whose relative frequency

πn(K) will exceed this threshold, will be that one to be considered as relevant, thus the stable
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covariates.

In practice, at the third step we proceed in the following way. Consider all subsets K of

size 1, thus we have p∗ subsets formed by a single covariate of M̂p∗ . We call this subsetsK∗
i , for

i = 1, . . . , p∗. For each of these, their relative frequency is calculated by (2.11). We choose the

setK∗
i whose relative frequency is higher than the threshold π. In the event that more than one

set exceeds this threshold, we choose the one with the highest relative frequency. We call this

set K1 and we denote with Xj1 the stable covariate, thus K1 = {Xj1}. We update the subset

K1 adding to Xj1 all the other p∗ − 1 variables, obtaining the sets K∗
i , for i = 1, . . . , p∗ − 1,

of two covariates. We repeat the procedure for calculating the relative frequency for each

of these. If the relative frequency of at least one of these subsets, for example the subset

{Xj1 , Xj2}, exceeds the threshold π, then we will have the set K2 = {Xj1 , Xj2} as a stable

set. This set will still be updated, forming p∗ − 2 sets with three covariates. And it will go

on until at a certain step s ≤ p∗ at which the threshold π is not exceeded by any subset Ks

formed by s variables. The stable variables will be the variables chosen in the previous step,

therefore those contained in Ks−1.

We want to underline that the choice of the thresholds p∗ and π does not condition the

result of our procedure. The result of the screening, as we have already discussed extensively,

is a subset which contains not only the true relevant covariates, but also not relevant ones.

In the literature, a threshold γn < n is chosen conservatively. To be uniform, it is possible to

choose p∗ = n and implement the proposed procedure. Or choose a lower value. In fact, given

the principle of sparsity, the number of true covariates will be much lower than the number

of available variables. For the value of the threshold π, since for any value of π between 0

and 1, we are able to separate the real relevant covariates from those mistakenly considered

as such given the nature of the screening procedure, we do not need to estimate this quantity.

A higher value will only speed up the iterative procedure.
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Chapter 3

Theoretical results

Screening property of D-ELSIS

In this section we show theoretically that our D-ELSIS procedure has the sure screening

property and its dimensionality. We recall the fundamental quantities for our procedure.

We have a random sample {(Xi, Yi)}ni=1 from the data model

Yi = m(Xi) + εi (3.1)

where Y is the response variable, X is the vector of p candidate variables, ε is the error,

with E(ε|X) = 0 and m(·) is the unknown regression function. We consider a general class

of regression problems without imposing any particular form to the function m(·), and, we
assume that E(Y ) = 0 implying that E{m(X)} = 0. Let us denote with

M∗ = {1 ≤ j ≤ p : the j-th variable in X is relevant for explanation of Y }

the set of s true relevant covariates in model (2.1). Moreover, we consider a very sparse model,

so s� p.

Considering fj(x) = E(Y |Xj = x), that is the marginal contribution of Xj locally at

Xj = x, with our D-ELSIS we estimate the first marginal derivative of the nonparametric

model using the local quadratic estimator with a polynomial of order d = 2:

f̂ ′j(x; 2, h) =

n∑

i=1

Wi,2(x)Yi (3.2)

where Wi,2(x) is defined in equation (2.6).

Throughout this thesis, we use || · ||∞ to denote the sup-norm and Cr(I) denotes the

class of all continuous functions defined over I that are r time differentiable. We assume the

following conditions.
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(A1) {fj}pj=1 belong to Cr(Xj), where r ≥ 3 and Xj is the support of Xj . In addition, there

exists a constant K1 such that |f (r)j (x)| ≤ K1 for any x ∈ Xj and j = 1, . . . , p.

(A2) The marginal density function gj of Xj satisfies 0 < K2 ≤ gj(x) ≤ K3 < ∞ on Xj for

j = 1, . . . , p. In addiction, there exists g
(2)
j (x) for any x ∈ Xj and j = 1, . . . , p.

(A3) There exist nonnegative constants c1 > 0 and κ ∈ [0, r−1
2r+1) such that minj∈M∗

||f ′j ||∞ ≥
c1n

−κ, where r is given in assumption (A1).

(A4) There exist positive constantsK5,K6, γ1 and γ2 such that P (|Y | ≥ u) ≤ K5 exp(−K6u
γ1)

for any u > 0 and P (|Xj | ≥ u) ≤ K5 exp(−K6u
γ2) for each j = 1, . . . , p and any u > 0.

(A5) The kernel function K(·) is continuous, bounded and symmetric with bounded support.

In addition, K(·) is of order 2, that is,
∫
K(u)du = 1,

∫
uK(u)du = 0 and

∫
u2K(u)du =

µ2 <∞.

Here, (A1) is a condition describing the continuity of each fj(x) = E(Y |Xj = x). This

condition is necessary in order to apply the univariate polynomial regression for the estimation

of first marginal derivative with a polynomial of order p = 2. Assumption (A2) is standard

for kernel regression implying that the density of Xj does not vanishing on its support and

implies bounded support of the explanatory variables. The condition in (A3) is for identifying

M∗, which require that the minimal signal strength measured by ||f ′j ||∞ cannot vanish at

a rate faster than n−1/2 (Stone, 1982). Assumption (A4) on the tail distribution of the

response and the explanatory variables is a conventional technical requirement for Cramér-

type large deviation. For example, γ1 = 2 if the response variable Y is a normal or sub-

Gaussian distribution and γ1 = ∞ if Y has a compact support. Assumption (A5) specifies

the requirement for the kernel function so that the bias due to the kernel smoothing is not

dominating.

Meanwhile, we assume that the bandwidth h satisfies h � n−ω for some positive ω whose

specification is discussed later.

Instead of using the exact local quadratic estimator, we propose to consider a new estima-

tor,

β̂(x) =
1

nh2
eT2 X

TWY

to discriminate between relevant and non relevant covariates. As it is possible to see from

its formulation, this estimator comes from the estimator for the first derivatives (2.5) with

weights (2.6), for which we delete the inverted matrix (XTWX)−1 and we divide for nh2.

The following Lemma states that the mean of β̂ is different from zero when the covariate is

relevant, while its mean is zero with non relevant covariates.

Lemma 1. Under assumptions (A1)-(A3) and (A5), assuming that the bandwidth h satisfies

h � n−ω for some positive 2ω ≥ κ where κ is given in (A3), if fj(x) 6= 1
gj(x)

∀x ∈ Xj, then
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1. E(β̂(x)) = 0 for any j 6∈M∗,

2. ∃ x ∈ Xj : E(β̂(x)) 6= 0 for any j ∈M∗,

where β̂(x) = 1
nh2

eT2 X
TWY = 1

nh2
∑n

i=1Kh(Xij − x)(Xij − x)Yi.

Proof. We can simplify the matrix formulation of our β̂ estimator, noting that

eT2 X
TWY =

(
0 1 0

)



∑n
i=1Kh(Xi − x)Yi∑n

i=1Kh(Xi − x)(Xi − x)Yi∑n
i=1Kh(Xi − x)(Xi − x)2Yi


 =

n∑

i=1

Kh(Xi − x)(Xi − x)Yi

This means that

β̂(x) =
1

nh2

n∑

i=1

Kh(Xi − x)(Xi − x)Yi

Now we consider the mean of β̂(x). Note that

E(β̂(x)) =E

{
1

nh2

n∑

i=1

Kh(Xij − x)(Xij − x)Yi

}

=
1

h2
E {Kh(Xij − x)(Xij − x)Yi}

=
1

h

∫
K(v)fj(x+ vh)gj(x+ vh)vdv

by Taylor expansion we have

fj(x+ vh) = fj(x) + f ′j(x)vh+
f
(2)
j (x)v2h2

2!
+O(h3)

gj(x+ vh) = gj(x) + g′j(x)vh+O(h2)

and by (A.5), we achieve

1

h

∫
K(v)fj(x+ vh)gj(x+ vh)vdv

= f ′j(x)gj(x)µ2 + fj(x)g
′
j(x)µ2 +O(h2)

On the one hand, if j 6∈M∗, this means f ′j(x) = 0 and fj(x) = 0, so we achieve E(β̂) = 0.

On the other hand, if j ∈M∗, since from (A2) we know the density gj(x) is bounded away from

0, g′j(x) is bounded and from (A5) µ2 <∞, then E(β̂) 6= 0 provided that f(x) 6= 1
g(x) ∀x ∈ Xj

and 2ω ≥ κ because h2 must go to zero at a faster rate than f ′j(·).

Remark. If the number of relevant variable is finite, κ = 0, then the required condition ω > κ
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is always satisfied.

Using Lemma 1, we can simplify the empirical likelihood, noting that

ELj(x, 0) = sup
w

{
n∏

i=1

wi : wi ≥ 0,

n∑

i=1

wi = 1,

n∑

i=1

wiWi,2(x)Yi = 0

}

=sup
w

{
n∏

i=1

wi : wi ≥ 0,

n∑

i=1

wi = 1,

n∑

i=1

wiUij = 0

}
.

where Uij = 1
nh2

Kh(Xij − x)(Xij − x)Yi. Using the Lagrange multiplier method for solving

the above equation, we obtain the empirical likelihood ratio:

lj(x, 0) =− 2 log{ELj(x, 0)} − 2n log n = 2
n∑

i=1

log{1 + λUij}

where λ is the univariate Lagrange multiplier. This lj(x, 0) is a statistic for testing whether

or not f ′j(·) has zero mean locally at x. For assessing f ′j(x) ≡ 0 uniformly on the support Xj
of Xj , we use

lj(0) = sup
x∈Xj

lj(x, 0)

for each j = 1, . . . , p, where Xj is the support of Xj .

For feature screening purpose, we sort lj for all j = 1, . . . , p in decreasing order and we

take the first γn covariates. In this way, we create a set

M̂γn = {1 ≤ j ≤ p : lj ≥ γn}.

In order to obtain the screening property of D-ELSIS, we need the following lemmas.

Lemma 2. Under assumptions (A1)-(A3) and (A5), assuming that the bandwidth h satisfies

h � n−ω for some positive 2ω ≥ κ and fj(x) 6= 1
gj(x)

∀x ∈ Xj, there exist two positive constants

C1 and C2 such that

K2µ2
∣∣|f ′j(x)| − C2|fj(x)|

∣∣ ≤
∣∣∣∣E
{

1

h2
Kh(Xij − x)(Xij − x)Yi

}∣∣∣∣ ≤ C1µ2
∣∣|f ′j(x)|+ |fj(x)|

∣∣

for any j ∈M∗.

Proof. Without loss of generality, we assume f ′j(x) > 0. From Lemma 1, we know that

1

h

∫
K(v)fj(x+ vh)gj(x+ vh)vdv = f ′j(x)gj(x)µ2 + fj(x)g

′
j(x)µ2 +O(h2)

By assumption (A2), it follows that 0 ≤ |g′j(x)| ≤ K ′
3 < ∞. Let C1 = max{K3,K

′
3}. There-
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fore,

µ2
∣∣|f ′j(x)|K2 − |fj(x)|K ′

3

∣∣) ≤
∣∣∣∣E
{

1

h2
Kh(Xij − x)(Xij − x)Yi

}∣∣∣∣ ≤ C1µ2
∣∣|f ′j(x)|+ |fj(x)|

∣∣

provided that 2ω ≥ κ. Now, if we set C2 = K ′
3/K2, the result follows.

Lemma 3. For given j, define Zij = Kh(Xij −x)(Xij −x)Yi. Under assumptions (A4), (A5)

and assuming that the bandwidth h satisfies h � u−ω for some positive ω > κ, then

P{|Zij | > u} ≤ K5 exp{−K6u
γ(1−ω)} for any j = 1, . . . , p

where γ = γ1γ2
γ1+γ2

.

Proof. Pick ε > 0,

P{|Zij | > u} =P {|Kh(Xij − x)(Xij − x)| > uε, |Kh(Xij − x)(Xij − x)Yi| > u}+
+ P {|Kh(Xij − x)(Xij − x)| ≤ uε, |Kh(Xij − x)(Xij − x)Yi| > u}
≤ P {|Kh(Xij − x)(Xij − x)| > uε}+ P{|Yi| > u1−ε}

The distribution of the product Kh(Xij − x)(Xij − x) is a sub-exponential distribution with

parameter γ equal to infinity. In fact, this product gives a distribution that has non-zero

values only on a bounded support, because the kernel used is bounded. If 0 < h < c with

c > 0, this product is zero uniformly. But, when h→ 0 with rate ω,

P {|Kh(Xij − x)(Xij − x)| > uε} =P

{∣∣∣∣
1

h
K

(
Xij − x

h

)
(Xij − x)

∣∣∣∣ > uε
}

=P

{∣∣∣∣K
(
Xij − x

h

)
(Xij − x)

∣∣∣∣ > uεh

}

≤ K5 exp(−K6u
γ1(ε−ω))

So, we have

P{|Zij | > u} ≤ K5 exp(−K6u
γ1(ε−ω)) +K5 exp(−K6u

γ2(1−ε)))

In order to get the best rate for the right-hand side of above inequality, we need γ1(ε− ω) =

γ2(1− ε)). It means that ε = γ2+γ1ω
γ1+γ2 . Hence,

P{|Zij | > u} ≤ K5 exp(−K6u
γ(1−ω))

where γ = γ1γ2
γ1+γ2

.
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Remark. The part of condition (A4) for Xj variable, is only sufficient thus it should be relaxed.

In fact, without the sub-exponential condition for the distribution of all the explanatory

variables, the result in Lemma 3 can still achieved, with a γ that depends only on γ1.

Lemma 4. For given j, define Uij = Kh(Xij − x)(Xij − x)Yi and µ0j = E[(Uij)]. Under

assumption (A1), (A2) and (A5), then

E[(Uij − µ0j)
2] ≤ Ch

with C > 0.

Proof. Note that

E(U2
ij |Xij) =

1

h2
K2

(
Xij − x

h

)
(Xij − x)2E(Y 2|Xij) ≤ c

1

h2
K2

(
Xij − x

h

)
(Xij − x)2

since E(Y 2|Xij) ≤ c, ∀Xij , with a constant c > 0. So,

E[E(U2
ij |Xij)] ≤

c

h2

∫
K2

(
Xij − x

h

)
(Xij − x)2dXij

=hc

∫
K2(v)v2dv = Ch

with C = c
∫
K2(v)v2dv. Since E[(Uij − µ0j)

2] ≤ E[U2
ij ] = E[E(U2

ij |Xij)], we achieve the

result.

Proposition 1. Under assumptions (A1)-(A5), pick ω ∈ (κ, 1), then there exists a uniform

constant C1 depending only on K5,K6, γ1 and γ2 appeared in assumption (A4), such that for

any j ∈M∗ and L→ ∞,

P

{
lj(0) <

c21K
2
2n

1−2κ−4ωµ22
2L2

}
≤





exp(−Cn1−2κ−3ω) + exp(−CLγ(1−ω)),
if (1− 2κ− 3ω)δ < κ+ ω

exp(−Cn
1−κ−2ω

1+δ ) + exp(−CLγ(1−ω)),
if (1− 2κ− 3ω)δ ≥ κ+ ω

where γ = γ1γ2
γ1+γ2

and δ = max
(

2
γ(1−ω) − 1, 0

)
.

Proof. Given j ∈M∗, for any t > 0,

P{lj(0) < 2t} ≤ P{lj(x, 0) < 2t}.
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We will give an upper bound for the one on the right-hand side of above inequality. Define

Uij = Kh(Xij − x)(Xij − x)Yi and µ0j = E(Uij). If 2ω ≥ κ, by Lemma 2, we can always find

the constant C2 such that |µ0j | ≥ h2K2µ2

∣∣∣|f ′j(x)| − C2|fj(x)|
∣∣∣ > 0. Without loss of generality,

we assume µ0j > 0. If µ0j < 0, let Ũij = −Uij . Note that

ELj(x, 0) = sup

{
n∏

i=1

wi : wi ≥ 0,

n∑

i=1

wi = 1,

n∑

i=1

wiUij = 0

}

=sup

{
n∏

i=1

wi : wi ≥ 0,

n∑

i=1

wi = 1,

n∑

i=1

wiŨij = 0

}
.

