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ABSTRACT 

Drought is a natural phenomenon that has widespread and significant effects on the global economy, 

environment, industries, and communities. early drought detection allows for the implementation, 

mitigation strategies and measures before its occurrence. Therefore, drought assessment is critical 

in the planning and management of water resource systems, particularly during dry climatic periods. 

However, assessing droughts is not always simple. 

This study described and evaluated drought conditions in Campania (southern Italy) using an in-

situ measurement database that spans a centennial period from 1918 to 2019. With the assistance 

of these tools, water managers may more accurately assess droughts and prepare in advance for 

water management operations during droughts. Since water resource management in our area was 

crucial, the Campania region in southern Italy was selected as the case study region. To achieve the 

objectives of this study, an analysis of the precipitation coefficient of variation, assumed as index 

of inter-annual climate variability, was first performed over the period 1918-2015. Based on the 

findings of the above analysis and with the aim of reconstructing continuous long-term monthly 

scale precipitation time series, the in-situ point measurements (observed at the rain gauge locations) 

for the two datasets were projected on a 10×10 km resolution grid covering the whole region by 

using a geostatistical interpolation approach. 

Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index 

(SPEI) time series were reconstructed for different accumulation timescales (from 3 to 48 months) 

to explore the full range of drought types. The modified Mann–Kendall and Sen's tests were applied 

to identify SPI and SPEI changes over time. In addition, the impact of the vegetation stress to better 

understand causes of the drought phenomenon was evaluated. Drought characteristics (Duration, 

severity and peak) were furthermore investigated for both moderate (SPI/SPEI ≤ −1) and extremely 

severe conditions (SPI/SPEI ≤ −2). 

Spatial autocorrelation was used too, to evaluate whether the different events studied have similar 

characteristics in terms of spatial aggregation, i.e., if there are areas increasingly affected by drought 

and how they are affected. The same events in which drought was already assessed with the SPI 

and SPEI indices were taken into consideration, i.e., the events of 1962, 1989, 2003 and 2017.
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 INTRODUCTION  

1.1 Background 

The climate has changed and will continue to change in the future due to 

greenhouse gases, atmospheric aerosols, and human (anthropogenic) activities; thus 

significant climate change is expected in the future (IPCC 2014) 

According to the Intergovernmental Panel on Climate Change (IPCC) (IPCC 

2014), the atmospheric concentration of CO2 has increased from 345 ppm in 1750 

to 405 ppm in 2011 and is projected to reach 463-640 ppm by 2050 and 800-1313 

ppm by 2100. The IPCC further states that the global average air temperature has 

increased over the 21st century by about 0.9 ± 0.6°C. This is the largest increase of 

any century in the last 1,000 years. Under different emission scenarios, all 

atmospheric general circulation models (AGCMs) project a further increase in global 

average temperature of 2-6 °C by the end of the 21st century and high interannual 

climate variability (Giorgi 2006, Raymond et al. 2016, Ullmann et al. 2018). These 

changes in atmospheric temperature and terrestrial radiation balance may affect 

several components of the hydrological cycle, such as changes in rainfall patterns, 

increases in atmospheric water vapor, increases in evaporation and changes in soil 

moisture and runoff, leading to an increase in extreme events (heat waves, intense 

precipitation, droughts) (Longobardi and Van Loon 2018). In addition, according to 

the Sixth and latest assessment report (AR6) of IPCC (IPCC 2021), no region will 
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be invulnerable to the effects of climate change, with enormous human and economic 

costs that far outweigh the costs of the action.  

Droughts and fires will worsen in Southern Africa, the Mediterranean, the 

Amazon, the western United States, and Australia, affecting livelihoods, agriculture, 

water systems, and ecosystems (IPCC 2021);  moreover, snow, ice, and river 

flooding are expected to have an impact on infrastructure, transportation, energy 

production, and tourism in North America, the Arctic, Europe, the Andes, and 

elsewhere. Storms are expected to intensify over most of North America, Europe, 

and the Mediterranean (IPCC 2021).  

Drought is the most challenging natural phenomenon where its frequency has 

increased significantly in recent years representing a direct effect of climate change 

(Tramblay and Somot 2018). Compared to other natural hazards (e.g., floods, 

landslides, earthquakes, etc.), drought has a broader impact on multiple areas. It can 

cause famine, conflicts, and displacement of populations. It affects economic 

development and health systems (Wilhite et al. 2014). It disrupts and threatens 

biodiversity through the disappearance of species or the proliferation of others, the 

aridification of wetlands, etc. It is a complex multidimensional phenomenon whose 

most representative features are: frequency, severity, duration, and spatial extent 

(Mathbout et al. 2018). Human-induced climate change and substantially associated 

heatwaves are increasing the frequency of drought events, multiplying their 

durations and intensifying their severity (Spinoni et al. 2019, Sillmann et al. 2021). 

This will increase the probability of occurrence of extreme drought events in the 

future and consequently increase the complexity of the hydrological cycle in many 

regions of the world and increase the risk of changing flow characteristics and 

extremes (AghaKouchak et al. 2020). This implies the need for better identification 

and quantification of changes in the extremes of projected precipitation, temperature, 

and runoff indices.  

In addition, water deficit during drought periods as well as increasing 

temperatures is one of the most important stressors in global crop production. Indeed, 

the geographic shift in climatic conditions makes many crops, agricultural plains, 
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and grasslands more vulnerable in terms of crop type, spatial extent, or even 

existence (Bachmair et al. 2018, van Ginkel and Biradar 2021). These effects will 

vary depending on the location, current climate, and species composition of each 

plain or grassland (Inoue et al. 2021). Considering that the world's population is 

estimated to reach 9.1 trillion by 2050 (Desa and Affairs 2019), understanding the 

effects of agricultural drought and water stress on food and agricultural production 

on a global scale has become of general interest in the scientific community. 

Drought manifests itself in several ways, including meteorological drought, 

hydrological drought, agronomic drought, and edaphic drought (Mishra and Singh 

2010). For efficient management of agricultural production, the identification of 

climatic variables and their influence on the duration and severity of hydrological 

drought is necessary. Indeed, meteorological drought is recognized by the 

Intergovernmental Panel on Climate Change (IPCC) (Salvador et al. 2020) as the 

main factor causing other types of droughts (e.g. hydrological, agricultural, and 

socio-economic). However, they occur either simultaneously or with a different time 

lag (Hao et al. 2018). Prolonged rainfall deficits can lead to a drop in storage 

reservoir levels below normal. This, together with overexploitation of groundwater, 

results in a hydrological drought that puts agricultural production and food security 

at risk and can lead to long-term socio-economic problems (i.e., inability to satisfy 

the demand for economic assets, such as drinking water, cereals, hydropower 

generation, etc.)(Yves et al. 2020).  

The combined effects of meteorological and hydrological droughts set off 

agricultural drought, a period when soil moisture decreases, and crops fail due to a 

shortage of surface and groundwater resources. Therefore, agricultural plains will be 

affected, so among agricultural, meteorological, and hydrological droughts, more 

attention should be given to hydrological drought because of its direct relationship 

with humans (Mishra, Tiwari et al. 2019). Many investigations around the world 

have been conducted to understand, characterize, and predict hydrometeorological 

variations (Mishra and Singh 2011, Wood, Schubert et al. 2015, Diaz, Corzo et al. 

2019, Forootan, Khaki et al. 2019, Haile, Tang et al. 2020). Indeed, the occurrence 
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of intense precipitation events has increased globally in recent decades (Trenberth et 

al., 2015). The seasonality and spatial distribution of precipitation will also shift, 

making it challenging to reach inferences about how climate change will affect 

meteorological drought. (Fischer and Knutti 2015, Lehmann, Mempel et al. 2018, 

Papalexiou and Montanari 2019).  

The Italian territory is vulnerable to drought episodes, and unfortunately the 

temporal consistency and the spatial resolution of available data by rain gauge 

stations are frequently inadequate for drought characterization analysis. Beyond 

ground rainfall observations, data from global weather datasets can be considered, 

but their coarse spatial resolution makes them poorly effective especially in 

capturing the high precipitation variability that affects the southern European region. 

In this context, historical in situ long-term measurements are crucial for 

understanding historical drought conditions as they allow us to learn about how a 

specific region has been affected by precipitation shortage periods in the past, how 

severe the response was and how quickly it took to recover from drought conditions 

(Bonaccorso, Peres et al. 2013, Marini, Fontana et al. 2019). 

