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Every single person, animal, or thing we can see in the world around us
is part of a broader collection of components that can spontaneously self-
organize to exhibit non-trivial global structures and behaviors at larger
scales, often without external intervention, central authorities, or lead-
ers. The properties of the collection these components give life cannot be
understood or predicted from the full knowledge of its elements alone.
Each collection is an example of complex systems whose behavior is in-
trinsically challenging to model due to the high non-linearity of the inter-
actions between its constituents.

Traditionally, complex systemshave been successfully studied through
graphs abstracting the underlying network with vertices and edges con-
necting pairs of interacting components. Over the years, the scientific
community has enriched the graph modeling framework for better cap-
turing the richness of the interactions among such units. However, graphs
have a substantial limitation encoded in their nature: they exclusively cap-
ture pairwise interactions. Yet, many complex systems are characterized
by group interactions that cannot be described simply in terms of dyads.
Studying such systems hence require new mathematical frameworks and
scientific methodologies for its investigation.

Hypergraphs are the perfect candidates to tackle this task. A hyper-
graph is a generalization of a graph, where a (hyper)edge allows the con-
nection of an arbitrary number of vertices. However, the powerful ex-
pressiveness of hypergraphs has a few drawbacks: dealing with the com-
plexity of such data structures and the lack of appropriate tools and al-
gorithms for their study. For this reason, hypergraphs have been little
used in literature in favor of their graph-counterpart. Recently, this trend



has been drifting, thanks to an increasing number of systematic stud-
ies demonstrating that considering the higher-order structure of complex
systems can enhance ourmodeling capacities and help us understand and
predict their dynamical behavior.

This dissertation fits in this broad context of modeling complex sys-
tems with the general objective of formalizing and implementing more
expressive network models. Specifically, the whole work is rooted in un-
derstanding how much and when we need high-order information con-
veyed by hypergraphs. The contribution described in this thesis can be
grouped according to three macro topics.

I. Tools for hypergraphs. Motivated by the lack of a comprehensive and effi-
cient hypergraph-specific library and the need for software libraries
designed to perform operations directly on hypergraphs, we devel-
oped SimpleHypergraphs.jl, a software library to model, analyze,
and visualize hypergraphs, written in Julia and designed for high-
performance computing. This dissertation describes the main moti-
vations behind creating SimpleHypergraphs.jl, the library’s design
choices, and its memory model. We further illustrate the function-
alities offered by the software, including graph transformations and
hypergraph visualization methods. We also present two case stud-
ies with the twofold objective of demonstrating how it is possible
to exploit the proposed library and comparing hypergraphs with
their corresponding graph counterpart to explore whether high-or-
der structures conveymore information in addressing specific tasks.
Contextually, we also describe a generalized version of the label
propagation algorithm for community detection suitable for hyper-
graphs.

The second and third topics addressed instantiate the initial broad re-
search question into two principal research directions, both tied to the
concept of diffusion. Informally, the term diffusion means the process ac-
cording to whom an entity (e.g., information) spreads within a network,
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moving from node to node or group of nodes, through their interactions.
Under this umbrella, this thesis focuses on studying social influence propa-
gation and epidemic spreading processes within a population.

II. Social influence on high-order networks. In the context of social influence
diffusion, we propose the formal definition of a high-order diffu-
sion process, the generalization of a well-known graph problem to
hypergraphs, and a set of heuristics to tackle it. Specifically, in this
thesis, we first introduce the motivation behind this line of study
and discuss a new high-order diffusion model with linear thresh-
olds that mimics real-world social dynamics, where individuals in-
fluence the group they belong to, but - in turn - the group itself influ-
ences their choices. We further introduce the formal definition of the
Target Set Selection problem on hypergraphs (TSSH), a key algo-
rithmic question in information diffusion research, whose goal is to
find the smaller set of vertices that can influence the whole network
according to the diffusion model defined. Since the TSSH problem
is NP-hard, we propose four heuristics to address it and extensively
evaluate these algorithms on random and real-world networks.

III. Epidemic dynamics on temporal high-order networks. From the perspec-
tive of epidemic dynamics, wepropose the formal definition of time-
varying hypergraphs (TVHs), the introduction of direct and indi-
rect interactions when studying an epidemic spreading via a TVH
contact network, and an epidemic diffusion algorithmbuilt on top of
TVHs and direct and indirect contagion pathways. This dissertation
motivates why one should use (temporal) hypergraphs rather than
(temporal) graphs to analyze epidemic spreading processes. We
then introduce the formal definition of temporal hypergraphs, de-
scribe a high-order SIS compartmental equation model suitable for
TVHs, and discuss howwe assembled these elements into an agent-
based framework. We further present a sensitivity analysis of the
TVHmodel to the epidemic parameters and different discretization
of the time intervals when direct or indirect contacts may happen.
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Built on top of the TVH model, we also propose a fine-grain mod-
eling methodology for Non-Pharmaceutical Interventions (NPIs).
We first motivate why one should evaluate such epidemic control
strategies in the framework of agent-basedmodels (ABMs) andhigh-
order interactions. We then delve into reviewing personal protec-
tive, environmental, and social distancing measures and how they
can be embedded into an epidemiological model based on high-
order networks, ABMs, and the SIS equation-based model. We fur-
ther describe how we formally enriched the TVH modeling frame-
work to support the evaluation of NPIs. After assessing the ability
of each intervention in controlling an epidemic propagation, we dis-
cuss a multi-objective optimization framework, which, based on the
epidemiological data, calculates the NPI combination that should
be implemented to minimize the spread of an epidemic as well as
the damage due to the intervention.
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A flock, a social or economic organization, or still the Earth’s global
climate: what do all these elements have in common? They all are a con-
glomerate of interconnected and interdependent parts. Their interactions
give life to behaviors and effects incomprehensible if we look at a single
component at a time. No matter how good or accurate our knowledge
at the individual unit level is: we cannot explain viral rumors spread-
ing across societies from individual human psychology or predicting next
week’s forecast considering only the atmospheric pressure. Those ele-
ments are examples of complex systems whose behavior is intrinsically
challenging to model due to the high non-linearity of the interactions be-
tween its components. After scientists abandoned the reductionism ap-
proach, such complexity has been recognized as one of the principles gov-
erning real-world dynamics [10].



1.1 Motivation

Graphs have emerged as an ideal modeling tool to abstract the ele-
ments of a complex system and its interactions, with applications span-
ning the full spectrum of science, from fundamental physics all the way
to the social sciences [28]. The application of such instruments to model
and analyze real-world systems has to account for various existing rela-
tions [49]. Simply representing the elementary unit of a system as a col-
lection of entities (vertices) and describing the interactions between pairs
of such units (edges) may result in an abstraction not expressive enough.
During the past years, the effort of the research community has been de-
voted to formalizing and developing mathematical tools to include the
concepts of direct interaction (directed graphs), importance and strength
of a relation (weighted [29, 31] and signed graphs [175]), nature and dy-
namicity of the interactions themselves (multi-layer [119, 40] and tempo-
ral graphs [94]). Still, an underlying question remains.

Are these models powerful enough to provide a complete description
of a complex system?

This dissertation fits in this broad context of modeling complex sys-
tems with the general objective of formalizing and implementing even
more expressive network models. This chapter opens this thesis by in-
troducing the motivations in Section 1.1 and outlining the main contribu-
tions in Section 1.2. It finally presents how this dissertation is organized
in Section 1.3.

ǘWǘ �3ধ=!ধ32
Probably, the answer to the previous question is no. These models still
have a substantial limitation encoded in their nature: they exclusively cap-
ture pairwise interactions. Yet, many complex systems are characterized
by group interactions. Just think - for instance - to biological processes
involving more than two participating partners, like a metabolic reaction
such as A + B ! C + D (involving four species), or a protein complex
consisting of more than two proteins. We may also think about a trivial
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1.1 Motivation

example of a co-authorship network, where researchers publish articles
in groups of two or more people. How can we go back to which author
subgroup has worked on the same paper? Obviously, this information
can be stored externally or within the network itself, but querying such
structures may not be trivial or efficient. Similar situations, characterized
by group (or higher-order or many-to-many) interactions, exist not only
in biology or in social systems but also in ecology and neuroscience [32].

Canwe instead findmathematical frameworks that can explicitly and
naturally describe many-to-many interactions?

Hypergraphs are the perfect candidates to answer such a question. A
hypergraph is a generalization of a graph, where a (hyper)edge allows the
connection of an arbitrary number of vertices (see Figure 1.1a). However,
the powerful expressiveness of hypergraphs has a few drawbacks: deal-
ing with the complexity of such data structures and the lack of appropri-
ate tools and algorithms for their study. For this reason, hypergraphs have
been little used in literature in favor of their graph-counterpart. There
exist several graph-based representations of a hypergraph on which a
plethora of classical network science techniques are usually applied. Nev-
ertheless, these models inevitably lose information when encoding the
high-order nature of the underlying data.

Line graphs - in which each vertex represents a hyperedge and two
vertices are linked if the corresponding hyperedges share at least a ver-
tex - are a typical example of hypergraph to graph transformation (see
Figure 1.1b). Still, line graphs have two significant limitations [4]. First,
distinct hypergraphs can have identical line graphs as they lose the infor-
mation about the composition of each hyperedge, storing only whether
two hyperedges intersect but not in which manner. Second, sparse hyper-
graphs can yield relatively dense line graphs as a vertex of degree d in
the hypergraph yield �

d

2

� edges in its line graph, thus making line graphs
challenging to analyze or store in computer memory.

Clique graphs embody another example of this transformation (see
Figure 1.1c). This representation directly encodes the idea that eachmem-
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1.1 Motivation

ber of a relationship interacts with every other. Formally, this concept is
translated by considering each hyperedge a complete sub-graph. Clique
graphs share the same limitations as line graphs. The major drawback
of using such a transformation is that clique graphs completely lose the
notion of groups since pairwise connections substitute each high-order
interaction. Consequently, we have a high probability of materializing
interactions that did not exist in the original hypergraph. This intuitive
concept of losing the notion of groups is formalized by the fact that dif-
ferent hypergraphs can be transformed in the same clique graph; hence,
we cannot uniquely reconstruct the original hypergraph from its clique
graph. Further, like line graphs, clique graphs can yield computational
issues as each hyperedge of size k is transformed into k⇥(k�1)

2 edges.
Conversely, bipartite graph representations effectively describe group

interactions (see Figure 1.1d). In this model, one vertex set corresponds
to the hypergraph’s vertices, the other to the hyperedges. Hence, a link
in this graph connects a vertex to the interactions - of arbitrary order - in
which it takes part. This model is widely used as a network science tool
thanks to its capability to mimic most interaction structures. However,
also bipartite graphs have a critical shortcoming inherent in their struc-
ture [32]. Vertices in the original system do not interact directly anymore
as the interaction layer always mediates their relationship. This interac-
tion structure implies that any measure or dynamic process defined on
the bipartite representation must consider this additional complexity.

In a nutshell, despite graphs’ powerful capability in capturing many
properties of complex interacting systems, they are intrinsically limited
in explicitly describing group interactions, and there is no possibility to
reconstruct high-order relationships from their structure. Evenwhen net-
works can provide information on many-to-many interactions, as in the
case of bipartite graphs, this expressiveness is rewarded with additional
complexity. Recently, the trend of using hypergraphs to graph represen-
tations is drifting, thanks to an increasing number of systematic studies
demonstrating how this transformation process may imply an inevitable
loss of information, leading to wrong interpretations afterward [195, 32].

6
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(d) Bipartite graph.

Figure 1.1: Hypergraph to graph transformations.

All the above considerations stand as a general motivation underly-
ing this dissertation, answering why hypergraphs should be used as data
structures to abstract and analyze real-world high-order interactions. The
need to use hypergraphs (not through transformation to graphs) directly
motivates the development of specific tools to handle such structures, and
their recent growth in the research landscape emphasizes the existing gap
to state-of-the-art instruments for dealing with graphs. Another direct
implication is the need to re-think and re-discuss phenomena tradition-
ally studied via the lens of graphs. Among those, we can surely men-
tion dynamical processes emulating human behaviors, which are the fo-
cus of many studies where social relationships and interactions are typ-
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ically considered an underlying structure [30]. This kind of interactions
lends itself well for testing higher-order approaches since individuals can
interact in pairs or groups. Towards this, dynamic processes over hyper-
graphs could account for the higher-order effects that the non-pairwise
interactions might lead to [32].

ǘWǙ �32;8-#<ধ329
This dissertation is rooted in understanding how much and when we
need high-order information conveyed by hypergraphs. Specifically, this
broad research question is instantiated into two principal research direc-
tions, both tied to the concept of diffusion. Informally, the term diffu-
sion means the process according to whom an entity (e.g., information)
spreads within a network, moving from node to node or group of nodes,
through their interactions. Under this umbrella, this thesis focuses on
studying social influence propagation and epidemic spreading processeswithin
a population. Dealing with such problems requires having the appropri-
ate tools to easily implement and efficiently run the experiments to vali-
date models and hypotheses. Towards this direction, this thesis also in-
troduces a new hypergraph software framework for the Julia language.

The contributions of this dissertation can be grouped according to the
three macro topics addressed and are summarized in the following.

Tools for hypergraphs.

• The design and implementation of SimpleHypergraphs.jl, a soft-
ware library to model, analyze, and visualize hypergraphs, written
in Julia and designed for high-performance computing;

• The proposal of a generalized version of the label propagation al-
gorithm for community detection suitable for hypergraphs;

• The definition of the notion of s-betweenness centrality for hyper-
graphs;

8
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• The comparison of hypergraphs with their corresponding graph
counterpart to explore whether high-order structures convey more
information in addressing specific tasks.

Social influence diffusion on high-order networks.
• The formal definition of a high-order diffusion process for hyper-

graphs based on the linear threshold model, mimicking real-world
social dynamics, in which individuals influence the group they be-
long to, but - in turn - the group itself influences their choices;

• The formal definition of the Target Set Selection problem on hy-
pergraphs (TSSH), whose goal is to find the smaller set of vertices
that can influence the whole network;

• The proposal of four greedy-based heuristics to address the TSSH
problem, followed by an optional optimization procedure;

• Extensive evaluation of the heuristics on random and real-world
networks.

Epidemic dynamics on high-order temporal networks.
• The formal definition of time-varying hypergraphs (TVHs);
• The introduction of direct and indirect interactionswhen studying

an epidemic spreading via a TVH contact network;
• The proposal of a high-order epidemic diffusion algorithm built

on top of TVHs and direct and indirect contagion pathways;
• Sensitivity analysis of the TVH model to the epidemic parameters

and different discretization of the time intervals when direct or in-
direct contacts may happen;

• The formal definition ofNon-Pharmaceutical Interventions (NPIs),
described by the WHO in [148], for the epidemiological framework
based on TVHs;

9
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• Evaluation of each NPI applying the SIS compartmental equation-
model into an agent-based model that exploits the high-order epi-
demic diffusion algorithm to simulate interactions between agents
and locations;

• The design and implementation of a genetic algorithm-based
methodology to optimizewhichNPI combination has to be adopted
when contrasting objectives are considered.

Table 1.1 summarizes the contributions discussed in this dissertation,
including the peer-reviewed venues where each piece of work has been
published. All code produced for models and experiments is freely avail-
able on the GitHub platform.

ǘWǚ �3$<1'2; �;8<$;<8'
This thesis is divided in five main parts:

PART I, beginning with this chapter, provides the reader with all the
background knowledge necessary to fully understand the remain-
der of the thesis and contextualizes the contributions discussed in
the following parts. Specifically, Chapter 2 introduces the concepts
and the notation we will use throughout this dissertation. Chap-
ter 3, Chapter 4, andChapter 5 thoroughly describe the current state-
of-the-art concerning the proposed contributions. Finally, Chapter 6
describes the data sets used in the experimental part of this thesis.

PART II introduces the first contribution of this dissertation: SimpleHy-
pergraphs.jl, a software library to model, analyze, and visualize hy-
pergraphs, written in Julia and designed for high-performance com-
puting. Chapter 7 describes the main motivations behind creating
SimpleHypergraphs.jl, the library’s design choices, and its memory
model. It further illustrates the functionalities offered by the soft-
ware, including transformation to graphs and hypergraph visual-
izationmethods. Finally, it presents two case studies to demonstrate

10
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Table 1.1: Summary of the contributions presented in this dissertation.
Topic Pub. Type (Year) Title Contribution
Tools for
hypergraphs

Workshop
WAW
(2019)

SimpleHypergraphs.jl—
Novel Software Framework
for Modelling and
Analysis of Hypergraphs [13]

First release of
SimpleHypergraphs.jl

with a set of basic functionalities
and a practical use case.

Journal
Internet Mathematics

(2020)

Analyzing, Exploring, and Visualizing
Complex Networks via Hypergraphs
using SimpleHypergraphs.jl [14]

New version of the library,
with hypergraph specific algorithms
and visualization functionalities,
along with two additional use cases.

Social
Influence

Workshop
WAW
(2020)

Information Diffusion
in Complex Networks:
A Model Based on Hypergraphs
and Its Analysis [17]

Formal definition of a high-order
diffusion process and the TSS
problem on hypergraphs,
with three greedy-based additive
heuristics to address it.

Journal
Entropy
(2021)

Social Influence
Maximization in Hypergraphs [18]

Enhancement of the three heuristics and
proposal of a new subtractive heuristic.
Comprehensive experiments
on real-world hyper-networks.

Epidemic
Dynamics

Conference
AAMAS
(2020)

A Design-Methodology
for Epidemic Dynamics
via Time-Varying Hypergraphs [16]

Modeling high-order
epidemic processes
via TVHs: formal definition
and evaluation.

Journal
IEEE Access

(2021)

Modeling and Evaluating
Epidemic Control Strategies
with High-Order
Temporal Networks [15]

Introduction of NPIs
within the TVH framework:
formal definition
and evaluation.

how to exploit the proposed library and compare hypergraphs with
their corresponding graph counterpart to explorewhether high-order
structures convey more information in addressing specific tasks.

PART III presents the second contribution of this dissertation. Chapter 8
describes a new linear threshold high-order diffusionmodel and the
formal definition of the target set selection problemon hypergraphs.
Then, it introduces four heuristics to address it and finally provides
an extensive evaluation of the proposed algorithms on random and
real-world hyper-networks.

PART IV discusses the third contribution of this dissertation. Chapter 9
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presents the formal definition of time-varying hypergraphs (TVHs),
the introduction of direct and indirect interactions when studying
an epidemic spreading via a TVH contact network, and an epidemic
diffusion algorithm built on top of TVHs and direct and indirect
contagion pathways. Chapter 10 discusses a fine-grain modeling
methodology for NPIs built on top of the TVH model. It describes
how the TVH modeling framework has been formally enriched to
support the evaluation ofNPIs andfinally discusses amulti-objective
optimization framework, which, based on the epidemiological data,
calculates the NPI combination that should be implemented tomin-
imize the spread of an epidemic as well as the damage due to the
intervention.

PART V concludes this dissertation. Chapter 11 wraps up the contribu-
tions, the achieved research outcomes, and delineates the potential
impact of this research. It finally discusses possible future directions
on each specific topic addressed.

ǘWǚWǘ �3> ;3 �'!& ;,-9 �-99'8;!ধ32

In this section, we give some insights about the structure of the document
to guide the reader through this dissertation.

General structure.
Part I only discusses the mathematical background and frames each
specific topic in the current literature. Part II, III, and IV discuss the
contributions presented in this thesis.

Chapters’ structure.
The chapters detailing the dissertation’s contributions follow the
same structure by describing:

• The motivation behind the specific problem addressed;
• The contribution;

12
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• A state-of-the-art comparison;
• The experiment setting;
• Results;
• Remarks summarizing the chapter content.

Special content.
Some key elements presented in this thesis are emphasized in spe-
cial boxes.

⇡ Definition 1.1 : A first definition

Definitions are reported in yellow boxes.

� A sample assumption

Assumptions are described in light blue boxes.

� A special information

Particular information are described in green boxes.

13
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� A sample observation

Observations are reported in purple boxes.

� A sample exception

Exceptions are stressed in orange boxes.

� Some limitations

Limitations are highlighted in magenta boxes.

� Code and data information

Code and data links are detailed in blue boxes.
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This chapter introduces the concepts and the notation we will use
throughout this dissertation. Starting from formally defining hypergraphs
in Section 2.1, we will then describe how these structures can be repre-
sented via pairwise relationships in Section 2.2. Finally, we list the nota-
tion used in Section 2.3.

ǙWǘ �@6'8+8!6,9V �!9-$ �32$'6;9
Hypergraphs are the natural representation of a broad range of systems
where group (or high-order or many-to-many) relationships exist among
their interacting parts. Technically speaking, a hypergraph is a general-
ization of a graph, where a (hyper)edge allows the connection of an arbi-
trary number of nodes. As a direct consequence, many of the definitions
of graphs carry verbatim to hypergraphs [47].



2.1 Hypergraphs: Basic Concepts

⇡ Definition 2.1 : Hypergraphs

A hypergraphH , denoted withH = (V, E = (ei)i2I), on a finite set V
and a finite set of indexes I is a family (ei)i2I of subsets of V called
hyperedges.

The order of a hypergraph H = (V, E) is the cardinality of V , i.e., |V| = n;
while the size of H is the cardinality of E, i.e. |E| = m. By definition,

• An empty hypergraph is a hypergraph such that V = ; and E = ;;
• A trivial hypergraph is a hypergraph such that V 6= ; and E = ;.

� Assumptions on the structure of the hypergraph H

In the remainder of this thesis, hypergraphs have a non-empty set
of vertices, and a non-empty set of hyperedges.

A vertex v is isolated if v 2 V \
S

i2I ei. If
S

i2I ei = V , the hypergraph
has no isolated vertices. Two vertices in a hypergraph are adjacent if there is
a hyperedge containing both vertices. In particular, if {v} is a hyperedge,
then v is adjacent to itself.

A hyperedge e 2 E such that |e| = 1 is a loop. If the family of hyper-
edges is a set, i.e., if i 6= j () ei 6= ej , then H has no repeated hyperedges.
A hyperedge e 2 E is incidentwith a vertex c 2 V if v 2 e. Two hyperedges
in a hypergraph are adjacent if their intersection is not empty, i.e., if they
are incident with at least a common vertex.

In the literature, it is possible to find slightly different definitions of
a hypergraph. For instance, Berge [36] prohibits empty hyperedges and
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isolated vertices. On the contrary, Katona [116] allows empty hyperedges
and isolated vertices, but defines E = {e1, e2, . . . , em} as a set and explic-
itly prohibits pairs of duplicated hyperedges ei = ej for i 6= j. Bretto [47]
and Aksoy et al. [4] provide the most general definition for such struc-
tures, accounting for isolated vertices, as well as empty, duplicated, and
singleton hyperedges. This choice does not impose any constraint on the
nature of the data to model, facilitating the fitting of hypergraphs to real-
world networks. In this thesis, we will follow Bretto’s definitions [47].

The star H(v) centered in v is the family of hyperedges containing v.
If the hypergraph has no repeated hyperedges, the degree of v is denoted
by deg(v) = |H(v)|. If each vertex has the same degree d, we say that the
hypergraph is d-regular, i.e., for every v 2 V , deg(v) = d. We denote with
D(H) the maximal degree of a hypergraph H .

The rank r(H) of H is the maximum cardinality of a hyperedge in the
hypergraph, r(H) = maxi2I |ei|. The minimum cardinality of a hyper-
edge is the co-rank cr(H) of H, cr(H) = mini2I |ei|. If r(H) = cr(H) = k,
then the hypergraph is k-uniform. In other words, when all hyperedges
have the same degree k, i.e., |e| = k 8e 2 E, we say that H is a k-uniform
hypergraph.

A simple hypergraph is a hypergraphH = (V, E) such that ei ✓ ej =)

i = j (no hyperedge is properly contained in any other). A simple hyper-
graph has no repeated hyperedges. A hypergraph is linear if it is simple
and |ei \ ej |  1 for all i, j 2 I where i 6= j.

� �!16£' �@6'8+8!6,
Let C be a cinema with m � 1 movies, M1,M2, . . . ,Mm, and let Vc be the
set of people going at the cinema. Assume that each movie is seen by one
person at least. We can build the hypergraph C = (Vc, Ec) as follows:

• The set of vertices Vc is the set of people who are in the cinema;

17
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• Each hyperedge ei, i 2 {1, 2, . . . ,m}, is the subset of people watch-
ing the movie Mi.

Figure 2.1 visualizes an instance of the above hypergraph, considering
four movies (|Ec| = m = 4) and seven people (|Vc| = n = 7). Specifically,
the hypergraph C = (Vc, Ec) can be defined as follows:

• Vc = {p1, p2, . . . , p7};

• Ec = {M1,M2,M3,M4}, where M1 = {p1, p2, p3}, M2 = {p2, p3},
M3 = {p3, p5, p6}, and M4 = {p4}.

p1

p2 p3

p4

p5
p6 p7

M1

M2

M3

M4

Figure 2.1: The example hypergraph C has seven vertices, four hyper-
edges, one loop (p4), and one isolated vertex (p7). The rank r(C) = 3, the
co-rank cr(C) = 1. The degree of p3 is 3.

ǙWǘWǘ �!;8-? �3;!ধ32

Let H = (V, E) be a hypergraph, with V = {v1, v2, . . . , vn} and E =

(e1, e2, . . . , em). The structure ofH may also be represented by an incidence
matrix H 2 {0, 1}|V|⇥|E|, with each entry H(vi, ej) indicating whether the
vertex vi is in the hyperedge ej , with 1  i  n and 1  j  m. Formally,

H(vi, ej) =

(
1, if vi 2 ej

0, otherwise
.

18



2.1 Hypergraphs: Basic Concepts

The degree deg(v) of a vertex v and the degree (e) of a hyperedge e can
be rewritten as

deg(v) =
X

e2E
H(v, e) and (e) = |e| =

X

v2V
H(v, e),

respectively.

For example, the incidence matrix of the hypergraphC in Figure 2.1 is the
7⇥ 4 matrix:

C =

0

BBBBBBBBBB@

M1 M2 M3 M4

p1 1 0 0 0

p2 1 1 0 0

p3 1 1 1 0

p4 0 0 0 1

p5 0 0 1 0

p6 0 0 1 0

p7 0 0 0 0

1

CCCCCCCCCCA

As for graphs, the adjacency matrix A(H) of H is a square matrix whose
rows and columns are indexed with the vertices of H and for all u, v 2
V, u 6= v the entryA(u, v) = |e 2 E : u, v 2 e| andA(u, u) = 0. Thematrix
A is symmetric and all A(u, v) belong to N. It is worth noting that A
corresponds the matrix of a multi-graph. The adjacency matrix of the
hypergraph C in Figure 2.1 is the 7⇥ 7 matrix:

A(C) =

0

BBBBBBBBBB@

p1 p2 p3 p4 p5 p6 p7

p1 0 1 1 0 0 0 0

p2 1 0 2 0 0 0 0

p3 1 2 0 0 1 1 0

p4 0 0 0 0 0 0 0

p5 0 0 1 0 0 1 0

p6 0 0 1 0 1 0 0

p7 0 0 0 0 0 0 0

1

CCCCCCCCCCA
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2.1 Hypergraphs: Basic Concepts

ǙWǘWǙ �,' �<!£ 3( ! �@6'8+8!6,

Loosely speaking, the dual of a hypergraph is the hypergraph constructed
by swapping the roles of vertices and hyperedges. Formally, let H =

(V, E) be a hypergraph with vertex set V = {vi}i2[1,n] and family of hy-
peredges E = (ej)j2[1,m]. The dual hypergraph H⇤ = (V⇤, E⇤) of H is the
hypergraph such that:

• The set of vertices, V⇤ = {v⇤1, v
⇤
2, . . . , v

⇤
m} is in bijection g : E ! V

⇤

with the set of hyperedges E;

• The set of hyperedges is given by e⇤1 = V1, e⇤2 = V2, . . . , e⇤n = Vn,
where e⇤

i
= Vi = {g(ej) = v⇤

j
: vi 2 ej}. In words, each vertex vi

of H corresponds to an hyperedge ei⇤ of H⇤ , where ei⇤ is the set of
hyperedges of H (i.e., vertices of the dual) that contain vi.

Without loss of generality, and when there is no ambiguity, we identify
V
⇤ with E, thus having e⇤

i
= Vi = ej : vi 2 ej , for i 2 {1, 2, . . . , n}. In

other words, there is a bijection f : V ! E⇤ from the vertices V of H to
the hyperedges E⇤ of H⇤.

The incidencematrix ofH⇤ is the transpose of the incidencematrixA|

of the hypergraphH . Thus, we have for v⇤
j
2 V

⇤ and e⇤
i
2 E⇤, v⇤

j
2 e⇤

i
()

A(i, j) = 1. As a consequence, (H⇤)⇤ = H . For instance, the incidence
matrix of the dual hypergraph C⇤ (see Figure 2.2) of the hypergraph C

(see Figure 2.1) is the 4⇥ 7 matrix:

C
⇤ =

0

BBB@

p1 p2 p3 p4 p5 p6 p7

M1 1 1 1 0 0 0 0

M2 0 1 1 0 0 0 0

M3 0 0 1 0 1 1 0

M4 0 0 0 1 0 0 0

1

CCCA

We can further observe that two vertices belonging to the same set of
edges inH correspond tomulti-edges inH⇤ and isolated vertices inH cor-
respond to empty edges inH⇤ . The generality of Definition 2.1 in permit-
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2.1 Hypergraphs: Basic Concepts

ting multi-edges, empty edges, and isolated vertices ensures the dual of a
hypergraph is also a hypergraph.
At this point, we can re-write the definition of the dual of H in a more
intuitive way as

H⇤ = (V⇤ = E,E⇤ = (H(v))v2V).

Clearly, the equivalence D(H) = r(H⇤) holds.

	?!16£'
Recalling the hypergraph C described in the paragraph §A Sample Hy-
pergraph and shown in Figure 2.1, let us consider the dual hypergraph
C⇤ of C. The hypergraph C⇤ is composed as follows:

• V
⇤
c = {M1,M2,M3,M4};

• E⇤
c = (p1, p2, . . . , p7), where p1 = {M1}, p2 = {M1,M2}, p3 =

{M1,M2,M3}, p4 = {M4}, p5 = {M3}, p6 = {M3}, and p7 = ;.

Figure 2.2 shows the hypergraph C⇤. Table 2.1 lists some relations be-
tween the hypergraph H and its dual H⇤ .

Table 2.1: Relations existing between a hypergraphH and the correspond-
ing dual hypergraph H⇤ .

H H
⇤

v 2 e g(e) 2 f(v)

deg(v) |f(v)|

|e| or (e) deg(g(e))

k-uniform k-regular
d-regular d-uniform
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2.1 Hypergraphs: Basic Concepts

M1

M2

M3M4

p1

p2

p3

p4

p5

p6

p7

Figure 2.2: The dual hypergraph C⇤ of the hypergraph C in Figure 2.1.
The hypergraph C⇤ has four vertices, seven hyperedges, four loops
(M1,M3,M4), no isolated vertices, and an empty hyperedge (p7). The
rank r(C) = 3, the co-rank cr(C) = 1. The degree of M3 is 3.

ǙWǘWǚ �'-+,;'& �@6'8+8!6,9

As happens for graphs, hypergraphs may also have a weight associated
with their elements describing either the importance of a relation or the
relevance of a specific element within a group.

In a weighted hypergraph, denoted by a tuple H = (V, E,W), each
hyperedge e 2 E has a weight w(e), representing the importance of that
relation in the whole hypergraph. W 2 R|E|⇥|E| denotes the diagonal
matrix (with 0s in all off-diagonal entries) of the hyperedge weights, i.e.,

diag(W) = [w(e1), w(e2), ..., w(e|E|)].

Moreover, in a hypergraph with edge-dependent vertex weights [55], de-
noted with H = (V, E,W,�), each entry of the incidence matrix H(v, e)

represents the weight �e(v) of the vertex v in the hyperedge e. This value
can be interpreted as the contribution of the element v to the relation e.

In a weighted hypergraph, the degree deg(v) of a vertex v and the de-
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2.1 Hypergraphs: Basic Concepts

gree (e) of a hyperedge e can be rewritten as

deg(v) =
X

e2E
w(e)H(v, e) and (e) =

X

v2V
�e(v)H(v, e),

respectively.

� Assumptions on the nature of the hypergraph H

As for classical graphs, we can also find in the literature either di-
rected and heterogeneous hypergraphs. We will not delve into in-
troducing such structures as the work described in this dissertation
relates only to undirected and homogeneous hypergraphs.

ǙWǘWǛ �!;,9 !2& �322'$;'& �31632'2;9

Let H = (V, E) be a hypergraph without isolated vertices. A path P in
H from u to v, is a vertex-hyperedge alternating sequence:

u = u1, e1, u2, e2, . . . , us, es, us+1 = v,

such that

• u1, u2, . . . , us, us+1 are distinct vertices with the possibility that u1 =
us+1 ;

• e1, e2, . . . , es are distinct hyperedges;

• ui, ui+1 2 ei, (i = 1, 2, . . . , s).

The integer s is the length of the path P . If u1 = us+1 = v, then P is a cycle.

As for graphs, we say that P connects two vertices u and v if there is a
path from u to v and vice-versa. A hypergraph is connected if for any pair
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2.1 Hypergraphs: Basic Concepts

of vertices, there is a path connecting them; it is disconnected otherwise.
The distance d(u, v) between two vertices u and v is the length of the

shortest pathwhich connects u and v . If there is a pair of vertices u, vwith
no path from u to v (or from v to u), d(u, v) =1, i.e., H is not connected.

A connected component is a maximal set of vertices X ✓ V such that,
for all u, v 2 X , d(u, v) 6= 1. The diameter d(H) of H is defined as
d(H) = max{d(u, v) | u, v 2 V}. If H is disconnected, d(H) =1.
Figure 2.3 displays an example of such definitions.

It is interesting to point out that the notion of hyperedge incidence
and vertex adjacency in a hypergraph is set-valued and quantitative, in
the sense that two hyperedges can intersect at any number of vertices
and two vertices can belong to any number of shared hyperedges. Oth-
erwise stated, hypergraph walks have both length and width associated
with them. Based on this consideration, Aksoy et al. [4] developed the

v1

v2

v3

v4

v5

v6

v7

v8

v9

e1

e2

e3

e4

e5
C1

C2

Figure 2.3: The above hypergraph has two connected components,C1 and
C2. Hence, the diameter of H is d(H) =1, while d(C1) = 3 and d(C2) =
1. P = v9, e4, v5, e3, v4, e2, v3, e1, v2 is a path from v9 to v2. The shortest
path between v9 and v2 is P 0 = v9, e4, v1, e1, v2. The distance d(v9, v2) = 2,
corresponding to the length of P 0. This hypergraph is simple.
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2.1 Hypergraphs: Basic Concepts

concept of s-walk on a hypergraph, where s either controls for the size of
edge intersection or the number of shared hyperedges. An s-walk (on hy-
peredges) is a sequence of distinct hyperedges in which each consecutive
pair of hyperedges have at least s vertices in common. A formal definition
follows:

For a positive integer s, an s-walk of length k and width s between
hyperedges f and g is a sequence of hyperedges, f = ei0 , ei1 , . . . , eik = g,
where s  |eij�1 � eij | for j = 1, 2, . . . , k and ij�1 6= ij .

On the dual hypergraphH⇤ (see Section 2.1.2), an s-walk (on vertices)
is a sequence of adjacent vertices in which each successive pair of vertices
belong to at least s shared hyperedges. Since in a graph a pair of vertices
can belong to at most one edge, the usual graph walk between vertices
u and v on a graphG is equivalent to a 1-walk between hyperedges u⇤, y⇤
on the dual, G⇤. Hence, when s = 1, a 1-walk corresponds to the usual
graph walk.

The basic yet important properties of walks in graphs also extend to
s-walks on hypergraphs. For instance, the existence of an s-walk between
hyperedges defines an equivalence relation under which hyperedges can
be partitioned into s-connected components. For an in-depth description
of the notion of s-walk and their properties, we remand the reader to the
work of Aksoy et al. [4].

ǙWǘWǜ �'2;8!£-;@ �'!9<8'9

Graph distance-based metrics can be trivially transferred to hypergraphs.
Nonetheless, these metrics can also be generalized to accommodate the
higher-order nature of those structures, as hypergraph walks have both
length and width.

Based on their proposed notion of s-walk, Aksoy et al. [4] generalized
the existing graph-distance based metrics to hypergraphs. For a hyper-
graph H , the s-distance between u and v is equivalent to the graph dis-
tance between u⇤ and v⇤ in the s�line graph Ls(H) (see Section 2.2.2).
Consequently, the following s-distance based measures are equivalent to
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2.1 Hypergraphs: Basic Concepts

their graph counterparts on Ls(H). Further, whenever H is a graph, they
reduce to their graph counterparts on H⇤ for s = 1.

s-betweenness centrality. In a graph (2-uniformhypergraph), the between-
ness centrality of a vertex v is the ratio of the number of non-trivial
shortest paths between any pair of vertices in the graph that pass
through v divided by the total number of non-trivial shortest paths
in the graph. This measure quantifies the importance of a node in
passing the information through the network. The betweenness is
also defined for edges, counting the number of the shortest paths
that go through an edge.
Formally, the s-betweenness centrality is defined as

Cs

B(v) =
X

x,y2V\{v}
x 6=y

�s
xy(v)

�s
xy

,

where �s
xy(v) is the number of the s-node(edge)-shortest-paths be-

tween two vertices x and y that pass through v, while �s
xy is the total

number of s-node(edge)-shortest-paths between x and y.

s-closeness centrality. In a connected component, the normalized close-
ness centrality of a node is the average length of the shortest path
between the node and all other nodes in the graph. Thus, the more
central a node is, the closer it is to all other nodes. Formally, the
s-closeness centrality is defined as

Cs

C(v) =
|V|� 1P

u2V\{v}
ds(u, v)

,

where V is the set of vertices in the s-line graph, and ds is the s-
shortest path distance.

Once again, we remind the reader the work of Aksoy et al. [4] for more
details.

26



2.2 Graphs versus Hypergraphs

It is worth noting that also the definition of degree centrality for vertices
in a hypergraph straightforwardly extends the same notion defined for
graphs: the degree centrality of a node is given by the number of hyper-
edges it is contained in.

� The definition of s-betweenness centrality

We independently developed the notion of s-betweenness central-
ity in [14].

ǙWǙ �8!6,9 ='89<9 �@6'8+8!6,9
In the previous sections, we saw how hypergraphs generalize standard
graphs by defining (hyper)edges amongmultiple vertices instead of only
two elements. Here, after recalling some graph definitions, we will de-
scribe howhypergraphs can be transformed into a possible corresponding
graph representation.

ǙWǙWǘ �'$!££-2+ �8!6,9

⇡ Definition 2.2 : Simple Graph

A simple graphG = (V, E) consists of a non-empty set V representing
vertices, and a set E of unordered pairs of elements of V representing
edges. A simple graph has no arrows, no loops, and cannot have
multiple edges joining vertices.

Whenmultiple edges between nodes are permitted, we refer to such struc-
ture with the term multigraph.
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2.2 Graphs versus Hypergraphs

⇡ Definition 2.3 : Multigraph

A multigraph G = (V, E , f) consists of a non-empty set V represent-
ing vertices, a set E of unordered pairs of elements of V representing
edges, and a function f , which assigns to each edge an unordered
pair of endpoint nodes, defined as follows:

f : E ! {{u, v} : u, v 2 V and u 6= v}.

If e1, e2 2 E are such that f(e1) = f(e2), thenwe say e1 and e2 aremultiple
or parallel edges.
A 2-uniform hypergraph is a simple graph if it has no repeated hyper-
edges. A hypergraphwhose rank is at most 2 allows repeated hyperedges
of size 2, but also hyperedges of size 1 (i.e., loops).

ǙWǙWǙ �@6'8+8!6,9 ;3 �8!6, �'68'9'2;!ধ329

In the literature, hypergraphs have been usually converted into a corre-
sponding graph representation, especially for computation convenience
and the easiness of dealing with graphs rather than higher-order struc-
tures. We can transform a hypergraph into one of the following graph
representations: (i) line graph, (ii) two-section graph, and (iii) bipartite
graph. It is worth highlighting that such transformations may bring a
loss of information regarding the original hypergraph structure. In the
following, we will briefly describe each representation. For a description
of their properties, we refer the reader to ”Hypergraph Theory: An Intro-
duction” [47].
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⇡ Definition 2.4 : Line Graph

Let H = (V, E = (ei)i2I) be a hypergraph. The line graph (or repre-
sentative graph or intersection graph) ofH is the graph L(H) = (V 0, E 0)

such that:

• V
0 = I or V 0 = E when H is without repeated hyperedge;

• {i, j} 2 E
0, i 6= j () ei \ ej 6= ;.

Line graphs may also be defined with additional edge weights where
the edge {i, j} 2 E

0, i 6= j has weight |ei \ ej |. By definition of matrix
multiplication, the line graph of a hypergraph with incidence matrix H

has edge-weighted adjacency matrix H
|
H with diagonal entries equal to

0.
The definition of line graphs can be generalized to s� line graphs [4]

(denoted with Ls(H)), where each vertex represents a hyperedge with at
least s vertices in the hypergraph, and two vertices are linked in the s�line
graph if their corresponding hyperedges intersect in at least s vertices in
the hypergraph. Formally, {i, j} 2 E

0, i 6= j () |ei \ ej | � s, |i| �

s, |j| � s.
Figure 2.4 illustrates an example of line graph.
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v1

v2

v3

v4

v5

v6

v7

v8

v9

e1

e2

e3

e4

e5

Figure 2.4: The figure shows a hypergraph H = (V, E), where V =
{vi}i2[1,9] and E = {ej}j2[1,5], and its line graph L(H) = (V 0, E 0). The ver-
tices of L(H) are the black diamonds and its edges are the lines between
the diamonds.

� Limitations

• Distinct hypergraphs can have identical line graphs as they
lose the information about the composition of each hyper-
edge, storing only whether two hyperedges intersect but not
in which manner;

• Sparse hypergraphs can yield relatively dense line graphs as
a vertex of degree d in the hypergraph yields �d2

� edges in its
line graph.
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⇡ Definition 2.5 : Two-section graph

Let H = (V, E) be a hypergraph. The two-section or clique graph of
H is the graph, denoted with [H]2, whose vertices are the vertices of
H and where two distinct vertices form an edge if and only if they
are in the same hyperedge of H . In other words, each hyperedge of
H appears as a complete sub-graph in [H]2.

Figure 2.5 shows an example of this representation.
The generalized two-section ofH , denoted withG[H]2, is the labeled-edge

multigraph whose vertices are the vertices of H and where the vertices
u and v are connected by an edge, labeled with e, if {u, v} ✓ e.

The weighted two-section of H , denoted with [H]w2 = (V, E 0,W), where
W 2 Rn⇥n, is the weighted clique graph in which the weight w(e) =

v1

v2

v3

v4
v5

v6

v7

v8

v9

e1

e2

e3
e4

e5

Figure 2.5: The figure shows a hypergraph H = (V, E), where V =
{vi}i2[1,9] and E = {ej}j2[1,5], and its clique graph [H]2 = (V, E 0). The
edges of [H]2 are the lines between the vertices of H .
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2.2 Graphs versus Hypergraphs

W(u, v) of an edge e = {u, v} 2 E
0 corresponds to the number of hy-

peredges containing both u and v, i.e., w(e) = W(u, v) = W(v, u) =

|H(u) \H(v)|.