This means lj(x, 0) = −2 log{ELj(x, 0)} − 2n log n does not depend on the sign of µ0j . Since

lj(x, 0) = 2 max
λ∈Λn,j

n∑

i=1

log(1 + λUij),

where Λn,j = {λ : 1 + λUij ≥ n−1 for all i = 1, . . . , n} (Owen, 2001), we can choose λ =

n−ε/maxl |Uij | for some ε > 0, such that for n sufficiently large λ ∈ Λn,j . We obtain that

P{lj(x, 0) < 2t} ≤ P

{
n∑

i=1

log

(
1 +

Uij
nεmaxl |Uij |

)
< t

}
.

Hence, using the Taylor expansion, as in the proof of Proposition 1 of Chang et al. (2016b),

by (A4) and Lemma 3, we have

P{lj(x, 0) < 2t} ≤ P

{
n∑

i=1

(Uij − µ0j) < (tnε + n1−ε)max
l

|Ulj | − nµ0j

}

≤ P

[
1

n
1
2σ

n∑

i=1

(Uij − µ0j) <
(tnε−

1
2 + n

1
2
−ε)M − n

1
2µ0j

σ

]

+ C exp(−CMγ(1−ω) + log n),

where σ2 = E{(Uij − µ0j)
2}. For L → ∞, pick ε satisfies nε = L/µ0j . Choose η ∈

(
0, 45
)
and

let M = ηL and 2t =
nµ20j
2L2 , then

tnεM

nµ0j
=
η

4
and

n1−εM

nµ0j
= η.

By Lemma 4 we have that σ2 ≤ Ch. Since f ′j(x) goes to zero at a slower rate than fj(x)

(Stone, 1982), so the rate of µ0j has the quantity |f ′j(x)| as dominant part. Therefore, with a
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n sufficiently large, by Lemma 1 of Chang et al. (2013b),

P

{
lj(x, 0) <

c21K
2
2n

1−2κh4µ22
2L2

}
≤ P

{
lj(x, 0) <

nµ20j
2L2

}

≤ P

{
1

n
1
2σ

n∑

i=1

(Uij − µ0j) <
(54η − 1)n

1
2µ0j

σ

}
+ C exp(−CMγ(1−ω) + log n)

≤
{

exp(−Cn1−2κh3) + exp(−CLγ(1−ω)), if (1− 2κ− 3ω)δ < κ+ ω

exp(−Cn
1−κ
1+δ h

2
1−δ ) + exp(−CLγ(1−ω)), if (1− 2κ− 3ω)δ ≥ κ+ ω

where δ = max( 2
γ(1−ω) − 1, 0).

Proposition 1 gives a uniform result for all explanatory variables contributing in the true

model. With large probability and uniformly for all j ∈M∗, the diverging rate of lj(0) is not

slower than n1−2κ−4ωL−2. If j /∈ M∗, that is, the explanatory variable Xj does not have the

marginal contribution to Y (i.e., f ′j = 0), following the argument of Owen (2001) and Chang

et al. (2013a), it can be shown that the corresponding lj(0) is Op(1). Hence, n
1/2−κ−2ωL−1 is

required to diverge as n→ ∞ for sure independent screening. Furthermore, we note that the

requirement for the bandwidth used in Proposition 1 is mild, which can be naturally satisfied

by the conventional optimal bandwidth h = O(n−1/7) selected by cross-validation method.

Let L = n1/2−κ−2ω−τ for some τ ∈ (0, 12 −κ−2ω), we obtain the following corollary, based

on Proposition 1, more specifically summarising that the set M∗ can be distinguished by the

statistic lj(0).

Corollary 1. Under assumptions (A1)-(A5), pick ω ∈ [κ2 ,
1
4 − κ

2 ), τ ∈ (0, 12 − κ − 2ω) with

κ < 1
4 , then there exists a uniform constant C1 depending only on K5,K6, γ1 and γ2 appeared

in assumption (A4) such that

max
j∈M∗

P{lj(0) < c21K
2
2n

2τµ22} ≤ exp(−C1n
(1/2−κ−2ω−τ)(1−ω)γ))

+ exp(−C1n
min{1−2κ−3ω,(1−κ−2ω)/(1+δ)})

where δ = max{ 2
γ(1−ω) − 1, 0}, C1 is given in Proposition 1 and γ is given in Lemma 3.

Remark. In order to have κ
2 <

1
4 − κ

2 , we need to impose κ < 1
4 .

We establish the sure property of our approach in the following theorem based on Corollary

1.

Theorem 1. Under assumptions (A1)-(A5), pick ω ∈ [κ2 ,
1
4 − κ

2 ) and γn = c21K
2
2n

2τµ22 for

some τ ∈ (0, 12 − κ− 2ω) with κ < 1
4 , then there exists a uniform constant C1 depending only
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on K5,K6, γ1 and γ2 appeared in assumption (A4) such that

P{M∗ ⊂ M̂γn} ≥ 1−s exp(−C1n
(1/2−κ−2ω−τ)(1−ω)γ)−s exp(−C1n

min{1−2κ−3ω,(1−κ−2ω)/(1+δ)})

where δ = max
{

2
γ(1−ω) − 1, 0

}
, C1 is given in Proposition 1 and γ is given in Lemma 3.

Proof. Consider a threshold level γn = c21K
2
2n

2τµ22 for the estimated set M̂γn and note that

P{M∗  M̂γn} = P{There exists j ∈M∗ such that lj(0) < c21K
2
2n

2τµ22}
≤ smax

j∈M∗

P{lj(0) < c21K
2
2n

2τµ22}

where s = |M∗|. Using Corollary 1, we achieve the result.

Theorem 1 implies that D-ELSIS method can handle the following non-polynomial dimen-

sionality: log p = o(nε) for ε = min{(1/2− κ− 2ω − τ)(1− ω)γ, 1− 2κ− 3ω}. By noting that

2ω ≥ κ and that the rate of ε is increasing as ω increases, then we can choose as the best rate

for the bandwidth the value ω = κ
2 . In this case, considering τ close enough to zero, the highest

dimensionality is achieved with the optimal ε = min{(12−2κ)(1− κ
2 )γ, 1− 7

2κ}. If Y and Xj for

j = 1, . . . , p follow the normal or sub-Gaussian distribution such that γ = 1, the correspond-

ing highest dimensionality satisfies log p = o(n(
1
2
−2κ)(1−κ

2
)). If Y and Xj for j = 1, . . . , p have

a compact support which means γ = ∞, the corresponding highest dimensionality satisfies

log p = o(n1−
7
2
κ).

In what follows, we consider the size of the selected M̂γn under the ideal case that

max
j 6∈M∗

||f ′j ||∞ = o(n−κ). (3.3)

Now we need to investigate how large is the set M̂γn . This question is closely related to

the probabilistic behaviour of P{lj(0) ≥ c21K
2
2n

2τµ22} for each j 6∈M∗. We need the following

lemmas.

Lemma 5. Under assumption (A2) and (A4), suppose that h � n−ω for some ω < 1 and

there exists a positive constant ρ such that infu∈[a,b]E(Y 2|Xj = u) ≥ ρ for any j 6∈M∗, then

P{S2
j ≤ 1

2
E(U2

ij)} ≤
{

exp(−Cn1−ω), if γ(1− ω) ≥ 4

exp(−Cn γ(1−ω)2

4 ), if 0 < γ(1− ω) < 4

where S2
j = 1

n

∑n
i=1 U

2
ij, C is uniform for any j = 1, . . . , p and γ is given in Lemma 3.
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Proof. Note that

P{S2
j ≤ 1

2
E(U2

ij)} =P

[
1

n

n∑

i=1

{U2
ij − E[U2

ij ]} ≤ −1

2
E[U2

ij ]

]

=P

[
1

n−
1
2 σ̃j

n∑

i=1

{U2
ij − E[U2

ij ]} ≤ −
n

1
2E[U2

ij ]

2σ̃j

]

where σ̃2j = E
[
{U2

ij − E(U2
ij)}2

]
. By the same way in the proof of Lemma 4, we can get

that σ̃2 ≤ Ch for all j = 1, . . . , p. On the other hand, by (A2),

E(U2
ij) ≥ E

{
n∑

i=1

K2
h(Xij − x)(Xij − x)2E(Y 2|Xij))

}
≥ K2

2hρ

∫
K2(v)v2dv ≥ Ch

Then, by Lemma 1 of Chang et al. (2013b),

P{S2
j ≤ 1

2
E(U2

ij)} ≤ exp(−C(nh) 1
1+δ )

where δ = max( 4
γ(1−ω)−1, 0). Note that the positive constant C is uniform for any j 6∈M∗.

Lemma 6. Under assumption (A2) and (A5), suppose that h � n−ω for some ω < 1 and

there exists a positive constant ρ such that infu∈[a,b]E(Y 2|Xj = u) ≥ ρ for any j 6∈ M∗. If

maxj 6∈M∗
|µ0j | = O(n−ψ) for some ψ > 2ω, then there exists a uniform positive constant C

for any j 6∈M∗

P

(
|λj | >

4|n−1
∑n

i=1 Uij |
3S2

j

)
≤





exp
(
−Cn(ψ−2ω)(1−ω)γ

)
, if ψ − 2ω < 1−ω

max(γ(1−ω),2)+2

exp

(
−Cn

(1−ω)2γ
max((1−ω)γ,2)+2

)
, if ψ − 2ω ≥ 1−ω

max(γ(1−ω),2)+2

(3.4)

where λj is defined by n−1
∑n

i=1
Uij

1+λjUij
= 0 and γ is given in Lemma 3.

Proof. Using Lemma 3 of Chang et al. (2016b) and Lemma 5, we obtain the result.

Lemma 7. Under assumption (A2) and (A5), suppose that h � n−ω for some ω < 1 and there

exists a positive constant ρ such that infu∈[a,b]E(Y 2|Xj = u) ≥ ρ for any j 6∈ M∗. Choose

τ ∈ (0, 12 − k − 2ω), for a given j 6∈ M∗. If maxj 6∈M∗
|µ0j | = O(n−ψ) for some ψ > 2ω and

ψ + τ − ω
2 − 1

2 > 0, then
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P{lj(x, 0) ≥ c21K
2
2µ

2
2n

2τ} ≤





exp
(
−Cn(ψ−2ω)(1−ω)γ

)
, if ψ − 2ω < 1−ω

max((1−ω)γ,2)+2

exp

(
−Cn

(1−ω)2γ
max((1−ω)γ,2)+2

)
, if ψ − 2ω ≥ 1−ω

max(γ(1−ω),2)+2

+





exp(−Cn2τ ), if 2τ < γ(1−ω)2

6

exp(−Cn γ(1−ω)2

6 ), if 2τ ≥ γ(1−ω)2

6

where C is a uniform positive constant not depending on j and x and γ is given in Lemma 3.

Proof. We follow the same line of proof of Lemma 4 of Chang et al. (2016b). Consider |ci1| < 1

and |ci2| < 1 for all i = 1, . . . , n. Then by Taylor expansion, we have

lj(x, 0) =n

(
1

n

n∑

i=1

U2
ij

)−1(
1

n

n∑

i=1

Uij

)2

− n

(
1

n

n∑

i=1

U2
ij

)−1{
1

n

n∑

i=1

λ2jU
3
ij

(1 + ci2λjUij)3

}

+
2

3

n∑

i=1

λ3jU
3
ij

(1 + ci1λjUij)3

=:I1 + I2 + I3,

Now, we can define

A =

{
|λj | <

4|n−1
∑n

i=1 Uij |
3n−1

∑n
i=1 U

2
ij

and

∣∣∣∣∣
1

n

n∑

i=1

Uij

∣∣∣∣∣ ·max
j

|Uij | <
1

4n

n∑

i=1

U2
ij

}
,

Using Lemma 6 we have

P (Ac) ≤





exp
(
−Cn(ψ−2ω)(1−ω)γ

)
, if ψ − 2ω < 1−ω

max(γ(1−ω),2)+2

exp

(
−Cn

(1−ω)2γ
max(γ(1−ω),2)+2

)
, if ψ − 2ω ≥ 1−ω

max(γ(1−ω),2)+2

. (3.5)

We can note that, if A holds, we obtain

|I3| ≤ C

(
n∑

i=1

|Uij |3
)∣∣∣∣∣

1

n

n∑

i=1

Uij

∣∣∣∣∣

3(
1

n

n∑

i=1

U2
ij

)−3

.

Noting that

P{lj(x, 0) ≥ c21K
2
2µ

2
2n

2τ} ≤P (I1 + I3 ≥ c21K
2
2µ

2
2n

2τ )

≤P
(
I1 ≥

1

2
c21K

2
2µ

2
2n

2τ

)
+ P

(
I3 ≥

1

2
c21K

2
2µ

2
2n

2τ ,A holds

)
+ P (Ac),

we only need to give an upper bounds for the quantities appeared on the right-hand side
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respectively. Using Lemma 1 of Chang et al. (2013b) and Lemma 5, considering τ+ψ− ω
2 − 1

2 >

0, we have

P (I1 ≥
1

2
c21K

2
2µ

2
2n

2τ ) ≤
{

exp(−Cn2τ ), if 2τ < 1−ω
1+2δ

exp(−Cn
2τ−ω+1
2+2δ ), if 2τ ≥ 1−ω

1+2δ

+

{
exp(−Cn1−ω), if γ(1− ω) ≥ 4

exp(−Cn γ(1−ω)2

4 ), if 0 < γ(1− ω) < 4

and

P (I3 ≥
1

2
c21K

2
2µ

2
2n

2τ ,A holds )

≤
{

exp(−Cn 4τ−ω+1
3

), if 2τ < (1−δ)(1−ω)
1+2δ

exp(−Cn
2τ−2ω+2

3+3δ ), if 2τ ≥ (1−δ)(1−ω)
1+2δ

+

{
exp(−Cn1−ω), if γ(1− ω) ≥ 6

exp(−Cn γ(1−ω)2

6 ), if 0 < γ(1− ω) < 6

where δ = max( 2
(γ(1−ω)) − 1, 0). Hence, noting that τ < 1

2 − κ− 2ω,

P (I1 ≥
1

2
c21K

2
2µ

2
2n

2τ ) + P (I3 ≥
1

2
c21K

2
2µ

2
2n

2τ ,A holds )

≤





exp(−Cn2τ ), if γ(1− ω) ≥ 6

exp(−Cn2τ ), if 0 < γ(1− ω) < 6 and 2τ < γ(1−ω)2

6

exp(−Cn γ(1−ω)2

6 ), if 0 < γ(1− ω) < 6 and 2τ ≥ γ(1−ω)2

6

.

We complete the proof of this lemma.

Proposition 2. Under assumptions (A1)-(A2) and (A4)-(A5), suppose maxj 6∈M∗
||f ′j ||∞ =

O(n−η) for some η > 5
4κ. Pick ω ∈ [κ2 ,min(14− κ

2 , 2(η−κ)), τ ∈ (max(12−η− 3ω
2 , 0),

1
2−κ−2ω).

If infu∈[a,b]E(Y 2|Xj = u) ≥ ρ for some positive ρ for any j 6∈M∗, then there exists a uniform

positive constant C2 such that for any j 6∈M∗,

P
{
lj(0) ≥ c21K

2
2µ

2
2n

2τ
}
≤ exp(−C2n

min{η(1−ω)γ,(1−ω)2γ/[max(γ(1−ω),2)+2],2τ,γ(1−ω)2/6})

where γ is given in Lemma 3.

Proof. Given j 6∈M∗, for any t > 0,

P (lj(0) ≥ t) ≤
∑

x∈Xj

P{lj(x, 0) ≥ t}.