Several approaches, such as measurement of lack of rainfall, shortage of 

streamflow, reduced levels of water storage, and Drought Indices, have been used in 

the past as drought assessment tools. Drought Indices are widely used for drought 

assessment among these (Hayes 2002, Keyantash and Dracup 2002, Ntale and Gan 

2003, Tigkas, Vangelis et al. 2015). A drought Index is a function of a set of hydro-

meteorological variables (for example, rainfall and streamflow) and is expressed as 

a number that is more useful than raw data during decision making (Belayneh, 

Adamowski et al. 2012). However, defining an appropriate drought Index is not 

always an easy task, and researchers and professionals face difficulties in developing 

an appropriate Drought Index (Heim Jr 2002). As a result, the primary task in this 

thesis is to describe drought conditions and their evolution in Campania (southern 

Italy) using appropriate drought indices, relying on hydro climatological data at the 

grid cell level. 
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Unfortunately, slight attention has historically been paid to the aspect of 

drought assessment, particularly on a regional scale, which is critical for drought 

planning and early warning. Because of this focus on crisis management, many 

communities have shifted from one scenario to another with little or no risk 

mitigation (Wilhite, Sivakumar et al. 2014). Furthermore, it is not rare that another 

drought event occurs before the region recovers fully from the previous event. 

However, an early warning of drought conditions may reduce future impacts and the 

need for government control (Gutiérrez, Engle et al. 2014, Wilhite, Sivakumar et al. 

2014). Therefore, contributing to the development of a drought assessment tool that 

can be useful for drought preparedness is considered as the main task of this thesis. 

1.2 Motivation of the study 

Drought and drought management have always been important issues in the 

context of water resource management in the Mediterranean basin, particularly in 

southern Italy. Drought assessment activities in Italy have increased in recent years 

as a result of the country's longest ever recorded drought over the last decade 

(Spinoni, Naumann et al. 2015). However, as previously stated, the drought 

assessment is still in its early stages. As a result, the main motivation for this research 

project was the lack of a suitable drought assessment tools for predicting drought 

conditions. 

The current research was also inspired by the fact that there are two different 

sources of hydro climatological data where the spatial location, the typology of the 

measuring instruments, and the complex topography of the region all show a change 

in the coherence of the two datasets that make it more difficult to merge and 

homogenize. For this reason, we decided to reconstruct a continuous long-term 

monthly scale precipitation time series, the in-situ point measurements (observed at 

the rain gauge locations) for the two datasets were projected on a 10×10 km 

resolution grid covering the whole region by using a geostatistical interpolation 

approach. Projecting the two distinct database point measurements to a common grid 
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made it possible to reconstruct centennial monthly precipitation time series from 

1918 to 2019, which is crucial for long-term historical drought condition analysis. 

This research was also motivated by the lack of an adequate drought 

assessment tool (such as a drought indices) that can be used to define critical drought 

conditions for providing government support to drought-affected communities. 

Actually, there is no EU directive or policy specifically dedicated to drought 

management at the present time, but current legislation, sectoral policies, and 

instruments – binding or not – in the fields of water, agriculture, climate change, 

energy, industry, transport, nature protection, and biodiversity are partially or 

marginally related to drought management and can thus support drought 

management policies (Vogt and Somma 2013). 

Experts analysed EU policies related to water, agriculture, climate change, 

energy, industry, transportation, nature protection, and biodiversity in this revision 

based on five criteria: 1) monitoring; 2) incentives for water efficiency and circular 

economy; 3) knowledge and research; 4) drought management measures and plans; 

and 5) financial instruments (Fava, Gardossi et al. 2021). Moreover, selecting a 

suitable drought assessment tool (i.e., DI) to define drought conditions, including 

drought exceptional circumstances, is critical. Consequently, this study was also 

motivated by the fact that, while many drought indices have been developed around 

the world, many existing DIs have been developed for specific regions. Although a 

few studies have been conducted in other parts of the world, the suitability of these 

DIs have not been tested for the Campania region southern Italy (Heim Jr, 2002; 

Keyantash and Dracup, 2002; Smakhtin and Hughes, 2004; Morid et al., 2006). 

1.3 Aims of the study 

The main aim of the current thesis is to assess drought features in the 

Campania region of southern Italy by analysing the spatial and temporal pattern 

characteristics of different drought indices (derived from hydro-meteorological data 

and remote sensing data) time series computed at various accumulation scales over 
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a centennial period from 1918 to 2019. Furthermore, an auxiliary objective of this 

study is the reconstruction of high-resolution hydro-climatological gridded data for 

the Campania region (southern Italy) based on a monthly data set of over 380 stations 

covering the entire region and parts of the surrounding regions from 1918 to 2019.  

1.4 Research methodology in brief 

In order to achieve the above objectives, the following tasks were conducted 

in this research project: 

• Review of drought and drought assessment methods. 
• Selection of the study area, and data collection and processing 
• Evaluation of the change in long-term precipitation variability 
• Reconstruction of the hydro-climatological database  
• Evaluation of selected drought indices 
• Assessment of drought hotspots using remote sensing.  

1.4.1 Review of Drought Assessment 

As mentioned previously, several methods have been used in the past as 

drought assessment tools. Among these, several drought indices have 

been the most used for drought assessment by researchers and 

professionals worldwide (e.g., Gibbs and Maher, 1967; Shafer and 

Dezman, 1982; McKee et al., 1995; Keyantash and Dracup, 2004). 

However, in recent decades, there has been an increase in interest among 

researchers worldwide in comparing drought indices (Dubovyk et al. 

2019; Seiler et al. 1998; Zhou et al. 2012). Distinct ways to quantifying 

drought exhibit different characteristics, and different drought indices are 

appropriate for varying conditions because different data constraints are 

put on the construction of various drought indices.. Therefore, a review of 

existing indices was first conducted in this research to understand the 

suitability of existing indices for use in regions outside of those for which 

they were originally developed. Similarly, several drought prediction 
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modeling techniques have been used to develop drought assessment 

models (e.g., Kim and Valdes, 2003; Mishra and Desai, 2005; Barros and 

Bowden, 2008; Cutore et al., 2009). A review of these techniques was 

conducted to select the appropriate technique to assess the phenomenon 

and its characteristics. 

The Campania region in southern Italy was selected as a case study area 

in this research with the aim of reconstructing a long-term database and 

assessing drought and its characteristics. This region was selected because 

the management of water resources in the region is of great importance 

for the population and the agriculture. Hydrometeorological data (for 

several locations in the region) was collected from several organizations 

for use in this research. Data processing was then carried out to obtain the 

representative values of the region which were used for the reconstruction 

of the hydro-meteorological database and the evaluation of the drought 

indices and drought characteristics. 

1.4.2 Selection of the study area, and data collection and 

processing 

In this study, the Campania region and some limitrophe area in southern 

Italy was chosen as the case study area to evaluate drought indicators and 

reconstruct a historical database of different meteorological variables. The 

region was chosen since the management of water resources in this region 

is critical to the majority of the Campanian population, and different 

regions rely on the region's agricultural production. Hydro-meteorological 

data (for several locations in the Campania region) were gathered from a 

variety of sources for use in this study. The data was then processed to 

obtain region representative values, which were used for evaluating 

drought indicators and reconstructing hydro climatological variables. 
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1.4.3 Evaluation of the change in long-term precipitation 

variability 

 

Due to the obvious high precipitation variability that affects specific 

regions of the globe, coarse spatial resolution data from global weather 

datasets or climate models are ineffective; thus, historical in situ 

measurements are critical for reliable drought conditions assessment 

(Marini et al. 2019). The Mediterranean basin, in particular, is well known 

to be characterized by high climate variability (Luterbacher et al.,2006) 

and has been identified as one of the most outstanding "Hot-Spots" in 

future climate change predictions (Giorgi, 2006). Given the scarcity of 

empirical regional-scale studies based on historical observations, this step 

aims to demonstrate the results in terms of inter-annual precipitation 

variability for a specific area in the Mediterranean basin. The outlined 

context was carried out in the current research to better understand the 

change in inter-annual precipitation variability. 

1.4.4 Reconstruction of the climatological database 

Climate data are vital inputs for most of the hydrological operational 

purposes and water resource planning trials in continuous space. Usually, 

the spatial distribution of environmental data is estimated by using 

ground-based point data from sparsely located gauge stations. The 

objective of this study is to reconstruct a historical gridded database of 

climate variables by merging two distinct gauge sets of Campania region 

(Italy) available from different national agencies for the period 1918-2000 

and 2000-2019, where two datasets are characterized by the change in 

consistency, spatial location, type of gauge stations lying in the complex 

topography of the region. The merging approach is based on testing four 
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geostatistical methods (Ordinary Kriging [OK], Ordinary Cokriging 

[OCK], Empirical Bayesian Kriging [EBK], Detrended Kriging [DK]) 

and one deterministic interpolation method (Inverse Distance Weighting 

[IDW]) for enhanced monthly rainfall and temperature spatial 

interpolation. The in-situ point measurements for the two datasets were 

projected on a 10km x 10km resolution grid covering the whole region. 