� Limitations

• Clique graphs completely lose the notion of groups since
pairwise connections substitute each high-order interac-
tion. Hence, it is impossible to recover the original hyper-
graph structure from the two-section graph (being a simple
graph), unless we use the generalized two-section and, thus,
the more powerful model of a labeled-edge multigraph.

• Each hyperedge of size k is transformed into k⇥(k�1)
2 edges.

2$-&'2$' �8!6,9

⇡ Definition 2.6 : Incidence graph

Let H = (V, E) be a hypergraph. The incidence graph of H is the
bipartite graph I(H) = (V 0, E 0) with a vertex set V 0 = V [ E, and
where v 2 V and e 2 E are adjacent if and only if v 2 e.

Figure 2.6 illustrates the incidence graph associatedwith a hypergraph.
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v1 v2 v3 v4 v5 v6 v7 v8 v9

e1 e2 e3 e4 e5

Figure 2.6: The figure shows the incidence graph I(H) = (V 0, E 0) of the
hypergraph H, with a vertex set V 0 = {vi}i2[1,9] [ {ej}j2[1,5]. The edges of
I(H) are the lines between the vertices V 0.

� Limitations

Vertices in the original system do not interact directly anymore as
the interaction layer always mediates their relationship. This inter-
action structure implies that any measure or dynamic process de-
fined on the bipartite representation must consider this additional
complexity.

ǙWǚ �3;!ধ32 �<11!8@
This section summarizes the notation and the concepts introduced in this
chapter and used throughout the thesis. While Table 2.2 specifically lists
themathematical notation, Table 2.3 focuses only on the hypergraph-related
concepts that will be explicitly referred to in the remainder of this disser-
tation.
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2.3 Notation Summary

Table 2.2: Summary of the notation used throughout this thesis.

Symbol Interpretation
v Bold-faced lower case letters are used to identify vectors.
vi The indexed notation identifies the i-th element of the vec-

tor v.
A Bold-faced capital letters are used to identify matrices.

A(i, j) The indexed notation identifies the j-th element in the i-th
row of the matrix A.

A Calligraphic capital letters are used to identify sets.
|A| The cardinality (i.e., number of elements) of the set A.
�P � Indicator function: it equals 1 if the predicate P is true; 0

otherwise.

� An exception to the default notation

Although hyperedges are technically sets, they are identified with
lower case letters. Hence, we focus the attention on hyperedges as
elements of the family of hyperedges E, and not as sets per se.
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Table 2.3: Summary of the notation used throughout this thesis.

Symbol/Concept Interpretation
H,G Capital letters are used to identify hypergraphs

and graphs.
V Vertex set, where |V| = n.

E = (ei)i2I Family of hyperedges over a finite set of indexes
I, with |E| = m.

u, v, e Lower case letters identifies nodes and (hy-
per)edges.

H(vi, ej) IncidencematrixH indicatingwhether the vertex
vi is in the hyperedge ej .

�e(v) Weight of the vertex v in the hyperedge e.
H(v) Family of hyperedges containing v.
deg(v) Degree of a vertex v.
(e) Degree or cardinality of a hyperedge e.

d-regular Hypergraph in which each vertex has degree d.
k-uniform Hypergraph in which each hyperedge has cardi-

nality k.
H⇤ Dual hypergraph H⇤ of H .
[H]2 Two-section or clique graph of a hypergraph H .
[H]w2 Weighted two-section of a hypergraph H .
I(H) Incidence graph of a hypergraph H .
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This chapter provides an overview of the available software technolo-
gies to manipulate and explore hypergraphs. Specifically, the first part
of the chapter reports the main software libraries to analyze these struc-
tures, describing their peculiarities, pros, and cons (see Section 3.1). The
second part of the chapter focuses on the Julia programming language,
describing its primary characteristics and performance (see Section 3.2).

ǚWǘ �@6'8+8!6, �3đ>!8' 
8!1'>3809
Hypergraphs are the natural representation of many real-world systems.
However, the powerful expressiveness of such mathematical structures
has a few drawbacks: dealing with the inherent complexity of higher-
order relationships and the lack of appropriate tools and algorithms for
their study. For this reason, hypergraphs have been little used in the lit-
erature in favor of their graph-counterpart (see Section 2.2). In turn, this
trend caused the reduced development of software frameworks suitable



3.1 Hypergraph Software Frameworks

formodeling andmining these structures. Recently, a shift in this research
paradigm happened, also thanks to the newly available computational ca-
pabilities (e.g., Cloud platforms). Over the last few years, a growing body
of literature has been conveying its efforts to investigate hypergraphs to
design more effective solutions in various domains [32]. Hypergraphs
have, thus, risen to prominence, giving a fresh impetus to the develop-
ment of hypergraph software frameworks.

In the following, we list some state-of-art software libraries in alpha-
betical order, focusing on the availability of their code and their capability
to model and analyze hypergraphs.

Chapel HyperGraph Library (CHGL) [104] is a library for hypergraph
computation, written in the emergingChapel parallel programming
language. Being developed by the Pacific Northwest National Lab-
oratory (PNNL) since 2018, the library is released under the MIT li-
cense andpublicly available in aGitHubopen-source repository [105].
Themain idea behind this librarywas to provide aHigh-Performance
Computing (HPC) -class computation with high-level abstractions
andmodern language support for parallel computing on shared and
distributed memory systems.
CHGL primarily focuses on hypergraph generative models while
providing a high- ly abstract interface for implementing hypergraph
algorithms. The library has a single main hypergraph data struc-
ture, storing the hypergraph’s adjacency list, which supports both
static and dynamically growing hypergraphs thanks to the intrinsic
characteristics of the language. In more detail, the hypergraph is
stored using two (possibly distributed) arrays, one for vertices and
one for hyperedges. Each vertex (resp. hyperedge) further refers to
a non-distributed array representing the hyperedges it is contained
in (resp. the vertices it contains). Every inclusion is stored in two
directions, both at the included vertex and the including hyperedge,
resulting in storing the hypergraph and its dual.
CHGL is still in its early development stage, as well as the associ-
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ated documentation. The latest release of the library (29 Oct 2020)
includes an efficient homology computation functionality and the
computation of the s-distance between twonodes in the hypergraph.

Gspbox [132] is a Matlab toolbox that performs a wide variety of oper-
ations on a graph. The software is free, and it is released under the
GNU General Public License (GPLv3). Gspbox is based on spectral
graph theory, and many of the implemented features can scale to
very large graphs. Gspbox supports hypergraphsmodeling, includ-
ingweighted hyperedges and verticeswith coordinates in the space.
However, hypergraphmanipulation is obtained by representing the
model as a graph. For this reason, although all graph functionalities
are available, the library does not provide any specific solutions or
optimization for hypergraphs.
A very recent version of this library is also available in Python.
Nonetheless, no hypergraph support is implemented at all.

Halp [139] is a Python software package providing both directed and
undirected hypergraph implementations and a few major and clas-
sical algorithms. The library was developed by Murali’s Research
Group at Virginia Tech and released under the GPL-3.0 license.
Halp provides several statistics on the hypergraph structure (e.g.,
mean in/out-degree) and a module, integrated with the Python li-
brary NetworkX, to transform a hypergraph into the correspond-
ing clique graph. Halp also implements random walk and shortest-
paths functionalities.

Hygra [164] is a suite of efficient parallel hypergraph algorithms writ-
ten in C/C++. It includes algorithms for betweenness centrality,
maximal independent set, k-core decomposition, hypertrees, hyper-
paths, connected components, PageRank, and single-source short-
est paths. This framework is released under the MIT license and in-
tegratedwithin the Ligra package (ALightweightGraphProcessing
Framework for Shared Memory [165]).

39



3.1 Hypergraph Software Frameworks

Hygra uses the incidence graph representation of a hypergraph to
store the high-order structure and Ligra’s data structures for repre-
senting subsets of vertices and hyperedges as well as operators for
mapping application-specific functions over these elements. Fur-
ther, the framework separates the operations on vertices from op-
erations on hyperedges; thus, it requires a careful definition of the
functions for vertices and hyperedges to preserve correctness. Hy-
gra also inherits from Ligra various optimizations developed for
graphs, including switching between different traversal strategies,
edge-aware parallelization, bucketing for prioritizing the process-
ing of vertices, and compression.

Hypergraph [66] is a newly born Rust data structure library released
under the MIT license. Currently, this library only allows generat-
ing directed hypergraphs; however, the peculiarities of the Rust lan-
guage could open to fast parallel implementation of the most com-
mon network algorithms as future development.

HyperGraphLib [126] is a C++ library for hypergraphs modeling, re-
leased under the MIT license. This library only provides basic func-
tionalities for generating hypergraphs having specific characteris-
tics, like d-regular, k-uniform, simple, and linear hypergraphs, iso-
morphism functionalities, and path-finding algorithms.

HyperNetX [110] is probably themost comprehensive andupdatedPython
package to model and analyze hypergraphs. As CHGL, HyperNetX
has been developed by the PNNL since 2018. The library is released
under the 3-Clause BSD license and is publicly available on aGitHub
repository [155].
HyperNetX generalizes traditional graph metrics to hypergraphs
(e.g., s-paths [4]), and provides hypergraph-specific algorithms.
The library offers functionalities to generate hypergraphs, evaluate
centralitymeasures, and compute clusters. HyperNetX further sup-
ports the bipartite representation of a hypergraph, along with the
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possibility to load hypergraphs from their bipartite view. In addi-
tion, the library exports some visualization functionalities based on
Euler diagrams.
The library’s latest version (13 August 2021) also supports a con-
tagion module to study SIS and SIR contagion networks using hy-
pergraphs and an add-on for providing optimized C++ implemen-
tations of many of the available hypergraphs methods. All code is
well-documented and accompanied by several comprehensive tuto-
rials.

HyperX [108] is a general-purpose distributed hypergraph processing
framework built on top of Apache Spark, developed in 2015 and
implemented using the Scala programming language. HyperX is
available as an open-source repository on GitHub [107]; however,
no documentation is available, and the last update dates back to
2015.
HyperX sets itself as the corresponding GraphX for hypergraphs,
supporting the sameprogrammingmodel but providing native sup-
port for elaborating higher-order structures. Directly processing hy-
pergraph data, HyperX obtains significant speedup with respect to
using a hypergraph to graph transformation and then exploiting
GraphX APIs.
HyperX includes algorithms for random walks, label propagation,
and spectral learning. In particular, partitioning algorithms assume
greater importance in such a context as they are used to load-balanc-
ing the work of each node with low communication costs among
the workers. HyperX stores hypergraphs using fixed-length tuples
containing vertex and hyperedge identifiers, and the algorithms are
written using hyperedge programs and vertex programs that are it-
eratively applied on hyperedges and vertices, respectively.

Iper [51] is a JavaScript library for hypergraphs, released under the MIT
license. The library defines the hypergraph structure and allows the
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user to define meta-information for vertices. However, Iper does
not implement any hypergraph-specific algorithm or integrate with
other graph libraries for classical statistics and algorithms.

NetworkR [168] is anRpackage, distributed under theMIT license, with
a set of functions for analyzing social and economic networks, in-
cluding hypergraphs. Being focused on graphs, the library does
not offer any specific hypergraph-related functionality and only pro-
vides hypergraphs projection into graphs.

Multihypergraph [114] is a Python package for graphs, released un-
der the GPL license. The library emphasizes the mathematical un-
derstanding of graphs rather than the algorithmic efficiency, and it
only provides support for hyper-edges, multi-edges, and looped-
edges. Specifically, this library implements only the graph memory
model definition and isomorphism functionalities without defining
any oth- er functionality and algorithm for graphs and hypergraphs.

Overall, we can identify two main driving factors guiding the develop-
ment of each software framework, namely analytical comprehensiveness
and HPC compliance.

In the first group, we can find all the libraries supporting a few to a
wide range of hypergraph-specific functionalities. HyperNetX undoubt-
edly stands out among those thanks to the heavy contribution to its de-
velopment over the last few years. Being HPC-specific, frameworks such
as CHGL, Hygra, and HyperX belong to the second group. These li-
braries offer specific support for running heavy computations via paral-
lel and distributed algorithms, allowing the possibility to scale to hyper-
graphs with millions of vertices and hyperedges. In particular, CHGL
provides functions for accessing properties of hypergraphs, but its in-
terface is much lower-level than the abstractions in HyperX and Hygra.
Based on the comparisonmade by the authors ofHygra [164], their frame-
work achieves significantly faster results thanks to the optimizationmade
for frontier-based hypergraph algorithms. However, it is worth empha-
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sizing that these tools require specific skills in working on parallel and
distributed memory models.

Manyother libraries, specifically designed tomodel and analyze graphs,
offer little support to hypergraphs, often only implementing hypergraph
models and graph transformations.

In general, all the listed libraries are a compromise between efficiency,
which characterizes low-level languages such as C/C++, and the ease-of-
use and expressiveness, peculiar to interpreted and scripting languages
such as Python and R. With its latest release in August 2021, HyperNetX
represents an exception to such a trade-off, offering a C++ optimization
module callable through Python.

ǚWǙ �,' �<£-! �83+8!11-2+ �!2+<!+'
Julia [39] is a general-purpose dynamic programming language appropri-
ate for scientific and numerical computing, with performance comparable
to traditional statically-typed languages. Julia represents a single environ-
ment that is productive enough for prototyping and efficient enough for
deploying performance-intensive applications.

Born in 2009 from Bezanson, Karpinski, Shah, and Edelman’s work
and officially launched in 2012, Julia was born to accommodate a grow-
ing problem in the scientific community: the need for a free language that
was both high-level and fast. Hence, Julia was created to answer the two
language problem of data science [48], where one programming language
is used as glue to another language that actually implements compute-
intensive algorithms. That is a typical workflow when coding and proto-
typing with a high-level language like R and Python, as the performance-
critical parts have to be rewritten inC/C++ for performance. This double-
step is highly inefficient because it introduces human error and wasted
effort and slows time to market.

Figure 3.1 reports compiler performance on a range of common code
patterns, such as function calls, string parsing, sorting, numerical loops,
random number generation, recursion, and array operations. The vertical
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Figure 3.1: Run time of the most used programming languages for scien-
tific computing over eight benchmark tasks. Run times are normalized
against the C implementation. Mathem. stands for Mathematica.

axis shows each benchmark time normalized against the C implementa-
tion. We can note from the picture that the most suitable languages for
implementing computing-intensive algorithms are C, Julia, LuaJIT, Rust,
Go, and Fortran. As expected, the run time of the most used scripting
languages, i.e., Python and R, are much higher than C. Details on this
micro-benchmark are reported on the Julia website [112].

Figure 3.2 shows the average run time of each language evaluated
over all benchmark programs, plotted versus the average length of their
source files [180]. The vertical axis shows each benchmark time normal-
ized against the C implementation. The ideal is having concise programs
with short run times, i.e., the lower, the better on both axes. The plot
shows the classic trade-off in technical computing. Compiled languages
like C and Fortran (lower right) are fast to run but slow to write, while
scripting languages like R and Python (upper left) are fast to write but
slow to execute. The Julia language stands out in the overall picture,
achieving the lowest average run time and code length.
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Figure 3.2: Average performance vs. code length.
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Julia’s main web page lists six principal characteristics of the language.
Julia is

Fast and Dynamic. This language was designed to achieve high perfor-
mance. For this reason, Julia programs are compiled to optimized
native machine code for multiple platforms via LLVM. Thus, like C
and Fortran, Julia is compiled. However, unlike those programming
languages which are compiled before execution (ahead of time), Ju-
lia is compiled at runtime (just in time for execution). This design
choice allows Julia to be dynamically typed, thus looking more like a
scripting language like Python.
The dynamic type systemnicelyworks thanks to the Julia type infer-
ence process. For each Julia function, it determines bounds for the
types of each of its variables, as well as bounds on the type of the
return value from the function itself. In this manner, Julia compiles
a native version of a function the first time it is run with a specific
set of argument types, caching its bytecode. If the same function -
butwith different argument types - is called, Julia recompiles for the
given types, caching the new bytecode in another location. Subse-
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Figure 3.3: The Julia compiler, from source to machine code. Source:
http://slides.com/valentinchuravy/julia-parallelism.

quent runs use the appropriate bytecode with recompilation.
In a fewwords, after the typed code has been generated, it gets com-
piled to LLVM IR (Intermediate Representation). Then the IR code
passes through LLVM, which applies several optimization phases
to generate fast native code, finally getting executed. The generated
code from each compilation phase can be inspected through Julia-
specific macros. Figure 3.3 shows the whole compilation process.

Composable. Julia uses multiple dispatch as a paradigm, making it easy
to express object-oriented and functional programming patterns.
The notion of dispatch refers to the choice of which method to exe-
cute when a function is applied. Julia allows the dispatch process
to choose which function’s methods to call based on the number of
arguments given and the types of all of the function’s arguments.
Using all of a function’s arguments to choose which method should
be invoked, rather than just the first as happens in traditional object-
oriented languages, is known as multiple dispatch.

General. Julia provides asynchronous I/O, metaprogramming, debug-
ging, logging, profiling, and a package manager, among other func-
tionalities.
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In particular,metaprogramming support is the strongest legacy of Lisp
in the Julia language. Like Lisp, Julia represents its own code as a
data structure of the language itself. Since code is represented by
objects created and manipulated within the language, a program
can transform and generate its own code. That allows sophisticated
code generationwithout extra build steps and true Lisp-stylemacros
operating at the level of abstract syntax trees. In contrast, preproces-
sor ”macro” systems, like that of C and C++, perform textual ma-
nipulation and substitution before any actual parsing or interpreta-
tion occurs. Because Julia data structures represent all data types
and code in Julia, powerful reflection capabilities are available to
explore the internals of a program and its types just like any other
data.

Reproducible. Julia offers the possibility to create environments to en-
hance code reproducibility. For instance, by checking a project en-
vironment into version control (e.g., a git repository) alongwith the
rest of the project’s source code, one can reproduce the exact state
of the project and all of its dependencies. The manifest file, in par-
ticular, captures the exact version of every dependency, identified
by a cryptographic hash of its source tree, which makes it possible
for the package manager to retrieve the correct versions and be sure
that you are running the exact code that was recorded for all depen-
dencies.

Open source. Julia is an open-source project with over 1,000 contribu-
tors. It is distributed under the MIT license, and its source code is
available on GitHub [111].

In a nutshell, Julia is a multi-paradigm language that combines imper-
ative, functional, and object-oriented programming features. Julia pro-
vides ease and expressiveness for high-level numerical computing, in the
same way as languages such as R, MATLAB, and Python, but also sup-
ports general programming. To achieve this, Julia builds upon the lineage
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of mathematical programming languages and borrows much from popu-
lar dynamic languages, including Lisp, Perl, Python, Lua, and Ruby.
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This chapter presents current literature related to the analysis of social
influence phenomena abstracted and studied via the lens of networks. We
specifically focus on discussing the social influence maximization (SIM)
problem, as the contribution of this dissertation relates to a variant of the
problem just mentioned. In Section 4.1, we first introduce some basic
concepts related to influence diffusion models. We then briefly outline
the origin of the SIM problem and the Target Set Selection variant in the
context of graphs in Section 4.2. In Section 4.3, we finally concentrate on
current literature on social influence diffusion analyzed through hyper-
graphs.



4.1 Influence Diffusion Models
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Social influence occurs due to the diffusion of information in the network.
Several diffusion models have been proposed to capture how the spread-
ing process happens, and there exists a vast amount of literature on de-
signing diffusionmodels in the areas of datamining, databases, networks,
and epidemiology [129]. Each model applies different mechanisms to
represent how a user switches its status from inactive to active; in other
words, how a vertex can be influenced by its neighbors. Generally, all dif-
fusion models abstract the network to study with a graph, where vertices
are the users of the social networks and edges the social ties between pairs
of users. Each vertex has an associated diffusion threshold, measuring the
hardness of influencing the user given in numerical scale (the higher the
value, the harder it is to influence the user). The influence probability
between two users is usually modeled as edge weight, instead.

All diffusion problems are formalized based on a specific spreading
model. Two popular diffusion models commonly used to study the influ-
ence maximization problem are the (i) Linear Threshold model, which
captures the collective behavior of the agents [26], and the (ii) Indepen-
dentCascademodel, which collects the independent behavior of the agents.
A brief description of both models follows.
Linear Threshold model (LT). The LT model was introduced by Granovet-

ter [87] and Schelling [161] in 1978. The underlying idea of the LT
model is that a user can switch its status from inactive to active if a
sufficient number of its incoming neighbors are already influenced.
Formally, each edge e = (u, v) 2 E has a weight w(e), and each
vertex v has a diffusion threshold ⇥v. Let N (v) be the set of incom-
ing neighbors of the vertex v, satisfying P

u2N (v)w(e)  1. Let us
consider an instance of the LT diffusion process, which proceeds in
discrete steps. Initially, all vertices in the initial set of influenced
users are activated, while the others remain inactive. Then, at each
iteration t, all users that were active in the previous step t�1 remain
active, and any user v that was inactive in t� 1 switches to active if
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the total weight of its active neighbors in N (v) is at least ⇥v. The
diffusion process terminates when no more users can be activated.

Independent Cascademodel (IC).The ICmodel is a classic andwell-studied
diffusion model introduced by Goldenberg [83] in 2001. The model
introduces an influence probability pu,v to each edge e = (u, v) 2 E :
each vertex u may independently influence each neighbor v with
probability pu,v.
As in the LT model, the IC model unfolds in discrete steps. Initially,
all vertices in the initial set of influenced users are activated, while
the others remain inactive. Then, at each iteration t, every active
user in the previous step t � 1 will try to activate each outgoing
neighbor v (inactive in step t� 1) with probability pu,v. The vertex
u has only one chance to activate its outgoing neighbors: after that,
u remains active and stops the neighbors’ activation task. The dif-
fusion process terminates when no more vertices can be activated.

As stated at the beginning of this paragraph, there exist a plethora of
diffusion models. For a detailed and exhaustive treatment of those, we
refer the reader to [197].
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Initially introduced byDomingos andRichardson [65] in the context of vi-
ral marketing, the Social InfluenceMaximization (SIM) problem has been
studied since the early two thousands. In this section, we concisely outline
the problem and the current research landscape. We refer the reader to
three recent surveys giving a thorough description of the influence max-
imization problem and its variants, solution methodologies, and real-life
applications [26, 129, 152].

Kempe et al. [117] first modeled influence maximization as a combi-
natorial optimization problem in 2003 and investigated its computational
complexity under the LT and IC diffusion models with randomly chosen
thresholds. The problem studies a social network abstracted as a graph
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G = (V, E), where V is the set of vertices (i.e., users) and E is the set of
(directed/undirected) edges (i.e., social links between users). The goal is
to find a k-sized set of users with the maximum influence inG. Kempe et
al. proved the SIM problem to be NP-hard to approximate within a factor
of O(n(1�✏)) for all ✏ > 0.

In its basic version, the Target Set Selection (TSS) problem, proposed
by Ackerman et al. [1], adds another parameter to the SIM problem, ask-
ing to find out a subset of at most k vertices, such that after the diffu-
sion process is over at least � vertices are influenced. The TSS Problem
is a more generalized version of many standard graph-theoretic prob-
lems [26], such as dominating setwith threshold [90] andvertex cover [53]
(in this problem, vertex threshold is set equal to the number of neighbors
of the vertex). Chen [53] studied the TSS problem with fixed arbitrary
thresholds and proved a strong inapproximability result that makes un-
likely the existence of an algorithm for the TSS problem on graphs with
an approximation factor better than O(2log

1�✏ |V |). Recently, Cordasco et
al. [58] presented an algorithm for the TSS problems on graphs, which
provides an optimal solution (i.e., a minimum size subset of vertices that
influence the whole network) if the network is either a tree, a cycle, or a
complete graph.

Current research trends focus on scalability issues, computing realis-
tic diffusion probabilities, and considering benefits and costs as another
component in the SIM problem [26]. In particular, most of the work in
the last years focused on reducing the time complexity of the algorith-
mic solutions, given the NP-hardness nature of the SIM problem under
both the LT and IC models. Current state-of-the-art methods are repre-
sented by the following algorithms [95]: CELF [125], IMM [176], SSA
and D-SSA [144]. Other lines of inquiry in the context of social influ-
ence diffusion are understanding how diffusion mechanics differ across
social media and modeling different types of influence within a network.
Kim et al. [118] moved towards the first direction, exploring news dif-
fusion instances across different social media platforms and finding that
influence between different media types is varied by the context of infor-
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mation. Li et al. [128] followed the second direction, formally defining
a multiple influences diffusion model by considering the influential rela-
tionships and individual’s personalized traits, such as interests and trusts.
Recently, Chathurani et al. [162] put together these two aspects, investi-
gating several influence patterns exercised by different users within and
across online social media platforms.

ǛWǚ �� �83#£'1 -2 �@6'8+8!6,9
Little literature exists on the SIM problem on hypergraphs as these struc-
tures rose to prominence only recently in the academic and industry land-
scape.

Hypergraphs first appeared in the context of SIM in the work of Borgs
et al. [44] in 2014, even though the study’s goalwas to efficientlymaximize
the expected influence under the standard ICmodel in a networkmodeled
via a directed edge-weighted graph. The idea underlying the algorithm
proposed by the authors is based on a polling process, which selects a
vertex v uniformly at random and then determines the set of vertices that
would have influenced v. Intuitively, if the process is repeated multiple
times, and a specific vertex u often appears as an influencer, it is likely for
u to be one of the most influential vertices. The algorithm proposed by
Borgs et al. proceeds in two steps. According to the described random
sampling technique, the first phase generates a sparse hypergraph repre-
sentation of the input graph. Each hyperedge corresponds to a set of indi-
viduals influenced by a randomly selected vertex in the transposed graph.
Hence, the hypergraph represents an influence estimation: given a set of
vertices S, the total degree of S in the hypergraph is approximately pro-
portional to the influence of S in the original graph. In the second phase,
the algorithm performs a greedy procedure that repeatedly chooses the
vertex with the highest degree in the hypergraph and then removes the
chosen vertex and all incident hyperedges. The selected k vertices repre-
sent the final seed set of size k. Borgs et al. proved the algorithm being
near-optimal, with a lower bound of ⌦(n+m).
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In 2016, Gangal et al. [78] first dealt with the problem of influence
maximization directly on hypergraphs. The authors extended the notion
of a vertex to an affiliation or group (represented by a hyperedge) being
influenced, considering a hyperedge activated if themajority of its vertices
are influenced at the end of the diffusion process. The primary objective
of this work is to maximize the number of hyperedges influenced rather
than the number of vertices influenced (HEMI problem). Based on this
idea, Gangal et al. extended the IC model to hypergraphs. They modeled
the diffusion process on a hypergraph H via its directed incidence graph
I(H) to have independent influence probabilities flowing in either direc-
tion. In this model, a vertex v active at the time step t � 1 can influence
an incident hyperedge e with probability pv,e in the following time step t

through the edge (v, e). Similarly, a hyperedge e active in t� 1 can influ-
ence an incident vertex v with probability pe,v during t through the edge
(e, v). Hence, hyperedges act as carriers of the influence, allowing it to
flow from one vertex to another through them. However, according to the
HEMI objective, a hyperedge is included in the final seed set only if most
of its vertices are influenced, regardless ofwhether it has acted as a carrier.
Gangal et al. proved the HEMI problem to be non-submodular under the
diffusion model proposed, and they indicated as future work devising an
algorithm that can solve the problem with some provable guarantee.

In 2019, Zhu et al. [198] revised the SIM problem under a group in-
fluence perspective, based on a similar intuition. Resembling real-life dy-
namics, the authors formalized theGroup IM(GIM)problem,whose goal
is selecting k seed users such that the number of eventually influenced
groups is maximized. The proposed formulation strictly resembles the
problem addressed by Gangal et al.; nonetheless, we can note a few dif-
ferences in the problem setting. First, in Zhu et al., a group is influenced
if at least a fixed percentage � of users in it are influenced under the clas-
sical IC model. Conversely, Gangal et al. fixed a majority threshold on
groups and considered a hyperedge activated only if most of its vertices
are influenced at the end of the diffusion process. Further, Gangal et al.
extended the IC model to hypergraphs, considering vertices influencing
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hyperedges and vice-versa. Second, Zhu et al. consider a directed hyper-
graph while Gangal et al. an undirected hyper-network. After analyzing
the complexity and approximability of the GIM problem, proved to be
NP-hard, Zhu et al. developed a group coverage maximization algorithm
and proposed a sandwich approximation framework for the problem, for-
mulating a lower bound and upper bound of the objective function.

The same research group proposed two other works related to the
study of information diffusion in social networks abstracted as a directed
hypergraph, focusing specifically on crowd influence. In [200], Zhu et al.
modeled the crowd influence as a hyperedge e = (He, v)with weight 0 
pHe,v  1, where He is the head vertex-set and v is the tail vertex, mean-
ing that v will be influenced by He with probability pHe,v only after each
vertex in He is influenced. Their proposed objective function is selecting
k initially-influenced seed users in a directed hypergraph G = (V, E ,P)

to maximize the expected number of eventually-influenced users. Zhu et
al. proved the problem to be NP-hard under the IC model and proposed
an algorithm preserving a (1 � 1/e � ✏)-approximation, based on the D-
SSA [144] method for graphs to obtain seed vertices.

In [199], Zhu et al. continued analyzing theComposed InfluenceMax-
imization (CIM) - proposed in [200], considering social networks mod-
eled as a directed hypergraph. In this work, the authors focused on devel-
oping lower and upper bounds of the CIM problem’s objective function
to then design a greedy strategy based on the lower bound maximiza-
tion for solving it. Zhu et al. also formulated a sandwich approximation
framework, preserving the theoretical analysis result.

Recently,Wang et al. [185] proposed to add different types of relations
in the SIM setting. Specifically, when analyzing diffusion processes, they
consider both user-to-user friendship relations and relationships gener-
ated by online activities (for instance, if twousers commented on the same
post). The intuition behind this idea is based on the fact that many online
social network users may participate in multiple common online activi-
ties and influence each other even though they are not friends. Wang et
al. abstract the so-generated heterogeneous network with a hypergraph
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H(V, E , E1, . . . , El), where V denotes the set of users, E denotes the user-
user links, and Ei, i 2 [1, l], denotes the set of hyperedges of type i, in
which each hyperedge is a set of users who participated in the same on-
line activity. In the diffusion model proposed by Wang et al., influence
spreads from one user to another according to three criteria: (i) direct
user-to-user influence, (ii) user-activity-user influence, and (iii) compos-
ite influence (user-to-user and user-activity-user) by one-hop neighbors.
The authors then approximate the vertices’ influence by defining an influ-
ence centrality based on a random walk on hypergraphs. In this manner,
they approximate the SIM problem by solving a centrality maximization
problem. Wang et al. finally employ the Monte Carlo framework to esti-
mate influence centrality and develop a greedy-based algorithm to solve
the SIM problem under the IC and LT models.

Influence diffusion models are usually treated as specific cases of epi-
demic models [152]. The following two works are an example of such
methodology applied to hypergraphs. We will discuss these articles also
in Chapter 5 as they analyze diffusion phenomena under the epidemic
framework.

Ma andGuo [134] constructed and analyzed four kinds of information
transmission patterns within the members of an enterprise under the epi-
demic transmission framework. In theirmodel, a hyperedge represents an
informal organization (e.g., spontaneous groups), and, according to the
SIR model, vertices belong to the three standard classes corresponding to
ignorant (Susceptible), spreader (Infected), and stifler vertices (Recov-
ered). In the probabilistic transmission model, all vertices are ignorant at
the start. At the first iteration, the information spreads from a randomly
chosen initial vertex to other randomly selected spreader vertices within
the same hyperedge with a given probability. Immune vertices no longer
spread the information and stop transmitting. The authors also analyzed
variations of the model where information passes (i) from one person to
another in a chain-like fashion (one-way transmission), (ii) to the entire
hyperedge or group (gossip transmission), or (iii) to a constant number
of vertices within the same hyperedge (group transmission).
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Suo et al. [173] investigated an SIS model on hypergraphs in the con-
text of rumor spreading on social media. They proposed two information
diffusionmodels by considering how an individual might decide to share
content on a social media platform, either to all the contacts or targeting
a particular group. In the global strategy, the information is published
to the whole network. At each step, an infected vertex i can infect with
a probability � all the susceptible neighboring vertices connected to i via
a hyperedge. It is worth highlighting that, in this strategy, each hyper-
edge is seen as a clique. As a consequence, the global spreading strategy
would, in principle, be equivalent to the one defined on the two-section
of the hypergraph [32] (see Section 2.2.2). With the local approach, an
infected vertex i randomly chooses one of its hyperedges e and then tries
to infect all the vertices in e with a probability of success �.
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This chapter presents current literature related to the analysis of epi-
demic-spreading phenomena abstracted and studied via hypergraphs. In
Section 5.1, we first draw attention to the principal features characteriz-
ing equation-based and agent-based models (ABMs), then discuss how
these tools are used in the epidemiological context. In Section 5.2, we
specifically describe the existing epidemic models on hypergraphs. In
Section 5.3, we present an overview of the current literature on model-
ing non-pharmaceuti- cal interventions via agent-based simulations. In
Section 5.4, we finally outline how the parameter space of an ABM can be
explored.

ǜWǘ 	7<!ধ32f#!9'& =9 �+'2;f#!9'& �3&'£9
Equation-basedmodels (EBMs) and agent-basedmodels (ABMs) are two
modeling approaches for simulating real-world systems and analyzing



5.1 Equation-based vs Agent-based Models

what-if scenarios, extensively exploited in pandemic simulations [22].
Both techniques share some common concerns, but they differ in the fun-
damental relationships among entities they model and the level at which
they focus their attention [181].

EBMs and ABMs deal with two entities to model complex problem
domains: agents and observables, each with a temporal aspect. [181, 22].
Agents have a specified set of characteristics and interact with each other
and their environment according to predefined rules [178]. They may
adapt their behavior to their experiences, interactions with other agents,
and interactions with their environment. Agents may represent individ-
uals, viruses, governments, or any other entities of interest. Observables
aremeasures of interest that can either be associatedwith individual agents
or with collections of agents. In the context of an epidemic, an example
of observable at the agent level is the disease stage the agent is in (such
as susceptible, infected, and recovered), while an observable at the col-
lection level is the proportion of the population susceptible. EBMs ex-
press relationships among observables: the evaluation of the model pro-
duces the observables’ evolution over time. EBM tends to make extensive
use of system-level observables associated with a collection of interacting
agents. On the contrary, ABMs define agent behaviors in terms of observ-
ables accessible to the individual agent. Thus, ABMs capture behaviors
through which agents interact with one another: the emulation of agent
behavior leads to the observables’ emergence over time.

EBMs aremathematically tractable and theoretically grounded. How-
ever, they assume homogeneity, and they tend to use aggregates of criti-
cal system variables. Even though heterogeneity can be incorporated into
EBMs, it increases the model’s complexity and can make it mathemati-
cally intractable. In contrast, ABMs are not mathematically tractable, but
they allow for heterogeneity in the problemenvironment. The price of this
feature is that ABMs may require several parameters to capture the agent
behavior. Despite creating a much more realistic model, using many pa-
rameters also adds computation complexity in terms of sensitivity analy-
sis andmodel validation. EBMs andABMs are, thus, two complementary
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approaches [22]. While EBMs provide a theoretically justifiable baseline
from which ABMs can be calibrated, ABMs can extend EBM’s insights by
modeling a more realistic decision environment.

ǜWǘWǘ �316!8;1'2;!£ 	��9 !2& 	6-&'1-3£3+@

Modeling a disease transmission introduces a trade-off between a high
level of detail and computability. As described by Brauer in [46], there are
many mathematical models for studying and analyzing disease spread-
ing. Compartmental is a class of models in which the study of transmis-
sion and population is divided into compartments, and assumptions on
the nature and time rate of the spreading between compartments them-
selves are made. Popular compartmental models - appropriate for most
diseases transmitted by contact - are SIR and SIS. In these models, the
population is studied by partitioning it into three classes labeled S(us-
ceptible), I(nfected), and R(ecoverd). In the SIR model, an individual
belongs to one of these possible classes, corresponding to an individual
being susceptible to, infected, or recovered from the disease at a particu-
lar time. If the disease confers no immunity against infection, individuals
cannot move their status to recovered, and they will come back in the
susceptible class; in such cases, SIS can be adopted. The pathogen propri-
eties, such as its contagiousness, the length of its infectious period, and its
severity, define the epidemic transmission patterns. However, contagion
patterns are also conveyed and defined by the network structure of the
population affected by the pathogen [68]. The opportunities for a disease
to spread from one individual to another are, thus, given by a contact
network. Those are usually modeled via a graph, with members of the
population represented by vertices and with contacts between individ-
uals represented by edges. The degree distribution of the so-generated
graph becomes fundamental in the description of the spreading process.
We refer the reader to the work of Brauer [46] and Nowzari et al. [145]
for more details.
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ǜWǘWǙ ���9 !2& 	6-&'1-3£3+@

An ABM is a class of computational models that provides a bottom-up
design approach to define a complex system. As presented by Tracy et al.
in [178], ABMs are widely adopted in epidemiology science. Frequently,
they are used to integrate GIS to simulate the spread of an epidemic in a
particular environment due to individual interactions generated by their
mobility over geographical space [109]. ABMs are also suitable for sim-
ulating the interactions of autonomous agents, and they can describe a
complex system at a micro-scale level [57]. Adopting an ABM in this con-
text can capture several essential aspects of the epidemic dynamics, such
as real human behaviors and complex interactions. For instance, we may
need to simulate both the direct- and indirect-contagion process between
agents and environments to accurately reproduce airborne disease trans-
mission. Further, the duration of the contact is another crucial aspect in
these processes as people frequently change their habits according to so-
cial events and places’ popularity, and distinct pathogens exhibit different
infection times. We refer the reader to the work of Tracy et al. [178] for a
reviewof key areas in public healthwhere agent-basedmodeling has been
adopted, including both communicable and non-communicable disease,
health behaviors, and social epidemiology.

ǜWǙ 	6-&'1-$ �3&'£9 32 �@6'8+8!6,9
A complete overview of mathematical frameworks capable of explicitly
andnaturally describing group interactions is given byBattiston et al. [32].
Specifically, the authors outline the dynamics of structures with many-
to-many interactions and discuss higher-order diffusion models, includ-
ing spreading dynamics on hypergraphs. After focusing on the structure
of systems with high-order interactions, they describe the mathematical
tools that capturemany-body relationships, alongwith themost common
measures and properties used to describe systems. The authors further
outline the dynamics of structures with many-to-many interactions and
discuss models of higher-order diffusion, including spreading dynamics
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on hypergraphs.
Bodò et al. [41] first proposed modeling communities as hyperedges,

based on the concept that an actual model of an epidemic outbreak has
to take into account two factors: community structure and infection pres-
sure. They translated this approach into practice using different conta-
gion probabilities according to the place. In addition, they bounded the
likelihood that a susceptible individual becomes infected in a unit to be
not proportional to the number of infected individuals within that unit.
The authors showed that using a non-linear function to model the infec-
tion pressure is crucial not to overestimate the epidemic propagation.

To model the community structure and the non-linear dependence of
the infection pressure, Bodò et al. developed the theory of epidemic prop-
agation on hypergraphs, where each node is an individual, and each hy-
peredge is a unit such as a household or a workplace. Specifically, they
examined an SIS model under a continuous time Markov chain formal-
ism. In this model, Poisson processes govern both infection and recovery,
where the infection rate r takes into account connectivity patterns. In con-
trast, recovery is a spontaneous process controlled by a fixed recovery rate
�. In more detail, the probability for a susceptible individual to become
infected is defined as 1�e�r�t, with r = ⌧

P
e
f(ie). The function f(ie)de-

notes the number of infected nodes in the hyperedge e, and it is summed
up over all hyperedges containing susceptible individuals, while ⌧ repre-
sents the infection rate.

To define the non-linear dependence of the infection pressure, Bodò et
al. chose f as a linear function as an upper limit to the infection pressure
for a susceptible node when the number of infected neighbors is higher
than a given threshold. As Battiston et al. note, this approach is con-
ceptually different from the conventional threshold mechanism, in which
thresholds set the critical amount of exposure from the peers that an in-
dividual needs to adopt new technology. In other words, the function f

describes how the infection pressure is discounted as the number of infec-
tious neighbors increases. In particular, if an individual belongs to two or
more hyperedges, e.g., a household and a workplace, then the rate of in-
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fection is the sum of the rates in each hyperedge, i.e., (f(n1) + f(n2))⌧ ,
where n1 is the number of infected individuals at home and n2 at the
workplace. As Bodò et al. observe, the epidemic propagation can also
be considered on the corresponding clique graph by discounting the in-
fection pressure for many infectious neighbors. However, in this case, the
infection rate will be f(n1 + n2)⌧ instead of (f(n1) + f(n2))⌧ , and hence
it cannot be distinguished whether somebody has more infectious neigh-
bors at home than in the workplace, the vice-versa, or a moderate number
at both places.

Simulations on hypergraphs having hyperedges of different sizes in-
dicated that heterogeneous structures might significantly hasten the ini-
tial phase of the spreading compared to regular hypergraphs, leading to
slightly smaller values of prevalence in the stationary state.

Suo et al. [173] investigated a similar SIS model on hypergraphs in the
context of rumor spreading on social media. They proposed two informa-
tion diffusion models by considering how an individual might decide to
share content on a social media platform, either to all the contacts or tar-
geting a particular group. In the global strategy, the information is pub-
lished to the whole network. At each step, an infected node i can infect
with a probability � all the susceptible neighboring nodes connected to i

via a hyperedge. It is worth highlighting that, in this strategy, each hyper-
edge is seen as a clique. As a consequence, the global spreading strategy
would, in principle, be equivalent to the one defined on the two-section
of the hypergraph [32] (see Section 2.2.2). With the local approach, an in-
fected node i randomly chooses one of its hyperedges e and then tries to
infect all the nodes in ewith a probability of success �. The two strategies
lead to different long-term behaviors, with a vanishing epidemic thresh-
old in the global strategy. In contrast, the particular positioning of the
initial seed of infectious nodes — either on high or low degree nodes
— seemed to affect only the early evolution of the process: as expected,
choosing nodes with a high degree as seeders can significantly speed up
the contagion in the early times. No differences in the stationary states
were found.
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Another version of a high-order contagion model for spreading dy-
namics occurring at the group levelwas proposed by Jhun et al. [106]. The
authors extended the simplicial contagion model proposed by Iacopini et
al. [98] to hypergraphs. Specifically, they studied the spreading process
on scale-free d-uniformhypergraphs, where all hyperedges have the same
size d. In this model, a susceptible node in a hyperedge e of size dmay be
infected from e, with rate �d, only if the remaining d�1 nodes composing
e are infectious. A standard recovery probability µ is used for recovery.
In more detail, the density of infected nodes with degree k, denoted as
⇢k, evolves with time according to d/dt⇢k = �µ⇢k + �k(1 � ⇢k)k⇥d�1. In
this formula, the probability that a susceptible node of degree k gets the
infection from one of the hyperedges is, as usual, proportional to the in-
fection rate �k, the number of hyperedges k, and the probability ⇥d�1 to
be connected to a hyperedge having all the other nodes infected.