We need to bounded P{lj(x, 0) ≥ t} for each x ∈ Xj . Note that maxj 6∈M∗
||f ′j ||∞ = O(n−η),

then |µ0j | ≤ Ch2n−η for any j 6∈M∗. Note that |µ0j | = O(n−ψ), then ψ = η + 2ω. As

P
{
lj(0) ≥ c21K

2
2µ

2
2n

2τ
}
≤
∑

x∈Xj

P
{
lj(x, 0) ≥ c21K

2
2µ

2
2n

2τ
}
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noting that the number of x in Xj is O(n), by Lemma 7 we can obtain

P{lj(0) ≥ c21K
2
2µ

2
2n

2τ}

≤





exp
(
−Cnη(1−ω)γ + log n

)
, if η < 1−ω

max(γ(1−ω),2)+2

exp

(
−Cn

(1−ω)2γ
max(γ(1−ω),2)+2 + log n

)
, if η ≥ 1−ω

max(γ(1−ω),2)+2

+





exp(−Cn2τ + log n), if 2τ < γ(1−ω)2

6

exp(−Cn γ(1−ω)2

6 + log n), if 2τ ≥ γ(1−ω)2

6

Since all the exponents of n are positive, we can delete log n in all the quantities. In this way,

we complete the proof.

Using Proposition 2, we can find the corresponding upper bound for P{lj(0) ≥ c21K
2
2µ

2
2n

2τ}.
The result is given in the following Corollary.

Corollary 2. Under assumptions (A1)-(A2) and (A4)-(A5), suppose maxj 6∈M∗
||f ′j ||∞ =

O(n−η) for some η > 5
4κ. Pick ω = κ

2 , τ ∈ (max(12−η− 3κ
4 , 0),

1
2−2κ). If infu∈[a,b]E(Y 2|Xj =

u) ≥ ρ for some positive ρ for any j 6∈ M∗, then there exists a uniform positive constant C3

such that for any j 6∈M∗,

P
{
lj(0) ≥ c21K

2
2µ

2
2n

2τ
}
≤ exp(−C3n

min{η(1−κ
2
)γ,(1−κ

2
)2γ/[max(γ(1−κ

2
),2)+2],2τ,γ(1−κ

2
)2/6})

where γ is given in Lemma 3.

From Corollary 2, we obtain the following theorem for the size of M̂γn .

Theorem 2. Under assumptions (A1)-(A2) and (A4)-(A5), suppose maxj 6∈M∗
||f ′j ||∞ = O(n−η)

for some η > 5
4κ. Pick ω = κ

2 and γn = c21K
2
2µ

2
2n

2τ for some τ ∈ (max(12 − η− 3κ
4 , 0),

1
2 − 2κ).

If infu∈[a,b]E(Y 2|Xj = u) ≥ ρ for some positive ρ holds for any j 6∈M∗, then

P (|M̂γn | > s) ≤ p exp(−C3n
min{η(1−κ

2
)γ,(1−κ

2
)2γ/[max(γ(1−κ

2
),2)+2],2τ,γ(1−κ

2
)2/6})

where γ is given in Lemma 3 and C3 is given in Corollary 2.

Proof. By noting that

|M̂γn | =
∑

j∈M∗

I
{
lj(0) ≥ c21K

2
2µ

2
2n

2τ
}
+
∑

j 6∈M∗

I
{
lj(0) ≥ c21K

2
2µ

2
2n

2τ
}
≤ s+

∑

j 6∈M∗

I
{
lj(0) ≥ c21K

2
2µ

2
2n

2τ
}

we have P (|M̂γn | > s) ≤ ∑
j 6∈M∗

I
{
lj(0) ≥ c21K

2
2µ

2
2n

2τ
}
. Using Corollary 2 we achieve the

result.

This theorem shows that our screening procedure can really control the set size of the

selected variables. With large probability, the number of the selected variables is not larger
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than the true size s. From Theorem 1 and Theorem 2, we have that

P (M̂γn =M∗) → 1 as n→ ∞

provided that log p = o(nmin{ηγ(1−κ
2
),(1−κ

2
)2γ/[max(γ(1−κ

2
),2)+2],2τ,

γ(1−κ
2 )2

6
,1− 7

2
κ,( 1

2
−2κ−τ)(1−κ

2
)γ}).

This selection consistency property demonstrates that, under condition (3.3), our approach

performs very well by distinguishing the true relevant variables from false ones. In order to

obtain the optimal diverging rate for p, we can select

τ =





γ(1−κ
2
)

γ(1−κ
2
)+2

(
1
2 − 2κ

)
if η > 1

γ(1−κ
2
)+2 +

11κγ(1−κ
2
)+6κ

4[γ(1−κ
2
)+2]

1
2 − η − κ

4 + ς if η ≤ 1
γ(1−κ

2
)+2 +

11κγ(1−κ
2
)+6κ

4[γ(1−κ
2
)+2]

(3.6)

where ζ can be chosen to be positive and converging to 0 as n→ ∞. Hence, P (M̂γn =M∗) →
1 as n→ ∞ provided that

log p =





o(n
min{(1−κ

2
)2γ/[max((1−κ

2
)γ,2)+2],

γ(1−κ
2 )2

6
,(1−4κ)

γ(1−κ
2 )

γ(1−κ
2 )+2

}
)

if η > 1
γ(1−κ

2
)+2 +

11κγ(1−κ
2
)+6κ

4[γ(1−κ
2
)+2]

o(nmin{(1−κ
2
)2γ/[max((1−κ

2
)γ,2)+2],

γ(1−κ
2 )2

6
,(η− 5

4
κ)(1−κ

2
)γ})

if η ≤ 1
γ(1−κ

2
)+2 +

11κγ(1−κ
2
)+6κ

4[γ(1−κ
2
)+2]

(3.7)

More specifically, if Y and Xj for j = 1, . . . , p have a compact support which means γ = ∞,

the above selection consistency holds if log p = o(n1−4κ). When γ = 1 and η = ∞, that is

when Y and Xj for j = 1, . . . , p, follow normal or sub-Gaussian distribution and in presence

of partial orthogonal condition (Huang et al., 2010), the selection consistency holds if log p =

o(nmin{ 1
24

(2−κ)2, 1−4κ
6−κ

(2−κ)}).

By comparing our optimal diverging rate of p with that achieved by the other competitor

screening procedures, it is possible to note that our approach achieves a lower dimensionality.

So, we need more observations to have the selection consistency property, compared, for

example, to Chang et al. (2016a), which represents our direct competitor. In Chang et al.

(2016a) when Y follows a normal or sub-Gaussian distribution and in presence of partial

orthogonal condition, the selection consistency holds if log p = o(n
min{ 1

2
−κ− κ

g1
, 1
3
− κ

3g1
}
), where

%1 characterizes the continuity of the marginal projections fj(x). In fact, their rate depends

on the continuity of the marginal fj(x). The greater the smoothness of the function, the

better the dimensionality achieved. For example, if fj(x) ∈ C∞ their dimensionality becomes

log p = o(n1−2κ). Local polynomial theory suggests that a consistent estimate of the first

derivative can be achieved if fj(x) ∈ Cr, with r ≥ 3. Increasing the smoothness of the

function does not increase our dimensionality.

Since the estimation of first marginal derivative f ′j(x) with local polynomials needs more
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observations than the estimation of fj(x) with the NW, as in Chang et al. (2016a), this result

was expected. Furthermore, the ultra-high dimensional rate of our competitor is achieved

under some very stringent assumptions. Compared to Chang et al. (2016a), we do not reg-

ularize the maximum distance between two point in the support Xj and we use a Kernel of

order 2 instead of a Kernel which the order depends on the parameter that characterizes the

smoothness of the function. This is a substantial advantage of our method. In fact, it is very

difficult to manage with a Kernel of order greater that 6.

Screening vs variable selection

As said in the previous chapters, the threshold γn is unknown and it is difficult to estimate

it. For this reason we fix a tuning parameter, p∗ > s = |M∗|, such that we choose p∗ covariates

with the largest values of our statistic lj . Denote with M̂p∗ such a set of selected covariates. In

this way, we get the D-ELSIS Screening Property by using assumptions (A1)-(A5). It means

that all the relevant covariates belong to the set M̂p∗.
Let I ⊂ {1, . . . , p} and define πn(I) = P

(
I ⊆ M̂p∗

)
. The transformation of our screening

selection method in a variable selection method is based on the following ssumptions:

(a1) maxj 6∈M∗
||f ′j ||∞ = o(n−κ);

(a2) If j, j′ 6∈M∗, then minj,j′ P
(
||f̂ ′j ||∞ > ||f̂ ′j′ ||∞

)
→ c3 and

maxj,j′ P
(
||f̂ ′j ||∞ > ||f̂ ′j′ ||∞

)
→ c4 as n→ ∞ with 0 < c3 < c4 < 1.

Assumption (a1) says that all the marginal derivatives of the irrelevant covariates are

smaller than the minimum coefficient of the relevant covariates. Assumption (a2) states that

all the irrelevant covariates can be exchanged. Then, there does not exist one irrelevant

covariate which is dominant with respect to the other irrelevant ones.

Theorem 3. Suppose that assumptions (A1)-(A5), (a1) and (a2) hold. If p ≡ pn → ∞ as

n→ ∞ and |M∗| <∞, then

πn(M∗) → 1 and πn(I) → 0

as n→ ∞ with any I *M∗.

Proof. Since |M∗| < ∞, we can set p∗ > |M∗| such that p∗ < ∞. By assumptions (A1)-(A5)

and by the D-ELSIS Screening Property, it follows that πn(M∗) → 1 as n→ ∞.

Now, consider a set I 6⊆ M∗. Without loss of generality, suppose that I = M∗ except for a

covariate, say j∗ 6∈ M∗. For absurd, suppose that P (I ⊆ M̂p∗) → c > 0 as n → ∞. It implies

that also P (j∗ ∈ M̂p∗) converges to a positive quantity. By using the Borel-Cantelli Lemma
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and p = pn → ∞ as n→ ∞, it follows that

∑

j 6∈M∗,j 6=j∗

P
(
||f̂ ′j ||∞ > ||f̂ ′j∗ ||∞

)
<∞

as n → ∞. So P
(
||f̂ ′j ||∞ > ||f̂ ′j∗ ||∞

)
→ 0 for any j 6= j∗ and j 6∈ M∗. Since both j∗ and j

are irrelevant covariates, then the last result is an absurd by assumption (a2). Thus, we can

conclude that P (I ⊆ M̂p∗) → 0 as n → ∞. Since p∗ is finite, then the result follows for any

I *M∗ and M̂p∗.

Only for simplicity we assume in Theorem 3 that the number of relevant covariates is finite,

i.e. |M∗| <∞.

Now, we need to estimate πn(I). For this purpose, we can use the subsampling technique

with m < n, the size of each subsample. In this way, we apply the D-ELSIS Screening

procedure to each subsample of size m. The total number of subsample is
(
n
m

)
. This number

can be very large. So, we can randomly draw without replacement G subsamples. Therefore,

for each subsample, we have the set of covariates M̂
(i)
p∗ , i = 1, . . . , G, which is built by using

the statistic lj , with m observations and G is the number of subsample. Then we can estimate

πn(I) by π̂n,m,G(I) =
1
G

∑G
i=1 I

(
I ⊂ M̂

(i)
p∗

)
.

Now, the next theorem states the consistency of π̂n,m,G(I) for πn(I).

Theorem 4. Suppose that the assumptions of Theorem 2 hold. Then

|π̂n,m,G(I)− πn(I)| p−→ 0,

when m→ ∞ as n→ ∞ and G→ ∞.

Proof. By Theorem 3, we have that πn(I) → π(I) as n → ∞, where π(I) = 1 if I ⊂ M∗ and

π(I) = 0 if I *M∗.

Let E∗(·), V ar∗(·) and P ∗(·) be E(·|Xn), V ar(·|Xn) and P (·|Xn), respectively, with Xn =

{(Y1, X ′
1), . . . , (Yn, X

′
n)}. Moreover, let Zi = I

(
I ⊆ M̂

(i)
p∗

)
. So, we can write

E∗(π̂n,m,G(I)) =
1

G

G∑

i=1

E∗(Z∗
i ) =

1(
n
m

)
(n
m)∑

i=1

Zi ≡ π̂n,m(I)
p−→ π(I) (3.8)

as m → ∞ and n → ∞. Z∗
i is the same as Zi except that it is randomly chosen over all the

different subsamples. Remember that the conditional mean of Zi, given the set M̂
(i)
p∗ , is πm(I).

Since each subsample is drawn without replacement, the conditional variance V ar∗(·) has
to be considered with respect to the hypergeometric distribution. So, it follows that

V ar∗(π̂n,m,G(I)) ≤
1

G
π̂n,m(I)(1− π̂n,m)

p−→ 0,
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as m→ ∞, n→ ∞ and G→ ∞. By using the conditional Chebyshev inequality, we have

that

P ∗(|π̂n,m,G(I)− E∗(π̂n,m,G(I))| > ε) ≤ V ar ∗ (π̂n,m,G(I))
ε2

p−→ 0

for any ε > 0 as m→ ∞, n→ ∞ and G→ ∞. Finally, π̂n,m,G(I)
p−→ π(I) by (3.8). The proof

is complete.

Generally, in order to have a consistent estimator using the subsample technique, we need

to impose the condition m
n → 0. In our case, choosing m = bn/2c, this condition is not

satisfied. Theorem 4 shows that, even in this case, π̂n,m,G(I) = 1
G

∑G
i=1 I

(
I ⊂ M̂

(i)
p∗

)
is a

consistent estimator of πn(I). So, the condition m
n → 0 is not necessary in our case.
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Chapter 4

Simulations and empirical study

Several simulation studies are conducted to investigate the performance of the proposed

D-ELSIS method in terms of the following three criteria: (i) the median of the minimum

model size (MMSs, i.e., the smallest number of the selected covariates including all the active

explanatory variables) for 100 repetitions; (ii) the IQR divided by 1.34 (SD), that is the robust

measure of the standard error of MMS; (iii) the true positive rate in percentage (TPR) that

control the precision measuring the proportion of actual relevant variables that are correctly

identified as such. To calculate the TPR we consider that the predicted relevant variables are

the first 20. In order to have a very good method, the MMS should be equal to the number

of the true active variable, with small SD and high TPR. We set n = (500, 750, 1000) and

p = (100, n/2, 2n).

For comparison, we also considered other three previous screening methods for nonpara-

metric models: the Fused Kolmogorov Filter (FKF) of Mai and Zou (2015), the Fused Mean-

Variance (FMV) of Yan et al. (2018) and the local Empirical Likelihood SIS (ELSIS) of Chang

et al. (2016a), described in Chapter 1 of this thesis. For the implementation of the best band-

width in the kernel regression estimation for ELSIS and D-ELSIS, we used the R package

NonpModelCheck of Zambom et al. (2017). Among the various options of the package, we

have chosen for both models the cross-validation leave-one-out, which performs satisfactorily.

Instead, as regard the likelihood estimation for empirical likelihood, we used the R package

emplik of Zhou (2018). Furthermore, for the FMV method, we used the code that the authors

provided in their paper (Yan et al., 2018).

We consider the following experiments in the simulation study.

Example 1 : Additive model with uniform covariates

This example is taken from Example 3 of Fan et al. (2011) and from Example 2 of Chang

et al. (2016a). In this case we are interested in evaluate the performance of our approach

in detecting relevant variables in nonparametric model with additive component when

the signal to noise ratio increases. Data are generated from model
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Y = 5X1 + 3(2X2 − 1)2 + 4
sin(2πX3)

2− sin(2πX3)
+

6
[
0.1 sin(2πX4) + 0.2 cos(2πX4) + 0.3(sin(2πX4))

2 + 0.4(cos(2πX4))
3 + 0.5(sin(2πX4))

3
]
+σε

Here predictors Xj ’s are i.i.d random variables of U(0, 1) distribution, and ε ∼ N(0, 1)

is independent of Xj ’s. In this case we have s = 4 relevant covariates. We consider four

different signal to noise ratios by varying σ2, as in Chang et al. (2016a). The results are

in Table 4.1.

Example 2 : Non-additive model with uniform covariates

This example is taken from Example 4.1 of Lafferty and Wasserman (2008). We consider

a nonparametric non-additive model and covariates with bounded support. Data are

generated from model

Y = 5X2
1X

2
2 + ε.