The resulted datasets will be used then for chapter 6 to calculate the 

different drought indicators. 

1.4.5 Evaluation of selected Drought indices 

Existing drought indices have been developed primarily for use in specific 

regions, and thus may not be directly applicable to other regions due to 

the inherent complexity of drought phenomena, different hydro-climatic 

conditions and watershed characteristics (Redmond, 2002; Smakhtin and 

Hughes, 2007). There had been a few studies evaluating these indices 

worldwide (Heim Jr, 2002; Keyantash and Dracup, 2002; Smakhtin and 

Hughes, 2004; Morid et al., 2006). However, no such study has been 

conducted for the Campania region. Therefore, an evaluation of a few 

selected indices was carried out to search for the most appropriate drought 

indices to define the drought conditions in the Campania region. A variety 

of decision criteria were used in this drought index assessment study. The 

significance of the research project and its overall outcomes are discussed 

in this section. This section also includes a list of innovative ideas that 

have developed as a result of this research. 

1.4.6 Assessment of drought hotspots using remote sensing 

As mentioned in section 1.1, depending on the consequences of drought, we 

can distinguish different categories: meteorological drought, in case of a relative 

decrease in precipitation; hydrological drought, in the presence of a relatively scarce 
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supply of water in the soil or in watercourses; agricultural drought, in case of deficit 

of water content in the soil that determines stressful conditions in the growth of 

crops; socioeconomic drought, if referred to the overall consumption on the territory. 

The anomalies of precipitation are due to the characteristics of the climate that 

influences the hydrological cycle. The climatology of precipitation, temperature and 

atmospheric humidity provides information on the frequency, intensity of 

precipitation and the correlation between temperature and precipitation. Among the 

vegetation indices, the main one is the NDVI (Normalized Difference Vegetation 

Index) calculated from satellite images, from which the photosynthetic activity, 

which is reduced in case of water stress, is evaluated. The following thesis work aims 

from one hand to analyse the drought seen through the climatic indicators SPI and 

SPEI and the water stress on vegetation measured through the NDVI vegetation 

index, limiting the considerations to the Campania Region, in order to outline any 

connections that are present between the two drought phenomena. In addition, we 

want to study how drought conditions develop over time and space, to find out if 

there are areas of the region that are particularly exposed and if dry periods impact 

the region always with the same severity. 

1.5 Research Significance and Outcomes 

1.5.1 Significance 

This research project contributes to a scientific advancement in the field 

of water resource management, particularly in the management of water 

resources during drought conditions. These contributions are as follows: 

• An analysis of the precipitation coefficient of variation, assumed 

as index of inter-annual climate variability, was performed over 

the period 1918-2015 and compared with the annual precipitation 

regime and the intra-annual precipitation variability of the same 

region. Therefore, the Mann-Kendall and the Modified Mann 
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Kendall tests were applied to detect the sign and significance of 

the temporal changes and the Sen’s test was applied to quantify 

the temporal changes in inter-annual variability; 

• Due to the significant influence of orography in the study area, 

the Ordinary Cokriging method was found to be the best 

interpolating method for the interpolation of the merged series 

over a century. This historical gridded database of climate 

variables was reconstructed by combining two distinct gauge sets 

of Campania region (Italy) available from different national 

agencies for the periods 1918-2000 and 2000-2019. 

• This study was the first to evaluate existing drought indices in the 

Campania region. The SPI was found to be the best drought index 

among the existing indices investigated in this study. The overall 

result of this indices evaluation study was a valuable contribution 

to the hydrologic and water resource management community 

worldwide in general, and the Campania region in particular. 

1.5.2 Outcomes 

The outcomes of this study are outlined below: 

• The average coefficient of variation (CV) characterization and 

spatial pattern revealed a generalized condition of statistically 

significant increase in inter-annual variability almost across the 

entire analyzed area, with only a very moderate spatial 

consistency detected, besides, it was found that larger CV values 

appear associated to large mean annual precipitation (MAP) and 

large precipitation concentration index (PCI) values. 

• Using a comparative approach, it was determined that the 

Ordinary Cokriging method was the best interpolation technique 

for the interpolation of the merged series over a century in order 
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to reconstruct long historical in situ long-term measurements that 

are essential for comprehending historical drought conditions and 

developing mitigation strategies to further combat future climate 

change impacts. 

• SPI and SPEI yield almost the same results, with SPI being 

slightly more severe than SPEI, in addition, when comparing the 

indices from 191 grid points, similar variability was observed. 

The variability was most likely caused by moisture loss to 

evapotranspiration during the spring/summer season, which is 

accounted for by the SPEI. 

• The comparative study that was conducted between SPI, SPEI 

and the vegetation index NDVI showed that the SPI was a better 

drought indicator than others, furthermore the SPI was found to 

be the most suitable drought indicator for defining drought 

conditions within the Campania region. In addition, it was not 

possible to affirm that due to the pluviometric deficits shown by 

the SPEI there was a water deficit for the vegetation because the 

climatic condition of the Campania Region is part of a sub-humid 

climate. 

• Spatial autocorrelation using the Moran index was an important 

step in determining whether the different events studied have 

similar spatial aggregation characteristics. 

1.6 Outlines of the thesis 

The outline of the thesis is presented in Figure 1.1. This figure shows that 

the thesis consists of eight chapters. The first chapter describes the background of 

the research project, the motivation for the study, the aims, a brief 

methodology, the significance, and outcomes of this project. The second chapter 

presents a critical review of literature related to the research project. Details on 
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the case study catchment and its importance, drought history in the Campania 

region, data used in this research, and their sources and processing are illustrated 

in the third chapter. The fourth chapter provides details on the regional changes 

in inter-annual precipitation variability for the case study area. The reconstruction 

of gridded climatological database (precipitation and temperature) is presented in 

the fifth chapter. The sixth chapter provides the evaluation of drought indicators, 

their performance evaluation, and the selection of the best index in this study. 

Drought hot spot analysis using local indicators of spatial autocorrelation are 

presented in the seventh chapter. Finally, a summary of the thesis and the main        

conclusions, and the recommendations for future work are presented in the eighth 

chapter. 
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Figure 1.1:  Outline of the thesis
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Chapter 2 

 REVIEW OF DROUGHT ASSESSMENT TOOLS 

2.1 Overview 

Drought is a complex natural phenomenon with serious consequences for 

effective water resource management. Drought, in general, gives the impression of 

scarcity of water due to insufficient precipitation, high evapotranspiration, and over-

exploitation of water resources, or a combination of all the above (Bhuiyan, 2004). 

Droughts are classified into three types: meteorological, hydrological, and 

agricultural. The meteorological drought is defined solely by the amount of dryness 

measured in terms of rainfall deficit (Keyantash and Dracup, 2004). The 

hydrological drought, on the other hand, is defined by a lack of available water in 

the form of streamflow, reservoir storage, and groundwater depths (Wilhite, 2000). 

The agricultural drought is expressed in terms of soil moisture deficits and takes into 

account rainfall deficits, soil water deficits, evapotranspiration variation, and other 

factors (Hounam, 1975). Furthermore, the American Meteorological Society (1997) 

established a new drought category known as socioeconomic drought. This type of 

drought occurs when physical water shortages begin to have an impact on people's 

health, well-being, and quality of life. This drought is beginning to have an impact 

on the supply and demand for economic products such as water, hydroelectric power 

generation, and so on. Drought puts an enormous strain on rural and urban water 

resources, as well as agricultural and energy production. As a result, timely 

determination of the level of drought will aid decision-making in reducing the effects 

of drought. 



Chapter 2:  REVIEW OF DROUGHT ASSESSMENT   

 

 25 

 

This type of drought occurs when physical water shortages begin to have an impact 

on people's health, well-being, and quality of life. This drought is beginning to have 

an impact on the supply and demand for economic products such as water, 

hydroelectric power generation, and so on. Drought puts an enormous strain on rural 

and urban water resources, as well as agricultural and energy production. As a result, 

timely determination of the level of drought will aid decision-making in reducing the 

effects of drought. 