In their work, Landry et al. [122] focused on studying the effect of
degree heterogeneity of the hypergraph structure on epidemic contagion
models. They presented and analyzed a hyper degree-based mean-field
description of the dynamics of an SIS model, running numerical experi-
ments on hypergraphs where contagion is mediated via both links (pair-
wise interactions) and triangles (three-way interactions). Under this frame-
work, the authors further considered three group contagion dynamics:
(i) collective contagion, (ii) infection by individuals, and (iii) the hipster-
effect, mimicking the situation in which a person is less likely to adopt a
popular trend, but their pairwise connections can convince them. In the
SIS framework Landry et al. proposed, infected nodes heal and become
susceptible again at rate �. The infection process proceeds according to
the policy chosen. In the collective contagion case, a susceptible node
that belongs to a hyperedge of size m gets infected at rate �m if all the
other members of the hyperedge are infected. This scenario corresponds
to the social contagion model based on simplicial complexes of Iacopini
et al. [98]. In the individual contagion case, the node gets infected at rate
�m if at least one member is infected. For hyperedges of size 2, both cases
reduce to the usual contagion via pairwise interactions.
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Recently, de Arruda et al. [61] presented an SIS framework that ex-
plicitly includes critical-mass dynamics into the contagion model. The
authors generalize the simplicial contagion model proposed by Iacopini
et al. [98] both structurally and dynamically. They (i) moved from sim-
plicial complexes to hypergraphs and (ii) allowed a hyperedge e to be
potentially infectious for a node i 2 e if the number of infected nodes
composing e is greater or equal to a given threshold te. The authors re-
stricted this threshold mechanism to hyperedges of a size larger than two
so that a contagion through active links can always happen (no thresh-
old).

Another very recent study fitting in the framework defined by Bodò
et al. has been proposed by Higham et al. [92]. The authors inherited
the idea of a nonlinear infection pressure from each hyperedge (as well
as the notion of hyperedge as a place, like a household, workplace, or
social setting) and studied the case where the form of the nonlinearity
depends on the hyperedge type. The authors presented both the exact
individual-level stochastic model and a deterministic mean-field approx-
imation based on an SIS high-order propagationmodel. They further dis-
cussed different types of contagionmodels in this hypergraph setting and
derived spectral conditions characterizing whether the disease vanishes.
Highamet al. also showedhow the hypergraphmodel allows distinguish-
ing between contributions to infectiousness due to (i) the nature of the
pathogen - modeled via the infection parameter � - and (ii) behavioral
choices (such as social distancing, increased hygiene, and use of masks)
- represented by the interaction structure of the hypergraph and a coeffi-
cient arising from modeling the nonlinear infection process.

Finally, Ma and Guo [134] constructed and analyzed four kinds of in-
formation transmission patterns within the members of an enterprise. In
their model, a hyperedge represents an informal organization (e.g., spon-
taneous groups), and, according to the SIR model, nodes belong to the
three standard classes corresponding to ignorant (S), spreader (I), and
stifler nodes (R). In the probabilistic transmission model, all nodes are
ignorant at the start. At the first iteration, the information spreads from a
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randomly chosen initial node to other randomly selected spreader nodes
within the same hyperedge with a given probability. Immune nodes no
longer spread the information and stop transmitting. The authors also
analyzed variations of the model where information passes (i) from one
person to another in a chain-like fashion (one-way transmission), (ii) to
the entire hyperedge or group (gossip transmission), or (iii) to a constant
number of nodes within the same hyperedge (group transmission).

ǜWǚ �3&'£-2+ �32f�,!81!$'<ধ$!£ 2;'8='2ধ329
Non-pharmaceutical interventions (NPIs) have been the subject of vast
literature even before the COVID-19 pandemic [77, 182]. Still, until 2007,
Aledort et al. report a generally poor quality of evidence onwhich to base
non-pharmaceutical pandemic planning decisions [6], mainly due to the
lack of representative data and a validation process [182]. Unfortunately,
when the COVID-19 started spreading worldwide, NPIs were the only
possible measures to stop its diffusion. This event gave birth to an unseen
joint effort of the academic community and tech giants in understanding,
modeling, and assessing the connection between human behaviors and
disease diffusion and the effects of the application of NPIs [153]. How-
ever, despite the current availability of vaccines, from a study performed
on the UK region [137], the application of such measures cannot be com-
pletely relaxed as the current vaccination program alone is insufficient to
contain the outbreak.

In a recent survey [153], Nicola Perra thoroughly describes current
literature about NPIs during the COVID-19 pandemic. The author clas-
sifies the models adopted into four categories: (i) compartmental mod-
els, (ii) metapopulation models, (iii) statistical models, and (iv) agent-
based models. In this section, we will focus on agent-based models as, in
this dissertation, we exploit the ABM paradigm to simulate the epidemic
spreading and the application of NPIs. As described in Section 5.1, an
ABM is a class of computationalmodels that provides a bottom-up design
approach to define a complex system, offering an easy way to plug socio-
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demographic features into the simulation of a disease spreading. Never-
theless, the price to pay for having a realistic model lies in the specifica-
tion of several parameters to capture the agent behavior and the computa-
tion complexity in terms of sensitivity analysis andmodel validation [22].
ABMs have been widely used to quantify the effects of NPIs, such as lock-
down, social distancing, and isolation measures. Another recent survey
about the use of ABMs to simulate the COVID-19 pandemic can be found
in [130].

Hoertel et al. [93] developed a detailed ABM for France to evaluate
the effectiveness of different NPIs in the reopening phases after the first
wave. The proposed model has 194 parameters, describing the socio-
demographic features of the French population (140), the contact net-
works (33), and the features of the virus (21). The authors studied lock-
down and post-lockdownmeasures, including physical distancing, mask-
wearing, and isolation approaches, highlighting how the interventions af-
ter lifting the first lockdown were not enough to overburden the health-
care system. With a similar approach, Aleta et al. [8] built a multilayer
synthetic population that models the socio-demographic features of the
Bostonmetropolitan area using high-resolution data describing themove-
ments and potential interactions of people in the city to investigate the im-
pact of different reopening scenarios. Their results suggest how a proac-
tive policy of testing, contact tracing, and household quarantine could
gradually reopen economic activities and workplaces with a low impact
on the healthcare system. Analogous to this work, the same authors also
proposed an ABM for themetropolitan areas of NewYork and Seattle [7],
informing the model with mobile phone data and Foursquare data to
identify POIs. In this study, the authors examine the risk of infection ac-
cording to the type of locations visited and estimate the size of transmis-
sion chains, finding that workplaces, restaurants, and grocery stores are
the main drivers of the epidemic patterns.

Wilder et al. [188] proposed anABMto study the spreading ofCOVID-
19 in Hubei, Lombardy (Italy), and New York City. The synthetic popu-
lation is formed by individuals stratified for age, comorbidities, and as-
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signed to a household, while contacts among agents in different contexts
than home are modeled via contact matrices. Their results suggest that
measures should be tailored to the specific socio-demographic features of
each population as the efficacy of NPIs varied across the analyzed loca-
tion. Contact matrices were also used by Ogden et al. [146] to model a
synthetic sample of the Canadian population to evaluate social distanc-
ing and isolation measures to control the disease spread. Their outcomes
indicate that lifting disruptive NPIs such as shut-downs must be accom-
panied by enhancements to other NPIs to prevent new introductions and
identify and control new transmission chains.

Yang et al. [191] used a network-basedmodel to represent contact hap-
pening inter- and intra- different cities in theHubei province. They specif-
ically examined the use of personal protective, social distancing, and a
combination of those measures to decrease the infection rate.

Bouchnita et al. [45] designed amulti-scaleABM inwhich agentsmove
according to a social force model and which considers both direct and in-
direct transmission mechanisms. The authors did not explicitly consider
the notion of location (as households or schools) as agents move on a
grid. The model simulates indirect contagion based on the normalized
concentration of deposited SARS-CoV-2 on hard surfaces, the averaged
rate of SARS-CoV-2 secretion by contagious agents, and the decay rate of
the virus. For each agent, indirect transmission can occur only once every
day at a random moment.

Silva et al. [167] proposed an agent-based framework (COVID-ABS)
to simulate people, business, government, and the health care system.
The framework allows implementing several NPIs and measures the im-
pact in terms of disease and economic burden. Other few works also use
ABMs to simulate the economic consequences of the COVID-19. For in-
stance, Inoue and Todo [99] quantified the economic effect of a possible
lockdown of Tokyo, estimating that the lockdown would result in an 86%
reduction of the daily production in Japan after one month. Similar to
COVID-ABS, Dignum et al. [64] presented an ABM simulation tool to
analyze possible repercussions of policy interventions, combining social,
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economic and health aspects.
Generally, all works agree that continued intervention should be con-

sidered to keep the transmission of an epidemic under control and mix
NPIs to regulate contagion dynamics best.

ǜWǛ �3&'£ 	?6£38!ধ32
ABMs are usually characterized by a large number of controlling param-
eters and range of parameter values, a significant amount of computation
required to run a model, and a stochastic nature which requires multiple
trials to assess the model’s behavior [171]. As the number of parameters
increases, it becomes unfeasible tomanually handle the exploration of the
parameter space, which comprises the selection of parameter selection,
the simulation run, and the evaluation of the output [50]. The process
of (i) choosing starting configurations, (ii) running the simulation, (iii)
evaluating the outcomes, and (iv) selecting new candidates is known as
Simulation Optimization (SO) process [76, 177]. A SO framework can
be formally described as a general optimization problem whose goal is to
find a setting of controllable parameters that minimizes a given objective
function, i.e.,

min
✓2⇥

J(✓),

where⇥ is the admissible decision space, ✓ 2 ⇥ is the vector of input vari-
ables representing a single configuration, and J(✓) is the scalar objective
function estimated via the simulation. Because of their nature, simula-
tions provide a noisy estimate of J(✓); for this reason, the most common
form for J is an expectation

J(✓) = E[L(✓, ✏)],

whereL(·) is the sample performancemeasure and ✏ represents the stochas-
tic effect in the system.

Having formalized the SO process as a general optimization problem,
the parameter space search can thus be done via any optimization algo-
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rithm [177]. The literature widely explored genetic algorithms (GAs) in
this direction, working on parameter-search and exploration in ABMs,
as well as on the problem of parameter-search in general [171]. When
the optimization problem is multi-objective (J(✓) 2 R

n), multi-objective
GAs (MOGAs) come into play. Their central idea lies in generating the
optimal Pareto frontier in the objective space so that it is not possible to
further enhance any fitness function without disturbing the other fitness
functions [127]. The goals ofMOGAs are convergence, diversity, and cov-
erage.

These algorithms can be broadly categorized in two classes: (i)Pareto-
based MOGAs, and (ii) decomposition-based MOGAs. The algorithm
NSGA [169], its enhanced version (NSGA-II [62]), and variants (NSGA-
II with dynamic crowding distance [133]) are among the main examples
of Pareto-based MOGAs. Decomposition-based MOGAs decompose the
given problem into multiple subproblems - which are solved simultane-
ously - and exchange the solutions among neighboring subproblems. Ex-
amples of this class of MOGAs are: MOGLS [100] and its variant [101],
C-MOGA [141], MOTGA [9], and D-MOGA [151].

For an exhaustive description of the SO process and a review on ge-
netic algorithms, we refer the reader to [76, 177] and [127, 115], respec-
tively.
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In this chapter, we introduce the data sets used for the experimental
part of this dissertation. We provide a brief description for each data set,
a link to the source where it is possible to download the data, and some
basic information about the number of instances and the available fea-
tures. Whenever more detailed analyses are needed, we report them in
the specific chapter.

ǝWǘ �!;! �';9 �'9$8-6ধ32
In the following, we list in alphabetical order all the data sets used in this
thesis.

�£+'#8!
Hypergraph where vertices are users of mathoverflow.net and hyper-
edges correspond to users who answered a particular type of question
about algebra within a month. The network has 423 vertices and 1, 268

hyperedges. Source [35].
Used in Chapter 8.

mathoverflow.net


6.1 Data Sets Description

�1!A32
Sets of products reviewed by users on Amazon. Each vertex corresponds
to a product, and a hyperedge links together groups of similar items. The
network has 2, 268, 231 vertices and 4, 285, 363 hyperedges. In our exper-
iments, we used a subset of reviews. We refer the reader to Section 8.5.2
for details on the hypergraph size. Source [35].
Used in Chapter 8.

�!89 �'=-'>9
Hypergraphwhere vertices are Yelp users, and hyperedges are users who
reviewed an establishment of a particular category (different types of bars
in Las Vegas, NV) within a month time frame. The network has 1, 234

vertices and 1, 194 hyperedges. Source [35].
Used in Chapter 8.

��	�'!$32
The BLEBeacon data set [166] is a collection of Bluetooth Low Energy
(BLE) advertisement packets/traces generated from BLE beacons carried
by people following their daily routine inside a university building for a
whole month. The main objective of this data set was to present a real-
life realization of a location-aware sensing infrastructure that can provide
insights for smart sensing platforms, building management, and user-
localization frameworks. The data set contains 153, 868 check-ins of 62
users and 31 locations.
Used in Chapter 10.

�£<'9 �<9-$ �'=-'>9
Hypergraph where vertices are Amazon reviewers and hyperedges are
reviewers who reviewed a particular product category (different types of
blues music) within a month timeframe. The network has 1, 106 vertices
and 694 hyperedges. Source [35].
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Used in Chapter 8.

����
Co-authorship on DBLP papers, containing 2million documents scraped
from DBLP. Each vertex is an author, while each hyperedge is a publi-
cation. In our experiments, we considered all documents published be-
tween January and May 2017. We refer the reader to Section 8.5.2 for de-
tails on the hypergraph size. Source [56].
Used in Chapter 8.

	1!-£f	2832
Sets of email addresses on emails. In this dataset, vertices are email ad-
dresses at Enron, and a hyperedge is comprised of the sender and all re-
cipients of the email. The network has 4, 423 vertices and 15, 653 hyper-
edges. In our experiments, we considered a subset of emails. We refer the
reader to Section 8.5.2 for details on the final hypergraph size. Source [35].
Used in Chapter 8.

	1!-£f���
Sets of email addresses on emails. Each hyperedge consists of a set of
email addresses, which have all appeared on the same email. The net-
work has 14, 317 vertices and 19, 821 hyperedges. In our experiments, we
considered a subset of emails. We refer the reader to Section 8.5.2 for de-
tails on the final hypergraph size. Source [35].
Used in Chapter 8.


3<897<!8'
The Foursquare social network data set, introduced byYang et al. in [190],
is a collection of check-ins originated from the city of Tokyo and crawled
from 12 April 2012 to 16 February 2013. The data set contains 573, 703
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check-ins of 2, 293 users and 61, 858 locations, such as restaurants, cine-
mas, sports, and so on.
Used in Chapters 9 and 10.

�!1' 3( �,832'9 l�3�m
Data set on the GoT TV series describing season episodes and contain-
ing meta-informa- tion about each of them, such as title, identification
number, season, and description. Information about each scene within
an episode is also reported. For each scene, start, end, location, and a list
of characters performing in it are listed. A more detailed description of
the data set can be found on the GitHub repository of the creator [103].
Table 6.1 reports some basic information about the number of episodes,
scenes, and characters per GoT season.

In Section 7.4.2 and Chapter 8, we modeled the GoT data set with a
hypergraph, whose vertices are GoT characters and hyperedges are GoT
scenes. In other words, a hyperedge consists of all characters appearing
in the same scene together.
Used in Chapters 7 and 8.

Table 6.1: Number of episodes, scenes, and characters per GoT season.

Season Episodes Scenes Characters
I 10 286 125
II 10 468 137
III 10 470 137
IV 10 517 152
V 10 508 175
VI 10 577 208
VII 7 468 75
VIII 6 871 66
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�'31';8@
Hypergraph where vertices are users on mathoverflow.net, and hyper-
edges are sets of userswho answered a certain question category about ge-
ometry. The network has 580 vertices and 1, 193 hyperedges. Source [35].
Used in Chapter 8.

���
NBA games in the period 1985-2013. This data set has been collected by
Sports Reference LLC and contains around 32K nested documents rep-
resenting NBA games. Each document represents a game between two
teams with at least 11 players each. It contains 47 attributes; 40 of them
are numeric and represent team and player results. Vertices are players,
and a hyperedge connects together all players involved in a match up to
2012. We refer the reader to Section 8.5.2 for details on the final hyper-
graph size. Source [56].
Used in Chapter 8.

�'9;!<8!2; �'=-'>9
Hypergraphwhere vertices are Yelp users, and hyperedges are users who
reviewed an establishment of a particular category (different types of restau-
rants in Madison, WI) within a month timeframe. The network has 565
vertices and 601 hyperedges. Source [35].
Used in Chapter 8.

�'£6W$31
Yelp.com [192] is an online platform where customers can share their
experiences about local businesses by posting reviews, tips, photos, and
videos. Further, this platform allows businesses and customers to engage
and transact. Every year, the Yelp Inc. Company releases part of their
data as an open data set to grant the scientific community to conduct re-
search and analysis on them. In this dissertation, we analyzed the 2019
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6.1 Data Sets Description

Yelp Challenge data set [193], containing information about businesses,
reviews, and users. Table 6.2 describes all the accessible data set entities.
A more detailed description can be found on the official page [194]. We
have to note that the Yelp data set is regularly updated; thus, the current
snapshot may not be precisely the same as the one in 2019.
Used in Chapter 7.

Table 6.2: Yelp entities contained in the data set.

Data Instances Description
Business 192,609 Business data including location, attributes, and cate-

gories.
User 1,637,138 User data including the user’s friend mapping and all

the metadata associated with the user.
Review 6,685,900 Full review text including the user_id that wrote the re-

view and the business_id the review is written for.
Picture 200,000 Photo data including caption and classification (one of

“food”, “drink”, “menu”, “inside” or “outside”).
Tip 1,223,094 Tips written by users on businesses. Tips are shorter

than reviews and tend to convey quick suggestions.
Check-in 192,609 Aggregated check-ins over time for each business.
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This chapter presents one of themain contributions of this thesis: Sim-
pleHypergraphs.jl, a software library to model, analyze, and visualize
hypergraphs, written in Julia and designed for high-performance com-
puting. Here, we describe the main motivations behind creating Sim-
pleHypergraphs.jl (see Section 7.1), the library’s design choices (see Sec-
tion 7.2), and its memory model. We further delve into illustrating the
functionalities offered by the software, including transformations to graphs
and hypergraph visualization methods (see Section 7.3). Contextually,
we also describe a generalized version of the label propagation algorithm
for community detection suitable for hypergraphs. We finally present two
case studies with the twofold objective of (i) demonstrating how it is pos-
sible to exploit the proposed library and (ii) comparing hypergraphswith
their corresponding graph counterpart to explorewhether high-order struc-
tures conveymore information in addressing specific tasks (see Section 7.4).



7.1 Motivation

SimpleHypergraphs.jl is available on a public open-source GitHub repos-
itory [12] and on the official Julia package registry.

Thework described in this chapter has been presented in the following
articles:

• A. Antelmi, C. Cordasco, B. Kamiński, P. Prałat, V. Scarano, C. Spag-
nuolo, P. Szufel. SimpleHypergraphs.jl — Novel Software Frame-
work for Modelling and Analysis of Hypergraphs. In: Algorithms
and Models for the Web Graph, pages 115-129, Cham, 2019. Springer
International Publishing.

• A. Antelmi, C. Cordasco, B. Kamiński, P. Prałat, V. Scarano, C. Spag-
nuolo, P. Szufel. Analyzing, Exploring, and Visualizing Complex
Networks via Hypergraphs using SimpleHypergraphs.jl. Internet
Mathematics, 2020.

ǞWǘ �3ধ=!ধ32
Workingwith hypergraphs requires software libraries specifically designed
to perform operations directly on these high-order structures, from basic
algorithms (e.g., traversals) to more complex tasks (e.g., community de-
tection). This desideratum represents the fundamental requirement for
each hypergraph-specific framework, in addition to a flexible definition
of the data structures and functionalities exposed to allow the user to cus-
tomize their behaviors easily if needed. Further, an extra point goes to the
implementation language, which should be at the same time easy-to-learn
and fast to enable the implementation of efficient algorithms.

In Section 3.1, we discussed the major existing libraries to represent
andmanipulate hypergraphs. However, from the analysis of the function-
alities offered by each software emerge that the available frameworks are a
compromise between efficiency, characterizing low-level languages such
as C/C++, and the ease-of-use and expressiveness, peculiar of scripting
languages such as Python and R. In particular, HyperNetX [155], which
currently stands out as a comprehensive framework written in Python for
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7.2 Library Design

analyzing hypergraphs, was only in its early development stage in 2019.
Further, some libraries only support a very restricted set of hypergraph-
related functions or only rely on hypergraph to graph transformations
and do not expose any specific method.

To address the specific needs listed in the introduction of this section
and given the lack of both a comprehensive and efficient hypergraph-
specific library, we opted to develop our software framework for the Ju-
lia language. We chose this programming language thanks to its pecu-
liar characteristics of being a high-level language designed explicitly for
high-performance computation (see Section 3.2), hence perfectly suitable
for our task. Furthermore, no support for hypergraphs existed yet in the
Julia community. Today, SimpleHypergraphs.jl is the reference library to
model, manipulate, and visualize hypergraphs in Julia.

Table 7.1 summarizes themain characteristics of SimpleHypergraphs.jl
and the principal libraries introduced in Section 3.1. We left out from
the comparison currently unmaintained libraries, newly and project-like
frameworks, and software without hyper- graph-specific functionalities.
The Graph Integration and Visualization entries refer to the integration of a
graph-specific library within the hypergraph framework and the support
for hypergraph visualization, respectively.

ǞWǙ �-#8!8@ �'9-+2
The key element in the design of SimpleHypergraphs.jl is to ensure flexi-
ble interoperability with both the existing Julia ecosystem and the classi-
cal graphmanipulation framework. For this reason, SimpleHypergraphs.jl
provides two-fold integration with both the Julia standard matrix type
and the LightGraphs.jl package, the official Julia library to manipulate
graphs.
Julia’s matrix APIs. The integration with Julia’s built-in type Array is ob-

tained bymaking the Hypergraph struct a subclass of AbstractMatrix,
and providing a set of integration methods for manipulating ma-
trices, such as querying the matrix size and fetching/updating ele-
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7.2 Library Design

Table 7.1: Summary of the hypergraph software frameworks’ main char-
acteristics. CommDet stands for Community Detection.

SimpleHypergraphs.jl CHGL halp Hygra HyperNetX
Reference [12] [105] [139] [163] [155]
Language Julia Chapel Python C/C++ Python
License MIT MIT GPL-3.0 MIT 3-Clause BSD
Documentation � Work in Progress � � �

Generative Models � � � � �

Metadata � � � � �

Parallel /
Distributed

� � � � �

Hypergraph algorithms
- Centrality Measures
- Random walk/Paths
- CommDet/Clustering

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Graph integration � � � � �

Visualization � � � � �

ments (see §Querying andManipulating Functions in Section 7.3.2).
Internally, a hypergraph is stored as a sparse array, and its data are
stored in a redundant format, using two separate hashmap struc-
tures for rows and columns. This design choice simultaneously guar-
antees good algorithmic performances on rows and columns. Fur-
thermore, it avoids the circumstancewhere all data need to be rewrit-
ten when the adjacency matrix is updated (typical disadvantage of
a compressed sparse row matrix).
As a subclass of AbstractMatrix, the hypergraph adjacency matrix
can be manipulated like any other Julia matrix (see Section 7.3.1).

LightGraphs.jl. We achieved interoperability with the LightGraphs.jl li-
brary by creating hypergraph “view” classes that act as an interface
and represent a hypergraph as either an incidence or a clique graph
(see §Hypergraph Transformations in Section 7.3.2). These repre-
sentations do not copy the hypergraph data but provide a view that
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allows access to the underlying hypergraph in a read-only mode.
As we developed a comprehensive set of integration methods for
the LightGraphs.jl package, the user can directly analyze a hyper-
graph structure (transformed into a graph) with all functionality
provided by LightGraphs.jl.

In the following, we describe all the functionalities that SimpleHyper-
graphs.jl supports at the time of writing.

� Graphs.jl

As of 8 October 2021, LightGraphs.jl is no longer under active de-
velopment, and all its functionalities have been merged within the
new Graphs.jl Julia package. The older versions of LightGraphs
can be used indefinitely; however, we will shortly update this de-
pendency.

ǞWǚ �-#8!8@y9 2;'82!£9 !2& �<6638;'& 
<2$ধ329
The latest version v0.1.15 of SimpleHypergraphs.jl, released on the 9th
June 2021, provides a wide range of functionalities to build and explore
hypergraphs. The following sections introduce the hypergraph represen-
tation, several basic querying and manipulating operations, and graph
transformations. We further describe two serialization mechanisms, a set
of analytical algorithms, and two visualization methods.

ǞWǚWǘ �'138@ �3&'£

SimpleHypergraphs.jl providesAPIs representing a hypergraphH =(V, E)

as a matrix H 2 Rn⇥m, where n is the number of vertices and m is the
number of hyperedges. Thus, each row of the matrix H is associated
with a vertex and indicates the hyperedges the vertex belongs to (see
§Matrix Notation in Section 2.1). In the APIs, vertices and hyperedges
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are uniquely identified by progressive integer ids, corresponding to rows
(1, . . . , n) and columns (1, . . . ,m), respectively. Each entry H(i, j) of the
matrix denotes the weight �j(i) of the vertex i within the hyperedge j.
The library provides several constructors and enables attaching metadata
values of arbitrary type to both vertices and hyperedges.

Hypergraph Constructors. The Julia hypergraph object is defined as:

Hypergraph{T, V, E, D} <: AbstractMatrix{Union{T, Nothing}}

where T, a subtype of Real, represents the type of the weights stored in
the structure; V and E are the types of the metadata values stored in the
vertices and hyperedges of the hypergraph, respectively; and D, a subtype
of AbstractDict{Int,T}, is the type of the underlying dictionary used
for storing the weight values.

When calling the constructor, the parameters {T, V, E, D} can be
omitted, starting from the rightmost. The default value for the dictionary
type D is a standard Julia dictionary Dict{Int, T} (where T is the type of
the weights). However, the user can adopt a different dictionary imple-
mentation (e.g., a sorted dictionary) to ensure the reproducibility of the
results (for instance, when running stochastic simulations relying on the
hypergraph structure). The default value for vertex and hyperedge meta-
data types, V and E, is Nothing - i.e., by default, no metadata is stored.

A new empty hypergraph can be built specifying the number of ver-
tices (rows) and hyperedges (columns). Optionally, a hypergraph can be
either materialized starting from a givenmatrix or a LightGraphs.jl graph
object.

86



7.3 Library’s Internals and Supported Functions
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Adescription of themain functionalities supported by SimpleHypergraphs.jl
follows. Each method is accompanied by an extensive documentation.
�'2'8!ধ=' �3&'£9
SimpleHypergraphs.jl supports the automatic generation of random hy-
pergraphs either with or without any specific structural constraints. A
more detailed description of the four generative models implemented is
reported below.

Random model. This method generates a hypergraph without any struc-
tural property constraint. Given two integer parameters n and m

(the number of vertices and hyperedges, respectively), the algo-
rithm computes - for each hyperedge e 2 [1,m] - a random num-
ber s 2 [1, n] (i.e., the hyperedge size). Then, the algorithm selects
uniformly at random s vertices from V to add in e.

k � uniform model. This method generates a k-uniform hypergraph (see
Section 2.1). The algorithm proceeds as for the random model but
forcing the size of each hyperedge to be equal to k.

d�regularmodel. Thismethod generates a d-regular hypergraph (see Sec-
tion 2.1). The algorithm exploits the k-uniform approach described
above to build a k-uniform hypergraph H having m vertices and n

edges. It then returns the dual hypergraph H⇤.
Preferential-attachment model. Thismethod generates a hypergraphwith a

preferential attachment rule between vertices, as described in [25].
The algorithm starts with an entirely random graph with five ver-
tices and five hyperedges. It then iteratively adds a vertex or an
edge, according to a given parameter p, defining the probability of
creating a new vertex or a new hyperedge. Specifically, the connec-
tions with the new vertex or hyperedge are generated according to
a preferential attachment policy [25]. We slightly modified the al-
gorithm to avoid repetitions in the hyperedges.
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SimpleHypergraphs.jl provides the following accessing and manipulat-
ing functions. We only list hypergraph-generic and vertex-specific meth-
ods, but analogous functionalities are also implemented for the hyper-
edges.

- size returns the size of the hypergraph H as a tuple (number of
vertices, number of hyperedges);

- getindex returns a value for a given vertex-hyperedge pair for a
hypergraph H ;

- setindex removes or adds a vertex from a given hyperedge in a hy-
pergraph H and a given vertex-hyperedge pair;

- get_vertices returns the vertices for a given hyperedge in H ;

- add_vertex! adds a vertex to a given hypergraph H . Optionally,
the vertex can be added to existing hyperedges. Additionally, a
value can be stored with the vertex using the vertex_meta keyword
parameter;

- remove_vertex! removes a vertex from a given hypergraph H ;

- set_vertex_meta! sets a new meta-value for a vertex;

- get_vertex_meta returns the meta-value stored in a vertex;

- nhv returns the number of vertices in the hypergraph H ;

- prune_hypergraph removes all 0� degree vertices and 0� size hy-
peredges.
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The library allows the user to transform a given hypergraph into its corre-
sponding two-section or incidence graph. We have introduced both rep-
resentations in Section 2.2.2, butwe recall their definition in the following.

TwoSectionView. This type is the two-section representation of a hyper-
graph. The two-section graph [H]2 of a hypergraph H is a graph
whose vertices are the vertices of H and where two distinct vertices
form an edge if and only if they are in the same hyperedge. As a
result, each hyperedge from H occurs as a complete sub-graph in
[H]2 . It is also possible to build the weighted two-section [H]w2 of
H , in which the weight of an edge corresponds to the number of
hyperedges that contain both the endpoints of the edge.

BipartiteView. This type is the incidence graph of a hypergraph H .
The incidence graph ofH is the bipartite graph I(H) = (V 0, E 0)with
a vertex set V 0 = V [ E, and where v 2 V and e 2 E are adjacent if
and only if v 2 e.

For performance reasons, both representations are views of the actual
hypergraph, hence changes to the original hypergraph structure will be
automatically reflected in the corresponding graph transformation. Fur-
ther, both Views are instances of AbstractGraph, the graph object defined
by the LightGraphs.jl library. This implies that all methods exported by
LightGraphs.jl are callable on both representations. When the view isma-
terialized, the generated graph does not include any meta information.

� Julia composite types

Composite types are called records, structs, or objects in various
languages. In object oriented languages, such as Java and Python,
composite types also have named functions associated with them,
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and the combination actually form an object. In Julia, all values are
objects, but functions are not bundled with the objects they operate
on. This is necessary since Julia chooses which method of a func-
tion to use by multiple dispatch, meaning that the types of all of
a function’s arguments are considered when selecting a method,
rather than just the first one (see Section 3.2).

�@6'8+8!6, �'8-!£-A!ধ32
The library currently offers two mechanisms to load and save a hyper-
graph from or to a stream. Given a hypergraph H , it may be stored using
either a plain text or JSON formats. Both formats are human-readable.

Plain text format, denoted by the HGF_Format storage type. The first line
consists of two integersn andm, representing the number of vertices
and the number of hyperedges of H , respectively. The following m

rows (lines within the text file) describe the actual structure of H :
each line represents a hyperedge and contains a list of all vertex-
weight pairs within that hyperedge.

JSON format, denoted by the JSON_Format storage type. The internal hy-
pergraph structure is representedwith a dictionary that is serialized
into a plain JSON object. Each dictionary key represents a hyper-
graph field, while each dictionary value stores the corresponding
hypergraph field value. Additionally, the matrix view of H is also
stored. We used the Julia package JSON3.jl to handle the interac-
tion between JSON and Julia types.

�2!£@ধ$!£ 
<2$ধ32!£-ধ'9
Centrality Measures. SimpleHypergraphs.jl provides support for the
evaluation of a vertex (hyperedge) degree, betweenness, and closeness
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centrality measures, based on the notion of s-paths (see §Centrality Mea-
sures in Section 2.1). Specifically, each centrality measure can be evalu-
ated across all vertices of the input hypergraph or on a specified subset of
vertices. A vector representing the centrality calculated is returned.

Community Detection. Discovering communities in complex systems
is a primary approach to understanding how the network structure re-
lates to the underlying system behaviors, thus helping to find out hid-
den interaction patterns [96]. The term community generally refers to a
group of highly connected vertices but loosely linked to other vertices in
the network. SimpleHypergraphs.jl offers two different methods to find
communities within a hypergraph, one based on the notion of modular-
ity and one generalizing the label propagation algorithm proposed for
graphs.

Community detection via hypergraph modularity. The notion of modular-
ity is a key ingredient when studying a network’s structure. It is
simultaneously a global criterion to define communities, a quality
function of community detection algorithms, and a way to measure
the presence of community structure in a network. Newman and
Girvan [142] first introduced the concept of modularity for graphs,
based on the comparison between the actual density of edges inside
a community and the density one would expect to have if the ver-
tices of the graphwere attached at random regardless of community
structure while respecting the vertices’ degree on average. Higher
modularity values signify denser connections between the vertices
within clusters but more sparse connections between vertices in dif-
ferent clusters.
In SimpleHypergraphs.jl, we implemented the notion of hypergraph
modularity proposed by Kamiński et al. in [113]. In addition, we
also provided an algorithm to calculate the modularity of a given
vertex partition. This functionality is achieved via the modularity
function, which takes a hypergraph and its partition as inputs.
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Community detection via label propagation (LP).TheLP algorithm for graphs
was proposed by Raghavan et al. [157] in 2007. The high-level algo-
rithm strategy can be summarized as follows. Initially, each vertex
has a unique label (initialization phase). Then, every vertex updates
its label at each iteration according to the most frequent among its
neighbors (propagation rule). If multiple choices are possible, the
new label is randomly picked among those. The algorithm ends
when there are no more changes in the vertices’ labels or after a
predefined number of iterations (termination criteria).

In SimpleHypergraphs.jl, we implemented a generalized version of
the LP algorithm just described, designed ad-hoc for hypergraphs.
The proposed algorithm shares the initialization phase and the ter-
mination criteriawith the standard label propagation algorithmpro-
posed for graphs. The critical difference lies in the propagation rule,
which, in this case, is composed of two sub-phases: a hyperedge la-
beling phase and a vertex labeling phase. During the hyperedge la-
beling phase, the labels of the hyperedges are updated according to
the most frequent label among the vertices contained in the hyper-
edge. Similarly, during the vertex labeling phase, the label of each
vertex is updated by choosing the label that is the most frequent
among the hyperedges it belongs to.

Both algorithms are callable via the function findcommunities. The cor-
rect algorithm to run is chosen thanks to the multiple dispatch function-
ality of Julia, as the user needs only to specify the type of the algorithm.

ConnectedComponents. SimpleHypergraphs.jl supports the evaluation
of a hypergraph’s connected components. Specifically, the function
get_connected_components takes a hypergraphH as input and returns a
vector of vectors, where each element represents a set of vertices that are
within the same connected component in H .
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Random Walks. Random walks on graphs have been extensively used
for a variety of graph-based problems such as ranking vertices, predict-
ing links, recommendations, and clustering. However, while a walk on
a graph is a sequence of vertices, a walk in a hypergraph is a vertex-
hyperedge alternating sequence (see Section 2.1). Hence, each random
walk scheme in a hypergraph should account for the double-step happen-
ing in each hyper-path: the passage vertex-to-hyperedge and hyperedge-
to-vertex.

One of the most generic random walk schemes can be the following
approach. Let the walk start from some vertex v. Then, the vertex v can
randomly select a hyperedge e it belongs to, and next choose a target ver-
tex within e, again at random. SimpleHypergraphs.jl provides the func-
tion random_walk, which runs one step of the walk: it takes a hypergraph
and a starting vertex as inputs and returns a destination vertex. This func-
tion also accepts two optional functions as keyword arguments, heselect,
and vselect. The former specifies the rule by which a hyperedge is se-
lected for a given starting vertex. The latter selects the destination vertex
from the selected hyperedge. By default, heselect chooses a hyperedge
containing the source vertex uniformly at random. Similarly, vselect se-
lects a vertex from a given hyperedge uniformly at random. This design
choice guarantees complete flexibility in defining random walks on hy-
pergraphs, allowing the user to define their selection functions.

SimpleHypergraphs.jl also provides the implementation of a high-order
random walk for hypergraphs proposed by Bellaachia and Al-Dhelaan
in [34].

�@6'8+8!6, �-9<!£-A!ধ32
SimpleHypergraphs.jl provides the possibility to draw a hypergraph by
exploiting twokinds of visualization, both accessible via the function draw.
The available plottingmethods either exploit an interactive JavaScript (JS)
or a static Python-based solution. Figure 7.1 illustrates the same hyper-
graph drawn using the two different strategies. A more detailed descrip-
tion follows.
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JS-based visualization. When dealingwith complex objects that need to be
visualized, it is of fundamental importance to have the possibility to
easily catch themain information and, at the same time, to be able to
retrievemore detail on demand [179]. For this reason, wedecided to
integrate a dynamic and interactive visualization within SimpleHy-
pergraphs.jl. This visualization is a wrapper around an external JS
package that exploits D3.js, a JS library formanipulating documents
based on data, which combines powerful visualization components
and a data-driven approach to DOM manipulation. This architec-
tural stack provides the user with a way to generate a dynamic vi-
sualization embeddable into a web-based environment, such as a
Jupyter Notebook. This method represents each hyperedge e of an
hypergraph H as a new fictitious vertex fv to which each vertex
v 2 e is connected (see Figure 7.1a). The appearance of vertices
and hyperedges, whether displaying vertex weights and vertex and
hyperedge metadata and labels are customizable.

Python-based visualization. This visualization is a wrapper around the
drawing functionalities offered by the Python libraryHyperNetX [155],
built upon the Python package matplotlib. HyperNetX renders an
Euler diagram of the hypergraph where vertices are black dots and
hyperedges are convex shapes containing the vertices belonging to
the edge set (see Figure 7.1b). As the authors note, it is not always
possible to render the correct Euler diagram for an arbitrary hyper-
graph. For this reason, this technique may lead to cases where a hy-
peredge incorrectly contains a vertex not belonging to its set. This
library allows the user to manipulate the appearance of the result-
ing plot by letting the user defining the desired label, vertex, and
edge options. SimpleHypergraphs.jl fully integrates the visualiza-
tion potentiality of HyperNetX.
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7.4 Use Cases

(a) JavaScript visualization. Each
hyperedge is transformed into a fic-
titious vertex to which each vertex is
connected.

(b) HyperNetX visualization. The
hypergraph is visualized as an Eu-
ler diagram.

Figure 7.1: SimpleHypergraphs.jl visualization methods.

ǞWǛ �9' �!9'9
In this section, we present two practical applications of SimpleHyper-
graphs.jl to analyze as many real-world hypernetworks. Specifically, the
first case study deals with customers reviewing businesses on the social
platform Yelp.com, while the second application investigates the relation-
ships between the Game of Thrones (GoT) TV Series characters. In each
experiment, we compare the hypergraph and the graph-based approaches
in tackling the same problem to explore whether high-order analytical
tools actually convey more information when many-to-many interactions
intrinsically characterize the underlying structure of the data.

ǞWǛWǘ 	?6£38-2+ !2& �2!£@A-2+ �9'8 �'=-'>9V ;,' �'£6W$31 �!9'

The heterogeneity and massive quantity of data released by the online
platform Yelp.com allow the modeling of a myriad of complex interac-
tions (see Section 6.1). In this use case, we specifically focus on represent-
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ing the relation user-review-business with a hypergraph, in which a vertex
represents a business, while a hyperedge symbolizes a user that has re-
viewed that particular business.

As for the GoT use case, the main research question underpinning our
experiments is the following:

Does modeling the Yelp.com data set with hypergraphs give
qualitatively more information than looking at the corresponding

two-section graph representation?

To answer such a question, we set up two different experiments. In the
first experiment, our aim is to forecast the number of stars of a business
v , given the information available in the neighborhood of v. In the second
experiment, we focus on understanding review patterns. We have to note
that the principal aim here is not to solve the specific task in a fancy or
complicated way. Rather, we preferred implementing more straightfor-
ward approaches to obtain easy-to-interpret results. In the following, we
describe the data sets used for these analyses, both experiments, and the
insights obtained.

�3&'£-2+ �'£6W$31 =-! �@6'8+8!6,9
Wemodeled the Yelp.comdata set using a hypergraphH = (V, E) , where
the set of vertices V represents Yelp businesses, and the family of hyper-
edges E symbolizes Yelp users. Specifically, each hyperedge denoting a
user u contains all businesses u has written at least one review for. Given
the massive amount of available data (around 9 GB), we only explored
a subset of the whole Yelp.com data to build two different test data sets
(and, hence, hypergraphs). A more detailed description of each data set
follows.

yelp-dataset-1. We built the first data set by collecting one million of
randomly chosen reviews, from which we selected the businesses
and the users to generate the hypergraph. Such selection also de-
fined the total number of businesses and users involved, in other
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words, the size of the hypergraph itself. We run our analysis on the
largest connected component of the so-built hypergraph, removing
isolated vertices and small components. More detailed information
about the dimension of the network can be found in the following
section.

yelp-dataset-2. Before generating this data set, we first analyzed the
business categories distribution in the whole data set, where a cate-
gory is a label describing the typology of the business, such as Bars
or Shopping. Figure 7.2 (on the left) presents the business categories
distribution plotted against the number of reviews associated with
each category. As clearly visible from the plot, the most common
business typology is Restaurant.
Figure 7.2 (on the right) focuses on the cuisine type distribution
evaluated within the Restaurant macro-category. Each Yelp restau-
rant may offer several types of cuisine (e.g., Indian, Chinese, Asian
fusion), but we labeled each business with a single food category, as-
signing the most frequent tag in the database. Namely, if a restau-
rant R had two genres A and B, but A was overall more frequent in
the data set, we labeled R with A.
Based on this insight, we built the second data set considering only
restaurants as a business category, attaching to each restaurant the
label (selected from its categories set) representing the type of cui-
sine it offers according to the methodology just described.

	?6'8-1'2; �V �!ধ2+ �8'&-$ধ32
In this first experiment, the task performed was predicting the number of
stars of a given business v, based on the information available in the lo-
cal neighborhood of v. To solve this task, we adopted the naive approach
of averaging the number of stars of all businesses related to v, according
to the interactions defined by the relations user-review-business. Specifi-
cally, we applied this strategy on both (i) the hypergraphH defined in the
previous paragraph and (ii) on the corresponding weighted two-section
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Figure 7.2: Businesses (left) and Restaurants (right) distribution together
with the number of reviews associated with each category.

graph [H]w2 , in which theweight of an edge (u, v) corresponds to the num-
ber of users that reviewed both u and v (that is, the number of hyperedges
containing both u and v). More details follow.
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Let us instantiate the described approach on the hypergraph H . For
each business v, we first computed the average number of stars for all
hyperedges containing v, excluding v itself. Simply put, this step corre-
sponds to sum up the average rating given by the user associated with the
hyperedge e. Then, the final prediction of the number of stars of v is ob-
tained by dividing the values computed in the previous step by the degree
of the vertex v. Formally,

s0H(v) =
1

deg(v)
X

e2H(v)
(e)>1

0

B@
1

(e)� 1

X

u2e
u 6=v

s(u)

1

CA ,

where s(u) denotes the number of stars associatedwith u,H(v) the family
of hyperedges containing v, and s0

H
(v) the predicted value for v when

modeling the underlying network with a hypergraph.
Whenmodeling theYelp.com reviewnetworkusing theweighted two-

section graph [H]w2 ofH , the predicted number of stars s0[H]w2
(v) of a busi-

ness v is the weighted average over the neighborhood of v. Formally,

s0[H]w2
(v) =

P
e=(v,u)2E

s(u)w(e)

P
e=(v,u)2E

w(e)
,

where w(e) denotes the weight of the edge e.
To compare the two network models, we computed the average error

as follows:

errx =

P
u2V

|s(u)� s0x(u)|

|V|
,

wherex indicates the typology of the networkused (hypergraph or graph).