In this case, predictors Xj ’s are i.i.d random variables of U(0, 1) distribution, and ε ∼
N(0, σ2), with σ = 0.5, is independent of Xj ’s. The results are in Table 4.2

Example 3 : Linear model with correlated normal covariates

We are interested in assessing whether the presence of correlation between predictors

influences the performance of our procedure. Data are generated from model

Y = X1 +X2 +X3 +X4 + ε

where X ∼ N(0,Σ) and ε ∼ N(0, 1) is independent of each Xj with j = 1, . . . , p. In this

model we have s = 4 relevant linear covariates, all of which with the same parameter 1.

We set the variance-covariance matrix Σ = (σkj) with σkk = 1 and ρ = σkj = c(0, 0.5):

so we consider both independent and correlation cases between active and non-active

covariates. The results are in Table 4.3.

Example 4 : Single index model with independent normal covariates

This example is taken from Example 4 of Chang et al. (2016a). Data are simulated from

model

Y = m(X) + σε

where m(X) is generated from exp
{
−1

2

(
X2

1
0.82

+
X2

2
0.92

+
X2

3
1 +

X2
4

1.12

)}
by appropriately

scaling it to have zero mean and unit variance, predictors are independently gener-
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ated from standard normal distribution and ε ∼ N(0, 1) is independent from Xi’s. We

set the noise levels as 0.5. The results are in Table 4.4.

4.1 Simulation results

Overall, in all the settings are considering here, D-ELSIS typically offers similar and some-

times better performance than its competitors.

In Example 1, where we have a nonparametric additive model, D-ELSIS and ELSIS are

equivalent in each considered combination of number of observations and covariates. Both

approaches are able to correctly identify the set of true variables in the first 20 top ranked

covariates for all the signal to noise ratios considered. Furthermore, the percentage of relevant

covariates included from the top ranked is always 100, so both the methods do not make

the error of excluding the relevant among the first 20. On the other hand, the other two

competitors considered, FMV and FKF, fail to achieve the same performance. This happens

in each of the cases evaluated, even when the number of observations is greater than the

number of covariates, as in the case n = 500 and p = 100. Furthermore, the TPR rate is

always lower compared to TPRs of the first two approaches. So, with this example, both

approaches based on the fused technique fail to be competitive.

In Example 2 and Example 4 the four approaches are practically equivalent, both in terms

of MMS and precision. In Example 2 we considered uniform covariates in a nonparametric

and non-additive model, while in Example 4 a Single index model with independent standard

normals. The two models have in common the fact of being composed of a single non-additive

function, depending on two or more independent covariates. The equivalence in the four

different approaches is substantially due to the independence between the covariates. This is

also confirmed by the results of Example 3.

In Example 3, we have a linear model with normal correlated covariates. When the co-

variates are independent, the four methods are equivalent. In case of correlation among active

and inactive covariates, so when ρ = 0.5, D-ELSIS is equivalent to methods based on the fused

technique, FKF and FMV, while its performance is higher than the ELSIS model, even when

the number of covariates is lower than that of observations.

In their simulation Chang et al. (2016a) use the combination n = 100, p = 1000, while

in this thesis we set the following values: n = (500, 750, 1000) and p = (100, n/2, 2n), so a

different proportion contemplating also a not-so-high dimensional case. We have not chosen

the same proportion to give uniformity to the various simulations, since this proportion has

brought satisfactory results compared to the other procedures, especially respect to those

based on the fused technique and in the presence of correlation. Given this good performance

results with low proportion between the number of covariates and the number of observations,
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Table 4.1: Simulation results from Example 1

s = 4
n = 500 n = 750 n = 1000

p = 100 p = 250 p = 1000 p = 100 p = 375 p = 1500 p = 100 p = 500 p = 2000
MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR

Method σ
2 = 1

D-ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 99.50 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 99.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
FMV 9 (8.96) 95.75 13 (16.42) 92.00 37 (70.52) 83.25 5 (2.99) 98.50 8 (7.65) 95.25 25 (37.50) 86.50 4 (0.76) 100.00 5 (5.04) 97.00 15 (20.34) 91.25
FKF 10 (10.45) 94.00 12 (21.27) 90.50 54 (104.29) 81.75 6 (3.73) 97.25 10 (16.41) 92.00 30 (59.51) 86.25 4 (0.75) 99.75 6 (4.66) 96.75 11 (34.33) 91.25

σ
2 = 1.74

D-ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 99.50 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 99.50 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
FMV 7 (4.66) 97.25 12 (14.55) 91.25 46 (82.84) 82.25 5 (2.24) 99.00 8 (8.21) 94.75 17 (25.37) 88.75 4 (0.75) 100.00 5 (3.17) 98.25 13 (12.69) 93.25
FKF 9 (8.58) 95.25 20 (29.29) 88.00 60 (111.75) 82.25 5 (2.99) 99.25 8 (10.63) 94.00 22 (44.78) 87.25 4 (0.75) 99.75 6 (5.97) 97.50 8 (13.99) 93.25

σ
2 = 2

D-ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.75) 98.75 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 99.50 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
FMV 8 (8.96) 95.50 16 (21.64) 89.75 32 (61.19) 81.75 5 (3.73) 98.75 8 (6.90) 96.00 18 (25.00) 88.25 4 (0.75) 99.75 5 (2.99) 98.75 10 (13.62) 92.75
FKF 10 (9.14) 95.25 18 (20.90) 89.00 45 (83.21) 83.00 6 (4.67) 98.25 9 (13.43) 93.25 17 (30.41) 88.25 4 (0.75) 99.75 5 (4.66) 98.50 12 (18.66) 82.00

σ
2 = 3

D-ELSIS 4 (0.00) 100.00 4 (0.00) 99.75 4 (0.19) 98.75 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
ELSIS 4 (0.00) 100.00 4 (0.00) 99.75 4 (0.19) 98.75 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
FMV 8 (9.14) 95.50 17 (18.47) 89.25 37 (73.13) 83.50 5 (2.24) 99.50 8 (5.97) 95.50 19 (28.73) 87.75 4 (0.75) 99.75 6 (3.73) 98.50 9 (16.79) 92.25
FKF 10 (11.19) 94.00 15 (19.03) 89.75 39 (60.82) 83.25 5 (3.17) 98.50 13 (18.84) 91.50 19 (47.76) 88.00 4 (2.24) 99.75 5 (4.48) 96.75 11 (14.55) 91.25
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Table 4.2: Simulation results from Example 2

s = 2
n = 500 n = 750 n = 1000

p = 100 p = 250 p = 1000 p = 100 p = 375 p = 1500 p = 100 p = 500 p = 2000
MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR

Method
D-ELSIS 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00
ELSIS 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00
FMV 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00
FKF 2 (0.00) 100.00 2 (0.00) 100 .00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00 2 (0.00) 100.00
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Table 4.3: Simulation results from Example 3

s = 4
n = 500 n = 750 n = 1000

p = 100 p = 250 p = 1000 p = 100 p = 375 p = 1500 p = 100 p = 500 p = 2000
MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR

Method ρ = 0
D-ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
FMV 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
FKF 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00

ρ = 0.5
D-ELSIS 4 (0.00) 100.00 4 (0.75) 96.50 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.75) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 99.75
ELSIS 5 (2.99) 99.00 8 (9.89) 94.75 18 (25.56) 87.50 4 (0.75) 100.00 5 (2.24) 98.00 5 (2.24) 98.00 4 (0.00) 100.00 4 (0.75) 99.75 5 (5.22) 98.75
FMV 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
FKF 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 99.50 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
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Table 4.4: Simulation results from Example 4

s = 4
n = 500 n = 750 n = 1000

p = 100 p = 250 p = 1000 p = 100 p = 375 p = 1500 p = 100 p = 500 p = 2000
MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR

Method
D-ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 99.75 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
FMV 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
FKF 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00

77



for a higher proportion we expect to improve the performance of our procedure compared to

competitors. Furthermore, we could not consider a lower dimensionality for the number of

observations in the dataset because to obtain consistency using local polynomials to estimate

the first derivative requires more observations than the estimate of the simple function. Some

tests, which are not in this thesis, were done with a higher proportion and the performances

were satisfactory. Finally, we have also chosen cases where the number of observations is

higher with respect to the number of the covariates, since an approach that fails to correctly

select the relevant covariates in this convenient case, will surely achieve worse results for

high-dimensional data.

4.2 Empirical study

In this section we use a real dataset to illustrate our new variable selection method, that

combine the D-ELSIS and the subsample technique. In the dataset used Italian firms that

operated in the building sector in the period 2006-2017 are reported. The financial information

are collected from the Orbis database, provided by Bureau van Djik.

One problem of interest is to discriminate companies based on their (high / low) probability

of failure and predict bankruptcy before it occurs. In these cases, the dependent variable, which

indicates whether a firm is distressed, is binary, and its knowledge is crucial for estimating

the model parameters. We evaluate the probability of business failure in terms of financial

stability by using profitability ratios (e.g., return on assets [ROA] and return on equity [ROE]).

These ratios are suitable measures of a firm’s performance and business stability, as is shown

in Amendola et al. (2017). Since the period includes the economic instability, we opt for

analyzing the years 2007-2009 in order to evaluate if our proposal is robust to choose the most

relevant covariates in presence of financial shock. The sample consists of two subsets:

• the disease group is composed of those industrial firms that had undertaken the juridical

procedure of bankruptcy in Italy between 2007 and 2009;

• the reference group consists of firms that were still active as of 2009 and has provided

full information for the years between 2007 and 2009.

For each company, all financial statements and information available in the database are

collected. The predictor database for the years of interest is elaborated starting from the

financial statements of each firm included in the sample, for a total of 41,203 balance sheets.

In particular, we compute 124 indicators selected as potential predictors according to three

criteria (see Table 4.5):

• they have a relevant financial meaning in the failure context;

• they have been widely used in the failure prediction literature;
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• the information needed to calculate these ratios is available.

Table 4.5: Variables used in the study divided according to the area.
Area #

Turnover 24
Liquidity 19
Efficiency 19
Profitability 36
Solvency 26

To take into account the possible status changes of firms over the time considered, the

binary variable indicating if failure has occurred is set equal to one only in the year in which

a bankruptcy filing occurred. Thus, it is possible to use all available information to produce

bankruptcy probability estimates for all firms at each time point.

A preliminary analysis is performed to prepare the data for a detailed statistical analysis.

First, the missing data are identified, and those variables for which the percentage of missing

values is high are deleted. Second, the financial ratios with a high number of values equal

to zero are analyzed to determine if their values are affected by input errors. If the financial

statements of a firm have excessive null information (i.e., zero or not available values), they are

deleted. Third, the correlation between the surrogate dependent variable and other covariates

was computed to throw out those ratios with a correlation greater than or equal to 0.98.

Finally, the data are standardized in order to have zero mean and unit variance, and it was

verified that the new design matrix is well defined.

For each year under analysis, we proceed as follows. First, we perform on a certain sample

the D-ELSIS procedure selecting the first 10 top ranked variables. Second, we randomly

sample 500 observations for 100 times (which means that we have 100 subsamples with 500

observations), and then for each subset we perform the D-ELSIS procedure again selecting

only the first 10 top ranked variables, as in the first step. For the variables identified in the

first step, we calculate their relative frequency of being selected from the top 10 positions in

the various sabsample. From Theorem 3 in Chapter 3, we can choose a threshold π between

zero and one to distinguish the relevant covariates from the noise ones. We set this threshold

π = 0.8. We identify as relevant only those variables for which the probability of being selected

from the top 10 positions in the various sabsample, exceeds the threshold. Table 4.6 reported

the variables selected by our procedure.

As a result of our variable selection, we obtain 9 of the covariates of the dataset. Some of

these are aligned with what was established in the literature by the paper of Amendola et al.

(2017). It can be noted that the number of variables extracted changes across years. In fact,

we observe that there are 6 variables that are common to all years. These are the variables that

over time will affect business failure, that is measured by our dependent variable ROA. These
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Table 4.6: Selected variable for each year
Variable 2007 2008 2009

X2
√ √ √

X27
√ √ √

X29
√ √

X30
√

X31
√ √ √

X57
√ √ √

X76
√ √ √

X90
√ √ √

X91
√

X2 is the age of the company, X27 is the EBIT to fixed
assets, X29 is the net quick assets to Inventory, X30 is
the Ebit to total sales, X31 is the Ebitda to Sales, X57

is the other shareholders fund to total assets, X76 is the
operating cash flow, X90 is the inventory to Operating
income and X91 is the gross profit to sales.

variables take into account the age of the company (X2), its profitability (X27, X31, X90), its

solvency (X57) and its liquidity (X76). The remaining 3 variables are X29, X30 and X91. The

first regards liquidity while the second and the third concern profitability. The first is selected

for the years 2007 and 2009. We can note that the opposite situation occurs instead for the

variable X91, which represents an index of profitability. Furthermore, the profitability index

X30 is selected only among the relevant variables only in the 2007. These different sets of

identified covariates are mainly due to the financial crisis that has taken place in the years

considered, which certainly had a strong impact on the bankruptcy of Italian companies.
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Chapter 5

Conclusions

After a review of the literature for variable and screening selection methods in ultra-

high dimensional setting, we have proposed and investigated a new procedure D-ELSIS in

a nonparametric and non-additive context, which combines the local polynomials with the

empirical likelihood. The innovative element of this approach consists in the estimation of the

first marginal derivative with the use of local polynomials. By derivatives, we investigate the

marginal contribution of each variable Xj in explaining Y , to justify whether it is relevant or

not. Furthermore, we use the empirical likelihood to detect if this partial derivative is zero

uniformly in the covariate’s support.

Our theoretical results suggest that D-ELSIS has the screening and variable selection

properties with a nonpolynomial dimensionality. Unfortunately, we achieve a dimensionality

that, despite being ultra-high, does not exceed the dimensionality of our direct competitor.

We expected this result because the use of local polynomials to estimate the first marginal

derivative requires a lot number of observations. Furthermore, we have not imposed maximum

distance between two adjacent observations. For any order of smoothness of the function, our

procedure uses a Kernel of order 2 instead of a Kernel whose order depends on the parameter

that characterizes the smoothness. This is a substantial advantage of our method compared

to the competitor, as it is very difficult to manage with a kernel of order greater than 6.

The simulations results, show that D-ELSIS has really good screening performance com-

pared to other model-free screener method in literature. Unlike the other approaches, D-ELSIS

is able to select the true relevant covariates both when the underlying model is nonparametric

and when it is linear. Furthermore, it manages to have significant results even in the presence

of correlation between relevant and non-relevant covariates. As in all screening method in

literature, in D-ELSIS the problem is the identification of the threshold γn, that detects how

many covariates one needs to select in order to obtain the true set of active variables. We

have shown theoretically that it is possible to transform our screening method in a variable

selection method, using the subsample technique. In fact, with the subsample procedure, we
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select the variables through the D-ELSIS and, after, we investigate their probability to be

chosen when the data are randomly sampled. In this way, we can achieve a variable selection

procedure without penalisation in the ultra-high setting, even if the model is nonparametric

and non-additive.

Another important aspect of regression is the type of impact of independent covariates on

the dependent covariate, the so called structure discovery. The literature focuses on partially

linear models, or on nonparametric but additive models, often using methods with penalty.

Also in this case, as for variable selection, the dimensionality is not very high, especially when

we consider various order of interactions. For example, VANISH (Radchenko and James, 2010)

could be extended to high-order interaction term, including the third order interactions, but

it may not be possible for large p. We can use D-ELSIS also for structure discovery. In fact, a

variable is linear in the regression model when the difference between the marginal derivative

of the covariate and its mean is zero for each point:

f ′j(x0)− E(f ′j(Xj)) = 0 ∀x0 ∈ Xj

where Xj is the support of Xj . If this difference is null, for each point, then it can be said that

the covariate taken into consideration is linear. With D-ELSIS we have already the estimation

of marginal derivatives. Then, we need only to test if the difference is identically null. Our

choice of which method to use to test this difference is, again, the empirical likelihood. We

hope to work along this direction with our D-ELSIS procedure, finding its theoretical results

for structure discovery.