As mentioned in Section 1.1, several methods have been used in the past as 

drought assessment tools, including the measurement of lack of precipitation, lack 

of river flow, temperature increase, and drought indicators, among others. However, 

traditionally, the most common drought assessment tools have been drought 

indicators, which have been used to estimate future dry conditions. This is because 

drought indicators are expressed as a number, which is considered much more 

functional than raw data in decision-making (Hayes, 2003). In general, the drought 

index is a function of several hydro-meteorological variables such as rainfall, 

temperature, streamflow, and storage reservoir volume. Some researchers and 

professionals make the argument that drought is simply a lack of rainfall and that it 

can be defined with rainfall as the single variable. The majority of the available 

drought indicators, such as Deciles (Gibbs and Maher, 1967), Percent of Normal 

(PN) (Hayes, 2003), Standardized Precipitation Index (SPI) (McKee et al., 1993; 

Ganguli and Reddy, 2014), and many others, were developed with rainfall as the 

only variable. These rainfall-based drought indicators are more widely used than 

other drought indices due to their lower input data requirements, flexibility, and ease 

of calculation (Smakhtin and Hughes, 2004). Other drought researchers and 

professionals, on the other hand, argue that rainfall-based drought indicators do not 

encompass all types of drought conditions because they can only be used to define 

meteorological droughts (Keyantash and Dracup, 2004; Smakhtin and Hughes, 

2004). According to Smakhtin and Hughes (2004), drought assessment should 

consider important components of the water cycle (rainfall, temperature and storage 

reservoir volume). Byun and Wilhite (1999) previously held the view, stating that a 

valid drought index should include a combination of hydro- meteorological 

variables. Based on these concepts, (Shafer and Dezman, 1982) and (Keyantash and 
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Dracup, 2004) developed two drought indicators, the Surface Water Supply Index 

(SWSI) and the Aggregated Drought Index, which take into account a variety of 

hydro-meteorological variables such as rainfall, streamflow, and others. In addition 

(Vicente-Serrano et al., 2010) stated that the SPEI index is designed to consider both 

precipitation and potential evapotranspiration (PET) in determining drought. It 

should also be noted that the majority of drought indicators developed were regional, 

and some drought indicators are better suited for specific uses than others (Redmond, 

2002; Hayes, 2003; Mishra and Singh, 2010). As a result, before adopting any of the 

existing drought indicators for use in specific areas other than those for which they 

were originally developed, a review of the existing drought indicators is expected.  

The current chapter has two goals: (1) to review the existing drought 

assessment tools that have been used to define the drought conditions, The outcome 

of this chapter will be the identification of the best drought indicator for accurately 

describing the spatial and temporal characterization of drought conditions in the 

Campania region, which will be critical information for long-term and efficient water 

resource management planning strategies. 

2.2 Drought assessment tools 

As previously stated, several drought assessments tools have been used in 

the past, and Drought Indices have been the most commonly used to assess drought 

conditions around the world, because they are more functional than raw data in 

decision making. These drought indicators were used to stimulate drought relief 

programs and quantify water resource deficits in order to assess the severity of the 

drought. They were also used to monitor the drought. Palmer (1965) was the first to 

introduce a drought index called Palmer Drought Severity Index (PDSI) in the 

United States in the mid-twentieth century to define meteorological droughts using 

a water balance model. PDSI became popular almost immediately after its 

development and was the most widely used DI in the United States until Alley (1984) 

identified its limitations. Other drought indicators developed over time include the 

widely used Percent of Normal (PN) (Willeke et al., 1994), Deciles (Gibbs and 

Maher, 1967), Standardized Precipitation Index (SPI) (McKee et al., 1993). etc.…. 
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According to Vincente Serrano (2010), the SPI was unable to identify the role of a 

temperature increase in future drought conditions, and it cannot account for the 

influence of temperature variability and the role of heatwaves, such as the one that 

hit Central Europe in 2003. They developed the SPEI index to account for the 

potential effects of temperature variability and temperature extremes other than 

global warming. In addition, one of the most important indicators of drought events 

is vegetation growth. Greenness-related vegetation indices (VIs) such as the 

Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation 

Index (EVI) are frequently used to assess agricultural drought. There is a need to 

assess the sensitivity of water-related vegetation indices to drought and its 

consequences. In the current chapter we will review only the drought indicators 

adapted to our study area, such as SPI, SPEI, NDVI and EVI. 

2.2.1 Meteorological, Agricultural and hydrological drought 

indices 

The availability of data is critical for the development and implementation 

of a drought index (Steinemann et al. 2005). Previously, drought indices relied on 

readily available meteorological data from synoptic meteorological stations 

(Niemeyer 2008). RAI (Van-Rooy 1965), BMDI (Bhalme and Mooley 1980), DSI 

(Bryant et al. 1992), NRI (Gommes and Petrassi 1994), EDI (Byun and Wilhite 

1999), and DFI (González and Valdés 2006) are all precipitation-only indices. 

Additional meteorological variables have been considered for reasons such as better 

correlation with drought impacts and accounting for temperature temporal trends. 

Modifications to SPI (McKee et al. 1993) are being made in order to develop a more 

comprehensive RDI (Tsakiris and Vangelis 2005) that incorporates 

evapotranspiration, resulting in a better association with agricultural and 

hydrological drought impacts. SPEI was developed by Vicente-Serrano et al. (2010) 

and is sensitive to long-term trends in temperature change. SPEI performs similarly 

to SPI in the absence of such trends. KBDI (Keetch and Byram 1968) was the first 

to consider temperature and has found widespread use in wildfire monitoring. PAI 
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(Pálfai 1991) took groundwater into account in addition to these two indicators and 

was primarily applied to basins within Hungary. 

Approaches to characterizing agricultural drought revolve primarily around 

tracking soil water balance and the resulting deficit in the event of a drought. This is 

true for the seven non-remote-sensing agricultural drought indices studied in this 

study: RSM (e.g., Thornthwaite and Mather 1955), CMI (Palmer 1968), which is 

similar to PDSI but models short-term agricultural by considering moisture deficit 

only in the top 5 feet of soil column (Byun and Wilhite 1999; Narasimhan and 

Srinivasan 2005), and CSDI (Meyer et al. 1993), which was originally designed for 

corn and its variant for soybean (Meyer and Hubbard 1995). The daily transpiration 

deficit (DT) for x days is calculated by DTx (Matera et al. 2007). SMDI and ETDI 

were designed with higher spatial and temporal resolutions in mind (Narasimhan and 

Srinivasan 2005). This method takes into account the soil component of the SWAT 

hydrologic model, which has a resolution of 16 km2. (Compared to then 7 000 to 160 

000 km2 resolutions of SPI and PDSI). SMDI characterizes soil moisture deficit at 

varying depths within the top 2 m of the soil component, "soil profile": top 2 ft 

(SMDI2), 4 ft (SMDI4), and 6 ft (SMDI6). SMDI2 and ETDI (which takes 

evapotranspiration into account) were proposed for short-term drought monitoring, 

and SMDI6 for long-term monitoring. As mentioned below, NDVI (Tucker 1979), 

EVI (Liu and Huete 1995), VegDRI (Brown et al. 2008), TCI (Kogan 1995), and 

NDWI (Gao 1996) are also used to monitor general vegetation state and health (Si 

vakumar et al. 2011). 

In term of hydrological drought indices, the set of this indices aims to 

provide a comprehensive characterization of the delayed hydrologic effects of 

drought. Previously, the sophisticated PHDI (Palmer 1965) model took into account 

precipitation, evapotranspiration, runoff, recharge, and soil moisture. The PDSI 

family of indices has always lacked snow component accumulation, which led to the 

development of SWSI (Shafer and dezman 1982), which is probably the most 

popular of this group. Later, RDI (Weghort 1996) improved SWSI by incorporating 

temperature and thus calculating a variable water demand as input. RSDI (Stahl 

2001) bases its model on homogeneous drought-stricken regions with multiple low-

flow gauging stations nearby. RSDI determines drought-affected areas by 
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calculating the difference in streamflow between current and historic values and then 

using cluster analysis. GRI (Mendicino et al. 2008) and Water Balance Derived 

Drought Index are two additional indices that take a water balance model into 

account (vasiliades et al. 2011). The former is concerned with groundwater resources 

and employs geo-lithological conditions information in a distributed water balance 

model, whereas the latter employs a model that artificially simulates runoff for 

ungauged and low-data watersheds. 