Weperformed this experiment on several instances of the yelp-dataset-
1, varying the number of reviews used to build the corresponding hy-
pergraphs. Specifically, we selected five subsets of increasing size equal
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to 250k, 500k, 750k, and 1 million reviews. All hypergraphs resulted in
having 209, 393 vertices, while the number of hyperedges ranged from
175, 022 to 432, 381. Figure 7.3 plots the error for both network models.
Interestingly, we can note that the error using the weighted two-section
graph is always more significant than the error obtained exploiting the
hypergraph representation. We also performed the same experiment on
the yelp-dataset-2, which generated a hypergraph with 35, 466 vertices
and 1, 133, 890 hyperedges. Similar to what happened with the first data
set, the error for the two-section graph was always higher than the error
for the hypergraph, reaching values 0.6 and 0.5, respectively.

Essentially, this experiment emphasizes the critical role played byhigh-
order interactions that cannot be modeled using classic network science
tools, like graphs. In this specific case, considering the voting pattern of
each user singularly (and, thus, the data modeled by each hyperedge)
conveys more valuable information resulting in a more accurate predic-
tion of the actual rating of a business.

2.5 · 105 5 · 105 7.5 · 105 1 · 106
0

0.2

0.4

0.6

0.8

1

|Reviews|

err

Graph
Hypergraph

Figure 7.3: Average error of the rating prediction experiment performed
on yelp-dataset-1, varying the number of reviews used to build the hy-
pergraph and the corresponding two-section graph.
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In this second experiment, we focused on examining users’ review pat-
terns to understand which factors influence the chance that a given user
reviews any two businesses and whether the hypergraphs induced by
positive, neutral, and negative reviews are similar and to what extent.
As in the first experiment, we compared the hypergraph model with the
corresponding two-section graph, testing, in this case, their ability to de-
tect the community structure of the underlying network. In other words,
we were interested in finding a division of the vertex set into groups of
businesses similar among themselves but dissimilar from the rest of the
network and getting insights into the nature of their similarity.

Due to performance issues, we only ran the experiment on yelp-dataset-
2, thus, restricting the set of businesses only to restaurants. We further
split the reviews within the data set into five sets, according to the rating
associated with them, ending up with 342,044 1-star reviews, 281,307 2-
star reviews, 402,053 3-star reviews, 791,068 4-star reviews, and 1,188,558

5-star reviews. We then built as many hypergraphs, one for each set.
Henceforth, we will denote with Hi, for i = 1, 2, . . . , 5, the hypergraph
generatedusing the set of reviews having i stars and byGi the correspond-
ing two-section graph.

Table 7.2 reports the size of each hypergraph and the associated clique
graph, along with information about the modularity value and the num-
ber of triangles evaluated over each graph. As expected, the number of
edges quickly explodes according to the hyperedge size: the more restau-
rants a user has reviewed, the bigger the associated hyperedge is, and
hence the bigger the number of edges in the clique graph is. In fact, for
each hyperedge e, we have ((e) ⇥ ((e) � 1))/2 edges. Interestingly,
the number of edges and triangles in the clique graphs exhibits a “bell-
shaped” trend as a function of the number of stars, with the mean value
shifted towards 4-stars ratings.

To have a first insight on the nature of the so-built hyper-networks, we
manually partitioned the five hypergraphs Hi2[1,5] according to different
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Table 7.2: Size of each hypergraphHi2[1,5] and the associated clique graph,
along with the modularity value and the number of triangles evaluated
for each graph.

Stars Hi (|V|; |E|) Gi (|V|; |E 0
|) Gi Modularity Gi Triangles

1 (29,479; 244,671) (29,479; 240,412) 0.6210 1,158,341
2 (28,055; 173,140) (28,055; 484,527) 0.7173 6,491,497
3 (30,369; 177,792) (30,369; 2,636,712) 0.6616 289,584,451
4 (32,987; 301,578) (32,987; 4,384,044) 0.6857 404,709,664
5 (32,558; 590,320) (32,558; 2,187,473) 0.6657 104,128,714

restaurant properties available in the Yelp.com data set. Specifically, we
considered the following attributes: the location of the restaurant (city,
and state), whether it sells alcohol, its noise level, whether it offers a takeaway
service, and its food category. Following this process, the goodness of each
partition, evaluated using the modularity measure, indicates whether a
user tends to review restaurants having common characteristics.

Table 7.3 contains the modularity scores for the six different parti-
tions evaluated. To compute the modularity, we used the approach pre-
sented by Kamiński et al. in [113] and implemented in SimpleHyper-
graphs.jl (see Section 7.3.2). The table shows that the modularity is gen-
erally stronger when using geographical information, such as cities or
states, to partition the hypergraph. These higher values suggest that (i)
Yelp users, who leave reviews, usually visit restaurants within the same
city and that (ii) if the same person reviews restaurants in different cities,
they are usually in the same state. Further, it is interesting to note that
the 1-star reviews hypergraph H1 broadly shows the strongest modular-
ity values across all partitions. This outcome indicates the presence of a
group of people who may have a stronger tendency to submit negative
scores based on some ground truth property of a restaurant.

Starting from this first analysis, we then investigated the partition ob-
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Table 7.3: Hypergraphs size for each Hi2[1,5] and modularity scores com-
puted on the six different manually-evaluated ground truth partitions,
conditioned on some properties of Yelp.com restaurants.

Stars Hi (|V|; |E|) City State Alcohol Noise Level Take Out Category
1 (29,479; 244,671) 0.8833 0.9562 0.8166 0.8104 0.8176 0.8163
2 (28,055; 173,140) 0.8582 0.9462 0.7744 0.7651 0.7731 0.7702
3 (30,369; 177,792) 0.8132 0.9226 0.7075 0.6940 0.6966 0.6965
4 (32,987; 301,578) 0.7812 0.9081 0.6573 0.6385 0.6419 0.6400
5 (32,558; 590,320) 0.8027 0.9145 0.6963 0.6797 0.6894 0.6841

ALL (35,856; 950,488) 0.7500 0.8985 0.6162 0.5919 0.6013 0.5967

tained via a community detection algorithm. In this case, we used the
“type of cuisine” (food category) of each restaurant as a ground truth. The
ground truth partition was made up of 55 categories, of which the largest
(American Traditional) comprised 7,107 restaurants. As in the first exper-
iment, we compared the communities obtained on both models (hyper-
graph and two-section graph) against the given ground truth partition to
catch the best model in capturing that specific feature of the underlying
network.

Several community detection algorithms have been proposed in the
literature for graphs, and a comprehensive review can be found in [102].
For this experiment, we opted for the LP strategy proposed by Raghavan
et al. [157], and we used the LP implementation provided by the Julia
LightGraphs.jl library. As we needed an LP algorithm suitable for hyper-
graphs to have a fair comparison, we proposed a hypergraph-specific LP
implementation, then integrated it into SimpleHypergraphs.jl (see Sec-
tion 7.3.2).

To evaluate the correlation between two partitions, we used the sum
variant of the Normalized Mutual Information (NMI) coefficient [183], a
notion borrowed from information theory, which considers each partition
as a probability distribution. In more detail, the sum variant of the NMI
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coefficient is defined as

NMI(X,Y ) =
I(X,Y )

H(X) +H(Y )
,

where I(X,Y ) denotes the mutual information (i.e., the shared informa-
tion between the two distributionsX and Y , andH(X) denotes the Shan-
non entropy (i.e., the information contained in the distribution) ofX . The
NMI coefficient holds several interesting properties: it is a metric, and it
lies within a fixed range [0, 1]. Specifically, it equals 1 if the partitions are
identical, whereas it has an expected value of 0 if the two partitions are
independent.

Results appear in Figure 7.4. Although, in general, the correlation val-
ues are not very high (the best result is 0.23 for H5), the figure points out
two interesting lines of discussion. First, in all five cases, the quality of
partitioning provided by hypergraphs is always better than that provided
by the corresponding two-section graphs. Moreover, results appear in the
form of an “inverted bell shape”, where the best results are given by the
two external values. In a sense, this outcome suggests that excellent and
low-star reviews can identify restaurants’ genresmuch better than neutral
comments. From a user perspective, this consideration may indicate the
presence of a group of users usually visiting the same genre of restaurants
and giving consistent ratings.

�31' �'8(381!2$' 29-+,;9
Weperformedboth experiments on aLinuxUbuntu 18.04machine, equipped
with an Intel i7 processor endowed with 8 cores, 16 GB of memory, and
256 GB SDD disk. We implemented the experiments using Julia 1.3.1.
With this configuration, Julia required about 117.68 seconds to load the
Yelp data set in memory (about 9 GB).

In the following, we present the average performance in seconds, ob-
tained running 10 times each experiment. In the first case study, we per-
formed the forecasting algorithmon eachhypergraph and the correspond-
ing two-section graph. The completion time for the biggest network was
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Figure 7.4: NMI values between the “type of cuisine” ground truth parti-
tion and the 10 partitions obtained running the LP algorithm on the five
hypergraphs and the corresponding 2-section graphs. The experiment
was run on yelp-dataset-2.

about 42 seconds, while the smallest one required 0.92 seconds. In the
second use case, the average completion time for all scenarios was about
20 seconds. Specifically, we run both LP algorithms setting the maximum
number of iterations to 100.

ǞWǛWǙ �-2-2+ !2& �3&'£-2+ �3$-!£ �'£!ধ329,-69V ;,' �3� �!9'

Another interesting line of inquiry is grasping the intricacies of a liter-
ary work or a movie to get insights into their narrative structure. Various
works focused on finding common patterns across several plot lines [43],
making sense of intricate character relationships [38], or just having fun
trying to predict how the plot itself will evolve [170]. Usually, the char-
acter interaction network is modeled with a graph, where a vertex repre-
sents a storyline character, and an edge points out an interaction between
two characters. Edges may also have different nature; for instance, they
can express that the names (or aliases) of two characters appear within a
certain number of words apart [2, 43], that a characterA has spoken right
after a characterB, or that a characterA and characterB appear in a scene
together [38]. The output graph is, commonly, an undirected, weighted
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network.
A network built this way is an example of artificial collaboration net-

works, as most pairs of characters have cooperated or have been antag-
onists of one another [5]. A typical analysis carried on this kind of net-
work is determining the most important characters, according to several
centrality measures. Some vertices play a massive role in the network, ei-
ther by having many connections or being strategically positioned to help
connect distant parts of the network. Indeed, a character may be rele-
vant or influential with different facets, and it is fundamental to interpret
these quantities with respect to the underlying domain. Another ques-
tion an exploratory analysis of networks of characters aims to answer is
to capture which characters naturally belong together, forming coherent
communities within the network. Investigating these behavioral patterns
means looking for coherent sub-plotlines hidden in the network [37].

It is straightforward to see that a character interaction network built
upon characters’ co-occurrence in movie scenes can be naturally modeled
with a hypergraph, where vertices are still associated with characters and
hyperedges are related to scenes. In this case, the topology itself of the
hypergraph allows us to easily find clusters of characters that commonly
appear together within amovie or a TV series episode or season. To verify
if hypergraphs can conveymore information than a standard graph analy-
sis approach, also in the case of collaboration networks, we have modeled
and analyzed theGame of Thrones TV series characters co-occurrence. As
for the Yelp use case (see Section 7.4.1), we compare the findings obtained
by exploiting hypergraphs with the two-section graphs’ results.
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� Tutorial Availability

A Jupyter Notebook replicating the analysis discussed in this chap-
ter is available at the following GitHub public repository:
https://github.com/pszufe/ SimpleHypergraphs.jl.

�,' �!1' 3( �,832'9 �� �'8-'9 �!;! �';
Game of Thrones [91] (GoT) is an American fantasy drama TV series cre-
ated by D. Benioff and D.B. Weiss for the American television network
HBO. It is the screen adaption of the series of fantasy novels A Song of Ice
and Fire, written by George R.R. Martin. The series premiered on HBO
in the United States on April 17, 2011, and concluded on May 19, 2019,
with 73 episodes broadcast over eight seasons. With its 12 million view-
ers during season 8 and a plethora of awards — according to Wikipedia 1

— Game of Thrones has attracted record viewership on HBO and has a
broad, active, and international fan base. The intricate world narrated by
George R.R.Martin and scripted by Benioff andWeiss extendwell beyond
the boundaries of the traditional TVmedium to create a deeply immersive
entertainment experience [23]. This allows both the academic commu-
nity and industries to study not only complex dynamics within the GoT
storyline [38] but also how viewers engage with the GoT world on social
media [11, 156, 158] or how the novel itself is a portrait of real-world dy-
namics [131, 147, 136, 138, 196].

This case study is based on the data set built by Jeffrey Lancaster on his
GitHub repository Game of Thrones Datasets and Visualizations [103] (see
Chapter 6). Specifically, we used the data describing season episodes,
containing meta-information such as title, identification number, season,
and description. Information about each scene within an episode is also

1https://en.wikipedia.org/wiki/Game_of_Thrones
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Table 7.4: Number of episodes, scenes, and characters per GoT season.

Season Episodes Scenes Characters
I 10 286 125
II 10 468 137
III 10 470 137
IV 10 517 152
V 10 508 175
VI 10 577 208
VII 7 468 75
VIII 6 871 66

reported. For each scene, start, end, location, and a list of characters are
listed. Table 7.4 reports the same data shown in Chapter 6 with some
basic information about the number of episodes, scenes, and characters
per GoT season, as those values will represent the size of the hypergraphs
analyzed.

�3&'£-2+ �3� �9-2+ �@6'8+8!6,9
GoT characters’ co-occurrences are well suitable to be studied via differ-
ent levels of granularity. For instance, the hyper-network induced by co-
occurrences can be modeled using three different hypergraphs, each re-
porting whether the GoT characters have appeared in the same season,
the same episode, or the same scene together. A more detailed descrip-
tion follows.

• Seasons. A coarse–grained model is represented by the season hy-
pergraph Hs = (V, Es), where V represents GoT characters, and
Es represents the family of hyperedges in which each hyperedge is
the set of characters appearing in a GoT season together. Figure 7.5
shows the hypergraph Hs using an Euler-based visualization (see
§Hypergraph Visualization in Section 7.3.2).
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• Episodes⇥Season. An intermediate-grainedmodel is obtained by con-
sidering co-occurrence within episodes. In this case, we can build 8

different hypergraphs, Hs
e = (Vs, Es

e), s 2 [1, 8], where s indicates
a GoT season, Vs represents the GoT characters appearing in season
s, and Es

e is the family of hyperedges in which each hyperedge is
the set of characters appearing in the episode e of season s. The 8

hypergraphs Hs
e are shown in Figure 7.6.

• Scenes⇥Season. A fine-grained model is obtained by considering co-
occurrence within scenes. In this case, we can consider 8 different
hypergraphs, Hs

sc = (Vs, Es
sc), s 2 [1, 8], where s indicates a GoT

season, Vs represents the GoT characters appearing in season s, and
Es

sc is the family of hyperedges in which each hyperedge is the set
of characters appearing in the scene sc of season s.

In the case studypresented in this chapter, wewill focus on the Scenes⇥Sea-
son hypergraphs.

�,' �3££!#38!ধ32 �;8<$;<8' 3( �3�
We performed a community detection task on the Scenes⇥Season hyper-
graphs and their corresponding two-section graphs. Running the com-
munity detection algorithm on such networks allows us to find coherent
plotlines and, therefore, groups of characters frequently appearing in a
scene together. In this experiment, our goal is to figure out whether and
to what extent hypergraphs are able to capture characters’ collaboration
(and, generally speaking, any user-defined collaboration) with respect to
graphs. Specifically, we ran the LP algorithms defined in §Community
Detection in Section 7.3.2 and measured the quality of the solution ob-
tained by computing the modularity score.

Results, described in Table 7.5, show that the solutions obtained for
hypergraphs provide more communities than graphs. This pattern par-
ticularly emerges in the graphs describing the last two seasons, character-
ized by fewer characters.
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Figure 7.5: The GoT season hypergraph Hs defined by characters over-
lapping through seasons. Vertex labels indicate the number of vertices
represented by a single aggregated vertex.

(a) H1
e
. (b) H2

e
.

(c) H3
e
. (d) H4

e
.
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(e) H5
e
. (f) H6

e
.

(g) H7
e
. (h) H8

e
.

Figure 7.6: GoT characters overlap in the Episodes⇥Season hypergraphs.

To measure the difference between the two approaches, we pairwise
computed theNMI between the obtained partitions. Table 7.6 showsNMI
values, which reveal how the partitions are generally strongly related. An
exception is made for the last two seasons, for which we can notice the
worst results. We believe this outcome to be well justified to the nature
of the last seasons’ screenplay: fewer characters and high related plot-
lines (see Figure 7.6h). Consequently, the hypergraphs induced by the
co-occurrence network are characterized by a high degree for both ver-
tices and hyperedges, and, by extension, the corresponding two-section
graphs result in quasi-complete graphs. For this reason, the LP algorithm
ran on so-built graphs cannot find out distinct communities.

Discussion on season 8. It is worth discussing the interesting facts re-
vealed by the results of the 8th season. In the case of the two-section
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Table 7.5: A comparison between hypergraph and graph capability on
discovering characters’ communities. For each hypergraph Hs

sc and its
two-section graph [Hs

sc]2, the table provides the number of communities
|C| and the corresponding modularity values m.

H1
sc

H2
sc

H3
sc

H4
sc

H5
sc

H6
sc

H7
sc

H8
sc

Hs

sc
(|C|,m) (12, .5359) (15, .4511) (15, .7028) (18, .5527) (22, .5794) (19, .5781) (11, .2159) (8, .1536)

[Hs

sc
]2 (|C|,m) (8, .3399) (9, .6970) (11, .7652) (11, .6218) (15, .7300) (16, .7342) (4, 2163) (1, .0)

Table 7.6: NMI values evaluated between the partitions obtained comput-
ing the communities on the Scenes⇥Season hypergraphs and their corre-
sponding two-section graphs.

S1 S2 S3 S4 S5 S6 S7 S8

NMI .82085 .83354 .92340 .87596 .88143 .88143 .69506 .0

graph, the label propagation algorithm reveals only one big community–
the whole graph itself. However, in the case of hypergraphs, it can deter-
mine eight different communities. The following discusses the conflict-
ing results obtained by providing a possible interpretation for the eight
discovered communities by the label propagation algorithm run on the
hypergraph model.

In more detail, three minor characters’ communities, appearing only
in a few scenes in the whole season, emerged from the (hyper)network
structure. These communities aremade up of: (i) theWinterfell boy— ap-
pearing only in the first episode; (ii) Dirah,Craya,Marei—seen only in the
first episode; and (iii) Eleanor and her daughter — occurring only in the
fifth episode. The algorithmperformed on the scene co-occurrence hyper-
graphs correctly identifies background characters that do not contribute
to the main storyline and are not strictly related to any main character.

Another two communities pinpoint key characters belonging to the
two major alliances: the north versus the south. The south-alliance com-
prises Cercei Lannister, her counselor Qyburn, her guard Gregor Clegane,
and her husband Euron Greyjoy, while the north-alliance is forged by Jon
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SnowandDaenerys Targaryen, with her dragons. In particular, in the north-
alliance community also appear two enemies that have been faced by Jon
and Daenerys: the Night King (and his white walker soldiers) and Harry
Strickland, captain of the sellsword Golden Company.

Two more communities can be labeled as north-allied: they contain a
group of characters that consistently have interacted or fought together.
Indeed, one group contains Bran Stark and Theon Greyjoy (who stands
guard for him in the battle for Winterfell), Lyanna Mormont, and Wun
Wun (they fought against in the battle for Winterfell), Lord Varys, Davos
Seaworth, Grey Worm, and Jorah Mormont. The other community includes
Arya and Sansa Stark, Samwell Tarly and his partner Gilly, Brienne of Tarth
and Jamie Lannister, Tyrion, Tormund,Missandei,Melisandre, and Sandor Cla-
gane, among few others.

The algorithm also discovers a community related to the sub-plotline
of Yara Greyjoy and some lords loyal to her: after having been saved by her
brother Theon, she leaves the stage to claim her land. She reappears only
in the last episode of the season, together with the other main characters.
In this group, we can also find two royal background characters - Edmure
Tully and Robin Arryn - that do not contribute to the development of the
main plotline and only appear in the last episode.

�,-$, �8' ;,' �39; 1638;!2; �,!8!$;'89S
Identifying truly important and influential characters in a vast narrative
like GoT may not be a trivial task, as it depends on the considered level
of granularity. In these cases, the main character(s) in each plotline is re-
ferred to with the term fractal protagonist(s) to indicate that the answer to
“who is the protagonist” depends on the specific plotline [37]. In this sec-
tion, following the same methodology of previous experiments, we eval-
uate GoT characters according to the degree and betweenness centrality
metrics, exploiting the Scenes⇥Season hypergraphs and the correspond-
ing two-section graphs.
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Degree centrality. Loosely speaking, thismetric gives information about
the number of interactions of a vertex. If we consider a hypergraph Hs

sc,
the degree centrality of a vertex is the number of scenes in a given season s

a character v appears in. In other words, we are enumerating the number
of hyperedges in which the vertex is contained. Formally,

CD(v) = |H(v)| = deg(v).

Analogously, the degree centrality of a character v, on the associated two-
section graphG = [Hs

sc]2, represents the number of characters they played
with during season s.

Figure 7.7 shows the degree centrality scores of 12 GoT characters per
season, evaluated on the Scenes⇥Seasons hypergraphsHs

sc and the corre-
sponding two-section graphsGs

sc. Characters are sorted according to their
degree centrality in the hypergraph. It is worth noting that we did not
normalize the degree centrality values as for the hypergraph this would
mean normalizingCD(v) by 2n�1, considering all possible hyperedges in
which a vertex can be contained; thus, leading to infinitesimal scores. As
the unnormalized centrality scores are not directly comparable, we will
only consider the resulting character ranking.

The first outcome to comment on is the almost null consensus between
the same metric evaluated on the two structures. Although interesting,
this result resembles the different meanings that the concept of centrality
assumes. Evaluating the degree centrality on the Scenes⇥Seasons hyper-
graphs means ranking GoT characters based on their screen appearance,
which usually is a good metric to estimate the importance of a charac-
ter within a TV series storyline. Hence, each plot gives us insights about
which characters sub-plotline each season focuses. In contrast, evaluat-
ing the Scenes⇥Seasons two-section graphmeans ranking GoT characters
according to how many other characters they have interacted with.

The second point to notice is that the hypergraph degree centrality
tends to be more coherent with the real importance of each character in
the actual storyline. In particular, we can mention a few cases in which
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considering the graph degree centralitymay also bemisleading in captur-
ing the relevance of GoT characters. For instance, Daenerys Targaryen in-
teractswith only a few characters in the first season and, consequently, has
a low degree centrality in the two-section graph. However, the emphasis
of her role becomes more evident when considering the hypergraph. A
similar situation happens for Jon Snow and his close friend Eddison Tol-
lett in Season 5. Looking at the graph degree centrality, it seems that the
latter has a similar role in the GoT vicissitudes as the protagonist, while
the hypergraph degree centrality reveals a completely reversed perspec-
tive. Clearly, this trend directly results from the meaning of centrality in
the Scenes⇥Seasons hypergraphs.

Betweenness centrality. Wealso investigated the importance of the char-
acters evaluating the betweenness centrality metric of hypergraph ver-
tices. The betweenness centrality measures the centrality of a node by
computing the number of times that a node acts as a bridge between the
other two vertices, considering the shortest paths between them.

Hs
sc Gs

sc

Edd
ard

Sta
rk

Jon
Sn

ow

Cate
lyn

Sta
rk

Tyri
onL

ann
ist

er

Daen
ery

sTarg
ary

en

Arya
Sta

rk

Bran
Sta

rk

Theo
nG

rey
joy

Robb
Sta

rk

Rod
rik

Cass
el

San
saS

tar
k

Joff
rey

Bara
the

on0

20

40

60

80

D
eg

re
e

Ce
nt

ra
lit

y
Sc

or
e

(a) Season 1.

Tyri
onL

ann
ist

er

Cers
eiL

ann
ist

er

San
saS

tar
k

Arya
Sta

rk

Daen
ery

sTarg
ary

en

Theo
nG

rey
joy

Joff
rey

Bara
the

on

San
dor

Cleg
ane

Sta
nn

isB
ara

the
on

Jon
Sn

ow
Bron

n

Pety
rB

ael
ish

0

20

40

60

80

D
eg

re
e

Ce
nt

ra
lit

y
Sc

or
e

(b) Season 2.

115



7.4 Use Cases

Tyri
onL

ann
ist

er

Daen
ery

sTarg
ary

en

Arya
Sta

rk

San
saS

tar
k

Jon
Sn

ow

Robb
Sta

rk

Jor
ahM

orm
ont

Sam
wellT

arl
y

Cate
lyn

Sta
rk

Ygri
tte

Talis
aM

aeg
yr

Roos
eB

olt
on

0

20

40

60

80
D

eg
re

e
Ce

nt
ra

lit
y

Sc
or

e

(c) Season 3.

Tyri
onL

ann
ist

er

Cers
eiL

ann
ist

er

Jon
Sn

ow

Tyw
inL

ann
ist

er

Jai
meL

ann
ist

er

San
saS

tar
k

Marg
aer

yT
yre

ll

Joff
rey

Bara
the

on

Daen
ery

sTarg
ary

en

Ober
yn

Mart
ell

Sam
wellT

arl
y

Pod
ric

kP
ayn

e0

20

40

60

80

D
eg

re
e

Ce
nt

ra
lit

y
Sc

or
e

(d) Season 4.

Jon
Sn

ow

Daen
ery

sTarg
ary

en

Cers
eiL

ann
ist

er

Tyri
onL

ann
ist

er

Arya
Sta

rk

San
saS

tar
k

Sta
nn

isB
ara

the
on

Sam
wellT

arl
y

Daar
ioN

aha
ris

Jor
ahM

orm
ont

Edd
iso

nT
olle

tt

Torm
un

dG
ian

tsb
ane

0

20

40

60

80

D
eg

re
e

Ce
nt

ra
lit

y
Sc

or
e

(e) Season 5.

Jon
Sn

ow

Bran
Sta

rk

Davo
sSe

aw
ort

h

Torm
un

dG
ian

tsb
ane

San
saS

tar
k

Arya
Sta

rk

Jai
meL

ann
ist

er

Ram
say

Sn
ow

Cers
eiL

ann
ist

er

Thre
e-E

yed
Rave

n

Daen
ery

sTarg
ary

en

Melis
and

re0

20

40

60

80

D
eg

re
e

Ce
nt

ra
lit

y
Sc

or
e

(f) Season 6.

Jon
Sn

ow

Daen
ery

sTarg
ary

en

Tyri
onL

ann
ist

er

Jai
meL

ann
ist

er

Jor
ahM

orm
ont

Davo
sSe

aw
ort

h

San
dor

Cleg
ane

Torm
un

dG
ian

tsb
ane

Miss
and

ei

Beri
cD

ond
arr

ion
Drog

on

Theo
nG

rey
joy

0

20

40

60

80

100

D
eg

re
e

Ce
nt

ra
lit

y
Sc

or
e

(g) Season 7.

Jon
Sn

ow

Daen
ery

sTarg
ary

en

Tyri
onL

ann
ist

er

Drog
on

Arya
Sta

rk

Grey
Worm

Jai
meL

ann
ist

er

Davo
sSe

aw
ort

h

San
saS

tar
k

Lord
Vary

s

Brie
nn

eof
Tart

h

Bran
Sta

rk0

50

100

150

200

D
eg

re
e

Ce
nt

ra
lit

y
Sc

or
e
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Figure 7.7: Degree centrality scores of GoT characters per each season,
evaluated on the Scenes⇥Seasons hypergraphs Hs

sc and the correspond-
ing two-section graph Gs

sc.

Based on the concept of s-node-shortest-path between two different
vertices u and v (see §Paths and Connected Components in Section 2.1)
implemented in the Python libraryHyperNetX [107] and later formalized
by Aksoy et al. [4], we developed the notion of s-betweenness centrality.
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The underlying idea of this centrality metric was to compute the between-
ness centrality considering a path made by more robust connections (or
interactions), which should be more precise indicators of the importance
of the characters in each season. Formally, the s-betweenness centrality is
defined as

Cs

B(v) =
X

x,y2V\{v}
x6=y

�s
xy(v)

�s
xy

,

where �s
xy(v) is the number of the s-node-shortest-paths between two ver-

tices x and y that pass through v, while �s
xy is the total number of s-node-

shortest-paths between x and y. It is worth noting that Cs

B
generalizes

the definition of betweenness centrality. Using s = 1, C1
B

reduces to the
classical betweenness centrality defined on graphs.

We evaluated the betweenness centrality scores on the Scenes⇥Sea-
sons hypergraphs varying s in [1, 3]. Figure 7.8 shows the results from
Season 1 to Season 8. In this case, each plot shows a different number
of characters as we considered the ten highest-ranked characters for each
metric and sorted them according to C1

B
to highlight the differences in

the three metrics adequately. For each season, we measured the Pearson
correlation to evaluate the ranking agreement.

Table 7.7 reports the correlation scores. Generally, we can observe a
higher correlation betweenC2

B
andC3

B
, while a lower correlation between

C1
B

and C3
B
, although with some exceptions. Season 4 shows the highest

concordance among the three metrics (see Figure 7.8d), Season 2 the low-
est (see Figure 7.8b).

The interesting outcome to note in this analysis is that theC2
B
is able to

give more valuable insights about the position each character plays in the
GoT storyline. For instance, aGoT fan knows that Eddard Stark andTyrion
Lannister rather thanArya Stark or IllyrioMopatis tie together with social
interactions House Stark andHouse Lannister in Season 1. Further, Illyrio
Mopatis disappear when considering (2 and 3)-node-shortest-paths. An-
other interesting example is visible in Season 6. HereC2

B
andC3

B
highlight

Jamie Lannister and Brienne of Tarth as key vertices in the hypergraph
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Table 7.7: Pearson correlation values for s-betweenness centrality using
{1, 2, 3}-path.

S1 S2 S3 S4 S5 S6 S7 S8

⇢(C1
B , C

2
B) -0.008 0.303 0.270 0.800 0.239 0.539 0.297 0.439

⇢(C1
B , C

3
B) 0.117 -0.185 0.254 0.796 0.092 0.440 0.214 0.185

⇢(C2
B , C

3
B) 0.837 -0.177 0.049 0.800 0.654 0.839 0.820 0.415

and, in fact, they are among the characters who travel and negotiate the
most in that season. This information is hidden if looking only at the rank-
ing based on C1

B
.
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Figure 7.8: Betweenness centrality scores of GoT characters per each sea-
son, evaluated on the Scenes⇥Seasons hypergraphs Hs

sc and the corre-
sponding two-section graph Gs

sc.
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ǞWǜ �'1!809
Hypergraphs are a natural generalization of graphs and provide a much
richer structure than their well-known graph counterparts, suitable for
modeling many natural phenomena involving group-based interactions,
such as collaborative activities. Working with hypergraphs requires soft-
ware libraries specifically designed to performoperations directly on these
high-order structures, from basic algorithms to more complex tasks. To
address this need, this chapter presented SimpleHypergraphs.jl, a soft-
ware library to model, analyze, and visualize hypergraphs, written in Ju-
lia and designed for high-performance computing. Currently, SimpleHy-
pergraphs.jl provides a wide range of functionalities to build and explore
hypergraphs. The library SimpleHypergraphs.jl:

• Ensures flexible interoperability with both the existing Julia ecosys-
temand the classical graphmanipulation framework, providing two-
fold integration with both the Julia standard matrix type and the
LightGraphs.jl package;

• Provides APIs representing a hypergraph H = (V, E) as an n ⇥m

matrix, and each entry (i, j) denotes theweight of the vertex iwithin
the hyperedge j;

• Internally stores a hypergraph as a sparse array, and its data in a
redundant format, using two separate hashmap structures for rows
and columns. Further, the library provides several constructors and
enables attaching metadata values of arbitrary type to both vertices
and hyperedges;

• Supports:

– the automatic generation of random hypergraphs either with
or without any specific structural constraints;

– several accessing and manipulating functions;
– hypergraph to graph transformations;
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– serialization mechanisms;
– centrality and community detection functionalities;
– hypergraph visualization.

The development of this library is a joint project with the Warsaw
School of Economics (Warsaw, Poland) and theRyersonUniversity (Toronto,
Canada). Today, SimpleHypergraphs.jl is the referring Julia library to
model, manipulate, and visualize hypergraphs, and it stands as a vehi-
cle to enable current and future hypergraph research.

The second part of the chapter discussed two case studies with a two-
fold objective.

• First, they demonstrate how it is possible to exploit SimpleHyper-
graphs.jl to perform via hypergraphs standard graph analysis in the
network science landscape. In the first case study, we analyzed user
reviewactivities from the social networkYelp.com in the tasks of rat-
ing prediction and community detection. The second case study ex-
plored the communities induced by the scene co-occurrence hyper-
network of theGoTTV series andGoT characters’ centrality features.

• Second, they compare hypergraphs with their corresponding graph
representation to explorewhether high-order structures conveymore
information in addressing specific tasks. The outcomes obtained in
both scenarios suggest that the hypergraph structure seems to im-
prove the analysis of high-order networks abstracting the many-to-
many interactions defined by the underlying structure of the data.
In particular, hypergraphs recognized specific Yelp users’ review
patterns better than the corresponding two-section graphs, and, sim-
ilarly, those structures better identified GoT sub-plotlines and cru-
cial characters.

Hypergraphs have become the subject of a growing literature only in the
last years. However, more effort has to be put into understanding if the
advantage of preserving a more detailed relationship structure justifies
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the need for a more complex data structure and, as a consequence, more
complex underlying algorithms. These two simple scenarios represent a
small step in this direction.
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This chapter presents the second central contribution of this disser-
tation: the formal definition of a high-order diffusion process, the gen-
eralization of a well-known graph problem to hypergraphs, and a set of
heuristics to tackle it. Specifically, we first introduce the motivation be-
hind this line of study (see Section 8.1) and discuss a new linear threshold
(LT) high-order diffusion model that mimics real-world social dynam-
ics, where individuals influence the group they belong to, but - in turn
- the group itself influences their choices (see Section 8.2). We then in-
troduce the formal definition of the Target Set Selection problem on hy-
pergraphs (TSSH), a key algorithmic question in information diffusion



8.1 Motivation

research, whose goal is to find the smaller set of vertices that can influ-
ence the whole network according to the diffusion model defined (see
Section 8.2). Since the TSSH problem NP-hard, we describe four heuris-
tics to address it (see Section 8.3), and we further review how our work
differentiates from the state-of-the-art (see Section 8.4). We finally de-
scribe the experiment setting (see Section 8.5) and provide an extensive
evaluation on random and real-world networks (see Section 8.6).
The work described in this chapter has been presented in the following
articles:

• A. Antelmi, C. Cordasco, C. Spagnuolo, P. Szufel. Information Dif-
fusion in Complex Networks: A Model Based on Hypergraphs and
ItsAnalysis. In: Algorithms andModels for theWebGraph, pages 36-51,
Cham, 2020. Springer Int. Publishing.

• A. Antelmi, C. Cordasco, C. Spagnuolo, P. Szufel. Social Influence
Maximization in Hypergraphs. Entropy, 2021.

ǟWǘ �3ধ=!ধ32
Throughout the previous chapters of this dissertation, we have seen that
hypergraphs may represent all kinds of high-order relations that can oc-
cur to our minds. In the specific context of social influence diffusion, hy-
pergraphs can help us in modeling groups of people representing, for
instance, real-world friend circles or online communities. Groups play a
critical role in society, and understanding people’s groups is fundamen-
tal to revealing personal behaviors [75] as these are heavily influenced
by the crowd [69]. Groups can traditionally form offline but, with the
advent of online social networks, many offline group decision processes
switched to online (e.g., marketing strategies) [198]. As a consequence,
the phenomenon of social influence assumed evenmore importance given
the exponential number of people a user can reach through them. Social
influence involves intentional and unintentional efforts to change another
person’s beliefs, attitudes, or behavior [80]. In both online and offline con-
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8.2 Social Influence Diffusion in Hypergraphs

texts, a person may influence other individuals for different reasons. As
a domino cascade, such influence impacts not only those people but also
propagates through the social network, with varying degrees of effective-
ness. This word-of-mouth propagation has been shown to be a powerful
tool in different applications (see Chapter 4). Hence, modeling diffusion
phenomena conveyed by high-order interactions is crucial to correctly re-
semble these group dynamics happening in the real world.
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In this section, we discuss a new influence diffusion process on hyper-
graphs, generalizing the LTmodel proposed by Kempe et al. in their sem-
inal work on influence maximization [117] (see Chapter 4). We further
present the formal definition of the TSS problem on hypergraphs.

ǟWǙWǘ � �@2!1-$ �3$-!£ 2*<'2$' �-ø<9-32 �83$'99

When it comes to making a choice, groups can exert influence on their
components, but also vice versa happens [154]. We embedded this idea
into a dynamic social influence diffusion process on hypergraphs, where
both vertices (people) and hyperedges (groups) can be influenced. This
process models the influence propagation iteratively from vertices to hy-
peredges and from hyperedges to vertices so that it is possible to manage
non-binary relations (as hyperedges can have any size), mimicking the
real-world process. As friends can differently influence individuals, each
neighbor of a vertex v in the hypergraph can have a different impact on
influencing v itself, depending on the number and the size of the hyper-
edge shared with v. Further, by modifying the thresholds associated with
hyperedges, it is possible to model different scenarios.

Thus, the diffusion process evolves in discrete steps. Loosely speak-
ing, in the beginning, all vertices in a given setS ✓ V are considered active
(or influenced), while all hyperedges are initially non-influenced. Then,
at each iteration:

1. All hyperedges containing enough active vertices are added to the
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8.2 Social Influence Diffusion in Hypergraphs

set of influenced hyperedges;

2. All vertices contained in enough active hyperedges are added to the
set of influenced vertices.

The process ends when no new vertices become active in two successive
iterations.

In the following, we provide a formal definition of the process, using
the incidence graph I(H) associated to a hypergraph H .

LetH = (V, E) be a hypergraph and I(H) = (V [E,F) the associated
incidence graph. Let tV : V ! [0,m] and tE : E ! [0, n] be two functions
assigning thresholds to vertices and hyperedges, respectively. For each
vertex v 2 V (e 2 E), the value tV (v) (tE(e)) quantifies how hard it is to
influence the vertex v (hyperedge e), in the sense that easy-to-influence
elements of the network have low threshold values, and hard-to-influence
elements have high threshold values. The same comment also holds for
hyperedges. Let t(·) be a threshold function which assigns to each vertex
v 2 I(H) the threshold value of the corresponding element of H , accord-
ing to the following rule

t(v) =

(
tV(v), if v 2 V

tE(v), if v 2 E
.

⇡ Definition 8.1 : Social Influence Diffusion Process in Hy-
pergraphs

Let I(H) = (V [ E,F) be a incidence graph associated to a hyper-
graph H = (V, E) with threshold function t : (V [ E) �! N.

An information diffusion process in I(H), starting with a seed S , is a
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8.2 Social Influence Diffusion in Hypergraphs

sequence of vertices subsets

I[S, 0] ✓ I[S, 1] ✓ . . . ✓ I[S, `] ✓ . . . ✓ V [ E,

with I[S, 0] = S , and such that for all ` > 0,

I[S, `] = I[S, `� 1]
[n

v 2 V [ E : |N(v) \ I[S, `� 1]| � t(e)
o
,

where N(v) denotes the neighborhood of v.

The process ends at the first iteration ` such that I[S, `� 1] = I[S, `].

We denote the final influenced sets as IV [S] = I[S, `� 1] \ V and IE [S] =

IE [S, ` � 1] \ E. We indicate the above information diffusion process on
I(H) with

IV [S], IE [S] = �(H,S, tV , tE),

where, IV [S] ✓ V is the set of influenced vertices and IE [S] ✓ E is the set
of influenced hyperedges.

The diffusion process is irreversible; once a vertex or hyperedge is in-
fluenced, it remains in the active state until the end of the process. Further,
we can note that, since I(H) is a bipartite graph, the process proceeds by
adding vertices corresponding to the hyperedges of H during odd itera-
tions and vertices corresponding to vertices of H during even iterations
(see Figure 8.2).

⇡ Definition 8.2 : Target Set

A target set for H = (V, E) is a seed set S ✓ V that will eventually
influence all vertices, i.e., IV [S] = V . It is worth noting that a target
set does not necessarily influence all hyperedges.
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8.2 Social Influence Diffusion in Hypergraphs

Example. Consider the bipartite incidence graph I(H) associated to the
hypergraph H = (V, E) in Figure 8.1, with vertex and hyperedge thresh-
olds given in Figure 8.2. Starting with the initial seed set S = {v1, v4}, the
information diffusion process evolves as follows (see Figure 8.2):

Step 0 : I[S, 0] = S = {v1, v4}

Step 1 : I[S, 1] = {v1, v4, e2}

Step 2 : I[S, 2] = {v1, v4, e2, v3}

Step 3 : I[S, 3] = {v1, v4, e2, v3, e3}

Step 4 : I[S, 4] = {v1, v4, e2, v3, e3, v5}

Step 5 : I[S, 5] = {v1, v4, e2, v3, e3, v5, e1}

Step 6 : I[S, 5] = {v1, v4, e2, v3, e3, v5, e1, v2}

As IV [S] = V , S is a target set for H .

v1

v2v3

v4

v5

e3

e2

e1

(a) Hypergraph H .

v1

v2

v3

v4

v5

e1

e2

e3

(b) Bipartite graph I(H).

Figure 8.1: A hypergraph H = (V,E) with 5 vertices and 3 hyperedges
and the bipartite incidence graph I(H) associated to H (the five vertices
appear on the left and the three hyperedges appear on the right).
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In this dissertation, we address the TSS problem on hypergraphs, whose
objective is finding the minimum target set that will eventually influence
thewhole network. Formally, given a hypergraphH = (V, E)with thresh-
old functions tV : V �! N and tE : E �! N, we want to find a seed set
S ✓ V of minimum size such that IV [S] = V .
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8.2 Social Influence Diffusion in Hypergraphs

Figure 8.2: An example of influence diffusion process on I(H) associated
to H = (V, E), where V = {v1, v2, v3, v4, v5} and E = {e1, e2, e3}. In-
fluenced vertices appear in gray. The arrow at the bottom of each step
indicates the direction of the diffusion process: (left-to-right) vertices in-
fluence hyperedges; (right-to-left) hyperedges influence vertices.

⇡ Definition 8.3 : TSS problem on hypergraphs (TSSH)

Instance: H = (V, E), thresholds tV : V ! N0 and tE : E ! N0.
Problem: Find a seed set S ✓ V of minimum size such that IV [S] =
V .

The TSSH problem generalizes the TSS problem on graphs, studied by
Chen [54] and defined as follows:

Given a graph G = (V, E) and fixed arbitrary thresholds t(v),
for each v 2 V , find a set of minimum size that eventually
influences all vertices in G.