Finally, D-ELSIS not only manages to transform itself into a method of variable selection

with the subsample technique, but can also distinguish linear covariates from non-linear ones.

The other approaches in screening literature, including our direct competitor Chang et al.

(2016a), do not have this advantage. All this, however, has a price: the lowest achievable

dimensionality.
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Part II

Regression problem in survival

analysis
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Introduction

Modern biomedical studies generate a large amount of survival data or “time to event

outcome variable” with high dimensional biological indicator for various scientific purposes.

In practice, many covariates are often available as potential risk factors. To enhance model

predictability and interpretation, a parsimonious model is always desirable. For this reason,

variable selection is also vital in survival analysis. Thus, selecting significant variables plays

crucial role in model building and is particularly challenging in the presence of a large number

of predictors.

In literature there are statistical techniques to analyse a time-to-event outcome variable,

which is a different type of outcome variable than those considered in the previous chapters. A

time-to-event variable reflects the time until a participant experiences an event of interest (e.g.,

heart attack, goes into cancer remission, death). Statistical analysis of time-to-event variables

requires different and more specific assumptions than those described thus far for other types

of outcomes because of the unique features of these variables. The statistical analysis, in

this case, is called time-to-event analysis or survival analysis, even though the outcome is not

always death. Some questions of interest in survival analysis are: What is the probability

that a participant survives 5 years? Are there differences in probability between groups (e.g.,

between those assigned to a new versus a standard drug in a clinical trial)? How do certain

personal, behavioral or clinical characteristics affect participants’ chances of survival? For

instance, identifying genomic profiles that are associated with a particular disease may help

with understanding its progression processes and designing more effective therapies.

With the advent of new biotechnologies, the emergence of gene expressions, methylation

and next-generation RNA sequencing, have increased the dimensionality of data leading to

larger and larger scale (Hong and Li, 2017). In these cases, the dimensionality of covariates

may grow exponentially with the sample size and such data has been commonly referred as

ultra-high dimensional data. Thus, the context is very similar to that introduced in the first

part of the thesis. If the event occurred in all individuals, many methods of analysis seen in

the previously part of this thesis would be applicable. However, it is usual that, at the end of

observational time, some individuals have not experiences the event of interest and, thus, their

true time-to-event is unknown. When this happens, the survival time is said to be censored.
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In addition, survival data are rarely distributed normally, are usually distorted, and events of

interest typically take place at the beginning of study time, while relatively few events occur

at the end of that period. These features make the construction of special methods for survival

analysis necessary.

When the number of covariates p is less than the sample size n, many ad-hoc statistical

tools have been developed for survival data. The parametric and semiparametric regressions,

such as the Accelerated Failure Time model (AFT) and the Cox Proportional Hazards model,

respectively, have been routinely used for modelling censored outcome data in many practical

settings. When p > n, penalized likelihood methods for variable selection have been proposed

by various authors since the paper of Tibshirani (1997), and the oracle properties and statis-

tical error bounds of estimation have been established (Huang et al., 2013). However, when

p� n, computational issues inherent in these methods make them not applicable to ultra-high

dimensional survival data because of serious challenges from computational cost, statistical

accuracy and stability. In order to overcome these problems, also in survival analysis, many

authors (such as Zhao and Li (2012); Gorst-Rasmussen and Scheike (2013); Song et al. (2014))

suggest to use the screening technique: obtaining a set of covariates that with probability 1

contains the set of true relevant ones. Even in this particular context it is possible to consider

different statistical approaches, related to parametric and non-parametric models.

The aim of the part of this thesis is to find a model-free screening method in ultra-

high dimensional setting different from the existent ones. Most of the model-free methods in

the literature consider a conditional estimate of the survival function, using the Kaplan and

Meier estimator (Kaplan and Meier, 1958). This estimator has some disadvantages, especially

with continuous covariates. Our intent is to manage conditioning appropriately, taking into

account the direct effect of covariate on survival. We have managed to highlight and justify the

possibility of applying the D-ELSIS method, proposed in the first part of this thesis, also in this

context. The element of innovation lies in the use of the marriage between local polynomials

and empirical likelihood. In fact, no other time-to-event variable screening method uses these

methods for screening purposes. The results demonstrate that the proposed nonparametric

screener selects the true relevant covariates, especially in the presence of correlation.

In Chapter 6 we introduce the variable selection problem in linear and nonparametric

regression models for survival analysis and the different methodologies for screening and vari-

able selection purposes available in the literature. In Chapter 7 we explain how it is possible

to use our D-ELSIS method to carry out screening in the context of nonparametric models

with time-to-event data. In Chapter 8, we carry out extensive numerical simulations to asses

the performance of the proposed D-ELSIS screener, also comparing it with other existing

approaches.
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Chapter 6

Variable selection in survival

analysis

Survival analysis is a branch of statistics for analysing data which times of interest from

a well-defined time origin until the occurrence of some particular events or end-points are

investigated. In medical research, the time origin often corresponds to the recruitment of

an individual into an experimental study, such as a clinical trial to compare two or more

treatments. If the end-point is the death of the patient, the resulting data are literally survival

times (Collett, 2015). This type of analysis, in the last years, is applied not only in medicine,

but also in a number of others research areas, such as public health, socio-economic science,

and engineering. In socio-economic research, it is used to investigate complex phenomena such

as unemployment, employment, inflation, supply and demand for bank loans, life expectancy

of the products, etc. The engineering sciences have also contributed to the development of

survival analysis called reliability analysis where the main focus is in modelling the lifetimes

of machines or electronic components (Kleinbaum and Klein, 1996). The standard statistical

procedures cannot be applied in survival data analysis for several reasons:

• survival data are not symmetrically distributed (typically positively skewed);

• there is a presence of censored data, which means that for an individual the end-point

of survival time has not been observed for different reasons, i.e. individual may drop

out of a study, he/she may have a different event (an accident, a first childbirth, leaving

school), he/she may decease or its lost to follow-up.

The censoring should be taken into account in the estimation of survival model. Three main

type of censoring exist (Figure 6.1):

• left censoring : the start date of the event is not observed and the exact length of the

survival time is not known (the subject was at risk for the event being studied before

the start of the study);
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• right censoring : at the time of observation the relevant event has not yet occurred (or

the study ends before the event has occurred), and the total length of time between

entry and exit from the state is unknown;

• interval censoring : the event time is only known to fall into an interval.

Figure 6.1: Type of censoring data

An important assumption in the analysis of censored survival data is that the actual sur-

vival time of an individual is independent from any mechanism that may cause the individual’s

survival time to be censored. Independent censoring essentially means that within any sub-

group of interest, the subjects who are censored at time should be representative of all the

subjects in that subgroup who remained at risk at that time with respect to their survival

experience. In other words, censoring is independent provided that it is random within any

subgroup of interest. Another assumption concerns the censoring mechanism that is assumed

to be non-informative. A non-informative censoring occurs if the distribution of survival times

does not provide any information about the distribution of censorship times, and vice versa.

6.1 Estimation of survival function

6.1.1 Basic concepts

Let T be a non-negative random variable representing the time until the occurrence of the

event of interest. Its distribution function represents the probability that the survival time is
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less than same value t and is given by

F (t) = P (T < t) =

∫ t

0
f(u)du

where f(u) is the probability density function.

The Survival Function S(t) is defined as the probability that the survival time is greater

than or equal to t

S(t) = P (T ≥ t) = 1− F (t)

i.e., the probability that an individual survives from the time origin to some times beyond t.

The Hazard Function h(t) is the risk or hazard of death at some times t and is given by the

limiting value of the probability that an individual dies at time t, conditional on the individual

having survived to that time:

h(t) = lim
δ→0

{
P (t ≤ T < t+ δ|T ≥ t)

δ

}
, (6.1)

where the numerator is the probability that T lies between t and t + δ, given that T is

grater than or equal to t, while the denominator is the time interval δ. In literature, the

hazard function is also called as hazard rate, instantaneous death rate, intensity rate or force

of mortality. From equation (6.1), h(t)δ is the approximate probability that an individual

dies in the interval (t, t+ δ), conditional on that individual having survived to time t (Collett,

2015).

There are some useful relationships between the survival and hazard functions. The con-

ditional probability in (6.1) can be expressed as

P (t ≤ T < t+ δ|T ≥ t) =
P (t ≤ T < t+ δ)

P (T ≥ t)
=
F (t+ δt)− F (t)

S(t)
,

then,

h(t) = lim
δ→0

{
F (t+ δ)− F (t)

δ

}
1

S(t)
.

Noting that

f(t) = lim
δ→0

{
F (t+ δ)− F (t)

δ

}

where f(t) is exactly the derivative of F (t) with respect to t, we have

h(t) =
f(t)

S(t)
.

Then

h(t) = − d

dt
logS(t)
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and so

S(t) = e−H(t)

where

H(t) =

∫ t

0
h(u)du.

The function H(t) is called integrated or cumulative hazard. From equation (6.1.1), the

cumulative hazard can be obtained from the survival function, since

H(t) = − logS(t).

These three functions give mathematically equivalent specification of the distributions of

the survival time T . In fact, if one of them is known, the other two are determined. One of

these functions can be chosen as the basis of statistical analysis according to the particular

situations: the survival function is the most useful for comparing the survival progress of two

or more groups, while the hazard function gives a more convenient description of the risk of

failure at any time.

Below we introduce notation that will be used throughout this thesis. Suppose we have

n observations with p covariates. Denote by Xij the jth covariate for subject i, and let

Xi = (Xi1, . . . , Xip)
T be a p-dimensional vector of covariates for the i-th individual. We add

the assumption that the p variables are time-independent. Let Ti and Ci be the underlying

survival and censoring times, respectively. We only observe Yi = min(Ti, Ci), and the event

indicator δi = I(Ti ≤ Ci), where I(·) is the indicator function. In general, we consider

right censoring time and we assume independent and non-informative censoring. We assume

(Yi, δi,Xi) are i.i.d. In particular, we assume (Ti, Xij), i = 1, . . . , n, are i.i.d copies of (T,Xj),

the random variables that underlie the survival time and covariates.

6.1.2 Kaplan-Meier estimator

The Kaplan-Meier (KM) estimator, developed by Kaplan and Meier (1958), is a nonparametric

method used to estimate the survival function from lifetime data. The Kaplan-Meier survival

curve is defined as the probability of surviving in a given length of time while considering time

in many small intervals. Its plot is a step function, where the estimated survival probabilities

are constant between adjacent death times and only decreases at each death. For this estimator

only the times at which the event happens are considered, while the censored times are ignored,

taking into account however that the number of subjects at risk decreases in the presence of

the censored. In order to estimate the KM, a series of time intervals is constructed such that

only one death occurs per interval with the time of death indicating the start of an interval.

Suppose that there are n individuals with observed survival times t1, t2, . . . , tn. Some of

these observations may be right-censored. We therefore suppose that there are r death times
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amongst the individuals, with r ≤ n. Let t(1) < t(2) < ... < t(r) be the ordered death times

in non-decreasing order, where the jth is denoted t(j), for j = 1, 2, ..., r. The number of

individuals who are alive just before time t(j), including those who are about to die at this

time, will be denoted nj , for j = 1, 2, ..., r, and dj will denote the number who die at this

time. The time interval from t(j) − δ to t(j), where δ is an infinitesimal time interval, then

includes one death time. Since there are nj individuals who are alive just before t(j) and

dj deaths at t(j), the probability that an individual dies during the interval from t(j) − δ to

t(j) is estimated by dj/nj . The corresponding estimated probability of survival through that

interval is then (nj − dj)/nj . Assuming that the deaths of the individuals in the sample occur

independently of another, the estimated survivor function at any time t in the kth constructed

time interval from t(k) to t(k+1), k = 1, 2, ..., r, where t(k+1) is defined to be ∞, will be the

estimated probability of surviving beyond t(k). This is actually the probability of surviving

through the interval from t(k) to t(k+1) and all preceding intervals, and it leads to KM estimate

of the survivor function, given by

Ŝ(t) =
k∏

j=1

(
nj − dj
nj

)
(6.2)

for t(k) ≤ t < t(k+1), k = 1, 2, . . . , r, with Ŝ(t) = 1 for t < t(1) and where t(r+1) is taken to be

∞. If the largest observation is censored, for example t∗, Ŝ(t) is undefined for t > t∗. On the

other hand, if the largest observed survival time, t(r), is uncensored, n(r) = t(r), and Ŝ(t) is

zero for t ≥ t(r).

6.1.3 Cox Proportional Hazard model

Regression can be used to determine whether a characteristic of subjects affects the survival

and, if so, how much and in what direction (to increase or decrease). Survival prediction could

be difficult if some relevant risk factors are neglected. It is therefore necessary to identify those

variables that affect the survival. A model that links the survival and covariates is called Cox

Proportional Hazard regression.

Assuming that we have n individuals under observation, the Cox Proportional Hazards

model (Cox, 1972) is given by

h(t|X) = h0(t) exp (β1X1 + β2X2 + · · ·+ βpXp) = h0(t) exp

(
n∑

i=1

βTXi

)
, (6.3)

where h0(t) is called baseline hazard function, which is the hazard function for an individ-

ual for whom all the variables included in the model are zero, Xi = (Xi1, Xi2, . . . , Xip)
T

is the p-dimensional vector of explanatory variables for a particular individual, and βT =
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(β1, β2, . . . , βp) is the p-dimensional vector of unknown coefficients.

The corresponding survival functions are given by

S(t|X) = S0(t)
exp(

∑p
j=1 βjXj).

This model does not make any assumptions about the form of h0(t) and assumes parametric

form for the effect of the predictors on the hazard. For this reason it is a semi-parametric

model: h0(t) is the nonparametric part of model while the exponential is the parametric part.

The first part depends only on t, but not on X, and it summarizes the pattern of duration

dependence, assumed to be common to all individuals. The second part is an individual specific

non-negative function of covariates X, which does not depend on t (under the assumption that

the covariates are time-independent), which scales the baseline hazard function common to

all units. The beauty of the Cox approach is that this indeterminateness does not create any

problems in the estimation. Even though the baseline hazard is not specified, we can still get

a good estimate for regression coefficients and hazard ratio.

The measure of the effect is called hazard ratio. The hazard ratio of two individuals with

different set of covariates X and X∗ is

ĤR =
h0(t) exp(β̂

TX)

h0(t) exp(β̂TX
∗)

= exp
(
β̂T (X − X∗)

)
.

Under the assumption that the covariates are time-independent, this hazard ratio is also

time-independent. For this reason the Cox model is called the proportional hazards model. A

value of βi greater than zero, or equivalently a hazard ratio greater than one, indicates that

as the value of the ith covariate increases, the event hazard increases and thus the length of

survival decreases. An hazard ratio above 1 indicates a covariate that is positively associated

with the event probability, and thus negatively associated with the length of survival (Walters,

1999). Essentially, this model is a multiple linear regression of the logarithm on the hazard on

the variables, with the baseline hazard as the “intercept” term that varies over time (Bradburn

et al., 2003).

Since the baseline hazard is unspecified, the Cox model can be still estimated by the method

of partial likelihood, developed by Cox in 1972. Despite the resulting estimates are not as

efficient as maximum likelihood estimates for a correctly specified parametric hazard regression

model, there is a compensative virtue of this specification. In fact, with the advantage that

the partial likelihood doesn’t depend on the baseline, we overcome the problem of baseline

misspecification. Having fit the model, it is possible to extract an estimate of the baseline

hazard (Fox, 2002). Under regular conditions, the maximum partial likelihood estimator

behaves the same as the ordinary maximum likelihood estimator of i.i.d. random samples in

terms of asymptotic consistency, asymptotic normality and asymptotic efficiency (Cox, 1975).
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Suppose that we have data for n individuals, among whom there are r different death

times (so n − r are the right censored times). The r ordered death times will be denoted by

t(1) < t(2) < · · · < t(r) (so t(j) is the jth ordered death time). The set of subjects that are at

risk at time t(j) will be denoted by R(t(j)), called risk set. This set is taken over individuals

who have died and for whom the times of death have been recorded.