2.2.2 Drought indicators derived from hydro-meteorological 

data 

2.2.2.1 The Standardized Precipitation Index 

McKee et al. (1993) developed the Standardized Precipitation Index (SPI) 

for Colorado, USA, as an alternative to the PDSI. The SPI was developed as a 

drought monitoring tool to quantify rainfall deficits and has been used to monitor 

drought conditions in Colorado since 1994. (McKee et al., 1995). The Colorado 

State University home page has monthly maps of the SPI 

(http://ulysses.atmos.colostate.edu/SPI.html). It is also used by the National 

Drought Mitigation Center and the Western Regional Climate Center in the 

United States. SPI is calculated by fitting a long-term historical rainfall record to 

a probability distribution (generally the gamma distribution), which is then 

transformed into a normal distribution (McKee and Edwards, 1997). Rainfall 

deficits at various time scales have varying effects on various water resource 

components such as groundwater, soil moisture content, and streamflow. Soil 

moisture conditions, for example, respond relatively quickly to rainfall anomalies 

(e.g., days/weeks to a month), whereas groundwater, streamflow, and reservoir 

storage reflect longer-term rainfall anomalies (e.g., months to seasons). As a 

result, the SPI was initially calculated for monthly or multiple monthly time scales 

(i.e. 1-, 3-, 6-, 12-, 24-, and 48-month) as in the PN (McKee et al.,1993). The SPI 

does have more applications around the world than other DIs due to its lower input 

data requirements and flexibility in SPI calculations (Hughes and Saunders, 2002; 

Hayes, 2003; Bhuiyan, 2004; Smakhtin and Hughes, 2004; Mishra and Desai, 
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2005; Morid et al., 2006; Bacanli et al., 2008). The SPI was used by Marini et al. 

(2019) to identify and characterize droughts in Apulia region, southern Italy. 

Cacciamani et al.  (2007) used the SPI to forecast drought conditions in Emilia 

Romagna region, Northern Italy. Although, the SPI has more popularity than any 

other DI, it is not strong enough to define the wider drought conditions since many 

other important hydro-meteorological variables (e.g., streamflow, soil moisture 

condition, evapotranspiration and reservoir storage volume) that affect droughts 

were not considered in SPI (Keyantash and Dracup, 2004; Smakhtin and Hughes, 

2004). Further details on SPI are given in Section 6.3.1. 

2.2.2.2 The Standardized Precipitation Evapotranspiration 

Index 

The Standardized Precipitation Evapotranspiration Index (SPEI) is a variation on 

the widely used Standardized Precipitation Index (SPI). In determining drought, 

the SPEI considers both precipitation and potential evapotranspiration (PET) 

Vicente-Serrano et al. (2010). In contrast to the SPI, the SPEI captures the primary 

impact of rising temperatures on water demand. The SPEI, like the SPI, can be 

calculated over timescales ranging from 1 to 48 months. The SPEI has been shown 

to correlate with the self-calibrating PDSI over longer timescales (>18 months) 

(sc-PDSI) Vicente-Serrano and NCAR (2015). PET can be estimated using the 

simple Thornthwaite method if only limited data, such as temperature and 

precipitation, are available. Variables that can affect PET, such as wind speed, 

surface humidity, and solar radiation, are not taken into account in this simplified 

approach. In cases where more data are available, a more sophisticated method of 

calculating PET is often preferred in order to account for drought variability more 

completely. These additional variables, however, can have significant 

uncertainties. Further details on SPI are given in Section 6.3.2. 

2.2.3 Vegetation indices useful for Drought monitoring  

Effective monitoring of vegetation indexes is also required for understanding 

environmental changes. Vegetation indexes are arithmetic combinations of two or 
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more bands related to vegetation spectral characteristics (Matsushita et al. 2007) 

that have found widespread application in crop phenology monitoring, vegetation 

classification, and the derivation of vegetation biophysical parameters. Vegetation 

index values are typically in the range of 1 to +1. Negative values indicate the 

presence of clouds, snow, water, or urban land, whereas positive values indicate 

the presence of green vegetation (Chen et al. 2006a). According to Phompila et 

al. (2015), the vast majority of remote sensing techniques for monitoring changes 

in vegetation cover have relied on VIs, most notably the Normalised Difference 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). The NDVI 

is the more widely used of the two. When used to monitor vegetation, it can cancel 

out a large portion of the noise caused by topographic effects, clouds or cloud 

shadow, changing sun angles, and atmospheric conditions (Huete, Justice 1999, 

Matsushita et al. 2007). Even though it is accurate, computationally simple, 

efficient, and useful for agricultural land use mapping in tropical environments, it 

has found widespread application (Meera et al. 2015). However, at high biomass 

levels, it becomes more saturated (Gao et al. 2000), and it is also sensitive to 

canopy background variations (Huete 1988). The EVI improves on atmospheric 

correction, index saturation in densely forested areas, and soil reflectance 

influence as an enhancement to the NDVI. (Boegh et al. 2002, Huete et al. 2002, 

Gao et al. 2003, Xiao et al. 2004, Rankine et al. 2017). The EVI also has a greater 

dynamic range than the NDVI, and its improved performance has drawn the 

attention of many researchers. Li et al. (2010) investigated the relationship 

between NDVI and EVI derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument and natural vegetation coverage in 

China's Northern Hebei Province. They found that MODIS-NDVI was more 

correlated with field data of vegetation cover and had obvious advantages for 

predicting natural vegetation coverage than MODIS-EVI. They concluded that 

there is still a need to combine the complementary performances of NDVI and 

EVI for a more detailed understanding of vegetation characteristics and to inform 

planning decisions for more sustainable environments. 
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2.2.4 Other Drought indicators  

Many other drought indicators were cited in the literature, but their applications 

were limited. Table 2.1 contains a list of some of these drought indicators as well 

as brief descriptions of each. This table shows that the majority of the DIs were 

created with rainfall as the sole variable. It can also be seen that the majority of 

these drought indicators are only used in the United States. Alley (1984), 

Keyantash and Dracup (2002), Heim Jr (2002), Tsakiris et al. (2002), Morid et al. 

(2006), Hayes (2003), Smakhtin and Hughes (2004), and Loucks and van Beek 

(2004) provide additional information on the applicability and limitations of these 

drought indicators (2005). 
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Drought Index Drought Definition Application 

Munger Index (Munger, 1916) Length of period in days with daily rainfall less than 

1.27 mm. 

Daily measure of comparative forest fire risk in 

the Pacific Northwest, U.S.A. 

Kince Index (Kincer, 1919) 30 or more consecutive days with daily rainfall less than    
6.35 mm. 

Producing seasonal rainfall distribution maps in 

the U.S.A. 

Marcovitch Index (Marcovitch, 

1930) 
Drought Index = ½(N/R)2; where N is the total number of two 

or more consecutive days above 32.2 0C in a month and R is 

the total rainfall for the month. 

Alarming bean beetle in the eastern United States 

of America. 

Blumenstock Index (Blumenstock 

Jr, 1942) 
Length of drought in days, where drought is terminated by 

occurrence of 2.54 mm of rainfall in 2 days. 

Short term drought management in the U.S.A. 

Keetch - Byram Index (KBDI) 

(Keetch and Byram, 1968) 

 

Rainfall and soil moisture analyzed in a water budget model 

with a daily time step. 

Used by fire control managers for wildfire 

monitoring and prediction in the U.S.A. 
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Crop Moisture Index (CMI) (Palmer, 

1968) 

The CMI was developed from procedures within the 

calculation of the PDSI. The PDSI was developed to monitor 

long-term meteorologicall wet and dry spells, however the 

CMI was designed to evaluate short-term moisture 

conditions across major crop producing regions. The CMI is 

computed using the mean temperature and total rainfall for 

each week within the catchment, as well as the CMI value of 

the previous week. 

Used in the U.S. to monitor week to week changes 

in moisture conditions affecting crops. 

Reclamation Drought Index (RDI) 

(Weghorst, 1996) 

RDI is calculated at the river basin (or the catchment) level 

using a monthly time step, and incorporates temperature, 

rainfall, snow water content, streamflow and reservoir levels. 

Used as a tool for defining drought severity and 

duration, which assisted the Bureau of Reclamation in 

the U.S.A. in providing drought mitigation measures. 

Effective Drought Index (EDI) 

(Byun and Wilhite, 1999) 

The EDI is the rainfall amount needed return to normal 

condition (or to recover from the accumulated deficit 

since the beginning of a drought). 

Used to monitor day to day drought conditions in 

the U.S.A. It was also tested in  Iran (Morid et al., 

2006). 
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Chapter 3 

 CAMPANIA REGION, DROUGHT HISTORY, 

DATA SOURCES AND PROCESSING 

3.1 Overview 

As stated in Chapter 1, this thesis used the Campania region in southern Italy 

as a case study. Campania is a major source of water supply for southern Italy's 

territory. This region's water resource management is critical in terms of a broader 

range of water uses, as well as downstream user requirements and environmental 

flows. However, due to frequent droughts and rising water demand in recent years, 

pressure on water resource management activities in southern Italy has increased 

(Colella, Ripa et al. 2021). Many initiatives have recently been launched to protect 

the environmental health of this territory's waterways, particularly during drought 

periods (Rossi 2020).  