As any graph is a 2-uniform hypergraph, TSSH reduces to TSS by fixing
tV(v) = t(v) for each v 2 V and tE(e) = 1 for each e 2 E. Chen proved
a strong inapproximability results on TSS, showing that even a non triv-
ial approximation of the problem is unlikely tractable. Since TSSH is a
generalization of TSS, Chen’s result also applies to TSSH.

It is also worth mentioning that having hyperedge thresholds tE(e) �
1 on the TSSH problem does not imply that spreading influence is more

133



8.3 Finding the Minimum Target Set on Hypergraphs

difficult in hypergraphs than in graphs since the diffusion process is ruled
by both the thresholds and the size of the hyperedges. For instance, let
us assume that all vertices have a threshold 2 and the existence of two
hyperedges with a threshold 2, whose intersection contains 100 vertices.
In this case, two influenced vertices in the intersection of the two given
hyperedges can influence the other 98 vertices.

ǟWǚ 
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In this section, we describe four greedy-based heuristics to address the
TSSH problem defined in Section 8.2.2. Specifically, we first detail three
additive solutions and then introduce a subtractive approach. We also
define an optimization strategy, which can be used as a refinement of the
seed set evaluated by each heuristic. We indicate the diffusion process on
H as �(H,S), denoting with IV [S] ✓ V and IE [S] ✓ E the final sets of
influenced vertices and influenced hyperedges, respectively.

ǟWǚWǘ �&&-ধ=' �'<8-9ধ$9

As their name suggests, additive heuristics adopt an additive approach to
select the target set, adding the best vertices according to a givenmeasure.
The basic idea behind a dynamic implementation of these procedures is
that first, the best candidate is added to the seed set, and then the hy-
pergraph is pruned from all influenced vertices and hyperedges. In the
following, we describe a static additive procedure (used as a baseline in
our experiments) and two dynamic additive heuristics.
�;!ধ$�8''&@
A trivial greedy strategy consists of selecting the vertices with the highest
degree as a seed set. After sorting the vertices in descending order by
their degree, the heuristic applies a binary search procedure to compute
the target setS . This heuristic is referred to as static since the vertex degree
is never updated. Algorithm 1 details the pseudo-code of this procedure.
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8.3 Finding the Minimum Target Set on Hypergraphs

Algorithm 1 StaticGreedy(H = (V, E), tV , tE)

1: Let �(V) be the list of vertices in non-ascending order of degree.
2: left 1, right |V|

3: while left < right do . Binary Search
4: mid 

l
left+right

2

m

5: IV [S], IE [S] �(H,�mid, tV , tE) . �i is the sublist containing
the first i vertices of �(V)

6: if IV [S] 6= V then
7: left mid
8: else
9: right mid� 1

10: return S  �left

�@2!1-$�8''&@
In this heuristic, all vertices are initially added to the candidate set U . At
each iteration, the vertex having the highest degree is added to the target
set S and removed from U . At this point, the strategy simulates the diffu-
sion process and prunes all influenced hyperedges from the hypergraph.
Then, the residual degree �(v) of each vertex v is updated accordingly,
and the process is iterated until all vertices are influenced. Algorithm 2
details the pseudo-code of this procedure.

�@2!1-$�8''&@[H]2

This third heuristic is equivalent to DynamicGreedy, but it works on the
clique-expansion [H]2 of the input hypergraph H (see Section 2.2.2). Al-
gorithm 3 details the pseudo-code of this procedure.
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Algorithm 2 DynamicGreedy(H = (V, E), tV , tE)

1: S  ;, U  V , E0
 E

2: for u 2 U do
3: �(u) deg(u)

4: while U 6= ; do
5: v  argmaxu2U �(u)

6: U  U \ {v}

7: S  S [ {v}

8: IV [S], IE [S] �(H,S, tV , tE)

9: if IV [S] = V then
10: return S

11: E0
 E \ IE [S]

12: for u 2 U do
13: �(u) |E(u) \ E0

| . �(u) denotes the degree of u in H = (V, E0)

14: return S

Algorithm 3 DynamicGreedy[H]2
(H(V, E), tV , tE)

1: S  ;, U  V , E0
 E

2: [H]2  TwoSection(H(V, E)) . The function TwoSection(-) transform
H in its corresponding clique graph

3: while U 6= ; do
4: v  argmaxu2U deg[H]2(u) . deg[H]2(u) denotes the degree of u in

[H]2
5: U  U \ {v}

6: S  S [ {v}

7: IV [S], IE [S] �(H,S, tV , tE)

8: if IV [S] = V then
9: return S

10: E0
 E \ IE [S]

11: [H]2  TwoSection(H(V, E0))

12: return S
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The heuristic described in this section extends the TSS algorithm pro-
posed by Cordasco et al. in [58] for graphs. At each iteration, the heuristic
greedily prunes vertices or hyperedges from the input hypergraphH un-
less a specific condition occurs, making a vertex being added to the seed
set S . The algorithm stops when all vertices have either been discarded
or selected as seeds. The pruning phase is designed based on a rule that
tries to balance the capability of a vertex (hyperedge) to influence other
hyperedges (vertices) and its easiness (or hardness) to be influenced by
other hyperedges (vertices). We denote this heuristic as subtractive as,
in contrast to the additive procedures, it first prunes the hypergraph and
then adds a vertex to the seed set if and only if its neighbors cannot influ-
ence that vertex.

�<#����
Algorithm 4 details the pseudo-code of SubTSSH. This procedure ismade
up by three main parts, encoding a particular condition of the influence
status of vertices and hyperedges.

• Case 1. This case captures whether a vertex (Case 1.a) or a hyper-
edge (Case 1.b) has a threshold of 0. If this happens, the element
can be pruned from the hypergraph as it can be considered self-
influenced.

• Case 2. This phase identifies whether a vertex v has a residual de-
gree lower than its residual threshold, i.e., deg(v) < tV(v). In this
case, the vertex cannot be activated by its neighbors; thus it must be
added to the seed set.

• Case 3. In this last case, the algorithm selects either a vertex (Case
3.a) or a hyperedge (Case 3.b) to prune from the hypergraph. In
this implementation, SubTSSH picks a vertex and a hyperedge with
the lowest residual threshold-degree ratio and then removes the el-
ement easier to influence.
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Algorithm 4 SubTSSH(H = (V, E), tV , tE)

1: S  ;

2: while V 6= ; do
3: if 9 u 2 V | tV(u) = 0 then . Case 1.a: if a vertex exists with

threshold 0, it is self-influenced
4: V  V \ {u}

5: UpdateThresholds(H,u) . Reduce the thresholds of the edges
containing u

6: UpdateSizes(H,u) . Reduce the size of the edges containing u

7: else
8: if 9 e 2 E | tE(e) = 0 then . Case 1.b: if an edge exists with

threshold 0, it is self-influenced
9: E  E \ {e}

10: UpdateThresholds(H, e) . 8v 2 e, reduce the threshold of v
11: UpdateDegrees(H, e) . Reduce the degree of the vertices

belonging to e
12: else
13: if 9 u 2 U | deg(u) < tV(u) then . Case 2: v cannot be influ-

enced by its neighbors
14: S  S [ {u};
15: V  V \ {u}

16: UpdateThresholds(H,u)

17: UpdateSizes(H,u)

18: else . Remove a vertex v or an edge e
19: u argminv2V

tV(v)
deg(v)(deg(v)+1)

20: e argmine02E

tE(e0)
(e0)((e0)+1)

21: if tV(u)
deg(u)(deg(u)+1) <

tE(e)
(e)((e)+1) then . Case 3.a: Remove u

22: V  V \ {u}

23: UpdateSizes(H,u)

24: else . Case 3.b: Remove e
25: E = E \ {e}

26: UpdateDegrees(H, e)

27: return S
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The particular choice of the denominators derives from a theoreti-
cal analysis performed by Cordasco et al. for the TSS algorithm on
graphs [58].

SubTSSH proceeds as follows. As long as the hypergraph is not empty
and no special conditions occur (e.g., Cases 1 or 2), a vertex u (Case 3.a)
or an hyperedge e (Case 3.b) is selected according to a given function (see
Case 3) and it is pruned from the hypergraph. When a vertex (hyperedge)
is removed, its incident hyperedges (vertices) update their size (degree)
as they cannot count on u (e) anymore to become influenced. Due to this
update, some vertices in the residual hypergraph may remain with less
usable hyperedges (if a vertex u 2 V has deg(u) < tV(u)). In such a case
(see Case 2), these vertices are added to the seed set S and removed from
H . Then, their incident hyperedges’ size and thresholds are updated (i.e.,
decreased by 1) since they have one more influenced neighbor. In the last
case (see Case 1), the residual hypergraph contains a vertex u (hyperedge
e) whose threshold decreased to 0. This situation means that the vertices
already added to the seed set S are enough to influence u (e). At this
point, u (e) is removed from H , and both the size and the thresholds of
its incident hyperedges (vertices) are updated (i.e., decreased by 1) since
they obtained one more influenced neighbor.

ǟWǚWǚ �2 �6ধ1-A!ধ32 �83$'&<8'

Being greedy-based approaches, all the described algorithms ensure that
IV [S] = V , but they do not guarantee that the cardinality of S is the opti-
mal solution. Further, we experimentally observed that the evaluated so-
lutions often contained unnecessary seed vertices. For these reasons, we
developed a cleaning procedure called OptimizationStrategy and listed
in Algorithm 5, which iteratively removes all redundant vertices from a
solution obtained by the above algorithms.
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⇡ Definition 8.4 : Unnecessary Vertex

Given a seed set S s.t. IV [S] = V , a vertex v 2 S is unnecessary if
IV [S \ {v}] = V .

Algorithm 5 OptimizationStrategy(H = (V, E), tV , tE ,S)

1: Let [s1, s2, . . . , st] be a sequence of all vertices in S in non-increasing order of
their degree.

2: S⇡  S

3: for i 2 [1, t] do
4: IV [S⇡], IE [S⇡] �(H,S⇡ \ {si}, tV , tE)

5: if IV [S⇡] = V then
6: S⇡  S⇡ \ {si}

7: return S⇡
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In our work, we address the TSS problem in social networks abstracted
as hypergraphs. To study spreading phenomena over such structures, we
extended the classical LT diffusion model to capture the high-order in-
teractions characterizing the underlying network and resembling that a
person may be influenced by their groups and vice-versa.

The proposed LT high-order diffusion model embodies the first main
difference of our studywith respect to other literature on the topic. Specif-
ically, ourmodel spreads influence iteratively from vertices to hyperedges
and from hyperedges to vertices (see Section 8.2.1). In this model, hyper-
edges play an active role in the diffusion process as they can be influenced
(if the number of influenced verticeswithin the hyperedge is at least equal
to the associated threshold) and can spread influence once activated.

Only two works among the articles analyzed in Chapter 4 embed a
similar idea within the diffusion process. Gangal et al. [78] extended the
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ICmodel to hypergraphs, considering a hyperedge activated if most of its
vertices are influenced at the end of the diffusion process. However, the
primary objective of thisworkwas tomaximize the number of hyperedges
influenced rather than the number of vertices influenced. Further, they
used hyperedges as influence carriers, allowing the influence to flow from
one vertex to another through them. Later on, Zhu et al. [198] analyzed
a similar problem with the goal of maximizing the expected number of
influenced groups. In this case, Zhu et al. considered a group influenced
if at least a fixed percentage � of users in it are influenced under the classi-
cal ICmodel. According to their model, hyperedges can be influenced but
are not actively involved in the diffusion process. Other works consider
hyperedges as a tool to model different types of influence (for instance,
hyperedges represent either direct or activity-based influence [185]) or
to identify groups of vertices a vertex can spread influence to (such as
in [134, 173]). Further, all works discussed in Chapter 4 except Wang et
al. [185] analyze the problem under the IC setting.

Another difference lies in the hypergraphmodel used. In ourwork, we
represent the underlying network with an undirected hypergraph. Simi-
larly, even though in a different problem setting, Borgs et al. [44], Gangal
et al. [78], Ma et al. [134], and Suo et al. [173] use the same hyper-network
model. Conversely, Zhu et al. abstract the network with directed hyper-
graphs in all three works reported in this dissertation [198, 200, 199].

The last primary difference is the specific problem addressed. We
specifically study the TSS problem generalized to hypergraphs. In con-
trast, the other studies deal with the classical SIM problem on hyper-
graphs ([200, 199, 185]), its variant in which the objective is maximiz-
ing the number of eventually influenced groups/hyperedges ([78, 198])
or exploring information transmission patterns via high-order relations
([134, 173]).

The work of Borgs et al. [44] represents an exception to this pattern
as the SIM problem the authors deal with is defined on directed graphs,
and hypergraphs are used as a representation of an influence estimation.
In this work, a hyperedge represents all vertices influenced by a single

141



8.5 Experiment Setting

vertex under the ICmodel; hence, we do not have the notion of hyperedge
as a group. The seed set is then selected on the so-obtained hypergraph
exploiting a greedy procedure, which works similarly to DynamicGreedy
(see Section 8.3).

ǟWǜ 	?6'8-1'2; �'ষ2+
To evaluate the effectiveness of the greedy-based heuristics discussed in
Section 8.3, we performed a bunch of experimental scenarios varying the
activation threshold for both vertices and hyperedges. Specifically, we
assessed their performance on several random and real-world networks,
considering both the cardinality of the solution provided (the smaller, the
better) and their execution times. This section details the data used in our
experiments and the designed experimental scenarios, divided according
to the network nature. Section 8.6 presents and discusses the outcomes
obtained.

� Code Availability

All heuristics and experiments are implemented in Julia, exploiting
the library SimpleHypergraphs.jl (see Chapter 7). The code is
open-source and available on the following GitHub public reposi-
tory https://github.com/pszufe/LTMSim.jl and on Zenodo [21].

ǟWǜWǘ �!2&31 �';>3809

In this part, we provide a description of the random hypergraphs used in
the first set of evaluation scenarios.
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�!;! 9';9
Asbenchmarkhypergraphs, weused randomgeneratedhypergraphswith
andwithout structural constraints. Specifically, we employed: (i) random
hypergraphs with no structural properties, (ii) hypergraphs generated
via the preferential-attachment rule, (iii) k�uniform and (iv) d� regular
hypergraphs. We refer the reader to Section 7.3.2 for a description of the
generative models offered by SimpleHypergraphs.jl.

	=!£<!ধ32 �$'2!8-39
We performed three experimental scenarios. In the first and second sce-
narios, we fixed each vertex threshold to a random value between 1 and
its degree. In the last scenario, each vertex threshold varies proportion-
ally - from 0.1 to 0.9 - to the degree of the vertex. In all experiments, we
set each hyperedge activation threshold proportional to its degree scaled
of factor 0.5 (majority policy).

Regarding the networks used, in the first scenario, we run the heuris-
tics on randomhypergraphswith no structural properties andhypergraphs
generated via the preferential-attachment rule. We ranged the hyper-
graph size, using {100, 200, 400, 800} vertices and hyperedges. In the sec-
ond scenario, we experimented the heuristics on k � uniform and d �

regular random hypergraphs of size (n = 500,m = 500), ranging the
value of k and d in {10, 20, 40, 80}. In the third and last scenario, we gen-
erated a random hypergraph with 500 vertices and 500 hyperedges using
all four generative models, fixing k = 80 and d = 80, for the k � uniform
and d� regular random hypergraphs, respectively. We simulated the ex-
ecution of each heuristic 50 times.

� Experimental design

The choice of the parameters to generate random hypergraphs has
been made to assure a reasonable computational time when run-
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ning all heuristics. The only structural constraint applies to the
values of k and d: we set both k and d ⌧ |V| not to have any hy-
peredge containing all vertices and any vertex linked to all other
vertices.

Table 8.1: Threshold settings in the experimental scenarios when using
random hypergraphs.

Vertex thresholds RandomModel
Random Proportional No constraints Preferential attachment k � uniform d� regular

Scenario 1 X X X

Scenario 2 X X X

Scenario 3 X X X X X

ǟWǜWǙ �'!£f>38£& �';>3809

In this part, we describe the real-world hypergraphs used in the second
set of evaluation scenarios.

�!;! 9';9
Asbenchmarkhypergraphs, weused 11networks generated by real-world
data sets, downloaded from theARB [35],Mendeley [56] andGitHub [103]
repositories. A more detailed description of each data set is provided in
Chapter 6. Table 8.2 and Table 8.3 summarize the dimension of each hy-
pergraph, along with the number of edges in the corresponding clique-
expansion. The size shown refers to the final dimension of the hyper-
graphs after having removed 0-degree vertices and empty hyperedges.
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Table 8.2: Benchmark hypergraphs details (1/2).

Algebra Amazon DBLP Email-Enron Email-W3C Geometry
|V| 423 4, 989 2, 727 2, 807 5, 601 580

|E| 1, 268 1, 176 874 5, 000 6, 000 1, 193

|E|[H2] 50, 209 11, 590 4, 298 88, 926 11, 130 205, 127

Source [35] [35] [56] [35] [35] [35]

Table 8.3: Benchmark hypergraphs details (2/2).

GoT Music-Rev NBA Restaurants-Rev Bars-Rev
|V| 577 1, 106 567 565 1, 234

|E| 3, 840 694 2, 163 601 1, 194

|E|[H2] 23, 083 149, 288 456, 251 31, 241 167, 000

Source [103] [35] [56] [35] [35]

� Data set availability

All hypergraphs used in this experimental part are available at the
following public GitHub repository https://github.com/pszufe/
LTMSim.jl and on Zenodo [20].

	=!£<!ধ32 �$'2!8-39
We performed four experimental scenarios. In the first and second sce-
narios, we fixed each vertex threshold to a random value between 1 and
its degree. In the other two scenarios, each vertex threshold varies pro-
portionally - from 0.2 to 0.8 - to the degree of the vertex. Concerning the
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hyperedge thresholds, we fixed each edge threshold to a random value
between 1 and its degree in the first and third scenarios. In the remain-
ing settings, we set each hyperedge activation threshold proportional to
its degree scaled of factor 0.5 (majority policy). Table 8.4 summarizes
the threshold settings in the four experimental scenarios. We simulated
the execution of each heuristic followed by the optimization procedure 50
times per experiment. We also repeated the experiment simulating the
execution of each heuristic without applying the optimization step.

Table 8.4: Threshold settings in the experimental scenarios when using
real-world hypergraphs.

Vertex thresholds Hyperedge thresholds
Random Proportional Random Majority policy

Scenario 1 X X
Scenario 2 X X
Scenario 3 X X
Scenario 4 X X

ǟWǝ �'9<£;9
This section presents and discusses the results of the experimental scenar-
ios introduced in Section 8.5. Specifically, we first focus on the outcomes
obtained over random and then over real-world hyper-networks. Finally,
we examine the time performance of the proposed heuristics.

ǟWǝWǘ �!2&31 �';>3809

Here, we describe the results related to the experimental scenarios run
over random hyper-networks and introduced in Section 8.5.1.
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Figure 8.3 shows the results obtained on random hypergraphs, generated
without structural constraints (see Figures 8.3a and 8.3b) and with the
preferential-attachment rule (see Figures 8.3c and 8.3d), varying the ver-
tex degree and the hyperedge size. We fixed each vertex threshold to a
random value between 1 and the vertex degree, varying it at each exper-
iment run, and a majority policy for hyperedges. The seed set size is re-
ported as the ratio over the total number of vertices to enable comparison
across all hyper-networks.

Looking at the results related to hypergraphs with no constraints, we
can note three major points. First, no heuristic outperforms the others,
even though DynamicGreedy tends to obtain slightly smaller seed sets
when the optimization procedure is not applied. The greater the size of
the network is, the smaller this difference becomes (as well as the vari-
ance of the results). Second, the optimization procedure can reduce the
seed set size up to 3% on average. Hence, we cannot observe a drastic
improvement of the heuristics. Third, all heuristics scale pretty well to
the network size increase, always reaching a seed set size near 40% of all
vertices.

We can notice a similar behavior when using the hyper-networks gen-
erated with the preferential-attachment rule. Also in this case, Dynam-
icGreedy reaches moderately better results when the optimization proce-
dure is not applied. However, even though we cannot observe significant
variations when the optimization procedure is applied, we can see that
DynamicGreedy[H]2 tends to have the highest variance in the results and,
generally, obtains the worst outcomes. In contrast to the previous results,
the optimization procedure helps reduce the seed set size from 3% up
to 12% on average. This bigger improvement suggests that this kind of
network is more difficult to influence, and it is more likely for the heuris-
tics to select superfluous vertices. As before, all heuristics scale well to
the network size increase. This result was somewhat expected as all ad-
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(a) Random networks with no constraints.
Heuristics followed by the optimization proce-
dure.
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(b) Random networks with no constraints.
Heuristics run without the optimization proce-
dure.
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(c) Preferential attachment networks. Heuris-
tics followed by the optimization procedure.
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(d) Preferential attachment networks. Heuris-
tics run without the optimization procedure.

Figure 8.3: Scenario 1 — Experiments on random hypergraphs, gener-
ated without structural constraints (see Figures 8.3a and 8.3b) and with
the preferential-attachment rule (see Figures 8.3c and 8.3d), varying the
vertex degree and the hyperedge size. Each vertex threshold is fixed to a
random value between 1 and the vertex degree. A fixed threshold of 0.5
is used for hyperedges.
ditive heuristics select the vertices with a higher degree (hence, the net-
work hubs), known to be a small fraction of all available vertices. On the
contrary, the optimization procedure has little or no effects on SubTSSH.
This procedure selects vertices with the best balance between the influ-
ence potential and the easiness to become active; thus, it tends to insert
the vertices with both higher degree and threshold in the seed set. We
can empirically observe that this translates into selecting less unnecessary
vertices.
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In a second experiment, we exploited k�uniform and d� regular hyper-
graphs, varying the hyperedge size k and the vertex degree d. We used
the same threshold setting of Scenario 1, fixing each vertex threshold to
a random value between 1 and the vertex degree, and a majority policy
for hyperedges. Figure 8.4 shows the distribution of the ratio of the seed
set size over the total number of vertices n per hypergraph obtained by
running the four heuristics with and without the optimization step.

Observing the figure, we can note a pattern similar to the one dis-
cussed in Scenario 1. Also in this experiment, no heuristic clearly out-
performs the others. Focusing our attention on k� uniform hypergraphs
(see Figures 8.4a and 8.4b), all additive heuristics achieve very similar
results, while SubTSSH tends to choose a bigger seed set. We can some-
what observe the opposite tendency on d � regular hypergraphs when
the optimization procedure is not used (see Figure 8.4d). Further, we can
observe a higher variance for small values of the parameter d. As in Sce-
nario 1, the optimization procedure reduces up to 3% and 8% the seed
set size in the case of k � uniform and d � regular hypergraphs, respec-
tively. Again, this procedure has a deeper impact on the solution found
by additive heuristics rather than SubTSSH as clearly evident in the case
of d � regular networks (see Figures 8.4c and 8.4d). The last interesting
thing to note is that, in general, k� uniform hypergraphs require a target
set of smaller size compared to d � regular hypergraphs. This outcome
directly derives from the inherent structure of the generated networks. In
particular, all vertices have the samedegree d in a d�regular hypergraphs.
This means that all vertices are treated equally by the additive heuristics,
which prefer higher degree vertices. We can make a similar statement for
SubTSSH, which prunes the easiest to influence vertices based on their
degree and thresholds from the hypergraphs. Being all vertex degrees
equal, all heuristics cannot count on this information to choose the best
seed set.
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(a) k � uniform hypergraphs. Heuristics fol-
lowed by the optimization procedure.
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(b) k � uniform hypergraphs. Heuristics run
without the optimization procedure.
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(c) d�regular hypergraphs. Heuristics followed
by the optimization procedure.
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(d) d � regular hypergraphs. Heuristics run
without the optimization procedure.

Figure 8.4: Scenario 2 — Experiments on k � uniform (see Figures 8.4a
and 8.4b) and d� regular (see Figures 8.4c and 8.4d) hypergraphs, vary-
ing the hyperedge size k and the vertex degree d. Each vertex threshold is
fixed to a random value between 1 and the vertex degree. A fixed thresh-
old of 0.5 is used for hyperedges.
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In this last scenario, we repeated the experiments performed in Scenario
1 and Scenario 2 but ranging each vertex activation threshold proportion-
ally to its degree - from 0.1 to 0.9, while we still used a majority policy for
hyperedges. In this case, we generated random hypergraphs of fixed size
n = m = 500, setting k = d = 80 to create of k � uniform and d� regular
hypergraphs. Figure 8.5 depicts the results obtained for each hypergraph
type. We have to remind the reader that the higher the threshold, the
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harder it is activating the vertex.
Thefirst interesting thing to note is that all heuristics practically achieve

the same performance in the case of random hypergraphs with no struc-
tural constraints (see Figure 8.5a) and d� regular hypergraphs (see Fig-
ure 8.5d). This result is in line with the previous scenarios: in both cases,
there is not enough information conveyed by the vertex degrees to allow
the heuristics to choose (and differentiate) a better seed set. Further, there
is no difference between the seed set size achieved by each heuristic and
its variant followed by the optimization procedure.

We can observe a significantly different picture in Figure 8.5b, show-
ing the results relative to random hypergraphs generated with the pref-
erential attachment rule. In this case, we can note three major points.
First, as we can also observe in Figure 8.3c in Scenario 1, the optimiza-
tion procedure is able to reduce the original seed set size evaluated by all
four heuristics. Second, DynamicGreedy[H]2 followed by the optimiza-
tion step achieves the worst results compared to the other heuristics op-
timized. Third, the worst performance is not reached consistently by one
specific heuristic, but it varies with the vertex thresholds. For instance,
when the thresholds are small, the performance of DynamicGreedy[H]2 is
poor, but for larger values, its performance improves and becomes very
close to the DynamicGreedy (without optimization). SubTSSH with no
optimization evaluates the worst seed set for thresholds from 0.3 to 0.6

to then improve and finally reach the same seed set size of SubTSSH fol-
lowed by the optimization step. StaticGreedy without optimization tends
to achieve the worst seed set size, reaching the higher values when the
threshold is equal to 0.8 or 0.9.

Figure 8.5c shows results kind of in the middle of the two previously
discussed. As for randomhypergraphswith no constraints and d�regular
hypergraphs, the optimizationprocedure does not improve the initial seed
set size. Once again, this result was expected given the outcomes de-
scribed in Scenario 2 (see Figure 8.4). However, we can observe that
DynamicGreedy[H]2 (with and without optimization procedure) system-
atically achieves theworst performance. Similarly, SubTSSHobtains slightly

151



8.6 Results

worst results compared to StaticGreedy andDynamicGreedy, but they de-
crease to the increase of the vertex thresholds reaching the same outcomes
of DynamicGreedy[H]2 at the end.
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DynamicGreedy[H]2 DynamicGreedy[H]2 -noOpt
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(a) Random hypergraphs with no
constraints.
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(b) Preferential attachment hyper-
graphs.
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(c) k � uniform hypergraphs. (d) d� regular hypergraphs.

Figure 8.5: Scenario 3 — Experiments on random hypergraphs H =
(V, E) of size n = m = 500, built using all generative models. Each vertex
threshold varies proportionally - from 0.1 to 0.9 - to the degree of the ver-
tex. A fixed threshold of 0.5 is used for hyperedges. The value of k and d
for the k-uniform and d-regular hypergraphs is set to 80.
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In this section, we describe the results related to the experimental scenar-
ios run over real-world hyper-networks and introduced in Section 8.5.2.
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In this first experimental scenario, wefixed each vertex (hyperedge) thresh-
old to a random value between 1 and its degree (size), varying it at each
experiment run. Figure 8.6 shows the distribution of the seed set size per
hypergraph using the four heuristics described in Section 8.3, followed
by the optimization procedure. Figure 8.7 reports the same information
zooming into each data set comparing the four heuristics with (left—
orange) andwithout (right—green) the optimization procedure. The size
of the seed set is reported as the ratio over the total number of vertices to
enable comparison across all data sets.

The first interesting aspect to note is that the optimization phase has a
meaningful impact on all three additive heuristics - StaticGreedy, Dynam-
icGreedy[H]2 , and DynamicGreedy. This behavior is highly emphasized
when looking at the StaticGreedy procedure, where the algorithm selects
almost all of the vertices when run without optimization. As expected,
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Figure 8.6: Scenario 1 — Ratio of the seed set size over the total number
of vertices n per hypergraph, fixing each vertex (hyperedge) threshold to
a random value between 1 and its degree (size).
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this outcome resembles the results obtained when running the heuris-
tics on hypergraphs generated with the preferential attachment rule (see
Scenario 1 and Scenario 3 of Section 8.6.1), as real-world hyper-networks
have a heavy-tail hyperedge distribution [123]. The rationale behind why
the optimization procedure has a more significant impact on the solution
found by additive heuristics has to be sought in how these work. Static-
Greedy, DynamicGreedy[H]2 , andDynamicGreedy only consider the (resid-
ual) vertex degree when selecting vertices to add to the seed set. How-
ever, there is no guarantee that higher-degree vertices constitute a better
seed set since vertex and hyperedge thresholds are randomly assigned.
Second, the cleaning procedure carried out after selecting the initial seed
set leads to achieving very similar results when using the additive heuris-
tics. This outcomemay happen because the three heuristics choose a very
similar set of core vertices (i.e., the vertices remaining after the optimiza-
tion phase), even though they initially select different seed sets. On the
other hand, the optimization phase has a very low, if not zero, impact on
reducing the initial seed set found by the subtractive heuristic SubTSSH
(since it considers both degree and vertex thresholds). Thus, running
the algorithm with and without optimization brings consistent results,
always comparable with the outcomes of the additive heuristics. As a
result, when using the SubTSSH algorithm, the optimization phase may
also be skipped by paying a minimal price on the dimension of the final
seed set.
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Figure 8.7: Scenario 1 — Ratio of the seed set size over the total number
of vertices n per hypergraph, fixing each vertex (hyperedge) threshold to
a random value between 1 and its degree (size). The acronyms DG and
DG[H]2 stand for DynamicGreedy and DynamicGreedy[H]2 , respectively.
Each plot compares the seed set size obtained by running each heuristic
with (left, orange) and without (right, green) optimization procedure.
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In a second experiment, we fixed each vertex threshold to a random value
between 1 and its degree, varying it at each experiment run. We used a
majority policy for the hyperedge thresholds instead. Figure 8.8 shows
the distribution of the ratio of the seed set size over the total number of
verticesnper hypergraph obtained by running the four heuristicswith the
optimization step. Figure 8.9 reports the same information zooming into
each data set comparing the four heuristics with (left, orange) and with-
out (right, green) the optimization procedure. The results of this experi-
ment resemble the outcomes of Scenario 1. As in the previous case, addi-
tive heuristics (plus the optimization procedure) perform slightly better
than SubTSSH in obtaining the smallest seed set.

Among all data sets, when it comes to selecting the seed set for the
hypergraphs associated with Amazon and DBLP, all heuristics (with and
without optimization procedure) pick at least half of the total number
of vertices. This result is emphasized by the smaller number of vertices
(in percentage) required to fully influence the other networks. A similar
pattern also happens in Scenario 1 (see Figure 8.6). The reason for this

Algebra Amazon DBLP email-Enron email-W3C Geometry GoT Music-rev NBA Rest.-rev Bars-rev
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Se
ed

se
ts

ize
/
n

StaticGreedy
DynamicGreedy[H]2
DynamicGreedy
SubTSSH

Figure 8.8: Scenario 2 - Ratio of the seed set size over the total number
of vertices n per hypergraph, fixing each vertex threshold to a random
value between 1 and its degree and using a majority policy for hyperedge
thresholds.
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behavior has to be sought in the topology of the networks. What differ-
entiates the Amazon and DBLP hypergraphs from the others is that their
number of vertices is at least 68% higher than their number of hyperedges.
In addition, the majority of the vertices of the two networks has degree
equal to 1 (97.89% for Amazon, 97.21% for DBLP). Being involved in only
one relation, these vertices are difficult to influence and, at the same time,
cannot help in influencing other vertices; thus, confirming how the topol-
ogy of the network strongly determines the minimum target set needed
to influence the whole hypergraph. As expected, StaticGreedy performs
the worst when not followed by the cleaning step, selecting in all hyper-
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Figure 8.9: Scenario 2 — Ratio of the seed set size over the total num-
ber of nodes n per hypergraph, fixing each node threshold to a random
value between 1 and its degree and using a majority policy for hyperedge
thresholds. The acronymsDGandDG[H]2 stands forDynamicGreedy and
DynamicGreedy[H]2 , respectively.

graphs butNBA the highest number of vertices (if not almost all vertices).
In line with the experiments on random networks, this outcome suggests
that using a dynamic approach is helpful to select a reasonable seed set.
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In this third experimental scenario, we varied each node threshold pro-
portionally - from 0.2 to 0.8 - to the degree of the node and fixed each
hyperedge threshold to a random value between 1 and its size. It is worth
stressing that the higher the threshold, the harder it is to influence the
given node or hyperedge.

Figure 8.10 shows the ratio of the seed set size over the total number
of nodes n separately for each hypergraph. These outcomes look like the
ones previously discussed in Scenario 1 and Scenario 2. Overall, the addi-
tive heuristics followed by the optimization procedure performed better
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Figure 8.10: Scenario 3 - Ratio of the seed set size over the total number
of nodes n per hypergraph, varying each node threshold proportionally
- from 0.2 to 0.8 - to its degree, and fixing each hyperedge threshold to a
random value between 1 and its size.
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in all data sets, consistently achieving a smaller seed set than SubTSSH, re-
gardless of the node threshold value. Generally, using proportional node
thresholds, DynamicGreedy and DynamicGreedy[H]2 without the clean-
ing procedure tend to perform equal or better than SubTSSH (with and
without optimization). A plausible explanation for this behavior must be
sought in how each algorithm selects the next node to add to the seed set.
Specifically, DynamicGreedy and DynamicGreedy[H]2 choose the nodes
to put in the seed set only based on their degree. In this specific setting,
selecting the nodes with a higher degree increases the probability of in-
fluencing a higher number of nodes (being each node’s threshold pro-
portional to its degree). On the other hand, SubTSSH prunes from the
hypergraph nodes that are easy to influence, even though they may have
many neighbors; hence, removing possible good candidates. As already
discussed in the previous two scenarios, the StaticGreedy algorithmwith-
out the cleaning step always produces a seed containing almost all nodes.
Further, as before, optimizing the result of the SubTSSH procedure brings
little or no improvements to the seed set size.

Again, this experiment draws attention to the Amazon and DBLP hy-
pergraphs, as it clearly stands out that all heuristics have the same per-
formance (as also happens in the first two experiments, see Figures 8.6
and 8.8). We can further observe the same behavior for the Email-W3C
hypergraph. As already discussed, the reason for that lies in the num-
ber of nodes being part of only one relation (80.57% of the nodes have
degree 1).

�$'2!8-3 � f �83638ধ32!£ 23&' ;,8'9,3£&9T 1!/38-;@ 63£-$@ 32 ,@6'8f
'&+'9W
In the fourth and last experimental scenario, we varied each vertex thresh-
old proportionally - from 0.2 to 0.8 - to the degree of the vertex, while we
used a majority policy for hyperedges.

Figure 8.11 shows the ratio of the seed set size over the total number
of vertices n separately for each hypergraph. We can observe a familiar
picture, where the three additive heuristics - followed by the optimization
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Figure 8.11: Scenario 4 - Ratio of the seed set size over the total number
of nodes n per hypergraph, varying each node threshold proportionally -
from 0.2 to 0.8 - to its degree, and using a majority policy for hyperedge
thresholds.
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step - retrieve the smallest seed sets and the three particular cases of the
Amazon, DBLP, and Email-W3C hyper-networks where all heuristics (but
StaticGreedy without optimization) achieve very similar results. Gener-
ally, as also observable in Figure 8.8, fewer vertices are required to influ-
ence the whole network when a majority policy on hyperedges is used.
This outcome means that, on average, hyperedges with a higher thresh-
old make the problem harder.

ǟWǝWǚ 	?'$<ধ32 �-1' �316!8-932

Having investigated the effectiveness of each heuristic in finding the small-
est target set able to influence the whole network, we then analyzed their
performance in terms of execution time. Specifically, we used the same
setting of Scenario 1 using real-world hyper-networks, fixing random thresh-
olds for both vertices and hyperedges. We simulated the execution of
each heuristic 50 times, using the Julia package BenchmarkTools.jl. We
run each experiment on an Ubuntu 18.04.2 LTS machine, equipped with
Intel® Xeon® CPU E5-2660 0 @ 2.20 GHz and 32 GB RAM.

Figure 8.12 presents the distribution of the time (in seconds) required
for each heuristic to complete the task. The first interesting outcome here,
although not surprising, is that additive heuristics consistently needmore
time than the subtractive technique to accomplish the task. As already
discussed in Scenario 1 (real-world networks), this behavior is due to the
fact that additive techniques select many unnecessary vertices demand-
ing a significant workload for the optimization phase, thus increasing the
overall time needed to compute the final seed set. As expected, the addi-
tive dynamic heuristics - DynamicGreedy[H]2 and DynamicGreedy - re-
quire the highest computational time, as their algorithms, at each itera-
tion, compute the residual network, updating the vertices candidate set.
Generally, the SubTSSH subtractive heuristic requires at most half of the
time of the dynamic additive heuristics to complete, thus representing a
practical alternative when dealing with bigger hyper-networks.

Figure 8.13 shows the same results from a different perspective: in this
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Figure 8.12: Distribution of the time (in seconds) required for each heuris-
tic to complete.

case, the time needed for each heuristic to complete the task is plotted
against the network size, evaluated as |V |+ |E|. Thus, it allows us to ana-
lyze how each algorithm scales with increasing hyper-network size. This
time, we also show the results associated with the four greedy strategies
- StaticGreedy, DynamicGreedy[H]2 , DynamicGreedy, and SubTSSH - run
without the optimization phase. On the y-axis, the average running time
of each heuristic is reported. Both axes have a logarithmic scale. Consis-
tently with the data shown in Figure 8.12, SubTSSH followed by the opti-
mization procedure achieves a very similar or even better performance of
all the three additive heuristics runwith the optimization phase. The Stat-
icGreedy procedure runwithout optimization obtains the best time in ab-
solute. However, as shown in Figure 8.14, it selects themajority of the ver-
tices as seed set; thus, retrieving a useless solution in practice. That leaves
SubTSSH executed without the optimization phase as the winner. As al-
ready discussed in the experiment of Scenario 1 (real-world networks),
the optimization phase has a very low, if not zero, impact on reducing the
initial seed set evaluated by the SubTSSH heuristic. Hence, the optimiza-
tion phase may also be skipped when using this algorithm by paying a
minimal price on the final seed set’s dimension but still gaining execution
time.

Figure 8.14 zooms into each data set analyzed, comparing the aver-

163



8.7 Remarks

10
3

10
4

10
�2

10
�1

10
0

10
1

10
2

Rest-rev

Algebra

Geometry

Music-rev
Bars-rev

NBA

DBLP

GoT

Amazon

Enron
W3C

Network size: |V |+ |E|

E
xe
cu
ti
on

ti
m
e
(s
)

StaticGreedy

StaticGreedy-noOpt

DynamicGreedy

DynamicGreedy-noOpt

DynamicGreedy[H]2

DynamicGreedy[H]2 -noOpt

SubTSS

SubTSS-noOpt

Figure 8.13: Distribution of the time (in seconds) required for each heuris-
tic to complete the task against the size of the network (|V |+ |E|).

age completion time of each heuristic against the size of the seed set eval-
uated. As expected, DynamicGreedy and DynamicGreedy[H]2 executed
without the optimization phase need up to half of the time to complete
than their corresponding optimized version. Obviously, the target set
evaluated is larger. As previously discussed, the non-optimized version of
StaticGreedy basically selects all vertices. This result suggests that TSSH
heuristics designed for real-world networks should consider both the dy-
namicity of the influence process and the role that hyperedges play in
the whole diffusion mechanism. Further, this experiment clarifies that
SubTSSH reaches the best trade-off between the quality of the solution
and the time needed to compute it.

ǟWǞ �'1!809
This chapter discussed a generalization of the linear threshold (LT) diffu-
sion model on hypergraphs that notably differs from the corresponding
model on graphs as it also involves hyperedges in the diffusion process.
Hence, it enables the direct modeling of complex group dynamics hap-
pening in high-order networks. The Target Set Selection (TSS) problem is
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Figure 8.14: Average execution time vs seed set size.

a challenging puzzle arising in this domain. It consists in determining the
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smallest subset of nodes (seed-set) able to influence the whole network. In
our work, we generalized the TSS problem formalized for graphs to hy-
pergraphs (TSSH problem), exploiting the proposed LT diffusion model
for such structures.

To address the TSSH problem, we proposed three greedy-based addi-
tive heuristics and a subtractive procedure. All the described algorithms,
being greedy-based approaches, do not guarantee that the cardinality of
the seed set is (an approximation of) the optimal solution. For this reason,
we also introduced an optimization step to improve the original solution
found by each heuristic. We evaluated the effectiveness of the proposed
heuristics considering the cardinality of the solution obtained and their
execution time. We run extensive experiments on several random and
real-world hyper-networks, varying the generative model and the vertex
thresholds in the former case, the activation thresholds for both nodes,
and hyperedges in the latter.

Results showed two different pictures according to the specific nature
of the examined hyper-networks.

• In the case of random networks, we can summarize two significant
points. First, no heuristic profoundly outperforms the others; sec-
ond, the optimization procedure, whose objective is to remove un-
necessary nodes from the seed set, does not impact the solution ini-
tially evaluated by each heuristic. An exception is made for random
hypergraphs generated with the preferential attachment rule. In
this case, the comments made for real-world hyper-networks hold.

• Regarding real-world networks, we can note that, although additive
procedures generally provide worse results initially, they particu-
larly benefit from the use of the optimization procedure. This pro-
cess translates into better results than the subtractive procedure (for
which the optimization procedure is practically irrelevant). Hence,
this outcome depicts a completely reversed picture of random net-
works.
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• Looking at execution times, we can observe how, although efficient,
the optimization procedure harms the additive approaches’ run-
ning time, thus making those heuristics more time-consuming.

Loosely speaking, comparing the seed set size obtained ondifferent hyper-
networks, it is possible to observe how generally the results are pretty het-
erogeneous and strictly depend on the networks’ characteristics, such as
the density of the network or the distribution of both node degrees and
hyperedge size. In general, pure additive approaches may be used when
the underlying network has either a random, k � uniform or d � regular
structure. The pure subtractive approach of SubTSSH is suggested when
dealing with real-world networks instead. Clearly, the network size is an-
other critical aspect to consider when choosing which heuristic to apply.