Cox (1975) showed that the relevant likelihood function for the proportional hazard model

in (6.3) is given by

L(β) =

r∏

j=1

exp(βTX(j))∑
l∈R(t(j))

exp(βTX(j))
, (6.4)

where X(j) is the vector of covariates for the individual who dies at the jth ordered death

time, t(j). The denominator is a sum of the values of exp(βTX) over all individuals who are

at risk at time t(j). The product is taken over the individuals for whom death time have

been recorded. The individuals for whom the survival times are censored do not contribute to

the numerator of the log-likelihood function, but they do enter into the summation over the

risk sets at death times that occur before a censored time. Moreover, the likelihood function

depends only on the ranking of the death times, since this determinates the risk set at each

death time. Consequently, also the inferences about the effect of explanatory variables on the

hazard function depends only on the rank order of the survival times.

It is possible to give another form of this likelihood function with the same results. In

fact, considering again n observed survival times, t1, t2, . . . , tn, and considering δi, the event

indicators (which is zero if the ith survival time ti, i = 1, 2, . . . , n is right-censored), the

likelihood function in equation (6.4) can then be expressed in the form

L(β) =
n∏

i=1

{
exp(βTXi)∑

l∈R(ti)
exp(βTX l)

}δi
, (6.5)

where R(ti) is the risk set at time ti. In this last expression (6.5), the likelihood function is

calculated using information about all the individuals in the dataset, and not, like the previous

one (6.4), those referred only to the uncensored individuals.

6.2 Variable selection in Cox model

An important and challenging task is to efficiently select a subset of significant variables upon

which the hazard function depends. There are many variable selection techniques in linear

regression models. Some of them, such as Akaike Information Criterion (AIC) of Akaike (1974)

and Bayesian Information Criterion (BIC) of Schwarz et al. (1978), can be easily extended to

survival analysis. Volinsky and Raftery (2000) extended the BIC to the Cox model. They

proposed a modification of the penalty term in the BIC, defining it in terms of the number of
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uncensored events instead of the number of observations. Moreover, it is possible to extend to

the context of survival data analysis the best subset variable selection and stepwise procedure

(see Collett (2015)). The latter is a combination of forward and backward selection. In forward

selection, variables are added to the model one at time. At each stage, the variable added

is the one that gives the largest decreases in the value of −2 log L̂ on its inclusion, where L̂

is the estimation of likelihood function. The stopping rule happens when the next candidate

for inclusion in the model does not reduce the −2 log L̂ by more than a particular quantity,

chosen at the beginning of the procedure. In backward selection, a model that contains the

largest number of variables under consideration is first fitted. Variables are then excluded

one at time: at each stage the variable omitted is the one that increases the value of −2 log L̂

by the smallest quantity on its exclusion. The procedure ends when the next candidate for

deletion increases the value −2 log L̂ by more than a pre-specified quantity. The most general

procedure, the stepwise, works as follows. Variables are added to the model one at time and

a variable that has been included in the model can be considered for exclusion at a larger

stage. So, after adding a variable in the model, the procedure checks whether any previously

included variable can be deleted. These procedures have two main disadvantages: they lead

to the identification of one particular subset, rather than a set of a equally good ones and

they also depend on the stopping rule (Collett, 2015). This procedure works well only in

low-dimensional predictor scenario, while in high-dimension it is preferable to adopt different

approaches.

When p > n, it is possible to extend the penalised partial likelihood methods for variable

selection in the Cox model, with the following formulation

logL(β)− n

p∑

j=1

pλ(|βj |)

using the same idea of Section (1.1) of Chapter 1, where is presented the penalised objective

function. When pλ(.) ≡ 0, this is reduced to the partial likelihood function of Cox (1975). The

penalized likelihood estimate of β is derived by maximizing the penalized partial likelihood

with respect to β. With a proper choice of pλ, many of the estimated coefficients will be zero

and hence their corresponding variables do not appear in the model. Tibshirani (1997) extends

the LASSO method imposing pλ(|βj |) = λ(|βj |), while Fan et al. (2002) propose a SCAD

penalty. However, both algorithms were theoretically tested only when p � n. It is rather

unlikely that the two assumptions of LASSO, the beta-min and irrepresentable conditions,

hold (i.e. in genomics data). Since the first condition is sufficient and (essentially) necessary

condition for model selection consistency, in general we cannot expect that the selected set,

as retrieved by the LASSO, will be the true set of variables.

Bradic et al. (2011) addressed the problem of existence of an oracle estimator and regu-
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larization estimator under an ultra-high dimensionality setting, where the full dimensional-

ity might grow exponentially or non-polynomially fast with the sample size, in the order of

log p = O(nδ) for some δ > 0 and the order of true regressors goes to infinity, in the order

of s = O(nα) for α ∈ (0, 1). With bounded covariates, it is possible to find a strong oracle

inequality for the LASSO and SCAD in Cox model, imposing some conditions on covariance

matrix and on the score vectors of the log partial likelihood. For LASSO, it is needed to im-

pose a version of irrepresentable condition for censored data very stringent. The restriction has

the following formulation: β∗n � √
sn−0.5+(0.5a+a1−1)++a2 , where β∗n = min{|βj |, j ∈M} is the

minimum signal strength and a2, a2 > 0 are constants, and (x)+ is the positive part of x. With

this condition the oracle property holds with s = O(n1/3). For the SCAD, there is the oracle

property, with a less stringent version of irrepresentable condition and with β∗n � √
sn−0.5

and λn � √
sn−0.5+(0.5a+a1−1)++a2 .

Wit et al. (2014) extend the dgLARS method of Augugliaro et al. (2013) to Cox model.

The basic idea underlying the dgLARS method is to use the differential geometrical structure

of a generalized linear model (GLM) to generalize the LARS method originally proposed in

Efron et al. (2004).

6.3 Screening

Zhao and Li (2012) generalized the sure independence screening of Fan and Lv (2008) for

the Cox proportional hazards model with p covariates. This screening procedure is called

the Principled Cox Sure Independence Screening (PSIS). Assuming a marginal Cox model,

possibly misspecified, on each Xj , namely,

h∗0,j(t) exp(Xijβ
∗
j ),

they obtained the maximum partial likelihood estimate of β∗j , denoted by β̂j . Then, the

importance of Xj is measured by a Wald type statistic for testing β∗j = 0. As a result, the

estimated M∗, where M∗ is the true set of explanatory variables, is given by

M̂∗ = {j : Ij(β̂j)1/2|β̂j | ≥ λn}

, where j = 1, . . . , p, λn is a pre-specified cut-off that depends on n and β̂j solves the partial

likelihood score equation

Uj(β) =
1

n

n∑

i=1

∫ ν

0

{
Xij −

∑n
i=1Xij exp(Xijβ)Ỹi(t)∑n
i=1 exp(Xijβ)Ỹi(t)

}
dNi(t) = 0,

where Ij(β̂j) = −∂Uj(β)
∂β |

β=β̂j
is the observed information at β̂j , Ni(t) = I{min{Ti, Ci} ≤
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t, δi = 1} is the observed failure process and Ỹi(t) = I(min{Ti, Ci} ≥ t) is the at-risk process.

Here, ν > 0 is the study duration, which is assumed to be long enough to ensure that sample

events are observed during the interval [0, ν]. When the true model size |M∗| = s, the expected

false positive rate can be written as

E

(
|M c

∗ ∩ M̂∗|
|M c

∗ |

)
=

1

p− s

∑

j∈Mc
∗

P{Ij(β̂j)1/2|β̂j | ≥ λn}.

Moreover, when βj = 0 or j ∈ M c
∗ , Ij(β̂j)

1/2|β̂j | converges in distribution to a standard

normal variable and λn controls the expected false positive rate at 2{1− Φ(λn)}, where Φ is

the standard normal cumulative distribution function. In order to decrease the false positive

rate to 0 as p increases with n, Zhao and Li (2012) fixed the number of false positives (FP )

that they are willing to tolerate, which would correspond to a false positive rate of FP/(p−s).
Because s is usually unknown, it is possible to be conservative choosing λn = Φ−1{1 − q/2}
where q = FP/p, so the expected false positive rate is 2{1−Φ(λn)} = q ≤ FP/(p− s), which

is close to the desirable false positive rate, FP/(p− s). To study the sure screening property,

Zhao and Li (2012) first established the following β-min condition (that is, the true signals

have enough marginal strengths): there exist constants c1 > 0 and 0 < κ < 1/2 such that

minj∈M∗
|cov[Xij , E{FT (Ci|Xi)|Xi}]| ≥ c1n

−κ, where FT (·|Xi) is the cumulative distribution

function of Ti given Xi. Then Zhao and Li (2012) proved that

min
j∈M∗

|βj | ≥ c2n
−κ

where c2 is a positive constant. This result leads to the sure screening property

P (M∗ ⊂ M̂∗) → 1

for the non-polynomial dimensionality problem log(p) = O(n1−2κ). However, given that PSIS

stems from a Wald test based on a Cox model, its performance is unclear when the underlying

assumption of a Cox model (i.e. the proportionality of hazard) fails.

With the goal of making the screening procedure less model-centric, Gorst-Rasmussen

and Scheike (2013) proposed a Feature Aberration at Survival Times (FAST) statistic that

measures the aberration of each covariate relative to its at-risk average. Specifically, for

covariate Xj , the FAST statistic is defined as

dj =
1

n

n∑

i=1

∫ ν

0

{
Xij −

∑n
i=1Xij Ỹi(t)∑n
i=1 Ỹi(t)

}
dNi(t)
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where t ∈ [0, ν]. With standardized covariates, the population version of dj is

d̃j = E(dj) = cov{Xj , FT (ν|Xi)}+
∫ ν

0
cov{Xj , FT (t|Xi)}K(t)dt,

where FT (t|Xi) = P (Ti ≤ t|Xi) and K(.) is a strictly positive function. Thus, d̃j is large

if cov{Xj , FT (t|Xi)} has a constant sign throughout t ∈ [0, ν]. Thus, it is reasonable to

consider the magnitude of dj as a marginal utility to rank the importance of Xj . FAST can

be also viewed as a score test statistic based on a Cox model. To study the sure screening

property, Gorst-Rasmussen and Scheike (2013) assumed that the true hazard function is of

the single-index form

hi(t) = h(t,XT
i β), i = 1, . . . , n,

requiring the resulting survival function exp{
∫ t
0 h(s, .)ds} to be strictly monotonic for each

t ≥ 0. They proposed to estimate the true set of variable by

M̂∗ = {j : |dj | > λn}

for a given λn. The authors showed that there exists a threshold ζn > 0 such that minj∈M∗
|d̃j | ≥

ζn and maxj /∈M∗
|d̃j | = 0, assuming a linear regression property, which holds for Gaussian

features and, more generally, for features following an elliptically contoured distribution, a

restriction on the censoring mechanism that have to be partially random in the sense of de-

pending only on irrelevant features and the partial orthogonality condition that was also used

by Fan and Song (2010). Thus, the signals d̃j when j ∈ M∗ are stronger than those when

j /∈ M∗. They further assumed that |cov(Xj ,X
Tβ)| ≥ c1n

−κ, j ∈ M∗, for some c1 > 0 and

0 ≤ κ < 1/2. Then they showed that, by taking λn = c2n
−κ for some constant 0 < c2 ≤ c1/2,

the sure screening property holds even when p grows exponentially fast with n. Like the

SIS, FAST assumes that the covariates present in the true model M∗ are independent of the

irrelevant covariates. This assumption is often violated in practice. To account for possi-

ble correlations between variables, Gorst-Rasmussen and Scheike (2013) proposed an iterated

FAST procedure.

6.3.1 Model-free screening

It is desirable for screening tools to possess invariance properties under transformations of

variables (Xi or Ti) and robustness against outliers. Researchers proposed Kendall’s τ based

screening methods (Li et al., 2012a), since Kendall’s τ , a widely used measure of correlation,

is robust against heavy tailed distributions and invariant under monotonic transformations.

To accommodate survival data, Song et al. (2014) considered the concordance between failure

time T and covariate Xj in the presence of censoring. This procedure is called the Censored
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Rank Independence Screening (CRIS). Defining τj = P (Xji > Xji′ , Ti > Ti′) − 1/4, that

measures the association between T and Xj . In fact τj is 0 if T and Xj are independent.

Let φj = δii′I(Xij > Xi′j, Yi > Yi′)/S
2(Yi′), it can be easily shown that E(φj) = P (Xij >

Xi′j , Ti > Ti′). Thus, a natural estimate of τj is:

τ̂j =

(
n

2

)−1∑

i<i′

δi′

Ŝ2(Yi′)
I(Xij > Xi′j , Yi > Yi′)− 1/4,

where Ŝ is the Kaplan–Meier estimator of S(t) = P (Ci ≥ t). Define the true set as M∗ =

{j : p(T > t|X) functionally depends on Xj}. Then, it is estimated by a set of important

predictors with large τ̂j :

M̂∗ = {j : |τ̂j | > λn},

where λn is a predefined threshold value. Song et al. (2014) showed that τ̂j is a consistent

estimator for τj . Moreover, the sure screening property with a dimensionality log p = o(n1−2κ)

is achieved taking λn = c7n
−κ with c7 ≤ c0/2 and when minj∈M∗

|P (X1j > X2j , T1 > T2) −
1/4| ≥ c0n

−κ for some 0 < κ < 1/2 and c0 > 0. The latter assumption states that the

minimal marginal rank correlation between the active variables and the response variable

should exceed a certain threshold. Model selection consistency can be achieved if there is a

gap between signal variables and noise variables. In this case, a sufficient condition for model

selection consistency is that X
M̂∗

(the relevant variables) and X
M̂c

∗

(the irrelevant variables)

are independent. However, the computation of τ̂j requires the comparison of all possible pairs

of samples. This exceedingly heavy computational burden may hamper its applicability when

the sample size is large.

The validity of model-based screening methods, such as PSIS, often hinges upon the as-

sumptions of the underlying models. For example, when the proportional hazards assumption

fails, the model-based approaches may incur a large number of false negatives and lead to

invalid results. To develop a model-free framework that can be applicable to a more general

class of survival models, He et al. (2013) proposed the Quantile Adaptive sure independence

screening (QA). This approach performs screening based on the disparity between uncondi-

tional and conditional quantiles given each covariate. However, since not every quantile is

estimable under censoring, its performance under heavy censoring is unclear.

QA and CRIS are model-free screeners, but they may not capture the full-range impact

of covariates on the overall survival since QA focuses on a specific quantile level and CRIS

relies on a summarized value of association. To more fully capture the overall influence

of a covariate on the outcome distribution, Li et al. (2016) proposed a new metric called

the Survival Impact Index (SII), which evaluates the absolute deviation of the covariate-

stratified survival distribution from the unstratified survival distribution. Specifically, for
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each Xj , j = 1, . . . , p, SII is defined as

ξj =

∫

t∈T,x∈X
Wξ(t, x)|S(t|Xj > x)− S(t)|dxdt,

whereWξ(t, x) is a pre-determined weight function introduced to capture the covariate impact

on either early or late survival. The authors argued that if, for at least one t and one x, the

survival function stratified on Xj > x differs from the unstratified survival function at t, then

ξj will be non-zero under mild conditions. On the other hand, if T and Xj are independent,

then ξj = 0. To estimate ξj , Li et al. (2016) proposed to use

ξ̂j =

∫

t∈T,x∈X
Wξ(t, x)|Ŝ(t|Xj > x)− Ŝ(t)|dxdt,

where Ŝ(t|Xj > x) is the Kaplan-Meier estimator based on sub-sample Xj > x and Ŝ(t) is

the Kaplan-Meier estimator for the survival function of T . The set of important predictors is

defined by

M̂∗ = {j : ξ̂j > λn}.

Under some regularity conditions, the estimated survival impact index ξ̂j is uniformly

consistent to ξj . If p = O(exp(nc)) for some 0 < c < 1 and minj∈M ξj > c0n
−α for some

constants c0 > 0, 0 ≤ α < (1 − c)/2, and if the information collected from the region T ×X

can produce a rather stable estimation of Xj ’s impact on the distribution of T , Li et al. (2016)

proved that

p(M∗ ⊂ M̂∗) → 1

by taking λn = bn−α with b ≤ c0/2.