In this study, hydro-meteorological data from the Campania region were used to 

evaluate drought indices and assess drought features and characteristics in the 

region. Throughout the research, historical drought records from southern Italy were 

also used to evaluate the various drought indices. 

This chapter begins by describing the Campania region in terms of land use 

conditions, importance, and water resources. The drought history is then described, 

followed by the sources of hydro-meteorological data used in this thesis. The 
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processing of hydrometeorological data is then presented. Finally, at the end of the 

chapter, a summary is provided. 

3.2 Campania region southern Italy 

3.2.1 Description of the Campania region  

The Campania region is located between 40.0 and 41.5∘ N and 13.5 and 16.0∘ E, 

covering about 13 600 km2 in the southwest of Italy (Figure 3.1). The region is well 

known for a complex orography; the altitude of the region ranges from well above 

2000 m a.s.l. (above sea level) in the Apennine Mountains to the coastline. 

Furthermore, the territory of the Campania region is predominantly hilly. There are 

few plains in the Caserta area, along the Cilento coast and along the course of the 

Garigliano, Volturno and Sarno rivers. The most important plains are the Pianura 

Campana and the Sele plain. Among the mountainous reliefs are the Appennino 

Campano, the Appennino Lucano and the Antiappennino Romano-Campano. The 

highest peaks are Mount Miletto (2050 m), Mount Cervati (1899 m), Mount 

Cervialto (1809 m) and Mount Terminio (1786 m). Along the coast there are 

volcanic massifs, including Vesuvius (a dormant volcano and one of the most 

dangerous in the world because the surrounding area is densely populated), Campi 

Flegrei (a vast volcanic area in which the solfatara of Pozzuoli is of particular 

interest, with powerful sulphur dioxide fumaroles, jets of boiling mud and high soil 

temperatures) and Roccamonfina. From the Tyrrhenian coast to the mountains of the 

Campano-Lucano Apennines, the Cilento and Vallo Diano National Park covers 

181,000 hectares. The region is characterized by a complex climatic pattern because 

of the orography. In addition, the region can be divided into two climatic zones 

Figure 3.2; in the coastal areas the Mediterranean climate prevails even in winter 
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due to the influence of the sea, in the inland and mountainous areas the continental 

climate prevails, where winters are harsher and sometimes accompanied by snowfall 

(especially in Irpinia).  

 

 
Figure 3.1 The studied area with the two rain gauge networks. 
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Figure 3.2. The studied area. Left panel: Study area location in the Italian 

peninsula. Right panel: Köppen climate classification of the study area. 

 

3.2.2 Water supply of the Campania region  

For southern Italy, the Campania region is crucial for its water resources, with 

over 10% of the Italian population (approximately 6 million) living in this region. 

Water resources in the region support a variety of uses valued by the Campanian 

community, including urban water supply, agricultural and horticultural industries, 

downstream user requirements, and flow requirements for maintaining 

environmental flows. The Region has a robust site for soil conservation, where it 

addresses the many challenges pertaining to the region. Campania is crossed by few 

but relatively important watercourses. The Volturno river is the most important one 

https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification
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and it is about 170 km long while the area of the hydrographic basin, which is about 

5600 km2, represents almost the 40% of the whole regional territory. The 

hydrographic basin is constituted from the whole of two important basins: that one 

of the high Volturno, that is identified mainly in carbonate rocks, and that one of the 

Calore Irpino in which prevail the clayey lithotypes. The second river of Campania 

is the Sele which originates from Monte Cervialto from the source of Caposele and 

has a length of about 65 km while its basin has an areal extension of about 3200 km2.  

In Campania, the aquifers supply perennial sources with an average flow of 

more than 40.000 liters per second (Figure 3.3). The source water supplies the 

Campania aqueducts and with about 7000 liters per second also the Apulia aqueduct, 

as well as almost all the irrigation system of the Campania plain, Agro Nocerino-

Sarnese, Sele plain, and Vallo di Diano. The summer qualified agricultural 

production in Campania always depends on the water supplied by the springs as well 

as the water used in the food industry that in part also comes from groundwater 

withdrawals which is always mainly fed by carbonate aquifers. There are also 

numerous agricultural dams in the region, and extraction of water from rivers and 

streams for agriculture is common. A variety of recreational activities, metropolitan 

parks and biodiversity conservation are also present around the region's waterways. 
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Figure 3.3 The 80 groundwater bodies (GWBs) of the Campania region and the 

groundwater monitoring network. In white, the GWB of the “Volturno-Regi Lagni” 

plain (P-VLTR). In light gray, not significant GWBs (Daniela et al. 2019). 

3.2.3 Sources of Water Resources in Campania Region  

As it was mentioned in section 3.2.1, the region is characterized by a complex 

climatic pattern because of the orography. However, the seasonality is well defined, 

with the larger amount of precipitation recorded during the winter periods. The mean 

annual rainfall of the study area ranges from 600 to 2400 mm, whereas the average 

annual temperature is around 17 ∘C. Trends in historical precipitation and their 

seasonal variability were described in Longobardi and Villani (2010) and 



 Chapter 3:  CAMPANIA REGION, DROUGHT HISTORY, DATA 

SOURCES AND PROCESSING   

 

 41 

 

Longobardi et al. (2016). The area is experiencing a moderate negative trend in 

precipitation (− 35 mm/10 years, Longobardi and Villani 2010), especially 

concerning the northeastern and southwestern areas. At the same time, the seasonal 

variability also appeared to be featured by a negative trend, with a transition of the 

precipitation regime from a seasonal to more uniform one. Figure 3.4 shows the 

annual average rainfall for the Campania region and its limitrophe based on the 163 

rainfall measuring stations (which will be discussed in next chapter) for the period 

from 1918 to 1999. This figure shows that the annual average rainfall was around 

1200 mm when consider all years from 1918 to 1999. 

https://link.springer.com/article/10.1007/s00704-022-03972-2#ref-CR21
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Figure 3.4 Mean annual precipitation of the Campania Region and its surrounding 

region, Southern Italy. 



 Chapter 3:  CAMPANIA REGION, DROUGHT HISTORY, DATA 

SOURCES AND PROCESSING   

 

 43 

 

3.3 Drought history in Campania region and southern Italy  

Several droughts have occurred in the Campania region in the past, including 

1962, 1976, 1980-1981, 1988-1989, 1994, 2001-2002, 2003, 2011, 2015, and 2017. 

The European Drought Observatory (EDO, 2018) recorded these historical droughts 

after analysing rainfall and storage records from the time and comparing them to 

their average values. They also noted that during these droughts, there was a severe 

lack of water resources in terms of rainfall and storage reservoir volume, as well as 

negative socioeconomic impacts due to water scarcity. Based on the EDO report, the 

following observations are made: 

1. During the 1962 drought, the monthly average rainfall had fallen 

below 10% of its normal in February 1962. 

2. During the 1976-1977 drought, the monthly average rainfall had 

fallen below 24% of its normal (in November 1977). This drought 

was relatively long in duration. this is due to a very hot anticyclone 

which at beginning of June a very hit Europe, the heat was 

exceptional, with temperature close to +40°C. 

3. Of all droughts recorded until 2015, the worst drought occurred the 

Campania Region was in 2003. 4 weeks the average temperature in 

Italy were above 40°C, and the deaths recorded during the summer 

season were 4000 more than the average. the duration of the 

phenomenon is particularly extensive, from May to the beginning of 

September. 

4. During the period of 2016-2017, The rainfall data recorded by the 

various stations in Campania show that, since December 2016, the 

amount of rain that have fallen, especially in the flat areas of the 

region, are close to zero. In Campania, 18,177 hectares have gone up 
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in smoke to date, equal to 14.57% of the total with damage of over 

363 million euros (source: processing of data collected by the EU 

commission as part of the Copernicus project), the third most affected 

region after Sicily and Calabria. 

Along with the reduction in annual average rainfall, and the diversity of water 

uses and activities, pressure upon water resource management within the Campania 

region has become more intense in recent years especially during the droughts. 

Therefore, the management of water resources in terms of droughts is important 

within the Campania region. 

3.4 meteorological data sources 

In order to reconstruct a historical long-term database and evaluate the 

drought indices and its characteristics, it was necessary to collect the required hydro 

climatological data (precipitation and temperature). This task starts from the study 

of historical series of monthly and annual precipitation values for the Campania 

Region, from 1918 to 2019, starting from the data collected by the gauge network 

stations located on the territory. The collection of precipitation data, over time, has 

been the responsibility of two different agencies: 

• Until the year 2000, data were collected by the Servizio Idrografico e 

Mareografico Nazionale (S.I.M.N.) and published in the Annali Idrologici; 

• From 2000 onwards, data were collected by the Centro Funzionale 

Multirischi of the Protezione Civile Regione Campania. 