167





����

IV 	6-&'1-$9 32
�-+,f38&'8
�'1638!£
�';>3809
�<11!8@

� 	6-&'1-$ �@2!1-$9 32 �@6'8+8!6,9 ���
�W� �3ধ=!ধ32 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ���
�W� �-+,f38&'8 �'1638!£ 	6-&'1-$ �@2!1-$9 W W W W W W W W W W W W W W ���
�W� �;!;'f3(f;,'f!8; �316!8-932 W W W W W W W W W W W W W W W W W W W W W W W W W �¥�
�W� 	?6'8-1'2; �'ষ2+ W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W �¥¤
�W� �'29-ধ=-;@ �2!£@9-9 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ���
�W¤ �'1!809 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ���
�� �3&'£-2+ 	6-&'1-$ �32;83£ �;8!;'+-'9 ���
��W� �3ধ=!ধ32 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ��¥
��W� �3&'£-2+ ��9 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ���
��W� �;!;'f3(f;,'f!8; �316!8-932 W W W W W W W W W W W W W W W W W W W W W W W W W ���
��W� 	?6'8-1'2; �'ষ2+ W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ��¥
��W� �'29-ধ=-;@ �2!£@9-9 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ���
��W¤ �31#-2-2+ ��9 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ���
��W� �'1!809 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ��¤





�
	6-&'1-$ �@2!1-$9 32
�@6'8+8!6,9

�3 +8'!; &-9$3='8@ >!9 '='8 1!&' >-;,3<; ! #3£& +<'99W

9!!$ �'>;32

2 9,38;

�W� �3ধ=!ধ32T ���
�W� �-+,f38&'8 �'1638!£ 	6-&'1-$ �@2!1-$9T ���
�W� �;!;'f3(f;,'f!8; �316!8-932T �¥�
�W� 	?6'8-1'2; �'ষ2+T �¥¤
�W� �'29-ধ=-;@ �2!£@9-9T ���
�W¤ �'1!809T ���

This chapter and Chapter 10 presents the third and last key contri-
bution of this dissertation: the formal definition of time-varying hyper-
graphs (TVHs), the introduction of direct and indirect interactions when
studying an epidemic spreading via a TVH contact network, and an epi-
demic diffusion algorithm built on top of TVHs and direct and indirect
contagion pathways. Specifically, we first motivate why using (temporal)
hypergraphs rather than (temporal) graphs to analyze epidemic spread-
ing processes (see Section 9.1) is beneficial. We then introduce the formal
definition of temporal hypergraphs, describe a high-order SIS compart-
mental equation model suitable for TVHs, and discuss how we assem-



9.1 Motivation

bled these elements into an agent-based framework (see Section 9.2). We
further review how our work differentiates from the state-of-the-art (see
Section 9.3), describe the experiment setting (see Section 9.4), and finally
present a sensitivity analysis of the TVH model to the epidemic parame-
ters and different discretization of the time intervals when direct or indi-
rect contacts may happen (see Section 9.5).

Thework described in this chapter has been presented in the following
article:

• A. Antelmi, G. Cordasco, C. Spagnuolo, and V. Scarano. 2020. A
DesignMethodology for Epidemic Dynamics via Time-Varying Hy-
pergraphs. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS’20). Inter-
national Foundation for Autonomous Agents and Multiagent Sys-
tems, Richland, SC, 61–69.

ǠWǘ �3ধ=!ধ32
Propagation of contagious diseases is a complex dynamic process that
holds abounding human behavior aspects. Thus, modeling tools with a
high level of expressiveness are required to resemble natural diffusion dy-
namics correctly.

Most of the well-known models adopted to analyze an epidemic dif-
fusion and evaluate the outcomes of control policies are based on math
equations (Equation-Based Models, EBMs) that have proved their abil-
ity to mimic the epidemic spreading in individuals [97, 89, 70]. However,
thesemodels assume that the population behavior and individual contact
types are homogeneous [27]. The aforementioned is a severe limitation
for real-world scenarios as it reduces the modeling effectiveness in de-
scribing different individuals and social behaviors [109]. Further, EBMs
do not provide an easyway tomodel different contacts [79]. In particular,
many epidemic contagions operate in direct contagion (person-to-person
infection) and indirect contagion (person-to-environment infection, e.g.,
via furnishings or clothing). In other terms, EBMs provide us quantita-

172



9.1 Motivation

tive information about the number of infected individuals in the worst-
case scenario.

Agent-BasedModels (ABMs) support researchers in overcoming these
abstractions. ABMs are a modeling tool that easily incorporates features
related to population and society and are widely adopted to simulate hu-
man behaviors under specific conditions [140, 172], particularly in epi-
demiological studies [124]. This tool allows researchers to naturally in-
clude human mobility data to model human interactions between the en-
vironment or other individuals. Typically, many epidemic ABMs also ex-
ploit networks to define possible agent interactions. Such data can be re-
trieved from online social networks, where users share their real-time lo-
cation (Foursquare), geo-tag media posts (Facebook and Instagram), or
review businesses (Yelp). The growing popularity of these online plat-
forms and the ubiquitous online access provide gold data for studying
users’ habits, lifestyles, and mobility patterns to include in ABMs.

Graphs usually abstract and formalize contact among agents simu-
lated with an ABM; hence, they also allow a formal analysis of the diffu-
sion mechanisms happening within the simulation. Nonetheless, graphs
do not always represent a suitable structure to analyze epidemic dynam-
ics. As already thoroughly discussed in Chapter 5, Bodò et al. [41] first
proposed modeling communities as hyperedges, based on the concept
that an actual model of an epidemic outbreak has to consider two fac-
tors: community structure and infection pressure. They translated this
approach into practice using different contagion probabilities according
to the place. In addition, they bounded the likelihood that a susceptible
individual becomes infected in a unit to be not proportional to the num-
ber of infected individuals within that unit. The authors show that using
a non-linear function tomodel the infection pressure is crucial to not over-
estimate the epidemic propagation. In that way, they demonstrated that
graphs are not a well-suited structure to capture the many-to-many rela-
tionships that come into play during epidemic propagation processes.

Further, these structures are not expressive enough to easily simulate
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direct and indirect contact among individuals1. In addition, graphs do
not consider when a connection happens, which is crucial in epidemic
dynamics [150]. A contact network can be easily extended to include the
time dimension by using Time-Varying Graphs (TVGs) [52, 68], a variant
of the graph model, where a link between two nodes is valid only for a
given time interval. Nonetheless, a TVG is not a definitive solution as the
epidemic spreading process may still be over-estimated for particular dis-
eases. Individuals in the same place at the same time come in contact with
each other; as a result, therewill be a link per each connection. In that case,
the information tying together a group of individuals simultaneously in
a particular geo-location is lost.

All the above considerations suggest that modeling epidemic spread-
ing processes taking into account information conveyed by high-order in-
teractions (e.g., indirect contagion pathways or probability to become in-
fected not proportional to the number of infected within a unit) is crucial
to correctly estimate and resemble diffusion dynamics happening in the
real world.

ǠWǙ �-+,f38&'8 �'1638!£ 	6-&'1-$ �@2!1-$9
In this section, we formally introduce temporal hypergraphs and present
how these structures can model mobility patterns as well as direct and
indirect contagion pathways. We further describe the underlying idea
of our ABM design methodology and introduce the nomenclature used
throughout this chapter and Chapter 10. We finally discuss a high-order
diffusion process based on the SIS compartmental model.

ǠWǙWǘ �-1'f�!8@-2+ �@6'8+8!6,9

To better mimic an epidemic spreading, we extended the definition of
TVGs, presented by Casteigts et al. in [52], to hypergraphs. Employing
a TVH to describe a contact network enables us to minimize the effect of

1In principle, additional memory can be used to store this information; however, this
choice actually corresponds to using hypergraphs.
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time and the presence of only direct contacts. Formally, a TVH is defined
as follows.

⇡ Definition 9.1 : Time-Varying Hypergraphs (TVHs)

A TVH is a hypergraph H = (V, E, T , ⇢), where T ✓ R+ is the
lifetime of the system and ⇢: E⇥T ! {0, 1} is an existence function,
indicating whether a hyperedge exists at a given time.

For each t 2 T ,we refer to the hypergraphHt = (V, Et) as the hypergraph
corresponding to a particular time t, i.e.,Et = {e 2 E : ⇢(e, t) = 1}, where
Et denotes the set of hyperedges existing during t.

As defined by Bretto in [47] and described in Chapter 2, the two-
section (or clique) representation of H , denoted with [H]2, is a graph
whose vertices are the vertices ofH , and where two vertices form an edge
if they are in the same hyperedge. Figure 9.1 presents an instance of a
TVH (see Figure 9.1a) compared to its corresponding two-section graph
(see Figure 9.1b). It illustrates a trivial TVH made up of 8 individuals
(vertices), V = {a, b, c, d, e, f, g, h}, and 5 geographical locations (hyper-
edges), E = {P1, P2, P3, P4, P5}. Each hyperedge is labeled with its cor-
responding availability time interval(s) [ts, te) ✓ T . It is worth noting
that the [H]2 representation introduces a loss of information in the con-
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Figure 9.1: A simple TVH H (left) and its clique representation G = [H]2
(right). Each (hyper)edge e is labeledwith the corresponding availability
time span, defined as [{t 2 T : ⇢(e, t) = 1}.
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tact network. For instance, it is not possible to recognize which is the time
interval when the individuals c and e were both in the venue P3 or P4.

In our epidemiological modeling framework, we used the following
definition of TVH with check-in function !.

⇡ Definition 9.2 : TVH for an epidemic diffusion

A TVH for an epidemic diffusion is a hypergraph H = (V, E, T ,!),
where

• V is the set of n vertices (users/agents);

• E is the family of m hyperedges (locations);

• T 2 N is the lifetime of the systema;

• !: V ⇥ E ⇥ (T ⇥ T ) ! T [ {?} is the function that maps
an agent v 2 V in a location ` 2 E during the time interval
⌧ = [ts, te) 2 (T ⇥ T ), with ts  te, to the last check-in time
tv,` of v in ` in the specified interval. If v never checked-in in `

during ⌧ , the function returns ?.
aIn practice, the lifetime T is a discrete valued interval delimited by two Unix

timestamps.

The function! only keeps track of the last check-in time tv,` for a vertex
v in a given location ` during a time interval ⌧ . If v did not checked-in
in the same location ` or in another location `0 in the next time interval
⌧ 0, the value of tv,` is still considered a valid check-in time in the current
timestamp ⌧ 0. We store the last check-in time tv,` of a vertex v in a location `

as theweight of v in the hyperedge representing `. Thismodeling strategy
allows us to simulate direct and indirect contagion processes easily: we
can effortlessly know where the user is during each time interval.
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ǠWǙWǙ � �'9-+2 �';,3&3£3+@

We based the idea of our ABM design methodology on the assumption
that two spreading policies regularize an epidemic process: direct and
indirect contagions between individuals and environments. Direct con-
tact implies a pairwise interaction between two individuals in the same
place. In contrast, an indirect contagion embodies the interchanges that
may happen between agents and locations. These two types of contacts
are a natural consequence of each person’s daily activities and commuting
routes. For instance, when an agentmoves from its home to its workplace,
it may be infected by touching some furniture or simply breathing con-
taminated air (indirect interaction) or by a face-to-face talk with another
agent (direct exchange).

In the following section (see Section 9.2.3), we describe a diffusion
algorithm whose spreading process is designed in a discrete-event fash-
ion and exploits the TVH structure to discover whether direct or indirect
interactions may happen. During each time interval, agents are simu-
lated according to their scheduling policy. Then, our diffusion algorithm
is performed. As agents are free to move, the epidemic has the chance
of spreading from one location to another. Simultaneously, the outbreak
may still spread across agents located in the same place at a particular
time interval. While direct contamination requires agents’ co-presence,
indirect connections happen between agents and the environment, and
co-presence is not needed.

The scheduling routine of each agent is defined by an input check-
ins data set, describing where each agent is and when the agent entered
that specific location. The simulation time is split into fixed-width inter-
vals of length �, corresponding to when indirect contagion may happen.
Given a sampling time � of a check-in data set, the total number of time
intervals considered is ⌃

�
�

⌥. In practice, all check-ins happening within
the same location in a � time window are grouped together, and a hy-
peredge is added to the TVH to represent the location where a group in-
teraction (or indirect contact) is happening. For each time window, if the
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9.2 High-order Temporal Epidemic Dynamics

time difference between two check-ins in the same location is lower than a
given small value �, we consider direct contact happening between those
two agents. This methodology approximates the notion of direct contact
when high-granular data on the individual routine is not available. It is
worth noting that to not erroneously discard direct contact happening in
the time window � between two consecutive time intervals of length �,
each interval actually lasts � + 2�. Hence, we generate overlapping in-
tervals, with the interval ⌧ overlapping the last � window of the previous
interval ⌧ 0 and the first � window of the following interval ⌧ 00.

� Agents’ scheduling policy

The current model does not directly take into account the order
in which agents visit a location or their check-out time. Including
such information in the diffusion process might lead to a more ac-
curate representation of the epidemic dynamics. For instance, we
could consider the exact time window within which two agents
had direct contact as well as the permanence of an agent in a loca-
tion. This consideration translates into modifying the direct and
indirect infection probabilities to accommodate that a long perma-
nence or a long chat may lead to higher infection probabilities.
Unfortunately, there are no data sets reporting check-out informa-
tion as (location-based) social networks usually only offer check-in
functionalities. High-resolution mobility data sets deriving from
other data sources also exist, but they are either too small [166] or
proprietary [60]. Recently, various Data For Good Programmes
(e.g., Meta [135]) began offering aggregated mobility data. How-
ever, this data cannot be directly exploited within our model as we
need to know where and when a specific person has been. A pos-
sible solution is to design an ABM in which agents’ routines mimic
those mobility patterns. Usually, the parameters regulating such
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9.2 High-order Temporal Epidemic Dynamics

models may grow even to hundreds [93, 7, 8] and, thus, require
proper validation and calibration. Designing and building com-
plex ABMs is an independent research field.

Figure 9.2 reports an instance of a TVH corresponding to the check-in
data set listed in the table with 11 agents and 4 locations. In this example,
the data is split into fixed-width intervals of length � = 3 hours; hence,
all hyperedges corresponding to a specific location indicate that indirect

A1

A2

A3

A4 A5

A6

A7 A8

A9

A10 A11

L1

L2

L3

L4

Agent Location Check-in
A1 L1 8 : 00 : 00

A2 L1 8 : 00 : 49

A3 L1 8 : 30 : 00

A3 L2 9 : 00 : 00

A4 L2 9 : 30 : 00

A5 L2 9 : 30 : 40

A6 L2 9 : 31 : 10

A6 L3 10 : 00 : 00

A7 L3 9 : 00 : 00

A8 L3 9 : 00 : 10

A9 L3 9 : 00 : 15

A7 L4 9 : 30 : 00

A8 L4 9 : 40 : 00

A9 L4 10 : 00 : 00

A10 L4 10 : 00 : 10

A11 L4 10 : 00 : 20

Figure 9.2: Direct and indirect contacts modeled via a TVH.
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9.2 High-order Temporal Epidemic Dynamics

contact is happening among the agents that have visited that location in a
3 hours time frame. Dashed lines indicate that direct contact is happening
between two agents as they have been in the same location in a time frame
of less than � = 1 minute.

Table 9.1 provides the definitions of the concepts adopted in the next
sections of this chapter and Chapter 10. In the following, we will omit the
subscript t when the simulation time is clear from the context.

Table 9.1: TVH related concepts and notation used in this chapter and
Chapter 10.

Symbol/Concept Description
H = (V, E, T ,!) TVH representing the data (see Definition 9.2.1).

� Time span of the data.
� Real value (minutes, hours or days) corresponding to

the time discretization parameter. It further refers to
the time span when indirect contagions may happen.

� (Small) Real - value (milliseconds, seconds orminutes)
definingwhendirect infectionsmay take place. Adirect
contagion is established if two agents stay in the same
location within a time difference less than �.

t Current simulation time (t 2 T ).
�t(a) = {` 2 E : !(a, `, (ts, te)) 6=?} Location function of an agent a 2 V in a given simu-

lation time t. It returns the set of locations visited by a
during the interval t.

Nt(a) =
S

`2�t(a) Vt(`) Neighborhood function of an agent a 2 V in a given
simulation time t. It returns the set of neighbors of a
during the simulation time t, where Vt(`) denotes the
set of agents that visited the location ` during t.

⌥(a, `) Time function providing the last check-in time of the
agent a in the location `.

Tt(a) Infection state (1 infected, 0 not infected) of an agent in
a given simulation time t.

Tt(`) Infection state (1 infected, 0 not infected) of a location
in a given simulation time t.

Xt(a, b) = �9 ` 2 �t(a) \ �t(b) ^
|⌥(a, `)�⌥(b, `)| < � �

Direct contact function. Given two agents a and b, it
returns 1 if they have direct contact in the time t; 0 oth-
erwise.
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ǠWǙWǚ �-ø<9-32 �83$'99

We based the SIS model we present in this chapter on the work of Bodò
et al. [41], in which the infection and recovery states are ruled by a Pois-
son process. Thus, either a susceptible individual or location becomes
(directly or indirectly) infected with a probability 1 � e��xf(n). Here, �x
denotes the infection rate per-contact (considering either direct or indirect
contacts), n is the number of infected entities (individuals or locations),
and f(·) is a function of n. Similarly, an infected agent or location recovers
with probability 1 � e��x , where �x denotes the recovery rate for agents
and locations.

During each time step, our diffusion algorithm proceeds in three con-
tagious phases.

1. Agent-to-Environment. The first phase simulates the environment in-
fectiveness. For all non contaminated locations, (i.e., ` 2 E : Tt(`) =

0), we compute the number of infected agents that have visited that
location in the current simulation step t:

Ie(`) =
X

a2V (`)

T(a).

This value is then used to update the infection state of a susceptible
location `, as expressed by the following rule:

Tt+1(`) =

(
1, infected with probability 1� e��ef

e(Ie(`))

0, not infected otherwise
,

where �e is the infection rate of the locations, and f e(·) is a non-
linear function, typically adopted to govern the behavior of the epi-
demic outbreak over hyperedges [41]. In our experiments (see Sec-
tion 9.5 and Section 10.4), we considered the following regulariza-
tion function:

f e(x; c) =

(
x, if 0  x  c

c, if x > c
,
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9.2 High-order Temporal Epidemic Dynamics

where c is a constant given as parameter.

2. Agent-to-Agent. The second phase simulates the direct propagation
process. For all susceptible agents (i.e., a 2 V : Tt(a) = 0), we
compute the total number of infected neighbors in the current sim-
ulation interval t. Formally,

Id(a) =
X

b2N(a)

T(b)X(a, b).

This value is then used to update the infection state of a susceptible
agent a, as expressed by the following rule:

Tt+1(a) =

(
1, infected with probability 1� e��dI

d(a)

0, not infected otherwise
,

where �d is the infection rate of the agents due to direct contagions.

3. Environment-to-Agent. The third and last phase simulates the indi-
rect propagation process. For all susceptible agents, (i.e., a 2 V :

Tt(a) = 0), we compute the number of infected locations visited in
the current simulation interval t. Formally,

Ii(a) =
X

`2�(a)

T(`).

This value is then used to update the infection state of a susceptible
agent a, as expressed by the following rule:

Tt+1(a) =

(
1, infected with probability 1� e��iI

i(a)

0, not infected otherwise
,

where �i is the infection rate of the agents due to indirect contagions.

We consider the simulation proceeding in discrete steps. At each simu-
lation interval t, every agent independently runs its step function and up-
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9.2 High-order Temporal Epidemic Dynamics

dates its internal state, whichwill be effective in the next simulation phase
t+ 1.

Algorithm 6 reports the pseudo-code of the ABM simulation, specif-
ically the high-order SIS compartmental diffusion model devised for hy-
pergraphs. First, the algorithm computes the simulation intervals as de-
scribed in Section 9.2.2. Then, at each simulation step, it computes the hy-
pergraph corresponding to the current timestamp (line 2), and it runs the
three epidemic diffusion phases. In the first phase, Agent-to-Environment
(lines 3�8), the infection status of every location is updated. In the second
phase, Agent-to-Agent (lines 9� 12), the epidemic is propagated through
the network using direct contacts, and the infection status of the agents is
updated. Finally, in the last phase, Environment-to-Agent (lines 13 � 18),
the epidemic is propagated using indirect contacts, and the infection state
of the agents is updated again. The recovery process is computed only
once for both agents and locations.

This diffusion algorithm can be easily extended by implementing ad-
ditional phases (before or after the algorithm execution) describing sup-
plementary agent behaviors. Therefore, the algorithm is suitable for other
typologies of ABMs. For instance, to simulate the introduction of the non-
pharmaceutical interventions described in Chapter 10, we extended the
diffusion algorithm to accommodate the specific details of each interven-
tion and model additional behaviors. All the parameters in input to our
model are specified in Section 9.4.2.
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Algorithm 6 High-order SIS compartmental model on TVHs
1: for t 2 compute_intervals() do
2: H(V, E) compute_tvh(t)
3: for ` 2 E do . Agent-to-Environment.
4: if Tt(`) = 0 then
5: if rand() < 1� e��ef

e(Ie(`)) then . rand() generates a ran-
dom number in [0, 1].

6: Tt+1(`) 1

7: else if rand() < 1� e��e then
8: Tt+1(`) 0

9: for a 2 V do . Agent-to-Agent.
10: if Tt(a) = 0 then
11: if rand() < 1� e��dI

d(`) then
12: Tt+1(a) 1

13: for a 2 V do . Environment-to-Agent.
14: if Tt(a) = 0 then
15: if rand() < 1� e��iI

i(`) then
16: Tt+1(a) 1

17: else if rand() < 1� e��a then
18: Tt+1(a) 0

ǠWǚ �;!;'f3(f;,'f!8; �316!8-932
In our work, we adopt temporal hypergraphs to correctly model an epi-
demic propagation in a many-to-many fashion and capture that people,
moving through different locations, form a community in a given time
and space. Alike (temporal) graphs, TVHs abstract and formalize con-
tact among agents simulatedwith anABM, but adding information about
where the contact is happening. Hence, such structures allow to formally
analyze diffusion mechanisms while accounting for group interactions
and indirect contagion processes via contaminated locations.

The SIS epidemic propagationmodelwepropose fitswithin the frame-
work defined by Bodò et al. [41]. As the authors, we also modeled infec-
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tion and recovery as Poisson processes; further, we used the same non-
linear function to model the infection pressure. This choice allows us to
resemble the situation in which if an infected individual contaminates an
object or surface, then further contamination by other individuals is less
relevant. In this case, doubling the number of infected users will increase
the risk by a factor of less than two.

Starting from these common elements, our model extends their work
by explicitly accounting for both direct and indirect contacts in the spread-
ing process (see Section 9.2.2). In our diffusion model, an individual may
become infected not only because of close interaction with another sick
person but also because the same individual may have visited a contam-
inated location (e.g., touching infected furniture in a restaurant). Vice
versa, a location (represented by a hyperedge)may become contaminated
(and thus spread the epidemic) as infected individuals may have visited
that place. This aspect represents the first key feature of our spreading
model: both vertices (people) and hyperedges (locations) actively en-
gage in the spreading process, and the epidemic bounces from one to the
other (see Section 9.2.3). The second main characteristic of our model is
the temporal component. We do not assume a static contact network; in-
stead, we formally capture people’s routine via temporal hypergraphs to
resemble real-world commuting patterns (see Section 9.2.1).

The features mentioned above characterize and distinguish our work
from all the models discussed in Chapter 5. The first difference lies in the
nature of the hypergraphs analyzed, as all related literature deals with
static hyper-networks. The second point concerns when a hyperedge is
considered infected and, potentially, infectious. In our model, a location
may become contaminated and become infectious according to Poisson
processes proportional to the number of infected nodes within that hy-
peredge. This concept also differs from the models of Jhun et al. [106]
and de Arruda et al. [61], where a hyperedge of degree d becomes infec-
tious if d � 1 nodes within it are infected [106] or if they are higher than
a given threshold [61]. Contrarily, Landry et al. [122] do not have the
concept of hyperedge infectiousness. In their work, a susceptible node in
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a hyperedge may become infected according to a specific spreading pol-
icy defining the minimum number of nodes in the same hyperedge that
should be infected. Similarly, Suo et al. [173], and Ma et al. [134] do not
explicitly model the concept of group infectiousness or even peer pres-
sure. These works investigate compartmental models on hypergraphs in
the context of rumor spreading and information diffusion, but they only
use the hypergraph structure to model the situation in which a person
may spread information to awhole group. Thework of Higham et al. [92]
was only published in August 2021, after our research. They inherit the
model of Bodò et al. and specifically focus on studying spectral conditions
characterizing whether the disease vanishes.

ǠWǛ 	?6'8-1'2; �'ষ2+
This section describes the experimental setup of the simulation, introduc-
ing the underlying epidemiological assumptions, detailing the simulation
parameters, and analyzing the data set used.

� Code Availability

The model and the experiments are implemented in Julia, exploit-
ing the library SimpleHypergraphs.jl (see Chapter 7). The code
is open-source and available at the following GitHub public reposi-
tory: https://github.com/alessant/HGEpidemics.

ǠWǛWǘ �99<16ধ329

Asmentioned in Section 9.2, the proposed epidemic design methodology
is based on high-order relationships that may happen during an epidemic
outbreak between humans and environments via direct and indirect con-
tagious pathways. From the epidemiological point of view, it is crucial to
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clarify the assumptions lying underneath our model. First, the diffusion
procedure assumes that all infected individuals are asymptomatic. This
choice advantages the epidemic spreading as all infected propagate the
infection, representing an epidemic outbreak’s optimal case. Second, we
do not consider the notion of incubation within our model, intended as
the time elapsed between exposure to a pathogenic organism and when
symptoms and signs are first apparent. In ourmodel, each agent contracts
the infection according to a transmission probability and proportionally
to the number of infected individuals it met or the number of locations it
visited. As for the previous point, this choice helps the epidemic spread
out as the person becomes sick immediately. Third, we do not study how
the time-length individuals spend together plays a role in the infection
dynamics (see Section 9.2.2). Last, we fixed the value of each epidemic
parameter during the whole simulation steps.

ǠWǛWǙ �-1<£!ধ32 �!8!1';'89

Table 9.2 lists all the simulation parameters used to control the epidemic
spreading. In the experimental part of this chapter, we study the model’s
sensitivity to the epidemic parameters and different discretization of the
time intervals when direct or indirect contacts may happen. We modify
the parameter configuration according to the specific scenario to simulate.

We generated the population mobility pattern according to the most
crowded month (May 2012) of the Foursquare data set (see Chapter 6).
As the fraction of infected results from probabilistic processes, we ran
each simulation scenario 80 times, considering the averaged value as a re-
sult. The observed variance was negligible. The simulation is initialized
with 20% of infected agents.
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� Modeling real-world epidemics

As discussed in Section 9.2.2, to test this approach to model real-
world epidemics (e.g., Covid-19), we need detailed mobility data
or a validated ABM resembling people’s mobility patterns. Then,
the epidemic diffusion model can be calibrated on top of this data
and its compartments modified to accommodate the nature of the
pathogen. Testing the so-obtained composite model against real-
world data usually means comparing the simulated versus the real
epidemic curve.

Table 9.2: Simulation parameters. For each parameter, the table reports: a
short description, its domain, and its value in the simulation (variable in-
dicates that the parameter changes according to the specific experiment).

Parameter Description Domain Value
�d Probability that an agent is infected by an-

other agent via direct contact in Agent-to-
Agent.

[0, 1] Variable

�i Probability that an agent is infected via
indirect contact due to a location in
Environment-to-Agent.

[0, 1] Variable

�e Probability that a location is infected by
an agent in Agent-to-Environment.

[0, 1] Variable

�a Probability that an agent spontaneously
recovers.

[0, 1] 0.1

�e Probability that a location is sanitized. [0, 1] 0.06

c Number of contacts in Agent-to-
Environment.

N 5

� Time window within which indirect con-
tagion may happen.

R Variable

� Time window within which direct conta-
gion may happen.

R Variable
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ǠWǛWǚ �,' 
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Before delving into analyzing the TVH model’s sensitivity and using a
reasonable parameter value for �, we investigated the check-ins distribu-
tion in themost crowdedweek in the tenmonths available of the Foursquare
data set (7� 14, May, 2012).

We estimated the value of the parameter �, i.e., the timewindowwithin
which a direct contagion may occur, by examining the time elapsed be-
tween two check-ins that happened in the same place. Figure 9.3 presents
this distribution. Interestingly, but not surprisingly, the data contain some
time windows where no check-ins are available, translating into the fact
that the epidemic has no probability of propagating during those specific
intervals. Generally, most of the intervals exhibit the same trend with a
median value of about 1 hour (meaning that the average distance between
two check-ins in the same place is 1 hour).

Having estimated � = 1 hour, we inspected the number of direct con-
tacts within each place using this value. Figure 9.4 shows this distribution
per time interval. Also in this case, we can note a homogeneous trend
with direct contacts being evenly distributed over the whole week, with a
median value of about 1, 750.
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Figure 9.3: Distribution of the time elapsed between two check-ins in the
same place over a period of 7 days, fixing � = 4 hours.
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Figure 9.4: Number of direct contacts for each person in 7 days, fixing
� = 4 hours and � = 1 hour.

Finally, we investigated the distribution of indirect contacts, namely,
the number of different locations each user has visited. Figure 9.5 reveals
how many different places users have visited within each time interval.
The plot shows that users tend to visit (or, at least, checking-in) just one
venue or a limited number of them. Several outliers visit nearly 20 venues
but nomore than 30. As described in variousworks [189, 84, 19], this may
represent a typical kind of power-law behavior, where only a few users
post the majority of the online content.

ǠWǜ �'29-ধ=-;@ �2!£@9-9
To evaluate the proposed approach and to what extent the described de-
sign methodology can resemble the epidemic spreading, we developed
an ABM simulation running the SIS model over a population of individu-
als. Specifically, we tested the model expressiveness in distinguishing the
epidemic diffusion via direct and indirect contagion pathways (see Sec-
tion 9.5.1). We further analyzed the effect of timewhenmodeling contacts
by varying the values of � and �. This experiment allowed us to explore
the dynamic of the epidemic by increasing or decreasing the amount of
direct and indirect contacts (see Section 9.5.2).

190



9.5 Sensitivity Analysis

7
M

ay
04

:0
0

08
:0

0
12

:0
0

16
:0

0
20

:0
0

8
M

ay
04

:0
0

08
:0

0
12

:0
0

16
:0

0
20

:0
0

9
M

ay
04

:0
0

08
:0

0
12

:0
0

16
:0

0
20

:0
0

10
M

ay
04

:0
0

08
:0

0
12

:0
0

16
:0

0
20

:0
0

11
M

ay
04

:0
0

08
:0

0
12

:0
0

16
:0

0
20

:0
0

12
M

ay
04

:0
0

08
:0

0
12

:0
0

16
:0

0
20

:0
0

13
M

ay
04

:0
0

08
:0

0
12

:0
0

16
:0

0
20

:0
0

0

10

20

30

Lo
ca

tio
ns

Figure 9.5: Number of indirect contacts (or location visited) for each per-
son in 7 days, fixing � = 4 hours.

ǠWǜWǘ �-8'$; =9 2&-8'$; �32;!+-32

In this first experiment, we tested the sensitivity of the TVH-based model
to the epidemic parameters; in otherwords, we analyzed themodel’s abil-
ity in mimicking the epidemic spreading according to direct and indirect
contagion pathways. We run the agent-based simulation according to two
different parameter configurations (see Section 9.4.2). In the first config-
uration (Low), we used �d = 0.2, �i = 0.1, �e = 0.06, �e = 0.10, �a = 0.06,
and c = 5. In the second configuration, (High), we used �d = 0.8, �i = 0.4,
�e = 0.26, �e = 0.10, �a = 0.06, and c = 5. As rule of thumb, we selected
the value �d and computed �i =

�d
2 , and �e =

�d
4 . We set c = 5, based on

the work of Bodò et al. [41]. We fixed the value of � = 4 hours and � = 1

minute, selecting these values according to a realistic spreading policy
for airborne disease transmission. We run three scenarios for each con-
figuration to consider the pathogen spreading (i) only via direct contact,
(ii) only through indirect contact, or (iii) using both contagion routes.
Table 9.3 summarizes the parameter configuration of each scenario. In all
settings, the average time an agent is infected is 16.6 ·� intervals (2.7 days
on average), while for a location is 10 ·� intervals (1.7 days on average).

Figure 9.6 illustrates how the fraction of infected agents evolves ac-
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Table 9.3: Parameter configuration for all simulation scenarios.

Scenario �d �i �e �a �e � �

Low: Direct & Indirect 0.20 0.10 0.06 0.06 0.10 4 hours 1 minute
Low: Direct 0.20 0.00 0.00 0.00 0.10 4 hours 1 minute
Low: Indirect 0.00 0.10 0.06 0.06 0.10 4 hours 1 minute

High: Direct & Indirect 0.80 0.40 0.26 0.06 0.10 4 hours 1 minute
High: Direct 0.80 0.00 0.00 0.00 0.10 4 hours 1 minute
High: Indirect 0.00 0.40 0.26 0.06 0.10 4 hours 1 minute

cording to the SIS spreading policies just defined. The plot reveals an
interesting pattern in the epidemic diffusion. In both parameter configu-
rations (Low andHigh), the trend of infected agents obtained when using
both direct and indirect contagion routes is not statistically different from
the series obtained considering only indirect contagion pathways. The
two lines on the top and the two in the middle represent this behavior.
On the contrary, when looking at the epidemic trend conveyed by only
direct contacts (the two lines at the bottom), we can note how the diffu-
sion will eventually drop out in both configuration scenarios.

The nature of the data well explains this outcome. As discussed in
Section 9.4.3, the Foursquare data set is highly sparse by nature, and the
majority of the check-ins refer to common places like transportation or
general entertainment (for instance, the 41most crowded locations in the
data set refer to the transportation system). Consequently, these locations
have the potential to spread the epidemic across a considerable number of
agents. On the other hand, the data set does not convey enough informa-
tion about direct contacts happening within each location as we can only
access the information that a Foursquare user checked in a specific loca-
tion in a given time. This finding reveals a critical insight that should be
accounted for when studying epidemic dynamics: indirect contact plays
a critical role in spreading the epidemic. Hence, indirect contagion routes
cannot be overlooked in scenarios in which epidemic diffusion processes
do not necessarily involve direct contact between two individuals as one
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Figure 9.6: Epidemic spreading over a period of 30 days, considering con-
tagion due to (i) both direct and indirect contacts, (ii) direct contacts, and
(iii) indirect contacts.

location can potentially infect many people.

ǠWǜWǙ �3&'£-2+ ;,' 	ø'$; 3( �-1'

The epidemic diffusionprocess and its impact on the population are strictly
related to the pathogens’ life cycle and survival time in the environment.
In this experiment, we investigated how discretizing the time window
within which a direct (�) or indirect (�) contagion may happen impacts
the epidemic spreading in the network. We devised several simulation
scenarios in which we ranged the value of � from 1 to 60 minutes and the
value of � from 4 to 24 hours. It is worth noting that smaller values of
� and � correspond to higher accuracy in computing direct and indirect
contacts, respectively. We used the parameter configuration Low for all
scenarios (see Table 9.3).

Figure 9.7 details how the fraction of infected agents changes accord-
ing to the different time intervals used to model contacts. The plot in the
top-left corner of the image shows the most accurate configuration (� = 1

minute and � = 4 hours), while the plot in the bottom-right corner the
less accurate. Looking at the figure from left to right, we can observe that
direct contagion pathways become more relevant for the epidemic diffu-
sion as the value of � increments. However, initializing � with a value
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too large would mean evaluating too many direct contacts compared to
a real-life system. Therefore, this would mean over-estimating the epi-
demic propagation and, in practice, modeling the contact network as a
graph rather than a hypergraph. Similarly, looking at the figure from top
to bottom, we can observe that the higher the value of �, the higher the
contribution of indirect contacts to the epidemic diffusion. As happens for
the parameter �, increasing the value of � implies computing too many
indirect contacts; hence, assuming a longer pathogens life. The outcome
of this experiment suggests that determining the proper values of � and�

according to given disease properties is fundamental to correctly estimate
the epidemic propagation.

ǠWǝ �'1!809
Propagation of contagious diseases is a complex dynamic process that
holds abounding human behavior aspects: to correctly resemble real dif-
fusion dynamics, modeling tools with a high expressiveness are required.
Towards this direction, this chapter discussed a novel approach to model
epidemic propagation, taking into account the high-order interactions hap-
pening in the real world. Specifically, we proposed:

• The introduction of direct (human-to-human) and indirect (human-
to-environment) interactions when studying an epidemic spread-
ing;

• The formal definition of temporal hypergraphs to abstract such high-
order relationships;

• An epidemic diffusion algorithm on TVHs considering both direct
and indirect contagion pathways;

• The development of the SIS compartmental equation model into
an ABM that exploits our methodology to simulate interactions be-
tween agents and locations.
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Figure 9.7: Epidemic evolution over 30 days, varying the interval lengths
of � (vertically) and of � (horizontally).
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To evaluate the proposed approach and to what extent the described
designmethodology could resemble the epidemic spreading,we (i) tested
the model expressiveness in distinguishing the epidemic diffusion via di-
rect and indirect contagion pathways, and (ii) we analyzed the effect of
time when modeling contacts by varying the values of � and �. The re-
sults obtained demonstrated that the TVH-based model is sensitive to
variations in the input parameters. Hence, it can be safely calibrated with
accurate epidemiological data to study spreading dynamics. The results
further suggest that:

• Exploiting TVHs may improve the accuracy of the estimation of an
epidemic diffusion. For instance, as discussed in Section 9.5.1, in-
direct contacts may be a strong vehicle of contagion and actually
govern the epidemic trend. As a consequence, indirect contagion
routes cannot be overlooked in scenarios in which epidemic diffu-
sion processes do not necessarily involve direct contact between two
individuals as one location can potentially infect many people;

• Correctly modeling the time interval within which direct or indirect
contagion may happen is critical to properly resemble real diffusion
dynamics and not overestimate either contagion type as seen in Sec-
tion 9.5.2.
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Built on top of the TVHmodel presented inChapter 9, this chapter dis-
cusses a fine-grainmodelingmethodology for Non-Pharmaceutical Inter-
ventions (NPIs), based on high-order relationships between people and
environments, mimicking direct and indirect contagion pathways over
time. In this chapter, we first motivate why evaluating such epidemic con-
trol strategies in the framework of ABMs and high-order interactions (see
Section 10.1). We then delve into reviewing personal protective, environ-
mental, and social distancing measures and how they can be embedded



10.1 Motivation

into an epidemiological model based on high-order networks, ABMs, and
the SIS equation-basedmodel (see Section 10.2). We further describe how
we formally enriched the TVH modeling framework to support the eval-
uation of NPIs, and examine how our work differentiates from the state-
of-the-art (see Section 10.3). After discussing the experiment setting (see
Section 10.4) and assessing the ability of each intervention in controlling
an epidemic propagation (see Section 10.5), we discuss a multi-objective
optimization framework, which, based on the epidemiological data, cal-
culates the NPI combination that should be implemented to minimize the
spread of an epidemic as well as the damage due to the intervention (see
Section 10.6). We finally examine the most interesting elements from our
experiments and discuss some real-world implications of these findings.

Thework described in this chapter has been presented in the following
article:

• A. Antelmi, G. Cordasco, V. Scarano and C. Spagnuolo, ”Modeling
and Evaluating Epidemic Control Strategies With High-Order Tem-
poral Networks,” in IEEE Access, vol. 9, pp. 140938-140964, 2021.

ǘǗWǘ �3ধ=!ধ32
Since ancient times, different populations have adopted varying strategies
to prevent and contain diseases, from isolating sick individuals to estab-
lishing a time limit to the manifestation of symptoms to magical prac-
tices [81]. The concept of modern and preventive quarantine dates back
only to 1377; still today, it represents a general preventive intervention in
the absence of a targeted vaccine, along with high healthcare surveillance
and public information [81, 121, 148].

Generally, all healthcare policies intended tomitigate the effects of the
spread of a new virus or pathogens when no vaccines or medicine are
available yet are commonly referred to as Non-Pharmaceutical Interven-
tions (NPIs) [148]. Current development of the recent pandemic high-
lighted towhat extent the increase of humanmobility andgoods exchange
made NPIs (e.g., lockdown and border closure) more challenging to ap-
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ply to past cases in history, mainly because of their negative impact on the
worldwide economy [71, 24] as well as on the psychological wellness of
society [88, 184, 160, 187]. Choosing the correct control policy to adopt
is a burden that governments bear as their decisions have repercussions
also when the epidemic is under control. Thus, each country is responsi-
ble for adopting NPIs according to its territory’s specific needs. As exam-
ined in a document published by theWorld Health Organization (WHO)
in 2019 [148], each NPI has different effects, resource implications, and
ethical considerations. To precisely study the consequences of each inter-
vention on the region it has to be applied, the models used to simulate an
epidemic propagation need to guarantee a high level of accuracy to ensure
both efficacy and efficiency in evaluating the specific control policy.

In Chapter 9, we already discussed the benefits of using ABMs over
EBMs to simulate human behaviors under given conditions by embed-
ding society-specific aspects within the model [42]. Further, ABMs are
usually employed as a tool for what-if analysis and perfectly fit this par-
ticular context, since estimating and evaluating the impact on society de-
riving from the application of NPIs is challenging, given the numerous
and closely tied aspects to examine. As Nicola Perra notes in his survey
on modeling NPIs to contrast the COVID-19 spreading [153], ABMs are
typically used to understand better how the features of real contact net-
works might affect the unfolding of a virus by abstracting some societal
details (such as households, schools, and workplaces) and, thus, reduc-
ing computational costs. For instance, ABMs have been used to quantify
the effects of contact tracing, isolation, and vaccination campaigns. Very
complex ABMs to make accurate predictions exist too (see Chapter 5).

Chapter 9 also reviews the motivations behind modeling contact net-
works using high-order structures, specifically hypergraphs, in epidemio-
logical studies. In this context, hypergraphs account for community struc-
tures, infection pressure, and indirect contagion pathways (see Chap-
ter 5). These high-ordermodels have successfully shown their expressive-
ness in analyzing epidemic diffusion phenomena, and evaluating block-
ing strategies via such structures represents the natural evolution of this
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research trend.

ǘǗWǙ �3&'£-2+ ��9
NPIs are healthcare policies readily available at all times and in all coun-
tries, intended to mitigate the effects of the spread of a new pathogen or
virus when no vaccines or medicine are available yet [159]. The poten-
tial impacts of NPIs on an influenza epidemic are to delay the introduc-
tion of the infection into a population, delay the height and peak of the
outbreak if it has started, reduce transmission by personal protective or
environmental measures, and reduce the number of infections and hence
the number of severe cases [148]. In 2019, the WHO Global Influenza
Programme and the WHO Collaborating Centre for Infectious Disease
Epidemiology and Control (School of Public Health, University of Hong
Kong) published a report providing recommendations for the use of NPIs
based on a systematic review of the evidence on their effectiveness, in-
cluding personal protective, environmental, social distancing, and travel-
related measures [148].

In the remainder of this section, we will review personal protective,
environmental, and social distancing measures and how they can be em-
bedded into an epidemiological model based on high-order networks,
ABMs, and the SIS equation-based model. Moreover, we describe how
we formally enriched our modeling framework to support the evaluation
of NPIs.

ǘǗWǙWǘ �'8932!£ �83;'$ধ=' �'!9<8'9

Examples of personal protective measures (PPMs) are hand hygiene, res-
piratory etiquette, and face masks. While the first two actions are a well-
established and straightforward practice concerning personal daily hy-
giene, face masks are only conditionally recommended during a severe
epidemic or a pandemic or for symptomatic individuals. PPMs can be
implemented and simulated by decreasing the transmission probability
of a pathogen from one individual to another when they come in contact
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and changing the infectiousness probability caused by interacting with
environments. PPMs are an instance of individual behavior interventions
as their efficiency is defined by how many people respect them.

We embedded the adoption of PPMs into our model by reducing the
epidemic spreading opportunity (transmission probabilities) for both di-
rect and indirect contagion pathways. Specifically, we decreased the val-
ues of the parameters �d (agent-to-agent), �i (environment-to-agent), and �e
(agent-to-environment) to simulate the introduction of PPMs into the agent
population; hence, leaving unchanged the three phases of the diffusion al-
gorithm (see Section 9.2.3). It is worth noting that we lower the value of
those parameters only for the agents adopting PPMs.