In a survival setting, non-parametric variable screeners have focused on discerning how

each candidate variable influences survival functions. One way of detecting such influence is

by studying the variability of survival functions for the sub-populations or strata defined by

each variable. The difference patterns, however, may vary across covariates. Specifically, the

differences may occur either during the early or late period in the follow-up due to disease-

related characteristics. Therefore, screening approaches that rely on a single screening criterion

may not be able to capture the complex difference patterns and may lead to false non-discovery.

In order to capture the differences during the periods, Hong et al. (2018) proposed to consider

the following Integrated Powered Density (IPOD):

∫ t

0
fγ(s)ds,

where a power index γ(> 0) inflates either early (γ > 1) or late differences (γ < 1) during

the life span and thus it gives more flexibility in detecting distributional differences. IPOD
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resembles the cumulative distribution function (CDF) and satisfies the basic properties of

CDFs, except that it does not necessarily approach one when t→ ∞. To derive the screening

criterion, first consider a discrete Xj with Rj categories. The unique property of IPOD

motivates the following marginal utility to detect distributional differences:

I
(γ)
j = max

r1,r2∈{1,...,Rj}
sup
t∈[0,ν]

∣∣∣∣
∫ t

0
fγT |Xj

(s|Xj = r1)ds−
∫ t

0
fγT |Xj

(s|Xj = r2)ds

∣∣∣∣ ,

where fT |Xj
(s|Xj = r) denotes the conditional density function of T given Xj = r. Since

I
(γ)
j = 0 if and only if T and Xj are independent, it serves as a measure of marginal utility

for each Xj . The framework of IPOD accommodates different γ’s. For example, when γ = 1,

I(γ)j is simply the classical Kolmogorov difference: maxr1,r2∈{1,...,Rj} supt∈[0,ν] |FT |Xj(t|Xj =

r1) − FT |Xj(t|Xj = r2)|. So this framework is general, including the Kolmogorov filter (Mai

and Zou, 2015) as a special case. Denote by hn > 0 the bandwidth of a kernel function K(·),
I
(γ)
j can be estimated by

Î
(γ)
j = max

r1,r2∈{1,...,Rj}
sup
t∈[0,ν]

∣∣∣∣
∫ t

0
f̂λT |Xj

(s|Xj = r1)ds−
∫ t

0
f̂λT |Xj

(s|Xj = r2)ds

∣∣∣∣ ,

with

f̂T (t) =
∑

i

K((t− ti)/hn)(ŜT (ti−1)− ŜT (ti)),

where Ŝ(t) is the Kaplan–Meier estimator for the survival function of T and the conditional

density estimator f̂T |Xj
(t|Xj = r) can be obtained similarly as f̂T (t) by restricting samples to

Xj = r. Hong et al. (2018) defined the true important feature set as

M∗ = {j : S(t|X) functionally depends on Xj for some t ∈ (0,∞)}

estimated by M̂1∗ =
{
j : Î(γ)j > λn

}
where λn > 0. This procedure is referred to as the

IPOD screening.

When a covariate Xj is continuous, it can be discretized into Rj slices. Suppose there are

N different ways of slicing a continuous covariate Xj by using the percentiles of the empirical

distribution of Xj , denoted by Λju, u = 1, . . . , N , with each slice Λju contains Rju intervals.

Denoting as Î(γ)j,Λju
the IPOD screening statistic corresponding to the slicing scheme of Λju,

they proposed the following fused IPOD screening statistic that collects all information from

each slice:

Ĩ
(γ)
j =

N∑

u=1

Î
(γ)
j,Λju

.

This statistic leads to the following screening criterion, M̂2∗ =
{
j : Ĩ

(γ)
j > λn

}
, where λn > 0
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is a pre-specified constant.

For large sample results, Hong et al. (2018) stipulated the following assumptions. Let Λjuo

be the partition based on the theoretical quantiles qju(r) of Xj and I
(γ)
jo =

∑N
u=1 I

(γ)
j,Λjuo

and

assume that there exist c > 0 and 0 < v < 1/2 such that minj∈M I
(γ)
jo ≥ 2cn−v for a specific

γ. When covariates include both continuous and discrete values, under the above conditions,

for 0 < α < 1 − 3κ − 2v − 2µ − 2ρ, if N = O(log n) and log p = O(nα), the fused IPOD has

the sure screening property. IPOD enjoys the invariance property like other non-parametric

screeners such as SII and CRIS, but it is more computationally efficient with increasing n. The

performance of the method depends on how well the distribution function can be estimated

on each covariate-defined stratum. Hence, it may not work well for small sample sizes.

To accommodate censoring in ultra-high-dimensional survival data, Liu et al. (2018) re-

placed the conditional distribution of each covariate given a response variable in FKF of Mai

and Zou (2015) with a conditional distribution of a response variable given each covariate, and

then they used the Kaplan–Meier to estimate the unknown conditional distributions. This

Kolmogorov–Smirnov statistic-based independence screening method can deal with discrete,

categorical or continuous covariates and it is called the fused Kolmogorov–Smirnov statistic-

based Sure Independence Screening (KS-SIS). Liu et al. (2018) proposed the following statistic:

K
Gj

j = max
l1,l2

sup
0≤t≤τ

|Sj(t|Ij = l1)− Sj(t|Ij = l2)|

where Gj = {[ajl , a
j
l+1) : a

j
l < ajl+1, l = 0, . . . , Gj − 1 and ∪Gj−1

l=0 [ajl , a
j
l+1) \ {a

j
0} = R}. When

Xj takes finite values such that each possible value forms a slice, Xj is independent of T if

and only if K
Gj

j = 0. When Xj is continuous or discrete, it is independent of T if and only if

K
Gj

j = 0 for any partition Gj . The estimate of K
Gj

j is defined as

K̂
Gj

j = max
l1,l2

sup
0≤t≤τ

|Ŝj(t|Ij = l1)− Ŝj(t|Ij = l2)|,

where Ŝj(t|Ij = lb), with b = c(1, 2), is the Kaplan-Meier estimator of Sj(t|Ij = lb). Fur-

thermore, they used the idea of fusion to improve the efficiency of the Kolmogorov-Smirnov

measure. Then

K̂j =

Nj∑

k=1

K̂
Gkj

j

is an estimate of Kj =
∑Nj

k=1K
Gkj

j considering Nj different partition Gkj , k = 1, . . . , Nj . Then

based on K̂j , they defined the estimated active set as

Â(dn) = {1 ≤ j ≤ p : K̂j is amongst the first dn largest of all K̂j}
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where dn is a prespecified positive integer. Under the following two conditions

• there exists a set B such that A ⊂ B

∆B = min
j∈B

min
1≤k≤Nj

K
(o)
j (Gkj)−max

j /∈B
max

1≤k≤Nj

K
(o)
j (Gkj) > 0

where the slicing is built on the theoretical quantiles of Xj , so the jointly important

predictors should also be marginally important;

• if Xj is continuous, then for any d2, d2 such that P (Xj ∈ [d1, d2)) ≤ 2/minkGkj , they

have

|Sj(t|x1)− Sj(t|x2)| ≤
∆B

8

for all t, j and x1, x2 ∈ [d1, d2),

the sure screening property holds with probability tending to one if

∆B �
√

log n log(pN log n)

n

with a dimensionality p = O(nc) with c < 1.
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Chapter 7

D-ELSIS in survival analysis

Let T,C and X(n×p) be respectively the survival time, the censoring time and their asso-

ciated covariates, with n � p. Correspondingly, let Z = min(T,C) be the observed time and

let δ = I(T ≤ C) be the censoring indicator. To analyse the association between T and X

in a statistical setting, we consider the observed data {(Xi, Zi, δi) : i = 1, . . . , n} as an i.i.d.

random sample from a population (X, Z, δ). Further, we consider two classical assumptions

on the censoring times:

(B1) the independence censoring, so T and C are independent given X;

(B2) the noninformative censoring, so the conditional distribution of C given X does not

involve the parameters of interest.

The requirement (B1) essentially means that the uncensored subjects under follow-up have

to be representative of the surviving population. This condition that is satisfied when censoring

occurs independently of the survival time. When there are covariates, then the independent

censoring assumption is made conditional on the covariate information. The assumption (B2)

assumes that participants should drop out of the study only for reasons unrelated to the study.

These two assumptions are classical in survival analysis.

Following the notation in Fan and Gijbels (1996), it is possible to study the contribution of

the risk factors via the conditional hazard rate function. For a given covariate Xj , the hazard

rate at a given time t is

h(t|Xj) = lim
δ→0

P (t ≤ T < t+ δ|T ≥ t,Xj)

δ

representing the risk that an individual fails immediately after time t given survived at the

that time. There are two popular models based on the hazard rate: the Accelerated Failure

Time model (AFT) and the Cox Proportional Hazards model (PH-COX). The AFT assumes

102



that the hazard rate has the form

h(t|x) = h0(tψ(x))ψ(x)

and the PH-COX describes the hazard rate via

h(t|x) = h0(t) exp(ψ(x)),

where h0(·) is the baseline hazard function and ψ(x) is the function depicts the contribution

of covariates x.

Assume for simplicity that the covariates X are not time varying and that the random

variable T is absolutely continuous. Note that

h(t|x) = f(t|x)/S(t|x), with S(t|x) = 1− F (t|x)

being the conditional survivor function, where f(t|x) and F (t|x) are respectively the con-

ditional density and distribution function of T given X = x. From the property of the

distribution function, the survival function is continuous and non-increasing. The conditional

survivor function can be represented as

S(t|x) = exp

{
−
∫ t

0
h(u|x)du

}
(7.1)

for a nonnegative random variable T . Hence, modelling the hazard rate function is equiva-

lent to assume a specific form for the conditional distribution or for the conditional survival

function.

Regarding the considerations state above, it is possible to introduce a more general ap-

proach to study how the variables affect the event of interest via the regression model:

Y = g(T ) = m(X) + ε

for a given transformation g(·), often a logarithmic function, with σ2(X) ≡ 1. This approach

attempts to assess the contributions of risk factors via a mean response function m(·), where
m(·) is an unknown function.

Also in this context, as we did in the previous chapters, we are looking for a method that

allows screening without imposing conditions on the functional form that links time, which

in this case is the response variable, to the other covariates. To do this, we therefore need a

nonparametric estimator.
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7.1 Limitation of Kaplan Meier estimator

As we said in Chapter 6, the Kaplan Meier (KM) estimator is a nonparametric statistical

method used to estimate the probability of survival over time, given by

Ŝ(t) =

k∏

j=1

(
nj − dj
nj

)
(7.2)

for t(k) ≤ t < t(k+1), k = 1, 2, . . . , r, with Ŝ(t) = 1 for t < t(1) and where t(r+1) is taken to be∞.

Kaplan Meier plots visualize the probability that a patient survives a certain time. For each

time interval, survival probability is calculated as the number of subjects surviving divided

by the number of patients at risk. Subjects who have died, dropped out, or move out are not

counted as at risk, and since they are considered as censored, they are not included in the

denominator. Total probability of survival till that time interval is calculated by multiplying

all the probabilities of survival at all time intervals preceding that time. The Kaplan Meier

estimator is well defined for all time points less than the largest observed study time. If the

largest study time corresponds to a death time, the estimated survival curve is zero beyond this

point. If the largest time point is censored, the value of S(t) beyond this point is undetermined.

As it is possible to see from the formula (7.2), this estimator does not involve covariates.

However, we know that there are significant factors that contribute to different survival times.

With additional information we can have more accurate survival estimates to individual pa-

tients. In fact, when we have a study for example on the effect of a drug for a particular

disease, we want to evaluate whether this medicine is effective or not. To do this, we can con-

sider the difference between survival functions, taking into account patients with and without

the treatment. When the covariate is discrete, the KM can be used to compare survivals.

Two survivals are obtained, one for the case-subjects and one for those under control. With

the help of a graph, we can evaluate which of the two functions obtained through the KM

estimate is higher. If the subjects who took the treatment have a higher survival, then it

is possible to say that the medicine is able to treat the patients. We underline that Kaplan

Meier estimator does not test the difference of survival functions. In fact, the Kaplan Meier

estimator estimates survival probabilities and does not compare them. It does not compare

them. To make inferences on these survival probabilities we need a test. In the literature

there are various procedures that allow to test whether the difference between the two curves

is significant or not. Among these, the well known test is the log-rank test (Peto and Peto,

1972).

When we estimate S(t) function conditioned on a continuous variable, we need to discretize

the variable and get as many survival functions as classes in which we have divided the

variable. Evaluating the comparison of the classes with the plot, in this case, becomes much
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more complicated. Furthermore, the KM estimator cannot be used to estimate the survival

function conditioned by the effect of several variables at the same time.

Some model-free screening methods, such as KS-SIS (Liu et al., 2018) and IPOD (Hong

et al., 2018), use the KM estimator in order to discern how each candidate variable influences

survival function, even in the presence of continuous covariates. In both cases, the continuous

covariates are discretized into slices and the authors compare the survival functions (estimated

on each slice using KM) with the Kolmogorov-Smirnov statistic. KM is estimated considering

the number of events that occurred and the number of subjects that survived up to that point.

Substantially, when they calculate the survival function on the slice, they take into account

a subset of the observations, so only a subset of the events and a subset of the subjects at

risk. If instead of considering more slices for the continuous covariate we consider only one

slice, we cannot actually estimate the effect of the covariate on survival, because the set that

we select is the whole set of observations. Therefore, considering a single slice, we obtain an

estimation of the survival function which is not conditioned. It is possible to estimate directly

the covariate’s effect on survival function using a different approach not involving the KM

estimator, as we will see in the next section.

7.2 D-ELSIS in survival analysis

For the survival-based screening, we intend to recover a sparse subset

M∗ = {1 ≤ j ≤ p : the j-th variable in X is relevant for explanation of Y }.

In biomedical studies, it is reasonable to stipulate a sparsity condition that only a small

number of covariates are relevant. That is, the cardinality s of M∗ is small relative to p.

In order to construct a nonparametric screening procedure, we need a nonparametric es-

timator different from KM that does not suffer from the problems considered in the previous

section. Specifically, the KM estimator conditioned by continuous covariates depends on how

the subsets are chosen. To solve the problem of the conditional estimation of the survival

function, we consider the general regression model in survival analysis:

Y = g(T ) = m(X) + ε (7.3)

with a generic function g(·) strictly monotone. Depending on the form of g(·), we can obtain

the COX and AFT models. If g(t) = t we model the time directly.

This model has the same structure as the nonparametric model considered in the first

part of this thesis, in Chapter 2, since we do not impose condition on the functional form of

m(·). The substantial difference is that dependent variable is a function of time and not time

directly. We need the following assumptions:
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(C1) there exists a ν > 0 such that S(ν|Xj) > θ1 > 0 for 1 ≤ j ≤ p, where θ1 is a positive

constant;

(C2) for any t ∈ [0, ν], fT |Xj
(t|x) is greater than a positive constant ĉ0 for j ∈M∗.

Condition (C1) is imposed to avoid problems with estimating the tail of the conditional

survival functions. Because (C1) is satisfied in many clinical settings, it is widely used in

literature (Peng and Fine, 2009). In practise, ν is often chosen to be the study duration.

Condition (C2) states that the conditional density is positive.

Using these two assumptions and the strict monotonicity of g(·), the relevant covariates in
the model (7.3) will also be relevant for the survival function. In fact, the strictly monotonicity

of g(·) ensures that a variation of t leads to a variation of g(t). When a variable Xj influences

Y = g(t) in the regression model (7.3), this variable is relevant. Since the survival function

S(t|x) and the density fT |Xj
(t|x) are positive, as ensured by (C1) and (C2), respectively, a

variation of t, due to a variation of Xj in (7.3), leads to a variation of S(t|Xj = x). In this way

we can handle the problem of the conditioned survival function in a better way than using

the KM estimator. Therefore, looking for the covariates relevant for the regression model is

sufficient to find the covariates being also relevant for the survival probability.