The Servizio Idrografico e Mareografico Nazionale (National Hydrographic and 

Tidal Service), initially called Servizio Idrografico Italiano (Italian Hydrographic 
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Service), was established by the D.L. of 17 June and 25 October 1917. In the second 

half of the nineteenth century, leading experts in the field of hydrology and 

hydraulics noted the need for the establishment of national hydrographic service to 

study the national water heritage. The establishment of the Italian Hydrographic 

Service is placed in this historical context. 

The performance of the functions of the S.I.M.N. continued until 2002, the year in 

which the activities of the Service stopped permanently in the state, following the 

adoption of the legislative measures of D. Decree 112/98 which transferred its 

responsibilities in part to the Regions (D.P.C.M. July 24, 2002) and in part to 

A.P.A.T. - Agency for the protection of the environment and technical services 

(D.P.R- 207/2002). In particular, the Compartmental Office of Naples of the 

National Hydrographic and Mareographic Service was transferred to the Campania 

Region to be incorporated, with the D.G.R. 21 December 2001, in the Service 04 - 

Functional Centre for meteorological forecasting and meteo-hydropluviometric and 

landslide monitoring - of the Civil Protection Interventions Programming Sector. 

The Functional Center began its activities in October 2002 and ensures the functions 

already carried out by the former Compartmental Office of Naples of S.I.M.N., 

relating to the historical activities of detection, validation, archiving, and publication 

of climatic, hydrological, and hydrographic quantities concerning the surface and 

underground hydrographic network.  

The Functional Center has started its activities in October 2002 and guarantees the 

functions already carried out by the former Compartimental Office of Naples of 

S.I.M.N., related to the historical activities of survey, validation, filing and 

publication of climatic, hydrological and hydrographic quantities concerning the 

surface and underground hydrographic network. 
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In this study, the information obtained from the hydrological annals consisted of 

daily rainfall observations, from 1918 to 1999, recorded in 154 rainfall stations 

located in the Campania Region and the provinces of Latina, Rome, Frosinone, 

Isernia, and Potenza. Subsequently, with the transfer of responsibilities from the 

Compartimental Office of Naples of the S.I.M.N. to the Multihazard Functional 

Centre of the Civil Protection of the Campania Region, the spatial distribution, as 

well as the number of stations distributed over the territory, has undergone changes. 

In this study, the rainfall data recorded in 186 stations located in Campania were 

taken into account for the years 2000-2019 (Figure 3.5 comparison of the 

distribution of stations between the two databases). 
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Figure 3.5 The two rain gauge networks: Red colour: SIMN raingauge station, 
Green colour: Centro Funzionale Multirischi of the Protezione Civile Regione 
Campania Rain gauge station. 
 
First, data from 1918 to 1999 (82 years) and 2000 to 2019 (20 years) were used in 

this study to reconstruct a continuous database, and the resulting gridded data will 

be used for drought purposes. This data were either available or estimated for all 

variables (i.e. precipitation, temperature and potential evapotranspiration). 

However, drought indices were developed on a monthly time scale because monthly 
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drought indices are more appropriate for operational purposes and have a lower 

sensitivity to observational errors (McKee et al., 1993; Mishra and Singh, 2010). 

3.5 Meteorological data processing 

In total, almost 400 precipitation and temperature stations were used to calculate 

monthly values for the region. The numbers, names, and geographical coordinates 

of each of the measuring stations are presented in Appendix 1, for the precipitation 

and temperature stations respectively, and their spatial locations are shown in Figure 

3.5 and Figure 3.6. The data from these stations were used because all of them had 

long historical records, from 1918 to 1999 and 2000 to 2019 for precipitation on the 

one hand, and 1924 to 1999 and 2000 to 2019 for temperature on the other. 

3.5.1 Rainfall data  

Analyses on precipitation data of annual and monthly time series were carried out 

considering two databases. Annual and monthly precipitation time series for over 

400 sites across Campania and Lazio were available. Longobardi and Villani (2010) 

performed a data quality control process, and only 163 rain gauge stations passed a 

time series homogeneity statistical analysis. As it was mentioned in section 3.4, after 

1999, the Regional Civil Protection Department oversaw reorganizing and managing 

the rain gauge network. Around that time, there was a change in the consistency, 

spatial location, and typology of rain gauge stations, which hampered the possibility 

of database merging. In fact, only a subset of 30 stations were discovered to share 

the same location in both databases and to exhibit statistical homogeneity features 

from 1918 to 2015. (Longobardi et al., 2016). The change in gauge location 
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prevented the possibility of reconstructing a long precipitation time series by 

merging the two data bases for the remaining stations. 

3.5.2 Temperature data  

A further 62 stations of the S.I.M.N. have been considered, of which 22 are 

outside the borders of the Campania Region. The period to which this first database 

refers covers the period from 1924 to 1999. After 1999, The temperature stations 

managed by the Centro Funzionale Multirischi della Protezione Civile (Multihazard 

Functional Center of the Civil Protection) were numerous, 98 in total, of which only 

6 are outside the Campania Region (From 2000 to 2019). 

 
Figure 3.6. Spatial location of the rainfall and temperature gauge station in the 
studied Area  
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3.5.3 Evapotranspiration data  

Evapotranspiration depends strongly on the intervention of three factors, 

climatic, geographical, biological and soil. Different equations for estimating 

potential evapotranspiration can be used, most commonly the Thornthwaite equation 

(Thornthwaite 1948) because it is a purely climatic equation that represents the 

evaporative demand of the atmosphere (Allen et al. 1998; Allen et al. 2011). It is 

directly related to the duration of sunshine; it is a very well-known equation used in 

several research works all over the world. 

The estimation of potential evapotranspiration (PTE) was therefore based on the 

above equation; Figure (3.7) shows the average variation of PTE across the study 

area in the month of January considered as the coldest month of the year and in the 

month of July as the hottest month, for the period from 1924 to 2019. 

In January, the average potential evapotranspiration does not exceed 23 mm, this 

maximum value characterizes the mountainous region where the climate is 

extremely humid. The territory is adjacent to the sea (the Golf of Naples, the Amalfi 

Coast, and the Cilento area) and has a dense vegetation cover. For the hottest month 

of the year, July, the average ETP exceeds generally and over the entire region the 

160 mm. 
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Figure 3.7 Mean monthly Potential evapotranspiration distribution in the Campania 
Region. (two representative months are shown: a) January b)July). 

3.6 Summary 

The Campania region, located in southern Italy, is a valuable asset for all 

inhabitants of the region and the surrounding areas. The region's water resources are 

important for a wide range of water uses as well as for the needs of users. Numerous 

initiatives have been taken by several water authorities, including the Campania 

Region authorities, to protect the region's water sources and to mitigate the demand 

for water in times of drought (both for potable water and for use in agricultural 

irrigation). The frequent droughts and the increase in water demand in recent years, 

however, have increased the pressure on the management of water resources in the 

region. However, frequent droughts and increased water demand in recent years 

have increased the pressure on water resources management in the region, and 
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therefore water resources management in terms of drought is important in the 

Campania region. 

Data on several meteorological variables (i.e., precipitation, potential 

evapotranspiration, and temperatures) have been collected for the Campania region 

from different sources to reconstruct a long-term climatic database and to elaborate 

the Drought Indices which aim to characterize the drought in the region.  The data 

were collected for the period 1918-1999 and 2000-2019 (Precipitation) on the other 

hand 1924-1999 and 2000-2019 (temperature), the collected data will be estimated 

for the period 1918 -2019 on a 10 x 10 km grid. These data were available in two-

time scales (i.e., daily and monthly) for these weather variables. However, the 

database reconstruction and drought indices were developed using a monthly time 

step, as monthly drought forecasting was appropriate for operational purposes, and 

also monthly data have a lower sensitivity to observational errors. Therefore, data 

that were not on a monthly time scale were transformed to represent the monthly 

time scale. These data (i.e., precipitation, potential evapotranspiration, and 

temperature) were collected and/or estimated, and analysed for three specific 

purposes in this thesis for appropriate use in the Campania region: 

1. To reconstruct a long-term database of climatological data (i.e., precipitation, 

potential evapotranspiration, and temperature). 