ǘǗWǙWǙ 	2=-8321'2;!£ �'!9<8'9

Surface and object cleaning actions are environmental measures (EMs)
recommended as a public health intervention in all settings to reduce in-
fluenza transmission. As for PPMs, environmental measures can be im-
plemented by decreasing a pathogen’s transmission probability from a
contaminated object to an individual. For instance, if a person sneezes on
a table and, soon after, another person touches that surface, a contagion
may indirectly occur from one person to another. To simulate EMs, we
need to embed within the network of contacts the notion of environment
or locationwhere people can interact either with it or with other individu-
als. In a nutshell, the network model used to study epidemic propagation
has to be location-aware. Here, hypergraphs come into play as a hyper-
edge can naturally model a group of people being in the same location
in a given time, even though they did not have any direct contact (see
Section 9.2).

Similar to PPMs, the adoption of EMs can be simulated by modifying
the contagiousness probabilities �i and �e. This approach can reproduce
either a global adoption of some regulation (e.g., cleaning all public or
private spaces at every use) or more realistic settings, where only specific
locations are sanitized after each use (e.g., a table in a restaurant) or at
regular time intervals (e.g., trains). In our experiments, we reduced the
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parameter regulating the contagiousness of an indirect contact �i by a fac-
tor �`, with �`  �i, for all locations ` 2 L sanitized at given time intervals.
Formally, �i  �i � XL(`)�`, where XL(`) is an indicator function equal
to 1 for all the locations that are continuously sanitized. If �` = �i, the
transmission probability becomes �i = �i � �` = 0. Thus, it causes the
place to be no more infectious.

As detailed in Section 10.5.2, we simulate the cleaning of all locations
restoring their status to susceptible; thus, temporarily reducing the pa-
rameter �i to 0. It is worth noticing that locations may become contam-
inated again. In this case, �i assumes its original value. The implemen-
tation of EMs required the addition of a fourth phase after the three de-
scribed in Section 9.2.3.

ǘǗWǙWǚ �3$-!£ �-9;!2$-2+ �'!9<8'9

Social distancing measures (SDMs) represent interventions on individ-
uals’ sociality and involve the population or sub-population behaviors.
Examples of these measures are (i) isolation of sick individuals, (ii) quar-
antine of exposed individuals, (iii) contact tracing, (iv) avoiding crowd-
ing, and (v) school, workplace, and, in general, public or private structure
closures.

The design of SDMs requires a different level of detail according to
the policy to simulate. For instance, isolating an individual assumes to
have access to the infection state of a person to know whether he/she is
sick. Implementing quarantine measures adds another layer of complex-
ity as the simulation has to account for an ill individual’s contacts. Hence,
correctly estimating the connections a person had is critical to an ade-
quate estimation of the effects of an SDM. Contact tracing measures are
based on the same principle: direct contacts between two individuals are
stored to retrace the contact chain if needed [120, 72]. In principle, with-
out dwelling on ethical and privacy concerns, contact tracing strategies
could also exploit data deriving from indirect contacts among individu-
als. For instance, if a sick individual has been in a restaurant, all people in
the same place must be notified as they could have touched contaminated
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surfaces (e.g., bathroom or doors). Further, simulating lockdown or so-
cial distancing policies based on real-world mobility patterns highlights
the need for specific location data, such as the type of the place (e.g., a
cafe, a workplace, or a station).

In the following,wedescribe howwe embedded thesemeasureswithin
our modeling approach.

93£!ধ32
The word isolation indicates the separation or restriction of movement of
ill individuals with an infectious disease to prevent transmission to oth-
ers [74].

We embedded this policy within the behavior of each agent, able to
recognizewhether it is sick. At each time interval and before the execution
of the three phases of the diffusion algorithm, every agent amaygo in self-
isolation according to a probability �isolation, regulated by the following
Poisson process 1� e�T (a)·�isolation ,where T (a) is the infection state of the
agent a. When an agent is isolated, it does not contribute to the epidemic
spreading; in other words, other agents or environments cannot interact
with an isolated agent. Once isolated, the agent does not exit this status
until it recovers with a probability �a.

�<!8!2ধ2'
The word quarantine indicates an imposed separation or restriction of
movement of individuals exposed, who may or may not be infected but
are not ill, and who may become infectious to others [74].

As for the isolation measure, we embedded this policy within the be-
havior of the agents. At each time interval t and, specifically, during the
Agent-to-Agent contagion phase, an agent a enters the quarantine state ac-
cording to an overall probability �quarantine proportional to the number of
infected agents Idt (a) it has met during the previous time step. This sce-
nario is regulated by the Poisson process 1 � e�I

d
t (a)�quarantine , where the

number of ill agents Idt (a) is computed based on the simulation status of
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the previous time step (t�1). A quarantined agent no longer contributes
to the epidemic until it exits the confinement state or recoverswith a prob-
ability �a.

�8!$-2+
The idea behind contact tracing applications is to rapidly identify at-risk
individuals once a case has been detected [67]. However, even though
such systems can substantially increase the proportion of people quaran-
tined, it can lead to ethical issues such as leakage of information [148].
Furthermore, successful implementation relies on the availability of re-
sources and technology [120, 72]. Generally, a design tool has to trace all
agents’ contacts during the simulation and identify infected agents. To
simplify the evaluation of a contact tracing intervention, we introduced
several abstractions in ourmodel. Specifically, we did not consider any er-
ror in the retracement process, assuming a 100% accuracy of location data,
and we did not implement any particular contact tracing protocol [3].
Further, we assume that all agents adopting the tracing software know
whether the other agents they met were healthy or infectious (here, we
do not explicitly model any testing protocol). In other words, we are con-
sidering a fully functioning tracing system.

Contact tracing is modeled similarly to the quarantine measure, but
in this case, the tracing system is more powerful and enables tracking
the number of infected individuals the agent has met during all previous
steps instead of only the previous one. Put differently, we can consider
this measure like an informed quarantine as the main difference between
these two interventions lies in the information used by an agent to decide
whether to enter the quarantine state. In this case, the agent remembers the
contacts had in all previous steps since the tracing measure was adopted.
The usefulness of distinguishing these two scenarios is also evident in a
more complex compartmental model with an Exposed state. In this case,
adopting a tracing technology allows the agent to keep track of all its con-
tacts and know whether they have manifested symptoms or tested pos-
itive on the pathogen even though they have come across many simula-
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tion steps before. When only quarantine measures are implemented, the
agent only uses the contact information available in the previous simula-
tion step. As a consequence, the agent may self-quarantine with a lower
probability.

Formally, for each agent ausing the tracing application, we introduced
a list N (a) comprising all the agents (using the tracing application them-
selves) that interacted with a during the simulation. At each simulation
step and before the execution of the three phases of the diffusion algo-
rithm, every agent a, either infected or not, may decide to self-quarantine
according to the Poisson process 1�e�I

d(a)�tracing ,where Id(a) is the num-
ber of infected individuals the agent has met during all previous steps. If
an agent sets its state to quarantine, then the simulation proceeds as for
the implementation of the quarantine measure.

�=3-&-2+ �83>&-2+
Avoiding crowding is another example of SDM, often used with other
policies to reduce influenza transmission. Avoiding crowding may have
cultural or religious implications; for instance, gatherings are places to
share information during a pandemic, comfort people, and reduce fear.
During the SARS-CoV-2 pandemic,many countries adopted several avoid-
ing crowding policies - some stricter than others - to contain its spread.
For instance, the English government permitted only up to six people
to meet [143], while the Italian government banned all sorts of gather-
ings [63].

Our framework implements the avoiding crowdingmeasure as a global
policy by deterministically reducing the number of agents allowedwithin
each place. Wedefined a threshold↵` representing themaximumnumber
of people allowed in a location ` per time interval. Specifically, we only
simulate the first ↵` agents (sorted by their check-in time) at each time
step for each location `. As the input data determine the scheduling pol-
icy of each agent, the newly reduced data set can be easily pre-computed
without requiring modifications to the diffusion algorithm.
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�3$!ধ32 �£39<8'
Closing public or private places is a standard measure to control an epi-
demic spreading by reducing possible contact between individuals and
environments in a severe outbreak. This extreme measure may have sub-
stantial economic consequences and result in significant societal prob-
lems.

Typically, this intervention is implemented by selectively closingplaces
according to a specific classification, such as schools, transportation, work-
place, restaurants. We implemented this policy by stopping the simula-
tion of all direct and indirect contacts happening within a location ` be-
longing to the set of closed placesL, starting from a time interval t. Hence,
implementing such a measure required modifying all three phases of the
diffusion algorithm to prevent the simulation of all contacts within the
closed locations. This measure can be formally illustrated by reducing
to 0 all parameters regulating either an agent or an environment’s infec-
tiousness �(·)  �(·) � XL(`)�(·) 8�(·) 2 {�i,�d,�e}, where XL(`) is an
indicator function equal to 1 for all closed locations (i.e., ` 2 L). The set
L can be pre-computed according to the policy to be investigated (e.g.,
closing transportation or workplaces).

� Exploiting the dual hypergraph

Building the dual of the agents-locations hypergraph in this mod-
eling context means considering locations as vertices and agents
as hyperedges. Although the dual hypergraph encodes the exact
information of the original structure, it allows - for instance - the
use of centrality measures defined for vertices and clustering algo-
rithms to identify particularly important venues or specific groups
of locations as subjects of focused interventions. In practice, this
modeling choice may be helpful in the design of lockdown poli-
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cies to decide which venues may be worth closing or limiting their
capacity.

ǘǗWǚ �;!;'f3(f;,'f!8; �316!8-932
Typically, every ABM responds to particular needs, simulating an envi-
ronment under given conditions and focusing on specific aspects of the
real world tomodel with different levels of abstraction. As a consequence,
directly comparing two ABMs is practically impossible. Further, ABMs
are usually validated with external data, and their performance (in terms
of correctly modeling the real-world dynamics) is compared against this
data.

Based on the above consideration, the first key difference between our
work and related literature lies in how we model (i) the contact network
and (i) the contagion dynamics via direct and indirect contacts (see Sec-
tion 9.3). In this chapter, we exploit the TVH framework introduced in
Chapter 9 to model direct and indirect transmission dynamics of disease
spreading. Similar to (temporal) graphs, TVHs abstract and formalize
contact among agents simulated with an ABM, but they add information
about where the contact is happening. Hence, such structures allow to
formally analyze diffusion mechanisms while accounting for group inter-
actions and indirect contagion processes via contaminated locations. We
further embedded the formal definition of NPIs within the TVH frame-
work. The main objective of our study represents the second significant
difference with the discussed literature as those works specifically focus
onmodelingNPIs to prevent the COVID-19 diffusion. In contrast, we gen-
erally study the diffusion dynamics of a pathogen that can also spread
indirectly via human-to-environment contact.

A work that needs to be cited in this section is the study of Bouch-
nita et al. [45], proposing a multi-scale ABM which considers both direct
and indirect transmission mechanisms. The model does not explicitly
consider the notion of location as agents move on a grid and simulates
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10.4 Experiment Setting

indirect contagion based on the normalized concentration of deposited
SARS-CoV-2 on hard surfaces, the averaged rate of SARS-CoV-2 secretion
by contagious agents, and the decay rate of the virus. For each agent, in-
direct transmission can occur only once every day at a random moment.
As discussed in Section 9.2.2, the indirect diffusion mechanism described
by Bouchnita et al. is profoundly different from the process described in
Chapter 9 as hyperedges encode places where agents can meet and may
become contaminated according to Poisson processes proportional to the
number of infected nodes within that hyperedge.

ǘǗWǛ 	?6'8-1'2; �'ষ2+
This section describes the experimental setup of the simulations, recalling
the underlying epidemiological assumptions and detailing the simulation
parameters. It further defines how each NPI is evaluated and finally de-
scribes the data sets used. The experiment is designed to evaluate the
impact of NPIs not only in terms of reducing the fraction of infected but
also considering the cost of applying each measure.

� Code Availability

The model and the experiments are implemented in Julia, exploit-
ing the library SimpleHypergraphs.jl (see Chapter 7). The code
is open-source and available at the following GitHub public reposi-
tory: https://github.com/alessant/HGEpidemics.

ǘǗWǛWǘ �99<16ধ329

The experiment setting of this chapter inherits all the assumptions de-
scribed in Section 9.4.1. We briefly recall them in this section for read-
ability purposes. We assume that: (i) all infected are asymptomatic, (ii)
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there is no incubation phase, and (iii) the parameters regulating the epi-
demic are fixed. In these experiments, we further assume that each NPI
is perfectly applied.

ǘǗWǛWǙ ��9 	=!£<!ধ32

To implement each NPI, we modified the diffusion algorithm described
in Section 9.2.3 according to the policy to simulate. The parameters and
framework enrichment for each technique are detailed in Section 10.2. The
impact of anNPI or a combination of NPIs is compared against an unmiti-
gated scenario in which no interventions are implemented. We evaluated
the effectiveness of each NPI (or a combination of them) according to two
parameters: the reduction of the final fraction of infected agents and how
much the intervention affects the population. To quantify each action’s
impact and compare the results across all data sets, we operatively de-
fined two domain-agnostic notions of damage. Specifically, for each agent,
we determined the fraction of agents it was unable to meet because of
the adopted interventions. We then defined the overall social damage of
the intervention Da as the average over the whole population. Similarly,
for each agent, we computed the fraction of the locations it was not able
to visit, due to the adopted interventions, and then evaluated the overall
commuting damage Dl as the average over the population.

ǘǗWǛWǚ �-1<£!ধ32 �!8!1';'89

In the unmitigated (baseline) scenario orwhen no specified otherwise, we
set the epidemic parameters as follows: �d = 0.57, �i = 0.29, �e = 0.29,
�e = 0.18, �a = 0.024, and c = 5. To have reasonable parameter values, we
based their choice on the mathematical model SIDHARTE proposed by
Giordano et al. [82] for the SARS-CoV-2 pandemic. We fixed the values of
� = 4 (4 hours) for an indirect contact to happen, to mimic the resistance
of the COVID-19 on surfaces [149], and � = 15 (15 minutes), based on
the Immuni mobile tracing app that considers a direct contact happening
in a time window of 15 minutes [86]. Thus, in our model, an indirect
contact may occur if two people have been in the same place within 4
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hours of difference, while a direct contact may happen if two people have
been in the same place within 15minutes. It is worth underlining that our
goal is not to simulate the diffusion of the SARS-CoV-2 virus, but more
generally, the diffusion of an epidemic that can spread even indirectly.
In this setting, the average time an agent is infected is 42 ·� intervals (7
days), while for a location is 6 ·� intervals (1 day). Table 10.1 lists all the
simulation parameters used to control the epidemic spreading and the
introduction of NPIs.

We generated the population mobility pattern according to the three
data sets presented in Section 10.4.4. The simulations last 185 steps while
the interventions (if any) are introduced at the 100th step. As the fraction
of infected results from probabilistic processes, we ran each simulation
scenario 80 times, and considering the averaged value as a result. The
simulation is initialized with a single infected agent, the patient zero.

It should be emphasized that, in an SIS model, recovered individu-
als become susceptible again without gaining any immunity against the
pathogen. In other words, there is no memory of past infections. This
is the typical spreading model of infections like the common cold and in-
fluenza, whichdonot confer any long-lasting immunity. In contrast, in the
SIRmodel, all agentswill eventually recover and not contract the infection
anymore. In other terms, in the SIR model, the outbreak will ultimately
drop out. Based on this consideration, and as we are interested in evalu-
ating control actions in the worst scenario, we analyze each intervention
under the SIS model.

ǘǗWǛWǛ �!;! �';9

In theABMmodelwedeveloped, each agentmoves between geo-locations
over time and comes in contact, via direct or indirect pathways, with other
agents and different environments (geo-locations). To model individuals
(agents) mobility patterns, we adopted three data sets describing human
interactions at different scale: from (i) a location-aware sensing infras-
tructure (BLEBeacon data set [166]), (ii) a metropolitan area scenario
(Foursquare data set [190]), and (iii) a virtual society scenario (Game
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Table 10.1: Simulation parameters. For each parameter, the table reports:
which aspect of the simulation the parameter regulates, a short descrip-
tion, its domain, and its value in the simulation (variable indicates that the
parameter changes according to the specific experiment).

Type Parameter Description Domain Value
High-order
epidemic
spreading

�d Probability that an agent is infected by
another agent via direct contact.

[0, 1] 0.57

�i Probability that an agent is infected via
indirect contact due to a location.

[0, 1] 0.29

�e Probability that a location is infected by
an agent.

[0, 1] 0.29

�a Probability that an agent sponta-
neously recovers.

[0, 1] 0.024

�e Probability that a location is sanitized. [0, 1] 0.18

c Number of contacts in Agent-to-
Environment.

N 5

PPMs ↵p Fraction of agents using PPMs. [0, 1] Variable
ppm_�d Probability that an agent is infected by

another agent via direct contact when
PPMs are in use.

[0, 1] 0.1

ppm_�i Probability that an agent is infected via
indirect contact due to a location when
PPMs are in use.

[0, 1] 0.05

ppm_�e Probability that a location is infected by
an agent when PPMs are in use.

[0, 1] 0.05

EMs sanitize Whether locations are regularly sani-
tized.

{true, false} Variable

SDMs �isolation Probability that an agent enters the iso-
lation state.

[0, 1] Variable

�quarantine Probability that an agent enters the
quarantine state.

[0, 1] Variable

↵e Fraction of location closed during the
lockdown.

[0, 1] Variable

↵i Fraction of agent using a tracing appli-
cation.

[0, 1] Variable

�tracing Probability that an agent enters the
quarantine state if it adopts tracing
technologies.

[0, 1] 0.6

avoiding
crowding

Whether avoiding crowding measures
are applied.

{true, false} Variable

of Thrones data set [103]) - all described in Chapter 6.
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Figure 10.1 shows the median number of direct and indirect contacts
across all data sets, considering � = 4 hours and � = 15 minutes. For
each value, we also report the 25% and 75% quantiles. In more detail, as
direct contacts, we evaluated for each agent the number of different other
agents it met; while, as indirect contacts, the number of different locations
the agent has been. These plots depict an agent-centered vision of the data,
in the sense that we can grasp, on average, how many different ways an
agent may be infected by counting the number of direct contacts and lo-
cations visited (indirect contacts). Figure 10.1 reveals the diverse nature
of the data sets, which results in distinct contact patterns. The BLEBeacon
data set refers to high-granular small-scale check-ins happening within a
building. Based on that, it is reasonable to think that an individual tends
to meet always the same people, but - at the same time - they are free to
walk in the structure. Figure 10.1a details this pattern where the number
of indirect contacts is generally higher than the number of direct contacts.
We can observe a completely different picture in Figure 10.1c, related to
the Game of Thrones (GoT) data set, where the number of direct contacts
is significantly higher than the number of indirect contacts. Once again,
this pattern is due to the constitution of the data as the majority of the
GoT characters tend not to move across many different locations, but they
still havemany direct contacts (e.g., council or battle scenes). Figure 10.1b
refers to the real-world large-scale check-in data set from the social plat-
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Figure 10.1: Distribution of direct and indirect contacts (� = 4 hrs and
� = 15 min.).
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form Foursquare. In this case, no class of contacts strongly prevails on the
other. In contrast with the other two data sets, we can notice a consistent
variance in the number of locations visited by the users. As already dis-
cussed in Chapter 9 and other several studies [189, 84, 19], this behavior is
typical of online social networks, where a minority of the users accounts
for the most content. A detailed description of each data set follows.

�,' ��	�'!$32 �!;! �';
The BLEBeacon data set [166] is a collection of Bluetooth Low Energy
(BLE) advertisement packets/traces generated from BLE beacons carried
by people following their daily routine inside a university building for a
whole month. The data set contains 153, 868 check-ins of 62 users and 31

locations. Figure 10.2 provides the check-ins distribution aggregated over
a week (see Figure 10.2a) and over a day (see Figure 10.2b).

�,' 
3<897<!8' �!;! �';
The Foursquare social network data set, introduced byYang et al. in [190],
is a collection of check-ins originated from the city of Tokyo and crawled
from 12 April 2012 to 16 February 2013. The data set contains 573, 703

check-ins of 2, 293 users and 61, 858 locations (such as restaurants, cin-
emas, sports, and so on). In Chapter 9, we analyzed the sensitivity of
the proposed TVH model to the simulation’s parameters over the most
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(b) Aggregated daily check-ins.

Figure 10.2: Aggregated weekly (on the left) and daily (on the right)
check-ins distribution of the overall BLEBeacon data set referring to 30
days of people daily routine inside a university building.
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Figure 10.3: Daily check-in distribution for the Foursquare data set.

crowded month (May 2012) of this data. Having fixed � = 4 and � = 15,
our analysis revealed a peak in the number of infections near the 30% of
the overall population. Towards this, it is worth stressing that the appli-
cation of a single or a combination of non-pharmaceutical measures only
makes sense in a dangerous scenario, in which the epidemic spreading is
hard to control. Thus, to increase the probability of having a more viru-
lent pathogen spreading and overcome the sparsity nature of the data set,
we merged the check-ins happening from April 1st, 2012 up to August 1st,
2012 into a single month, obtaining 2, 147 users and 41, 519 locations. Fig-
ure 10.3 shows the number of daily check-ins over April-July and the final
amount used for the simulation.

�,' �3� �!;! �';
Starting from scripting data [103] of the whole 8 seasons of the Game of
Thrones (GoT) HBO TV series, we developed a check-in data set based on
themobility patterns of the characters’ series. As episodes are chronologi-
cally ordered, but no real date is available, we set a virtual clock to January
1st, updating it according to each scene’s duration. As each episode has
an average duration of around 1 hour, we obtained a data set spanning
over 70 hours. As for the Foursquare data set, to better estimate the effect
of NPIs in a virulent scenario on a longer temporal interval, we finally
concatenated the obtained check-ins until having data covering a total of
one month, with 577 characters and 111 locations. Figure 10.4 depicts
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Figure 10.4: GoT characters (nodes) and environments (hyperedges) dis-
tribution, considering an agent’s contact historywithout (10.4a) andwith
(10.4b) repetitions.

an analysis of the characters’ mobility patterns over the first 70 hours.
Specifically, we examined a possible correlation between the number of
unique (without repetition) people met and unique locations visited by
each GoT character (see Figure 10.4a). As shown, the characters that had
contacts with a higher number of people tended to have traveled across
many places. This behavior becomes even more evident in Figure 10.4b,
where we considered all characters met and locations visited.

ǘǗWǜ �'29-ধ=-;@ �2!£@9-9
This section describes the experiments we carried out to validate the pro-
posed model and verify the correctness of its implementation. In Chap-
ter 9, we analyzed the sensitivity of the TVH model to the epidemic pa-
rameters and different discretization of the time intervals when either di-
rect or indirect contacts may happen. In this section, we focus on evaluat-
ing themodel’s sensitivity regarding the parameters regulating each NPI;
thus, studying how perturbations in the input modify the model output.

To analyze the impact of reducing the fraction of infected and the dam-
age brought by each NPI, we defined several scenarios in which we ap-
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plied a single intervention. In this way, we not only evaluate the sensitiv-
ity of the model to the specific NPI, but we also verify the implementation
of each intervention and ensure that each logical component of the model
behaves as intended. In the following sections, we describe each valida-
tion scenario, comparing the fraction of infected agents at (i) the peak, (ii)
the lowest value reached by the infection, and (iii) the end of each simu-
lation against the unmitigated scenario. We further report the impact of
the intervention in terms of damage as defined in Section 10.4.2. For each
scenario, we also discuss some implications of using the given measure
and its efficacy.

Figure 10.5 shows the epidemic diffusion patterns in an unmitigated
scenario, considering contagions due to (i) direct and indirect contacts,
(ii) direct contacts, and (iii) indirect contacts. In this case, the three plots
report an epidemic-centered vision, in which we observe the fraction of in-
fected due to either direct, indirect (infected locations), or both contact
types. As expected, these patterns are a consequence of the contacts hap-
pening in the data. In fact, if we compare Figure 10.1 with Figure 10.5,
we can note that indirect contacts cause higher peaks in the fraction of
infected for the BLE data set since agents visits at least 10 locations on
average while having a lower mean of direct contacts (see Figure 10.5a).
On the contrary, direct contacts triggermore contagions than indirect con-
tacts for theGoTdata set, as suggested by the respective number of the two
types of interactions (see Figure 10.5c). On the other hand, the contagion
patterns in the Foursquare data set never reach the peak of 80% of infected
(see Figure 10.5b). Once again, this outcomewas expected given the high
sparsity of the data. Here, indirect contagions prevail as we havemore in-
formation about the places each user visits rather than the other people
they meet. Further, it is worth noting that even though each agent visits
only a few locations on average (see Figure 10.1b), their check-ins tend to
refer to common places like transportation or general entertainment (for
instance, the 41 most crowded locations in the data set refer to the trans-
portation system). Hence, indirect contacts drive the epidemic diffusion
as one location can potentially infect many agents. Consequently, these
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Figure 10.5: Pathogen diffusion in an unmitigated scenario, considering
contagions due to i) both direct and indirect contacts, ii) direct contacts,
and iii) indirect contacts.
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Figure 10.6: Epidemic propagation behavior under the SIS model.

locations have the potential to spread the epidemic across a considerable
number of agents.

Figure 10.6 presents the averaged curves of the fraction of infected and
susceptible agents obtained from the simulation replications. They be-
have similarly to the standard SIS model, dominated by the decline of the
Susceptible population and the increase of the Infected population. Dark
lines in the figure represent the median of 80 simulation replications, and
the shaded areas represent 25 and 75 quantiles. These curves appearmore
rugged than those resulting from an EBM due to the heterogeneous mix-
ing facilitated by the contact network.
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As described in Section 10.2.1, we modeled the introduction of PPMs by
reducing the infection probability of each agent adopting these measures.
Specifically, we reduced the direct and indirect contagious transmission
probability by about 80%. We set the new direct and indirect contagion
probability as follows: ppm_�d = 0.1, ppm_�e = 0.05 and ppm_�i = 0.05

(see Table 9.2). To analyze the impact of applying PPMs, we varied the
fraction ↵p of agents using the measures, testing increasing values of the
parameter from 0 to 1 with step size 0.05. Clearly the scenario with ↵p =

0.0 corresponds to the unmitigated scenario.
�-9$<99-32
Table 10.2 reports the results for this scenario, considering ↵p equal to
0.0, .25, .50, .75, and 1.0. First, we need to note that the application of
such intervention does not cause any social damage (Da) nor commuting
damage (Dl). In fact, adopting PPMs like face masks and hand hygiene
does not prevent an agent from meeting other agents or freely moving
across locations. Second, increasing the fraction of agents adopting PPMs
causes a decrease in the fraction of infected, suggesting how the infection
propagation is susceptible to PPMs usage by a growing number of indi-
viduals. However, at least 75% of the population have to use PPMs to
visibly decrease the fraction of infected both at the end of the simulation
and in the lowest peak of the infection in all data sets. As expected from
real-world events and the vast amount of current literature [153], only
applying PPMs cannot notably reduce the spreading of a pathogen, but -
even in small percentages - can help lower the number of infections.

ǘǗWǜWǙ �$'2!8-3 �V �9-2+ 	�9
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As introduced in Section 10.2.2, our modeling framework allows by de-
sign adopting EMs by manipulating the infection probability due to indi-

218



10.5 Sensitivity Analysis

Table 10.2: Scenario 1: Using PPMs. Fraction of infected agents (aver-
aged over all simulation runs) at the peak (infpeak) and the lowest value
(inflower) of the infection, and the end of the simulation (inflast) when
↵p agents use PPMs. Each value is followed by the standard deviation. In
all scenarios, the damage of the intervention is 0.0.

Data set ↵p inflast infpeak inflower

BLEBeacon 0.00 0.93±0.04 0.95±0.03 0.76±0.04

0.25 0.91±0.04 0.93±0.03 0.74±0.04

0.50 0.90±0.04 0.92±0.03 0.69±0.05

0.75 0.88±0.04 0.92±0.04 0.64±0.06

1.00 0.84±0.05 0.88±0.04 0.56±0.07

Foursquare 0.00 0.60±0.14 0.70±0.16 0.57±0.13

0.25 0.54±0.12 0.65±0.15 0.52±0.12

0.50 0.47±0.12 0.64±0.17 0.46±0.12

0.75 0.40±0.09 0.65±0.15 0.40±0.09

1.00 0.31±0.06 0.65±0.13 0.31±0.06

GoT 0.00 0.95±0.01 0.95±0.01 0.95±0.01

0.25 0.93±0.01 0.95±0.01 0.93±0.01

0.50 0.91±0.01 0.95±0.01 0.90±0.01

0.75 0.88±0.01 0.95±0.01 0.88±0.01

1.00 0.85±0.01 0.95±0.01 0.85±0.02

rect contacts. In this validation scenario, we simulate the cleaning of all
locations restoring their status to healthy at the end of the most crowded
time intervals, i.e., 12:00-16:00, 16:00-20:00, and 20:00-24:00.

�-9$<99-32
Table 10.3 presents the results of this experiment. In this case, we ana-
lyze the epidemic spreading under two different perspectives. We report
the fraction of infected (i) considering both direct and indirect contagious
pathways and (ii) focusing only on the contributionmade by indirect con-
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Table 10.3: Scenario 2: Using EMs. Fraction of infected (averaged over
all simulation runs) at the peak (infpeak) and the lowest value (inflower)
of the infection, and the end of the simulation (inflast). Each value is
followed by the standard deviation. The table also reports whether con-
tagions are only due to indirect contacts or to both direct and indirect con-
tacts (Type of contagion) and whether sanitization procedures are in place
(sanitize). In all scenarios, the damage of the intervention is 0.0.

Data set Type of contagion sanitize inflast infpeak inflower

BLEBeacon Direct/Indirect false 0.94±0.04 0.95±0.03 0.76±0.04

true 0.92±0.04 0.94±0.04 0.73±0.05

Indirect false 0.93±0.04 0.94±0.03 0.77±0.04

true 0.80±0.05 0.84±0.05 0.70±0.05

Foursquare Direct/Indirect false 0.61±0.10 0.72±0.12 0.59±0.10

true 0.56±0.13 0.69±0.16 0.53±0.12

Indirect false 0.55±0.13 0.64±0.15 0.53±0.12

true 0.49±0.13 0.59±0.15 0.46±0.12

GoT Direct/Indirect false 0.95±0.01 0.96±0.01 0.95±0.01

true 0.94±0.01 0.95±0.01 0.93±0.01

Indirect false 0.84±0.19 0.84±0.19 0.83±0.19

true 0.76±0.18 0.84±0.19 0.74±0.17

tacts. Even thoughwe can observe poor results in the application of clean-
ing procedures in the first case, we can note that the introduction of EMs
has some effect in reducing the fraction of infected due to indirect con-
tacts. This result is not surprising as agents are still free tomove and prop-
agate the epidemic making the locations infected again. As in the case of
the adoption of PPMs, we have neither social nor commuting damage as
there are no constraints on the mobility of the agents. Given the limited
cost of EMs, these interventions can be considered good practice in real
scenarios as they effectively lower the number of infected cases.
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ǘǗWǜWǚ �$'2!8-3 �V �9-2+ ���9 f 93£!ধ32

	?6'8-1'2;!£ 9'ষ2+
In this validation scenario, we analyze the sensitivity of the model to the
implementation of isolation measures (see §Isolation in Section 10.2.3).
Specifically, we studied how changes in the parameter �isolation, repre-
senting the willingness of an agent to enter the isolation state if infected,
reflect on the number of spreaders. We ranged the parameter in the in-
terval [0, 1]with step size 0.05. Note that the scenario with �isolation = 0.0

corresponds to the unmitigated scenario when nomeasures are being ap-
plied. Modifying the parameter �isolation means regulating when an in-
fected agent enters the isolation state (the higher, the sooner). Further,
the probability of entering the isolation state is also proportional to the
number of infected agents met (the higher the number, the higher the
probability). The time spent by each agent in this state is strictly depen-
dent on the recovery probability as the agent may exit the isolation only
if it becomes susceptible again. Having set the simulation parameters as
described in Table 9.2, the upper bound to the time an agent remains in
isolation is 7 days on average (see Section 9.4.2).

�-9$<99-32
Table 10.4 shows the experiment results up to �isolation = 0.5 as the frac-
tion of infected drastically drops out even for small parameter values. In
this case, inflast, infpeak, and inflower do not report the total fraction of
infected, but the fraction of agents that can still spread the infection, i.e.,
the agents that are sick but not isolated. Increasing the value of �isolation
has a sensible impact on the overall spreading since - as we can see from
column isolatedlast - a conspicuous part of the agentswill eventually enter
the isolation state, and as a such, they will no more spread the pathogen.
That results in a minimum number of effective spreaders. Another inter-
esting outcome is that the fraction of isolated agents tends to decrease for
higher values of �isolation. This behavior is well-explained by the overall
epidemic trend: as the fraction of infected agents decreases, the probabil-
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Table 10.4: Scenario 3: Using SDMs - Isolation. Fraction of infected but not
isolated agents (averaged over all simulation runs) at the peak (infpeak)
and the lowest value (inflower) of the infection, and the end of the sim-
ulation (inflast). The column isolatedlast reports the average fraction of
isolated agents at the end of the simulation. Da and Dl represent the so-
cial and commuting damage of the intervention. Each value is followed
by the standard deviation.

Data set �isolation inflast infpeak inflower isolatedlast Da Dl

BLEBeacon 0.00 0.94±0.03 0.95±0.03 0.77±0.04 0.00±0.00 0.00±0.00 0.00±0.00

0.05 0.35±0.07 0.80±0.03 0.22±0.07 0.58±0.07 0.34±0.05 0.14±0.04

0.10 0.22±0.07 0.79±0.04 0.08±0.04 0.68±0.09 0.46±0.04 0.22±0.04

0.20 0.09±0.07 0.79±0.04 0.03±0.03 0.66±0.23 0.52±0.09 0.26±0.05

0.30 0.04±0.05 0.79±0.03 0.01±0.03 0.55±0.28 0.49±0.12 0.26±0.06

0.40 0.03±0.04 0.80±0.03 0.01±0.02 0.54±0.30 0.50±0.13 0.27±0.06

0.50 0.02±0.03 0.79±0.03 0.00±0.01 0.47±0.28 0.47±0.13 0.25±0.06

Foursquare 0.00 0.61±0.10 0.72±0.11 0.59±0.10 0.00±0.00 0.00±0.00 0.00±0.00

0.05 0.16±0.02 0.67±0.08 0.14±0.02 0.36±0.04 0.41±0.05 0.26±0.03

0.10 0.08±0.02 0.66±0.13 0.05±0.01 0.37±0.07 0.51±0.10 0.32±0.06

0.20 0.04±0.01 0.63±0.18 0.02±0.01 0.34±0.10 0.55±0.16 0.33±0.10

0.30 0.02±0.01 0.66±0.13 0.01±0.00 0.34±0.07 0.58±0.12 0.35±0.07

0.40 0.02±0.00 0.66±0.11 0.01±0.00 0.33±0.06 0.58±0.10 0.35±0.06

0.50 0.01±0.01 0.66±0.13 0.00±0.00 0.30±0.07 0.57±0.11 0.35±0.07

GoT 0.00 0.95±0.01 0.96±0.01 0.95±0.01 0.00±0.00 0.00±0.00 0.00±0.00

0.05 0.31±0.02 0.95±0.01 0.31±0.02 0.61±0.02 0.18±0.02 0.02±0.00

0.10 0.18±0.02 0.95±0.01 0.17±0.02 0.70±0.02 0.28±0.02 0.04±0.01

0.20 0.10±0.01 0.95±0.01 0.10±0.01 0.72±0.02 0.36±0.02 0.07±0.01

0.30 0.07±0.01 0.95±0.01 0.06±0.01 0.71±0.02 0.40±0.02 0.08±0.01

0.40 0.05±0.01 0.95±0.01 0.04±0.01 0.69±0.04 0.41±0.02 0.09±0.01

0.50 0.04±0.01 0.95±0.01 0.03±0.01 0.67±0.04 0.42±0.02 0.10±0.01

ity of being infected declines, and, consequently, the need to isolate single
agents.

In a real scenario, the effectiveness of such intervention is strictly de-
pendent on the easiness and the availability of tools to test whether a
person is infected. Nevertheless, this simple experiment emphasizes the
critical importance of effectively identifying contagious individuals to de-
crease the epidemic curve.
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As expected, both damages Da and Dl reflect that at least 30% up to
72% of the agents are isolated (see column isolatedlast), preventing them
from seeing other agents or visiting locations. Fixing �isolation = 0.5,
agents lose on average 48% of their contacts and around 23% of the lo-
cations. The social damageDa assumes lower values for the GoT data set.
Once again, we have to recall the nature of the data set: most of the GoT
characters meet a reduced number of other characters, thus explaining
the lower values. A similar comment holds for the commuting damage
Dl.
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Similar to the previous scenario, in this experiment, we study the sensitiv-
ity of the model to the implementation of quarantine measures regulated
by the parameter �quarantine. This parameter represents the willingness of
an agent to enter the quarantine state, and it is proportional to the num-
ber of infected agents met. As for isolation measures, modifying the pa-
rameter �quarantine means regulating when an infected agent enters the
quarantine state (the higher, the sooner). The time spent by each agent in
this state is strictly dependent on (i)whether the agent is infected and (ii)
the recovery probability of the agents. If an agent has been quarantined
even though susceptible, it will immediately exit the quarantine status in
the next simulation step. Otherwise, the same rules applied for exiting
the isolation state hold. It is worth recalling that our experiments sim-
ulate an SIS compartmental epidemic model, where there is no latency
between the infection and the actual manifest of symptoms. The absence
of an Exposed state translates into safely assuming that if an agent gets
infected in a time step t, it will enter the Infected state in the following
time step (t + 1). Hence, an agent may leave the quarantine state after a
timewindow� (4 hours) only if it is susceptible; otherwise, it will remain
quarantined until it heals. Clearly, in a compartmental model including
the Exposed state, the quarantine should last more than the time required
by the symptoms to become evident or to have a test result.
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We ranged the parameter in the interval [0, 1]with step size 0.05. Note
that the scenario with �quarantine = 0.0 corresponds to the unmitigated
scenario when no measures are being applied.
�-9$<99-32
Table 10.5 reports the results of this scenario ranging the parameter�quarantine
2 {0.00, 0.05, 0.10, 0.20, 0.60, 0.90}. Also in this case, inflast, infpeak, and
inflower do not report the total fraction of infected, but the fraction of
agents that can still spread the infection, i.e., the agents that are sick but

Table 10.5: Scenario 4: Using SDMs - Quarantine. Fraction of infected but
not quarantined agents (averaged over all simulation runs) at the peak
(infpeak) and the lowest value (inflower) of the infection, and the end of
the simulation (inflast). The column quarantinedlast reports the average
fraction of quarantined agents at the end of the simulation. Da andDl rep-
resent the social and commuting damage of the intervention. Each value
is followed by the standard deviation.

Data set �quar. inflast infpeak inflower quarantinedlast Da Dl

BLEBeacon 0.00 0.93±0.03 0.96±0.02 0.77±0.04 0.00±0.00 0.00±0.00 0.00±0.00

0.05 0.71±0.06 0.80±0.03 0.69±0.05 0.22±0.05 0.08±0.03 0.02±0.01

0.10 0.64±0.06 0.80±0.03 0.64±0.05 0.29±0.05 0.11±0.03 0.02±0.01

0.20 0.59±0.07 0.79±0.04 0.59±0.07 0.34±0.06 0.14±0.04 0.03±0.01

0.60 0.55±0.06 0.79±0.03 0.55±0.06 0.37±0.06 0.15±0.03 0.03±0.01

0.90 0.53±0.07 0.80±0.04 0.53±0.07 0.39±0.06 0.16±0.04 0.03±0.01

Foursquare 0.00 0.59±0.15 0.69±0.18 0.56±0.15 0.00±0.00 0.00±0.00 0.00±0.00

0.05 0.53±0.17 0.63±0.20 0.51±0.16 0.03±0.01 0.04±0.01 0.02±0.01

0.10 0.50±0.16 0.62±0.19 0.49±0.15 0.05±0.02 0.07±0.02 0.03±0.01

0.20 0.48±0.11 0.65±0.15 0.47±0.11 0.09±0.02 0.11±0.03 0.05±0.01

0.60 0.38±0.10 0.64±0.17 0.38±0.10 0.15±0.04 0.18±0.05 0.09±0.02

0.90 0.35±0.09 0.64±0.17 0.35±0.08 0.18±0.04 0.20±0.05 0.11±0.02

GoT 0.00 0.95±0.01 0.96±0.01 0.95±0.01 0.00±0.00 0.00±0.00 0.00±0.00

0.05 0.79±0.02 0.95±0.01 0.79±0.02 0.14±0.01 0.05±0.01 0.00±0.00

0.10 0.69±0.02 0.95±0.01 0.69±0.02 0.23±0.02 0.08±0.01 0.01±0.00

0.20 0.56±0.02 0.95±0.01 0.56±0.02 0.33±0.01 0.11±0.02 0.01±0.00

0.60 0.34±0.02 0.95±0.01 0.34±0.02 0.48±0.01 0.16±0.02 0.07±0.00

0.90 0.27±0.03 0.95±0.01 0.27±0.03 0.53±0.01 0.17±0.02 0.02±0.00
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not quarantined. As before, increasing the value of �quarantine helps re-
ducing the fraction of infected (see the columns inflower and inflast). How-
ever, even thoughwe can observe a drastic drop of this value, the epidemic
still has a consistent probability of spreading. This behavior is due to the
nature of the intervention itself: quarantining individuals is a preventive
measure, and, as such, even susceptible agents may enter this state. On
the contrary, isolation measures directly target and isolate infected indi-
viduals. For this reason, in the first case, we have a lower, even still con-
siderable, efficacy in reducing the fraction of infected. Once again, in a
real-world scenario, the effectiveness of such intervention closely relies
on the time window during which a person may infect other people but
still does manifest any symptoms and the possibility of observing asymp-
tomatic spreaders.

In this scenario, we can note very low values forDa andDl even when
�quarantine = 0.9. This outcome is well explained by how the intervention
works. As already discussed, both susceptible and infected agents may
be quarantined. When a susceptible enters the quarantine, it will exit the
state in the following iteration; thus, the intervention causes negligible
damage to those agents, still protecting them from getting the infection -
even if for a small time window. Combining these two elements (quar-
antining infected and protecting susceptible agents) ensures a reasonable
trade-off between the efficacy of the intervention in reducing the number
of infected and the damage brought to the population.

ǘǗWǜWǜ �$'2!8-3 �V �9-2+ ���9 f �8!$-2+ �32;!$;9

	?6'8-1'2;!£ 9'ষ2+
In this scenario, we evaluate the sensitivity of the model to the introduc-
tion of a tracing application as a control strategy to inform each agent
whether and how many infected it has met in the previous simulation
steps. The parameter ↵i, varying in the range [0, 1] with step size 0.05,
regulates the fraction of the population adopting the tracing technology.
The scenario with ↵i = 0.0 corresponds to the unmitigated scenario when
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no measures are being applied. The parameter �tracing controls the prob-
ability that an agent enters the quarantine state, based on the number of
infected the agent knows it has been in contact. We fixed �tracing = 0.6 to
model that if an agent uses a tracing application, it will be more likely to
enter the quarantine state if needed. As expected, we traced the contacts
between individuals only if both agents were using the tracing measure.
�-9$<99-32
Table 10.6 shows the results for ↵i 2 {0.00, 0.25, 0.50, 0.75, 1.00}. In line
with the previously simulated interventions, the more agents adopt the
measure, the more the intervention effectively reduces the fraction of in-

Table 10.6: Scenario 5: Tracing. Fraction of infected but not quaran-
tined agents (averaged over all simulation runs) at the peak (infpeak) and
the lowest value (inflower) of the infection, and the end of the simula-
tion (inflast) when ↵tracing agents use a tracing application. The column
quarantinedlast reports the average fraction of quarantined agents at the
end of the simulation. Da and Dl represent the social and commuting
damage of the intervention. Each value is followed by the standard devi-
ation.