Since we have the same regression model structure of (2.1), we can use the same procedure

considered in Chapter 2. In fact, in order to identify explanatory variables that contribute

to the response variable in high-dimensional non-parametric regression in survival analysis,

we consider our independence model-free feature screening technique D-ELSIS, proposed in

Chapter 2. With our D-ELSIS procedure, we obtain a model-free screening procedure without

the use of the KM estimate of survival function. This is the fundamental difference among our

method and the other model-free screeners in literature, such as IPOD of Hong et al. (2018)

and KS-SIS of Liu et al. (2018). Furthermore, based on our knowledge, in survival context,

a screening method that combines empirical likelihood and local polynomial regression has

never been used.

As regards the assumptions in Chapter 3 for the screening property of D-ELSIS, we need to

adequately adopt them in this context. Consider the marginal contribution fj(x) = E(Y |Xj =

x) = E(g(t)|Xj = x) of explanatory variable Xj on g(t). Since g(·) is strictly monotone, this

is the same that considers a marginal contribution of an explanatory variable Xj on t. We

apply the local polynomial regression to estimate the first partial derivative with respect to

the covariate Xj in the regression model, for j = 1, . . . , p. Once we get this estimation, we

use the empirical likelihood to verify if this derivative is zero uniformly in the covariate’s

support. With the use of partial derivative, we investigate the marginal contribution from

each explanatory variable in explaining Y , that is a function of time, to justify whether it is

relevant or not, following the same idea of Chapter 2. In fact, if f ′j(·) ≡ 0, the covariate Xj is

not relevant, otherwise Xj is an active variable.
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As we mentioned in Section 2.4 of this thesis, we estimate the first marginal derivative of

our nonparametric model (7.3) using the local quadratic estimator

f ′j(x) =
n∑

i=1

Wi,2(x)Yi =
n∑

i=1

1

n
S(x;h)Kh(Xi − x)Yi. (7.4)

As we explained in Lemma 1 of Chapter 3, for assessing f ′j(x) = 0 at given x without

distributional assumptions, we can use a simplified version of the local quadratic estimator in

the following empirical likelihood:

ELj(x, 0) = sup
w

{
n∏

i=1

wi : wi ≥ 0,
n∑

i=1

wi = 1,
n∑

i=1

wiUij = 0

}
, (7.5)

where Uij = 1
h2
Kh(Xij − x)(Xij − x)Yi. By applying the Lagrange multiplier method for

solving (7.5), we obtain the empirical likelihood ratio

lj(x, 0) = −2 log{ELj(x, 0)} − 2n log n = 2
n∑

i=1

log{1 + λUij}, (7.6)

where λ is the univariate Lagrange multiplier solving
∑n

i=1
Uij

1+λUij
= 0. The lj(x, 0) is a

statistic for testing whether or not (7.4) has zero mean locally at x. For assessing f ′j(·) ≡ 0,

we use

lj(0) = sup
x∈Xj

lj(x, 0)

for each j = 1, . . . , p, where Xj is the support of variable Xj .

For feature screening purpose, we sort lj for all j = 1, . . . , p in decreasing order, and we

take the first γn covariates. In this way, we create a set

M̂γn = {1 ≤ j ≤ p : lj ≥ γn}

In order to implement the proposed method, we evaluate the statistic lj using lj(0) =

max1≤i≤n lj(Xij , 0).

As we did in the previous part of this thesis, we can transform the screening selection

procedure in a variable selection procedure with the use of subsample tool, as we explained in

Section 2.5 of this thesis.
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Chapter 8

Simulations for screening in

Survival analysis

Simulation studies are conducted to investigate the performance of our D-ELSIS method,

proposed in Chapter 2 of this thesis and extended to survival analysis in Chapter 7, in terms

of the following three criteria: (i) the median of the minimum model size (MMSs, i.e., the

smallest number of the selected covariates including all the active explanatory variables) for

100 repetitions; (ii) the IQR divided by 1.34 (SD), that is the robust measure of the standard

error of MMS; (iii) the percentage of true positive rate (TPR) that controls the precision

measuring the proportion of actual relevant variables that are correctly identified as such. To

calculate the TPR we consider that the predicted relevant variables are the first 20. In order

to have a very good method, the MMS should be equal to the number of the true active

variable, with small SD and high TPR. We set n = (500, 750, 1000) and p = (100, n/2, 2n).

For comparison, we also consider other two existing screening methods for nonparametric

models: the Integrated Powered Density (IPOD) of Hong et al. (2018) and fused Kolmogorov

–Smirnov statistic-based (KS-SIS) of Liu et al. (2018), presented in Chapter 6. For the imple-

mentation of the best bandwidth in the kernel regression estimation for D-ELSIS, we use the

R package NonpModelCheck of Zambom et al. (2017). Among the various options of the

package, we choose the cross-validation leave-one-out, which performs satisfactorily. Instead,

as regards the likelihood estimation for empirical likelihood, we use the R package emplik of

Zhou (2018). Furthermore, for the IPOD method, we use the code that Hong et al. (2018)

provided in their paper and we consider γ = (0.8, 1.0, 1.2) as in their study.

We consider the following experiments in the simulation study.

Example 5 : Cox model

The Cox model represents the most widely used model in survival analysis. In this case

we want to verify how much the increase of censoring rate affects the performance of our
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estimator. The survival time is generated from a Cox model

h(t|X) = exp(βTX).

Here predictors Xj ’s are generated from a multivariate normal distribution with mean

µ = 0, variance σ2 = 1, correlation ρ = {0, 0.5} and β = (1T5 , 0
T
p−5). The censoring time

is generated from a uniform distribution U(0, c), where c is chosen to achieve censoring

proportion of 20% and 40%. The results are shown in Table 8.1.

Example 6 : Non-linear covariate-response relationship

In this case we are interested in evaluating the effect of the increased correlation between

the covariates on the results of the screening. The survival time is generated from

log(T ) = 5X1−4X2(1−X2)+10
[
exp{−3(X3 − 1)2}+ exp{−4(X3 − 3)2}

]
−1.5+4 sin(2πX4)+ε

Here predictors Xj ’s are generated from a multivariate normal distribution with mean

µ = 0, variance σ2 = 1 and correlation ρ = {0, 0.5}. The error ε ∼ N(0, 1) is independent

from X. The four true main effects were initially generated as

f1(x) = 5x, f2(x) = −4x(1− x)

f3(x) = 10
[
exp{−3(x− 1)2}+ exp{−4(x− 3)2}

]
− 1.5, f4(x) = 4 sin(2πx)

Then, each fj is standardized by subtracting E[fj(x)] and dividing by SD[fj(x)] to have

zero mean and unit variance. The censoring time C is generated from a 3-component

normal mixture distribution N(0, 4) − N(5, 1) + 0.5N(25, 1). This example is adopted

from Li et al. (2016). The results are displayed in Table 8.2

8.1 Simulation results

The results shown in Table 1 reports the values of MMS and TPR for the first scenario

where the data are generated from the Cox model. In order to check how the D-ELSIS

method works, we consider different settings to analyze the effects of correlation and censoring

on the performance of the D-ELSIS. In particular, the correlation is fixed to be equal to

ρ = c(0.00, 0.50), and the censoring percentage is set to be equal to c(20%, 40%). Moreover,

the D-ELSIS performance is compared with that of IPOD (with different values of γ) and

KS-SIS. Looking at the TPR, if correlation between covariates does not exist, i.e. ρ = 0,

D-ELSIS has a better performance when the censoring is low and when n > p. Then, when

n < p, our proposed screening technique is less efficient for smaller sample sizes, while its
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performance increases when the sample size goes up. In absence of correlation, its performance

is substantially equal in terms of TPR. Moreover, the censoring affects the TPR especially

when n < p. In fact in order to make the results stable, we have to increase the sample size at

n = 1000. In terms of MMS, D-ELSIS fails only when n = 500 and p = c(100, 250). In all the

other cases, it performs well. Now, if we assume that the covariates are linearly correlated,

D-ELSIS works very well for most of the settings, in terms of both TPR and MMS. Moreover,

the SD of MMS decreases when the sample size increases. Compared with the IPOD and

KS-SIS, D-ELSIS performs particularly well when there is correlation, independently of the

censoring percentage. Instead, in terms of MMS, it works better because it is able to capture

the number of relevant covariates when both n > p and n < p.

For the second scenario, where a non-linear relationship between covariates and time of

interest is assumed, the results are shown in Table 2. It is possible to observe that D-ELSIS

works as better as the other methods when there is not correlation between covariates. Instead,

it outperforms them when there is a linear relationship in terms of both TPR and MMS,

whatever the sample size and number of covariates are. It is particular evident that IPOD

and KS-SIS fail in presence of correlation, and their performance is very poor when n < p, in

terms of MMS and SD, while D-ELSIS is quite stable in selecting the true set of covariates.
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Table 8.1: Simulation results from Example 5

s = 5
n = 500 n = 750 n = 1000

p = 100 p = 250 p = 1000 p = 100 p = 375 p = 1500 p = 100 p = 500 p = 2000
MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR

Method
ρ = 0 CR=20 %

D-ELSIS 5 (0.75) 100.00 6 (0.93) 99.60 8 (3.73) 98.40 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 99.80 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
IPOD (γ = 0.8) 6 (1.49) 100.00 8 (4.66) 97.60 15 (5.11) 90.00 5 (0.00) 100.00 5 (0.00) 100.00 6 (1.49) 99.60 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 99.80
IPOD (γ = 1.0) 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
IPOD (γ = 1.2) 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00

KS-SIS 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
ρ = 0 CR=40 %

D-ELSIS 5 (0.75) 99.60 6 (2.99) 98.60 8 (6.71) 96.20 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.19) 99.80 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
IPOD (γ = 0.8) 6 (0.93) 99.80 6 (2.99) 99.00 11 (9.14) 95.20 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.75) 99.60 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 99.80
IPOD (γ = 1.0) 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
IPOD (γ = 1.2) 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00

KS-SIS 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
ρ = 0.5 CR=20 %

D-ELSIS 5 (0.75) 100.00 6 (1.49) 100.00 9 (6.43) 97.60 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.75) 99.40 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
IPOD (γ = 0.8) 9 (6.72) 97.40 15 (12.87) 91.40 44 (47.95) 76.80 5 (1.49) 99.40 6 (3.73) 98.40 13 (19.96) 91.20 5 (0.00) 100.00 6 (2.24) 99.40 7 (5.97) 98.00
IPOD (γ = 1.0) 8 (5.22) 98.40 11 (11.38) 93.80 30 (48.13) 82.60 5 (1.49) 99.60 7 (4.48) 98.80 11 (15.30) 92.80 5 (0.00) 100.00 5 (1.49) 99.00 7 (4.48) 98.40
IPOD (γ = 1.2) 8 (3.92) 99.00 11 (8.40) 95.20 25 (34.33) 84.20 5 (0.75) 99.60 6 (3.73) 99.00 10 (13.06) 93.80 5 (0.00) 100.00 5 (0.75) 99.00 6 (2.43) 99.00

KS-SIS 5 (0.75) 99.80 6 (2.24) 99.40 8 (6.16) 96.80 5 (0.00) 100.00 5 (0.00) 100.00 5 (1.49) 98.60 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
ρ = 0.5 CR=40 %

D-ELSIS 5 (0.75 ) 100.00 6 (1.49) 99.60 10 (7.65) 99.60 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.75) 100.00 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
IPOD (γ = 0.8) 15 (11.20) 92.80 28 (26.12) 82.80 91 (96.45) 59.60 8 (4.48) 98.40 21 (25.75) 86.80 65 (82.28) 71.40 6 (2.24) 100.00 11 (11.94) 93.40 27 (40.49) 83.80
IPOD (γ = 1.0) 9 (5.97) 97.60 13 (9.70) 93.80 35 (44.96) 80.60 6 (2.24) 100.00 8 (6.16) 97.00 19 (19.22) 89.00 5 (0.75) 100.00 5 (2.24) 99.00 7 (5.97) 97.20
IPOD (γ = 1.2) 7 (4.48) 98.20 10 (7.46) 96.20 19 (30.41) 87.20 5 (1.49) 100.00 6 (2.99) 98.40 10 (12.13) 93.20 5 (0.00) 100.00 5 (0.75) 99.80 6 (3.17) 99.20

KS-SIS 5 (1.49) 99.20 6 (2.24) 99.80 11 (13.43) 93.40 5 (0.00) 100.00 5 (0.75) 100.00 5 (1.49) 98.80 5 (0.00) 100.00 5 (0.00) 100.00 5 (0.00) 100.00
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Table 8.2: Simulation results from Example 6

s = 4
n = 500 n = 750 n = 1000

p = 100 p = 250 p = 1000 p = 100 p = 375 p = 1500 p = 100 p = 500 p = 2000
MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR MMS (SD) TPR

Method
ρ = 0

D-ELSIS 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 99.50 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
IPOD (γ = 0.8) 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
IPOD (γ = 1.0) 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.75) 99.50 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
IPOD (γ = 1.2) 4 (0.00) 99.75 4 (0.75) 100.00 4 (2.42) 99.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00

KS-SIS 4 (0.00) 100.00 4 (0.75) 100.00 5 (3.92) 97.25 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00 4 (0.00) 100.00
ρ = 0.5

D-ELSIS 4 (1.49) 98.75 5 (3.73) 97.75 11 (17.35) 90.75 4 (0.00) 100.00 4 (0.75) 99.00 5 (1.49) 98.50 4 (0.00) 99.75 4 (0.00) 100.00 4 (0.75) 98.75
IPOD (γ = 0.8) 19 (24.07) 87.25 24 (71.08) 84.50 190 (229.85) 71.25 13 (16.60) 90.25 62 (102.43) 82.00 127 (305.60) 77.50 13 (21.08) 89.25 37 (86.38) 84.50 138 (384.13) 77.25
IPOD (γ = 1.0) 18 (21.83) 88.75 21 (50.19) 86.00 183 (255.97) 70.50 13 (16.04) 91.00 57 (97.76) 81.25 103 (318.84) 76.50 13 (20.15) 90.75 32 (80.78) 85.00 139 (308.58) 77.50
IPOD (γ = 1.2) 18 (22.20) 88.50 25 (47.95) 84.25 190 (242.72) 68.50 13 (17.35) 89.00 42 (89.55) 81.75 105 (308.77) 74.75 12 (17.91) 90.25 35 (77.98) 84.75 153 (286.01) 76.00

KS-SIS 20 (21.27) 85.50 46 (78.92) 77.50 217 (279.85) 65.00 10 (14.18) 93.00 27 (51.49) 85.50 206 (336.01) 74.00 11 (26.31) 90.50 33 (79.85) 84.25 306 (530.22) 74.25
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Chapter 9

Conclusions

In the second part of this thesis, after a review on the recent developments of variable and

screening selection for survival data analysis in ultra-high dimensions, we proposed to use

D-ELSIS screening procedure with time-to-event data. Many approaches developed for un-

censored data have been adapted to time-to-event data. Following the same idea introduced

in the first part of the thesis, we have shown that it is possible to use our new proposal also

in this context.

D-ELSIS differs from other model-based screening methods in survival analysis since it

selects the relevant covariates without imposing assumptions on the underlying model. Fur-

thermore, it does not use the KM estimator and the fused technique, as some model-free

screening methods do. In particular, we focused our attention on handling the conditional

survival function, without using the KM estimator, which has numerous disadvantages in the

presence of continuous covariates. In fact, in order to find the relevant variables for the survival

function we used the general regression model, in which the response variable is a function of

time. Under some regularity conditions, we have shown that the relevant covariates for the

regression model are relevant also for the survival probability.

The simulations results show that our approach is able to select the relevant covariates,

especially in the presence of correlation between the relevant and non-relevant ones. In fact,

compared to model-free competitors based on fused technique, when the effect of the covari-

ate on the event of interest is non-linear and in the presence of correlation, D-ELSIS has

significantly better results.

Since the results obtained from the simulations are very promising, as future works we

will demonstrate that D-ELSIS has the screening property with survival data in ultra-high

dimensions. Furthermore, we will test that the subsample technique of Chapter 2, that is very

general, transforms screening into variable selection also in this particular context. Finally,

we will apply our proposed method on some real data sets, in order to assess its performance.
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