Data set ↵tracing inflast infpeak inflower quarantinedlast Da Dl

BLEBeacon 0.00 0.92±0.04 0.95±0.03 0.76±0.04 0.00±0.00 0.00±0.00 0.00±0.00

0.25 0.85±0.05 0.88±0.04 0.76±0.05 0.07±0.03 0.03±0.02 0.00±0.00

0.50 0.64±0.05 0.80±0.03 0.62±0.06 0.25±0.05 0.10±0.03 0.02±0.01

0.75 0.34±0.07 0.79±0.04 0.34±0.07 0.49±0.06 0.21±0.04 0.02±0.01

1.00 0.06±0.07 0.79±0.03 0.07±0.07 0.70±0.06 0.33±0.04 0.06±0.01

Foursquare 0.00 0.60±0.14 0.70±0.16 0.57±0.13 0.00±0.00 0.00±0.00 0.00±0.00

0.25 0.53±0.15 0.64±0.18 0.51±0.125 0.04±0.01 0.04±0.01 0.01±0.00

0.50 0.43±0.09 0.65±0.13 0.43±0.09 0.13±0.03 0.13±0.03 0.05±0.01

0.75 0.28±0.07 0.64±0.17 0.28±0.07 0.22±0.06 0.23±0.06 0.08±0.02

1.00 0.13±0.03 0.65±0.15 0.13±0.03 0.33±0.08 0.35±0.08 0.13±0.03

GoT 0.00 0.94±0.11 0.94±0.11 0.93±0.11 0.00±0.00 0.00±0.00 0.00±0.00

0.25 0.84±0.01 0.95±0.01 0.84±0.01 0.10±0.01 0.04±0.01 0.00±0.00

0.50 0.63±0.02 0.95±0.01 0.63±0.01 0.26±0.01 0.11±0.01 0.01±0.00

0.75 0.37±0.07 0.95±0.01 0.37±0.02 0.46±0.02 0.18±0.01 0.02±0.00

1.00 0.07±0.02 0.95±0.01 0.07±0.02 0.66±0.02 0.28±0.02 0.02±0.00
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fected. When the whole population adopts the tracing technology, the
epidemic trend drastically drops in all scenarios. Nevertheless, at least
50% of the agents must use the application to observe a significant re-
duction. Comparing this experiment with the quarantine scenario when
�quarantine = 0.6 (see Table 10.5), we can note a higher fraction of quar-
antined agents on average at the end of the simulation. This outcome
is explained by how the different interventions work in the simulation.
An agent may decide to enter the quarantine state according to both the
probability �quarantine and the number of infected agents met during each
interval �. When the agent uses the tracing application, it may enter
the quarantine still based on the probability �quarantine but, this time, the
number of infected agents is evaluated over the previous intervals (start-
ing from the interval when the intervention is applied). Hence, the num-
ber of infected agents met is generally higher in this second case and, con-
sequently, the overall probability of entering the quarantine state.

Consistently with the previous experiment on quarantining individ-
uals (see Section 10.5.4), the social damage Da and especially the com-
muting damage Dl assume low if not negligible values. The explanation
for that is the same as discussed in the quarantine scenario. These results
suggest the potential impact such measure can have, even though, in the
real world, policymakers have to consider a plethora of constraints when
implementing similar interventions, among all privacy concerns.

ǘǗWǜWǝ �$'2!8-3 ¤V �9-2+ ���9 f �=3-&-2+ �83>&-2+

	?6'8-1'2;!£ 9'ষ2+
In this validation scenario, we examine the sensitivity of the model when
avoiding crowding measures are applied. As described in Section 10.2.3,
this intervention consists in increasing the social distancing between in-
dividuals, which implicitly means reducing the number of possible direct
interactions. To implement such a policy for the BLEBeacon data set, we
reduced the number of agentswho could access the building during a day
by simulating only half of the entire population’smovements. We applied

227



10.5 Sensitivity Analysis

a similar approach for the Foursquare and the GoT data sets, halving the
number of agents that could access a given location.
�-9$<99-32
Table 10.7 reports the results of this experiment. As for the EMs (see Sec-
tion 10.5.2), we analyze the epidemic spreading reporting the number of
infected (i) considering both direct and indirect contagion pathways and
(ii) focusing only on the contribution made by direct contacts. Also in
this scenario, when we look at the final fraction of infected due to both
types of interactions, we can observe little or no impact on the epidemic
spreading. On the other hand, we can note that the introduction of such
a measure effectively lowers the fraction of infected due to direct contacts
and the lowest peak of the infection. This outcome is somewhat expected
given the nature of the intervention itself. This measure does not affect in-

Table 10.7: Scenario 6: Using SDMs - Avoiding Crowding. Fraction of
infected (averaged over all simulation runs) at the peak (infpeak) and
the lowest value (inflower) of the infection, and the end of the simula-
tion (inflast). Da and Dl represent the social and commuting damage of
the intervention. Each value is followed by the standard deviation. The
table also reports whether avoiding crowdingmeasures are applied (AC).

Data set Type of contagion AC inflast infpeak inflower Da Dl

BLEBeacon Direct/Indirect false 0.91±0.04 0.96±0.03 0.77±0.04 0.00±0.00 0.00±0.00

true 0.86±0.04 0.89±0.04 0.74±0.05 0.66±0.00 0.11±0.00

Direct false 0.74±0.06 0.87±0.04 0.47±0.07 0.00±0.00 0.00±0.00

true 0.55±0.06 0.70±0.05 0.35±0.06 0.66±0.00 0.11±0.00

Foursquare Direct/Indirect false 0.57±0.18 0.68±0.21 0.55±0.17 0.00±0.00 0.00±0.00

true 0.46±0.15 0.61±0.20 0.44±0.15 0.84±0.00 0.12±0.00

Direct false 0.30±0.17 0.43±0.24 0.29±0.16 0.00±0.00 0.00±0.00

true 0.14±0.06 0.42±0.17 0.14±0.06 0.84±0.00 0.12±0.00

GoT Direct/Indirect false 0.95±0.01 0.95±0.01 0.94±0.01 0.00±0.00 0.00±0.00

true 0.92±0.01 0.95±0.01 0.92±0.01 0.40±0.00 0.01±0.00

Direct false 0.91±0.01 0.92±0.01 0.90±0.01 0.00±0.00 0.00±0.00

true 0.73±0.02 0.91±0.01 0.73±0.01 0.40±0.00 0.01±0.00
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teractions between people and environments; hence the pathogen is free
to propagate via indirect contacts.

The intervention cost in terms of damage tends to be higher than the
other scenarios described except for the isolation measure. These values
are clearly explained by the fact that some agents cannot enter a location if
this already contains a number of agents equal to half of its total capacity
(evaluated over the unmitigated scenario).
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In this last validation scenario, we assess themodel’s sensitivity to the im-
plementation of lockdownmeasures (see Section 10.2.3). We selected the
locations to close according to two possible scenarios. In the first scenario,
we randomly chose the locations; in the second configuration, we picked
the most crowded places first. The parameter ↵e regulates the number of
locations to close. We ranged it in the interval [0, 1] with step size 0.05 to
simulate partial and complete closure policies. The scenariowith↵e = 0.0

corresponds to the baseline scenariowhen nomeasures are being applied.
�-9$<99-32
Table 10.8 reports the results of the application of the two tested lockdown
scenarios, simulating an epidemic spreading varying the parameter ↵e 2

{0.00, 0.30, 0.60, 0.90, 1.00}.
If we look at the final fraction of infected at the end of the simulation

(column inflast), we can note how such a measure has a different impact
according to the nature of the data set. For instance, we need to deny ac-
cess to all rooms within the building described by the BLEBeacon data
if we want to reduce the contagions drastically. In addition, closing the
locations giving priority to crowded places does not seem to improve the
performance over closing random rooms when ↵e  0.90. Although sur-
prising at first glance, the explanation for this outcome is due to the fact
that the number of check-ins per location is evaluated over the whole data
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Table 10.8: Scenario 7: Using SDMs - Location closure. Fraction of infected
(averaged over all simulation runs) at the peak (infpeak) and the lowest
value (inflower) of the infection, and the end of the simulation (inflast).
Da and Dl represent the social and commuting damage of the interven-
tion. Each value is followed by the standard deviation. The table also
reports the policy according to which locations are closed (Sorting).

Data set ↵e Sorting inflast infpeak inflower Da Dl

BLEBeacon 0.00 - 0.93±0.04 0.95±0.03 0.76±0.04 0.00±0.00 0.00±0.00

0.30 random 0.87±0.04 0.90±0.03 0.64±0.06 0.10±0.00 0.38±0.00

0.60 random 0.85±0.04 0.88±0.04 0.60±0.05 0.25±0.00 0.67±0.00

0.90 random 0.70±0.05 0.79±0.03 0.43±0.06 0.69±0.00 0.93±0.00

0.30 most crowded 0.93±0.03 0.95±0.03 0.74±0.05 0.09±0.00 0.33±0.00

0.60 most crowded 0.84±0.04 0.87±0.03 0.59±0.06 0.28±0.00 0.68±0.00

0.90 most crowded 0.53±0.06 0.80±0.03 0.31±0.06 0.87±0.00 0.96±0.00

1.00 - 0.13±0.05 0.79±0.03 0.13±0.05 1.00±0.00 1.00±0.00

Foursquare 0.00 - 0.57±0.18 0.67±0.21 0.55±0.17 0.00±0.00 0.00±0.00

0.30 random 0.49±0.11 0.65±0.15 0.48±0.11 0.37±0.00 0.32±0.00

0.60 random 0.39±0.10 0.64±0.17 0.39±0.10 0.57±0.00 0.60±0.00

0.90 random 0.19±0.06 0.62±0.19 0.19±0.06 0.89±0.00 0.90±0.00

0.30 most crowded 0.09±0.02 0.65±0.13 0.09±0.02 0.99±0.00 0.76±0.00

0.60 most crowded 0.08±0.03 0.61±0.21 0.08±0.03 1.00±0.00 0.89±0.00

0.90 most crowded 0.08±0.02 0.65±0.13 0.08±0.02 1.00±0.00 0.97±0.00

1.00 - 0.08±0.02 0.65±0.13 0.08±0.02 1.00±0.00 1.00±0.00

GoT 0.00 - 0.95±0.01 0.96±0.01 0.95±0.01 0.00±0.00 0.00±0.00

0.30 random 0.65±0.01 0.95±0.01 0.65±0.01 0.43±0.00 0.44±0.00

0.60 random 0.51±0.01 0.95±0.01 0.51±0.01 0.62±0.00 0.66±0.00

0.90 random 0.27±0.01 0.95±0.01 0.27±0.01 0.87±0.00 0.91±0.00

0.30 most crowded 0.41±0.01 0.95±0.01 0.41±0.05 0.77±0.00 0.75±0.00

0.60 most crowded 0.22±0.01 0.95±0.01 0.22±0.01 0.95±0.00 0.94±0.00

0.90 most crowded 0.14±0.02 0.95±0.01 0.14±0.02 1.00±0.00 1.00±0.00

1.00 - 0.12±0.01 0.95±0.01 0.12±0.01 1.00±0.00 1.00±0.00

set and not only over the portion when the intervention is applied. Thus,
the most crowded locations may contain the most check-ins at the start of
the simulation rather than the end, leading to the closure of less crowded
rooms when the intervention is applied. On the other hand, we can ob-
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serve a completely different picture for the Foursquare data set, in which
closing 30% of the most crowded locations leads to a notable decrease in
the fraction of infected. Once again, this outcome is due to the charac-
teristic of the data. The majority of the check-ins of the original data set
happens in a limited amount of places, like transportation or general en-
tertainment. Hence, even closing a limited number of places brings down
the epidemic. We have a similar outcome for the GoT scenario in which
closing the most crowded locations generally achieves better results in
lowering the fraction of infected than closing random locations. The re-
sults of these two scenarios are aligned with the measures we would ex-
pect in a real-life scenario. In fact, if we consider lockdown policies is-
sued for the COVID-19 pandemic, we can note that they usually tended
to penalize aggregation and leisure places. Clearly, we can note very high
values for the commuting damage Dl due to the locations closed by the
intervention. As a consequence, also the social damage Da assumes high
values when ↵e � 0.50 as agents cannot meet other agents in a closed
place. When all locations are closed, we have the maximum damage.

ǘǗWǝ �31#-2-2+ ��9
In Section 10.5, we investigated the model output when a single inter-
vention is applied. Other than evaluating the model sensitivity, we thus
explored, at the same time, the effects of applying a single NPI in terms
of effectively reducing the number of infected and costs required to im-
plement the given measure. However, we expect to see the application
of different interventions combined to contain the epidemic spreading in
a real-world scenario. Which NPIs should be applied or how strict the
measures should be implemented closely depends upon the gravity of
the current situation, like the pressure on the hospitalization system. For
instance, we experienced rigid lockdown policies during the first and sec-
ond waves of the COVID-19 pandemic, while even the use of face masks
was lifted during summer 2020.

Current literature on the topic investigates the application of NPIs
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based on the complexity and heterogeneity of the data fed into the ABM.
When themodel is highly detailed, like in the case of France [93], Boston [8],
Seattle, and New York [7], the simulation usually focuses on reproducing
and improving the measures really implemented by the government. In
the case of simpler models, other works manually combine several NPIs
and examine their outcomes [191, 45, 167]. In this work, we tackle the
issue of identifying feasible combinations of NPIs by approaching the
problem under an optimization framework with two contrasting objec-
tives - the fraction of infected and the damage brought by the intervention.
The optimal solutions (in terms of NPI combinations) are thus found by
exploring the model’s parameter space via a multi-objective genetic al-
gorithm. Hence, no handcrafted configuration is required. In this man-
ner, we are able to unbiasedly explore the model’s behavior without any
assumption about the interaction of model parameters and their effects
on the overall simulation. In the following, we will describe the method
used for our experiments and the results obtained. A discussion section
in which we review possible real-world implications follows.
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In this study, we formalize the parameter space exploration of our model
under theMOGA framework (see Section 5.4). Specifically, we use the al-
gorithm NSGA-II (fast elitist non-dominated sorting genetic algorithm),
a Pareto-basedMOGA proposed by Deb et al. [62]. This algorithm allevi-
ates the problems of lack of elitism, the need of sharing parameters, and
high computation complexity characterizing its predecessor NSGA [169],
still able to find a diverse set of solutions and converge near the actual
Pareto-optimal set. We used the NSGA-II algorithm and its Julia imple-
mentation, available at the following GitHub repository1. We examine
the multi-objective problem of balancing the use of NPIs to control an
epidemic spreading and the negative impact on the overall functioning of
society considering as contrasting objectives (i) reducing the final fraction
of infected at the end of the simulation, (ii) the social damageDa, and (iii)

1https://github.com/gsoleilhac/NSGAII.jl
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the commuting damage Dl.
Each individual (i.e., a setting) is described by a 7-element vector,

where each item, ranging in the interval [0, 1], represents whether or not
a given NPI is applied and to what extent. We considered the same mea-
sures described in Section 10.2 and analyzed in Section 10.5, namely:

• PPMs. Measure regulated by the parameter ↵p, describing the frac-
tion of agents using PPMs.

• EMs. Measure regulated by the boolean parameter sanitize, repre-
senting whether locations are regularly sanitized.

• SDMs
– Isolation. Intervention regulated by the parameter�isolation, rep-

resenting the willingness of an agent to enter the isolation state
if infected.

– Quarantine. Intervention regulated by the parameter�quarantine,
describing the willingness of an agent to enter the quarantine
state.

– Tracing. Measure regulated by the parameter ↵i, indicating the
fraction of the population adopting tracing technologies.

– Avoiding crowding. Measure regulated by the boolean parame-
ter avoiding crowding, representing whether avoiding crowding
measures are applied.

– Lockdown. Intervention regulated by the parameter↵e, describ-
ing the fraction of locations to close. Wepicked themost crowded
places first, given the best outcome in terms of reduction on the
fraction of infected evaluated in Section 10.5.7.

The boolean parameters are considered true in the simulation if the value
of the corresponding item in the individual is at least equal to 0.5.

We run NSGA-II for 100 generations, using a population of 100 in-
dividuals. The remaining parameters of the simulation are described in
Section 10.4.
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In this section, we go through the outcomes of our analysis, first observ-
ing the Pareto front output of the algorithm NSGA-II. We then zoom into
the characteristics of the solution nearest to the ideal point, trivially iden-
tified with the origin (0, 0, 0), indicating that there are no infected and
no damage due to the interventions. This solution is further compared
with the two NPI configurations reaching the lowest number of infected
and the lowest damage. We show the characteristics of each configura-
tion in a radar chart, in which we report all interventions counterclock-
wise according to their damage. The color of the external circular shape
(yellow-orange-red) encodes the damage of each intervention: the darker,
the higher. Visually, low-damage solutions tend to pick interventions in
the upper half of the circle. On the contrary, high-damage configurations
tend to select higher values for interventions located in the lower half of
the chart. We finally discuss how these configurations impact the epi-
demic spreading, and the damage paid for their application.

In more detail, every plot highlights three NPI configurations: (i) the
configuration reaching the lowest number of infected at the end of the
simulation (Lowest-Infected, depicted in blue), (ii) the configuration ob-
taining the lowest damage (Lowest-Damage, depicted in orange), and (iii)
the configuration nearest to the optimal point (0, 0, 0) according to the
euclidean distance (Nearest-to-Ideal, depicted in green). We also added to
each plot the two settings when no interventions are in place (No-NPIs)
and when all NPIs are used to the fullest (Full-NPIs). All configurations
come from the Pareto optimization and lies on the Pareto front analyzed.
It is worth noting that the optimization algorithm explores the overall
Pareto front; however, the NPI combinations that decision-makers should
investigate are the solutions that guarantee the best balance between the
three contrasting objectives. As a matter of fact, in this specific context is
straightforward to handcraft an intervention that brings no damage (triv-
ially selecting no NPIs or only PPMs or EMs as they provide no damage)
or aims to minimize the number of infected (e.g., implementing all NPIs
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available). Still, none of these interventions are truly useful in a real-world
situation. The optimization algorithm can hence guide policymakers to-
wards examining the best NPI combination according to the actual data.

� Simulation parameters

It is worth noticing that each NPI configuration mentioned in this
paragraph (e.g., Nearest-to-Ideal) is an individual produced by the
algorithm NSGA-II. Hence, it encodes whether or not a given NPI
is applied and to what extent (see Section 10.6.1). In the following,
the specific values assigned to the simulation parameters regulat-
ing NPIs directly derive from particular individuals produced by
NSGA-II.

�,' ��	�'!$32 �$'2!8-3
This paragraph discusses the outcome of the BLEBeacon data set, resem-
bling a social event happening in amonth timeframe in a university build-
ing (see Section 10.4.4). Figures 10.7, 10.8, and 10.9 report the results.

As we can see in Figure 10.7, the Pareto front evaluated by the algo-
rithmNSGA-II spans over a broad spectrum of solutions, but, as observed
in the introduction of this section, we will focus on the characteristics
of the combination nearest to the optimal point (Nearest-to-Ideal). The
first element to note is that this NPI configuration only selects policies
located in the yellow-orange zone of the radar chart, causing the low-
est damage (see Figure 10.8b). Among those, we can observe that all
agents use PPMs (↵p = 1.0) and that locations are regularly cleaned.
We can further notice that almost all agents exploit tracing technologies
(↵i = 0.96). This choice translates into an overall significant probability
for agents to self-quarantine themselves. It should not surprise that this
particular configuration does not implement any basic quarantine mea-
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Figure 10.7: Pareto front evaluated by the algorithmNSGA-II for the BLE-
Beacon data set using as objective function: (inflast, Da, Dl).

sure (�quarantine = 0.01) as we can consider the tracing protocol like an
informed quarantine (see §Tracing in Section 10.2.3). It is interesting to
observe that the configuration Nearest-to-Ideal can reduce by 50% the fi-
nal number of infected with the only use of preventive measures. Clearly,
more restrictive measures should be used in this kind of environment to
reduce the contagion further. The application of this intervention brings
to a social damage Da of 0.36, meaning that each agent loses, on average,
slightly more than a third of the individuals it would have met in normal
conditions. The commuting damage Dl is 0.08, meaning that agents lose,
on average, less than a tenth of the locations they would have normally
visited.

As expected, the configuration achieving the lowest damage favors
zero-damage interventions, like PPMs and EMs (see Figure 10.8c). Nev-
ertheless, even though the final fraction of infected is lowered only by a
small percentage, we can note that the overall trend (and the lowest peak)
after introducing the intervention is generally reduced in comparison to
the unmitigated scenario (see Figure 10.9). Regarding the configuration
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Figure 10.8: Combination of NPIs, corresponding to the configurations
obtaining the lowest number of infected at the end of the simulation
(Lowest-Infected), the lowest damage (Lowest-Damage), and the near-
est to the optimal point (Nearest-to-Ideal) evaluated over the BLEBeacon
data set.

obtaining the lowest fraction of infected, we can observe that this configu-
ration selects theNPIs with the highest damage, located in the red zone of
the radar chart (see Figure 10.8a). In particular, when this combination is
applied, almost all rooms of the building become inaccessible (↵e = 0.87),
thus preventing the pathogen from spreading and bringing to very seri-
ous damage. For this reason, this configuration achieves the same results
of the intervention implementing all protective measures (Full-NPIs).

�,' 
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This paragraph discusses the outcomes for the Foursquare data set, re-
sembling real-life movements of users of the Foursquare social network
in Tokyo (see Section 10.4.4). Figures 10.10, 10.11, and 10.12 report the
results.

As we can note from the Pareto front plotted in Figure 10.10, all solu-
tions evaluated by the algorithm encode an NPI combination able to re-
duce the fraction of infected in the unmitigated scenario by at least 25%,
paying highly variable damage. In this case, the Nearest-to-Ideal NPI
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Figure 10.9: Epidemic trend in the BLEBeacon data set when (i) no NPIs
(No-NPIs) and (ii) all NPIs (Full-NPIs) are implemented, (iii) the config-
uration bringing to the lowest number of infected at the end of the simula-
tion is used (Lowest-Infected), (iv) the configuration obtaining the lowest
damage is applied (Lowest-Damage), and (v) the configuration nearest
to the optimum is used (Nearest-to-Ideal).

configuration (see Figure 10.11b) appears quite similar from the corre-
sponding solution analyzed for the BLEbeacon data set. We can still ob-
serve a high value for ↵p = 0.97, meaning that the majority of the agents
adopt PPMs and the use of sanitization measures. However, contrarily
to BLEBeacon, ↵i assumes the lower value of 0.013. Further, very small
values are selected for the parameters �isolation and �quarantine, equal to
0.002 and 0.06, respectively. Interestingly, this NPI combination can still
halve the fraction of infected and hence decrease the epidemic trend (see
Figure 10.12). At the same time, the damage brought by the intervention
is minimal (Da = 0.10, Dl = 0.05) and in practice due to the reduced per-
centage of quarantined and isolated agents. Themost surprising aspect of
this outcome is that despite the lack of lockdown measures, the epidemic
trend still constantly diminishes. This result should be contextualized to
the sparse nature of the data set; however, it suggests the fundamental role
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Figure 10.10: Pareto front evaluated by the algorithm NSGA-II for the
Foursquare data set using the objective function: (inflast, Da, Dl).

of PPMs and EMs in reducing an epidemic spreading at zero-damage also
in extremely crowded places.
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Figure 10.11: Combination of NPIs, corresponding to the configurations
obtaining the lowest number of infected at the end of the simulation
(Lowest-Infected, left), the lowest damage (Lowest-Damage, right), and
the nearest to the optimal point (Nearest-to-Ideal, center) evaluated over
the Foursquare data set.
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Figure 10.12: Epidemic trend in the Foursquare data set when i) no NPIs
are implemented (No-NPIs), ii) all NPIs are in place (Full-NPIs), iii) the
configuration bringing to the lowest number of infected at the end of the
simulation is used (Lowest-Infected), iv) the configuration obtaining the
lowest damage is applied (Lowest-Damage), and v) the configuration
nearest to the optimum is used (Nearest-to-Ideal).

Regarding the configurations at the extremes of the Pareto front, the
Lowest-Damage configuration almost corresponds to theNearest-to-Ideal
(see Figure 10.11c); while the Lowest-Infected combination (see Figure 10.11a)
reaches the same effectiveness of Full-NPIs, with a lower commutingdam-
age Dl and a non-significant difference for the social damage Da (see Fig-
ure 10.12).

�,' �3� �$'2!8-3
This paragraph discusses the outcomes for the GoT data set, representing
the characters’ mobility pattern of the GoT TV series (see Section 10.4.4).
Figures 10.13, 10.14, and 10.15 report the results.

As for the Foursquare data set, all the solutions elaborated by the ge-
netic algorithm can at least halve the fraction of infected in the unmit-
igated scenario with variable damages (Figure 10.13). Focusing on the

240



10.6 Combining NPIs

No-NPIs Full-NPIs
Lowest-Infected Nearest-to-Ideal Lowest-Damage

0
0.5

1

0
0.5

1

0

0.5

1

inflast
D
a

D
l

Figure 10.13: Pareto front evaluated by the algorithmNSGA-II for the GoT
data set using the objective function: (inflast, Da, Dl).

configuration Nearest-to-Ideal (see Figure 10.14b), we can notice values
similar to the solution evaluated for the BLEBeacon scenario. As before,
almost all agents use PPMs (↵p = 0.98) and locations are regularly sani-
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Figure 10.14: Combination of NPIs, corresponding to the configurations
obtaining the lowest number of infected at the end of the simulation
(Lowest-Infected, left), the lowest damage (Lowest-Damage, right), and
the nearest to the optimal point (Nearest-to-Ideal, center) evaluated over
the GoT data set.
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Figure 10.15: Epidemic trend in the GoT data set when i) no NPIs are im-
plemented (No-NPIs), ii) all NPIs are in place (Full-NPIs), iii) the config-
uration bringing to the lowest number of infected at the end of the simula-
tion is used (Lowest-Infected), iv) the configuration obtaining the lowest
damage is applied (Lowest-Damage), and v) the configuration nearest to
the optimum is used (Nearest-to-Ideal).

tized. On the other hand, we can note a lower use of tracing technologies,
with only 21% of the agents adopting thismeasure, and a high probability
of self-quarantine (�quarantine = 0.72). Once again, the nature of the data
set may explain the massive use of preventive measures, such as quaran-
tine policies. In this scenario, only a limited number of characters move
acrossmost of the locations, thus coming in contact withmany other char-
acters. Hence, increasing the probability of entering the quarantine state
corresponds to a higher chance to quarantine agents, especially the super-
spreader characters. Interestingly, this NPI combination can decrease by
65% the final fraction of infected without imposing strict restrictions that
agents have to follow. Quantitatively speaking, we can observe a modest
value for the social damage Da (0.19) and a negligible commuting dam-
age Dl (0.02).

As for the BLEBeacon scenario, the configuration Lowest-Infected per-
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fectly overlaps with the Full-NPIs even though selecting slightly lower
values for the NPI combination (see Figure 10.14a). Also in this case,
the Lowest-Damage solution corresponds to theNearest-to-Ideal (see Fig-
ure 10.14c).

ǘǗWǝWǚ �-9$<99-32

In the following, we sum up the most interesting elements from our ex-
periments and discuss some real-world implications of these findings.

�3 ��9 $!2 8<£' ;,'1 !££
If we focus our attention on the Nearest-to-Ideal NPI configuration, we
can note how it largely varies across all data sets. For instance, we can ob-
serve that in the BLEBeacon data set, this NPI combination heavily counts
on the probability of the agents to self-quarantine, translated into themas-
sive use of tracing technology. We can observe a similar scenario in the
GoT data set, in which the use of tracing measures is decreased, but the
self-quarantine probability becomes considerable. Entirely opposite, the
Nearest-to-Ideal configuration in the Foursquare scenario exploits a re-
duced quarantine probability and no tracing policies. Clearly, these re-
sults reflect the nature of the data fed into the simulation model. The
BLEBeacon data set represents a closed environment; hence, it is easier
for a pathogen to spread. As a consequence, stricter measures should
be implemented. Although we shrank four months of check-ins into a
single month timeframe, the Foursquare data set remains highly sparse,
with few locations containing most user check-ins. As already observed,
the sparse nature of this data may partially explain why the Nearest-to-
Ideal solution selects little or zero values for isolation, quarantine, and
tracing measures. Similarly, the mobility patterns encoded by the GoT
data setmake it reasonable to use tracing and quarantinemeasures, which
are preventive interventions, as GoT characters tend to meet in commu-
nities, and only a few of them travel across many different places (see
Section 10.4.4). In a real-world scenario, these results translate into ap-
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plying different combinations of NPIs and tailoring their severity accord-
ing to local specific data, like the current epidemiological situation and
other socio-demographic features. This outcome is further aligned with
the guidelines of the European Centre for Disease Prevention and Con-
trol [73] and with previous literature [188].

�£'!9'T >'!8 @3<8 1!90 !2& >!9, @3<8 ,!2&9
Other than a widespread slogan to raise awareness in the population to
fight the COVID-19, this phrase well describes another primary outcome
of our experiments. Despite the different nature of the three data sets, we
can easily spot that all the Nearest-to-Ideal NPI configurations share the
application of PPMs and EMs, often selected in combination with other
interventions (located in the yellow-orange zone of the radar chart, mean-
ing that they generally cause low damage). Nonetheless, as discussed in
the description of the results for the Foursquare experiment, the sole ap-
plication of those interventions can still induce a decrease in the epidemic
trend with the introduction of no damage. This result may have critical
importance in a real-world situation as PPMs and EMs give a fundamen-
tal contribution in slowing the epidemic spreading at zero damage even
in crowded locations and gathering places. However, the effectiveness of
these policies remains strictly dependent upon the correct use made by
the population.

�3; ! ;8'!9<8' ,<2;T #<; ! +<-&'& 9'!8$,
As discussed in Section 5.4, GAs are widely exploited in ABMs to explore
the best combination of parameters for the model. In the specific context
of epidemic simulations, GAsmay become a valuable tool to support pol-
icymakers as they canmanually analyze some of the best solutions to con-
trol a pandemic and tune them according to specific needs. For instance,
this approach can help investigate whether it is possible to implement an
NPI combination that performs aswell as closing gathering places. In this
work, we examined GAs to optimize the implementation of NPIs while
preserving two contrasting objectives: (i) the fraction of infected and (ii)
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damage brought by the intervention. We considered two types of dam-
age to include the need of people to meet other individuals (Da) and the
possibility of visiting a given location (Dl), e.g., simulating a person go-
ing to jog. GAs represents a general framework as the objective functions
to optimize can be defined according to a precise need and based on the
specific target to study. For example, an objective canmodel the economic
damage caused by closing given business categories or the cost of hospi-
talizations. Similarly, our TVH framework can be tuned according to the
specific compartmental model to implement, and the high-order network
can be instantiated according to specific socio-demographic data.

�311'2; 32 ;,' <9' 3( ��9
In this study, we used 100 individuals and 100 generations because of the
long computational time required to run each simulation (e.g., forty min-
utes on average on the Foursquare data set) and because the implemen-
tation of the NSGA-II algorithm does not currently support the parallel
evaluation of the individuals. However, the population size and the num-
ber of generations should be tuned to the complexity of the model when
simulating real-world scenarios.

� Simulation scalability

Scalability is a significant issue when dealing with massive agent-
based simulations. For this reason, there is a strong line of research
about designing and offering simulation engines able to run simu-
lations in parallel/distributed environments (e.g., D-MASON [59]).
In the specific case of epidemic simulations, the population size (in
terms of number of agents) is usually limited, however the number
of parameters may grow exponentially. In this sense, calibrating
the model may become the most expensive computational part of
the work. Having the scalable tools for model exploration is, thus,
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critical.

ǘǗWǞ �'1!809
NPIs gained attention during the SARS-CoV-2 pandemic in 2019 as the
only force to resist an unforeseen epidemic diffusion in the absence of
effective pharmaceutical interventions. Further, despite the current avail-
ability of vaccines, a study performed on the UK region [137] stressed
how the application of suchmeasures cannot be completely relaxed as the
current vaccination program alone is insufficient to contain the outbreak.
Recent decisions of EuropeanGovernments confirm this observation [33].
Thus, deeply understanding the potential impact of introducing regula-
tion policies aiming to control and reduce the epidemic propagation is of
fundamental importance to minimize the effect on both the economy and
the psychological wellness of the society.

This chapter discussed how such controlling measures can be embed-
ded within an epidemiological model based on high-order relationships
between people and environments, mimicking direct and indirect conta-
gion pathways over time. Specifically, we

• Provide a formal definition of NPIs, described by theWHO in [148],
for our epidemiological framework based on TVHs (see Chapter 9);

• Evaluate each NPI applying the SIS compartmental model into an
ABM that exploits our methodology (see Section 9.2.3) to simu-
late interactions between agents and environments by designing the
agent mobility behavior according to real-world data sets;

• Design and implement a genetic algorithm-based methodology to
optimize the choice of which NPI combination has to be adopted
when contrasting objectives are considered.

The results of our experiments resemble previous literature and the
guidelines of the WHO.
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• Introduced alone, each NPI cannot extinguish an epidemic, even
though somedrasticmeasures, such as isolation and strict lockdown,
have a higher impact in controlling the pathogen diffusion and con-
siderably reduce its spread as indicated by the results in Section 10.5;

• The discussed outcomes further highlight that different combina-
tion of NPIs and their severity should be tailored according to local
specific epidemiological data and that basic hygiene procedures are
fundamental to reduce the spreading as presented in Section 10.6
and examined in Section 10.6.3.

Broadly translated, our findings indicate that the effects of NPIs in con-
trolling are indisputable; however, the potential benefit of introducing
NPIs in our society is functional to a massive and correct application in
the population.
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In recent years, hypergraphs have continuously proved their ability
to accurately abstract the high-order relations happening among the in-
teractive parts of a real-world complex system. Their use in classical net-
work science applications is still in its early development, and many re-
search questions remain unaddressed. This dissertation fits in the broader
context of (i) providing tools to directly and efficiently analyze hyper-
graphs and (ii) re-thinking diffusion phenomena by accounting for the
high-order relations emerging from social interactions. Specifically, the
contribution discussed in this dissertation embraces several research ar-
eas, from network analysis to agent-basedmodeling to the design and im-
plementation of software frameworks. This final chapter summarizes the
contributions, the achieved research outcomes and delineates the poten-
tial impact of this research. It finally discusses possible future directions
on each specific topic addressed.
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The following sections detail the specific problems addressed, themodels
and solutions proposed, and the main outcomes obtained. All software
produced is freely available on GitHub public repositories to improve the
reproducibility of existing work and allow a fair comparison with other
methods.

�33£9 (38 ,@6'8+8!6,9
Motivated by the lack of a comprehensive and efficient hypergraph-specific
library and the need for software libraries designed to perform operations
directly on hypergraphs, we developed SimpleHypergraphs.jl, a software
library to model, analyze, and visualize hypergraphs, written in Julia and
designed for high-performance computing. In this dissertation, we de-
scribed the main motivations behind creating SimpleHypergraphs.jl, the
library’s design choices, and its memory model. We further illustrated
the functionalities offered by the software, including graph transforma-
tions and hypergraph visualization methods. We also presented two case
studies with the twofold objective of demonstrating how it is possible to
exploit the proposed library and comparing hypergraphs with their cor-
responding graph counterpart to explore whether high-order structures
convey more information in addressing specific tasks. Contextually, we
also described a generalized version of the label propagation algorithm
for community detection suitable for hypergraphs.

The development of SimpleHypergraphs.jl is a joint project with the
Warsaw School of Economics (Warsaw, Poland) and the Ryerson Uni-
versity (Toronto, Canada). This library supports the adoption of hyper-
graphs in the network science community by enabling ready-to-usemeth-
ods to model, manipulate, analyze, and visualize such high-order struc-
tures. Today, SimpleHypergraphs.jl is the reference Julia library for work-
ing with hypergraphs.
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Social influence involves intentional and unintentional efforts to change
another person’s beliefs, attitudes, or behavior. With the advent of on-
line social networks, such a phenomenon assumed evenmore importance
given the exponential number of people a user can reach through them.
Traditionally, algorithmic questions in informationdiffusion research have
been formalized on graphs. However, friends and, more in general, com-
munities exert influence on individuals, which can modify their behavior
accordingly. Hypergraphs can, hence, be used to account for these high-
order interactions.

Based on this consideration, we proposed a new linear threshold high-
order diffusion model that mimics real-world social dynamics, where in-
dividuals influence the group they belong to, but - in turn - the group it-
self influences their choices. We further introduced the formal definition
of the Target Set Selection problem on hypergraphs (TSSH), a key algo-
rithmic question in information diffusion research, whose goal is to find
the smaller set of vertices that can influence the whole network accord-
ing to the diffusion model defined. Since the TSSH problem is NP-hard,
we described four heuristics to address it and extensively evaluated these
algorithms on random and real-world networks.

Loosely speaking, the results obtained suggest that the choice ofwhich
procedure should be used strictly depends on the characteristics of the
hyper-networks, such as the density of the network or the distribution of
both vertex degrees and hyperedge sizes.

Research about social diffusion phenomena has practical implications
and impacts both society and industry. For instance, online social net-
works represent a critical application domain as, today, they embody one
of the most effective media to share information. Nevertheless, when it
comes to fake news, it is of fundamental importance to block its diffu-
sion. Further, studying diffusion processes also directly applies to detect-
ing negative influence towards vicious and harmful behavior, which is
not so difficult to find in social or games communities. The existence of
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several patents1 from big tech companies related to the spreading phe-
nomena confirms the importance of investigating such topics also for the
industry landscape. For example, finding key users to promote a product
within social media - to make sure that more and more people start using
it - is a typical example but still critical in companies’ marketing strategies.
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Influence diffusion models are usually treated as specific cases of epi-
demic models. Nevertheless, in this context, using models as realistic
as possible to foresee and possibly control a pathogen’s diffusion is even
more important. Towards this, hypergraphs represent a valid tool to ac-
count for community structure and infection pressure.

From the perspective of epidemic dynamics, this dissertation moti-
vated the use of (temporal) hypergraphs rather than (temporal) graphs
to analyze epidemic spreading processes. We then introduced the formal
definition of temporal hypergraphs, described a high-order SIS compart-
mental equation model suitable for TVHs, and discussed how we assem-
bled these elements into an agent-based framework. We further presented
a sensitivity analysis of the TVH model to the epidemic parameters and
different discretization of the time intervals when direct or indirect con-
tacts may happen.

Results suggest two main outcomes. First, exploiting TVHs may im-
prove the accuracy of the estimation of an epidemic diffusion; second,
correctly modeling the time interval within which direct or indirect con-
tagion may happen is critical to not overestimate either contagion type.

Built on top of the TVH model, we also proposed a fine-grain model-
ing methodology for Non-Pharmaceutical Interventions (NPIs). We then
delved into reviewing personal protective, environmental, and social dis-
tancingmeasures and how they can be embedded into an epidemiological
model based on high-order networks, ABMs, and the SIS equation-based
model. We further described how we formally enriched the TVH mod-

1https://www.wipo.int
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eling framework to support the evaluation of NPIs. After assessing the
ability of each intervention in controlling an epidemic propagation, we
discussed a multi-objective optimization framework, which, based on the
epidemiological data, calculates the NPI combination that should be im-
plemented to minimize the spread of an epidemic as well as the damage
due to the intervention.

Broadly translated, our findings indicate that the effects of NPIs in
controlling an epidemic are indisputable; however, the potential benefit
of their introduction in our society is functional to a massive and correct
application in the population.

The impact of research about epidemic-spreading phenomena became
evident since the beginning of the current COVID-19 pandemic. Working
towards more realistic epidemic diffusion models could allow us to dis-
cover key spreaders and immunize them effectively. These choices could,
in turn, inform policy-making systems and processes to avoid critical sce-
narios and the application of the strictest NPIs.

ǘǘWǙ 
<;<8' �380
The topics discussed in this dissertation leave room for many interesting
future developments. These lines of inquiry span different research di-
rections and aim to exploit different solution paradigms, for instance, ex-
ploring learning techniques, like deep learning (DL) [85] for networks
and reinforcement learning (RL) [174].

Coding hypergraphs. SimpleHypergraphs.jl is under active development.
In 2019, the library was presented to the JuliaCon conference2 and
currently stands as the standard library to manipulate hypergraphs
in Julia. We plan to continue integrating hypergraph-specific algo-
rithms in SimpleHypergraphs.jl to provide a comprehensive frame-
work comparable to the state-of-the-art graph libraries. We further
plan to realize a comprehensive and interactive hypergraph reposi-

2https://www.youtube.com/watch?v=8Zfv9bySFBw
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tory to provide the community with a tool to easily access domain-
specific hypergraphs and their basic structural properties (e.g., along
the lines of Network Repository3 and SNAP4).

Influence diffusion on hypergraphs. Looking at the social influence research
field, first, the same procedures discussed in this dissertation may
be exploited tomeasure influence diffusion over groups (hyperedges)
rather than over single individuals (vertices). In real-world or on-
line social networks, groups play an essential role in understand-
ing people’s personal behaviors. Therefore, it is critical to system-
atically study how the many influences the single person when fi-
nal decisions depend upon groups of people. Second, motivated
by the lack of extensive studies on information diffusion processes
on high-order structures, another research path could be develop-
ing other diffusionmodels suitable for hypergraphs. Having several
approaches to analyze influence diffusion patterns will allow using
the most suitable model according to the interactions happening in
the real world. Finally, another interesting line of inquiry would
be studying diffusion phenomena in heterogeneous hypergraphs,
where both vertices and relations may be of more than one type,
thus giving birth to different diffusion processes that may influence
each other.

Epidemic dynamics via hypergraphs. Regarding the study of epidemic dy-
namics via hypergraphs, a crucial research line is the design, de-
velopment, and analysis of immunization strategies that exploit the
high-order nature of the underlying contact network to more ef-
ficiently and effectively identify and block super-spreaders. This
problemhas been traditionally tackled in network science using heuris-
tics based on some structural properties of the contact network [186].
Other than testing the effectiveness of these heuristics on hyper-
graphs, we could also explore DL techniques and RL approaches

3http://networkrepository.com/
4http://snap.stanford.edu/data
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to find the most critical vertices. Clearly, this problem and its pos-
sible solution methodologies straightforwardly transfer to the so-
cial influence diffusion domain. A second helpful contribution is
the development of other compartmental models to include in the
TVH framework, within which higher-order diffusion phenomena
can be examined. As for the study of influence phenomena, having
different diffusion models will enable the use of the most suitable
real-world abstraction.

Hypergraphs have risen to prominence in the academic and industry land-
scape in the last ten years. The new computational possibilities and the
consciousness that high-order interactions cannot be overlooked when
modeling and studying real-world systems have given a start to new re-
search areas and renewed efforts in topicswhere graphs dominated. Many-
to-many relationships are everywhere in the world around us, and the
need to re-think high-order embodies a paradigm shift that will reshape
and expand network science as we know it.
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