2. To evaluate existing drought indices. 

3. To characterize drought and drought events in the Campania region.
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Chapter 4 

 REGIONAL CHANGES IN INTER-ANNUAL 

PRECIPITATION VARIABILITY 

4.1 Overview 

Water scarcity is a recurring and global phenomenon, with spatial and 

temporal characteristics that differ significantly from one region to the next 

(Tallaksen and Van Lanen, 2004). Climate change is likely to accelerate the climate-

meteo-hydrological processes that can lead to intense drought episodes (Longobardi 

and Van Loon, 2018), and understanding historical precipitation variability is 

required to plan mitigation strategies for future climate change impacts. The inter-

annual precipitation variability is intended to represent the year-to-year variability 

in cumulative precipitation occurrences and can be used as an index of climatic risk 

if it indicates the possibility of a random sequence of years of rainfall abundance and 

years of rainfall scarcity, with the corresponding consequences. However, no such 

study had been conducted for a region with a Mediterranean climate nor for the 

Italian territory, which is often considered as the inhabited basin that faces a rather 

complex rainfall variability. In the outlined context of change in interannual 

precipitation variability, only two studies, one in a tropical climate region and one 

in a Mediterranean climate region, examined CV temporal patterns derived from 
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historical precipitation time series, and both confirmed an increase in the CV 

(Gajbhiye et al., 2016; He and Gautam, 2016; Chandniha et al., 2017).  

The work presented in this chapter is the first part of a larger research project 

highlighting the results of inter-annual precipitation variability for a specific area in 

the Mediterranean basin. The CV average and spatial variability at the regional scale 

were first illustrated in the current chapter. In order to analyze the temporal changes 

in the CV patterns, 30 years of moving windows CV time series were reconstructed 

for each station. The Mann-Kendall and Mann-Kendall modified tests for auto-

correlated time series were used to evaluate the significance and the sign of the 

changes, as well as the Sen's slope test was used to assess the magnitude of temporal 

changes in CV (Hamed and Rao, 1998; Yue and Wang, 2004; Theil, 1950; Sen, 

1968). Finally, the inter-annual precipitation changes were compared to the 

previously studied annual precipitation regime and intra-annual precipitation 

variability changes to depict a general characterization of the long-term climate 

variability for the studied region. 

4.2 Study area and available data set  

The study area is a 25.000 km2 region in Southern Italy that has previously 

been analyzed for climatological characterization (Longobardi and Villani, 2010; 

Califano et al., 2015; Longobardi and Mautone, 2015; Longobardi et al., 2016; 

Fattoruso et al., 2017; Longobardi et al., 2021). The region's annual precipitation 

appeared to show a general negative trend, which was statistically significant for 

only a limited number of rain gauge stations. Changes in intra-annual precipitation 

variability, as summarized by the PCI index, were also assessed, revealing a general 

trend for a precipitation regime shift from seasonal to more uniform, but statistical 

significance was limited to a small number of rain gauge stations once again. The 
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study area's climate regime is typically seasonal, with some main distinctions 

depending on the location of the station. Because of the significant orographic effect 

on precipitation, large amounts of precipitation are recorded during winter periods 

and near or in correspondence with the tallest reliefs (more than 2000 mm). 

For the period 1918-1999, the SIMN “Servizio Idrografico e Mareografico 

Nazionale” managed the rain gauge network for the investigated region. Annual and 

monthly precipitation time series for over 300 sites across Campania and the 

surrounding province are available. Longobardi and Villani (2010) performed a data 

quality control process, and only 163 rain gauge stations carried a statistical analysis 

of time series homogeneity. After 1999, “the Regional Civil Protection Department” 

was in charge of reorganizing and managing the rain gauge network. Through that 

period, there was a change in the consistency, spatial location, and typology of rain 

gauge stations, which hampered the possibility of database merging. By simply 

joining the two series, only a subset of 30 stations was discovered to have the same 

location in both databases and to have statistical homogeneity features from 1918 to 

2015. (Longobardi et al., 2016). The change in gauge location prevented the 

possibility of reconstructing a long precipitation time series by merging the two data 

bases for the remaining stations. From 2000 to 2015, finer time scale resolution 

precipitation at 10 minutes was available, which was aggregated at the monthly scale 

for comparison with the former meteorological service's data recorder. 

The current analysis was carried out in two steps to illustrate, on the one hand, 

the long-term variability over the longest available period and, on the other hand, 

the broadest spatial pattern variability. Initially, the investigation was focused on the 

163 stations for which data were available from 1918 to 1999 in order to represent 

spatial variability at the regional scale. Besides that, the subset of 30 stations was 

investigated to represent the temporal variability over the longest available period. 



 Chapter 4:  REGIONAL CHANGES IN INTER-ANNUAL 

PRECIPITATION VARIABILITY   

 

 56 

 

A comparison of the results from 1918 to 1999 and 1918 to 2015 was also carried 

out. For the years 1918 to 2015, daily, monthly, and annual time series are available. 

The current analysis is focused on the annual scale. 

4.3 The methodology used for exposure assessment of 

interannual rainfall variability 

4.3.1 Inter-annual variability index estimation 

The coefficient of variation (CV), also recognized as the relative standard 

deviation (RSD) in Bayesian statistics, is a standardized measure of the dispersion 

of a probability or frequency distribution. It is frequently expressed as a percentage 

and is defined as the ratio of standard deviation σ to mean μ (Searls 1964). CV or 

RSD is commonly used to express the precision and repeatability of a test 

(Taverniers, De Loose et al. 2004). It is also commonly used in quality assessment 

studies in fields such as engineering and physics. 

In the current chapter, the average CV for each rain gauge station was 

computed as the ratio between the annual precipitation standard deviation  and 

mean annual precipitation μ  

𝐶𝑉 =
𝜎

𝜇
                  (4.1) 

It reflects an average index of inter-annual variability. The CV, as defined by eq. 

(4.1), has also been computed on a 30-year moving window to detect changes in the 

inter-annual variability precipitation time series. In this manner, CV time series for 

each rain gauge station were reconstructed in order to test the significance and 

magnitude of the temporal trends. A 30-year period has been chosen as a 
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compromise between the definition of a climate normal WMO (1989) and the 

average temporal extension of the available historical observation. 

4.3.2 Trend detection Analysis  

CV time series were tested for trend detection over time. A trend is a 

significant change in a random variable over time that can be detected using 

statistical parametric and non-parametric procedures. The current study, in 

particular, provided and compared results for non-parametric Mann–Kendall (MK), 

modified Mann–Kendall (MMK), and Sen's test approaches. 

4.3.2.1 Original Mann-Kendal trend test (MK) 

The Mann-Kendall test (Mann 1945, Kendall 1948) is one of the most widely 

used methods to detect trend in climatology analysis. It is used to analyse data 

collected over time for consistently increasing or decreasing trends (monotonic). It 

is a non-parametric test, which means it works for all distributions, thus tested data 

does not have to meet the assumption of normality but should have no serial 

correlation. The Mann-Kendall statistic S is defined as: 
1

1 1
( )

n n

j i
i j i

S sign x x
−

= = +

= −                 (4.2) 

where:                
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 
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 
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                               (4.3) 

xi and xj are the annual values in years i and j, with i > j. When n ≥ 10, the statistic S 

is almost normally distributed with mean E(S) and variance Var(S) as follows: 
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( 1)(2 5)( ) 0,   ( )
18

n n nE S Var S − +
= =                   

(4.4) 

however, the expression of Var(S) should be adjusted when tied value do exist: 
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(4.5) 
where q is the number of tied groups and tp is the number of data values in the pth 

group. The standardized test statistic Z follows a standard normal distribution and is 

computed as follows: 
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(4.6) 

At the significance level , the existing trend is statistically significant if P /2 in 

the case of the two-tailed test. 

4.3.2.2 Modified Mann-Kendal trend test for autocorrelation 

data  

To take account of the presence of both positive and negative autocorrelation in 

analysed data, which might increase the probability to detect trends when actually 

none exists, the Modified Mann-Kendall test can be applied (Hamed and Rao 1998). 
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For this purpose, a modified form of the variance S, set as Var(S)*, is used as 

follows: 

*( ) ( ) n
nVar S Var S=                     

(4.7) 

where n* is the effective sample size and n the number of observations. The ratio 

between the effective sample size and the actual number of observation was 

computed as proposed by (Hamed and Rao 1998) as follows: 

1

*
1

2 1 ( )( 1)( 2)
( 1)( 2)
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i
i

n n i n i n i r
n n n n

−

=

= + − − − − −
− −

                

(4.8) 

where: ri is the lag-i significant auto-correlation coefficient of rank i of time series.  

4.3.2.3 Sen’s slope magnitude  

(Sen 1968) developed the non-parametric procedure for estimating the slope of trend 

in a sample of N pairs of data: 

,  1,2,... ,j i
i

x x
T i N j i

j i
−

= = 
−

                               (4.9) 

where xj and xi are data values at time j and i (j>i) respectively. The Sen’s estimator 

of slope is defined by the median of the N values of Ti : 
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(4.10) 

The T sign reflects the data trend behavior (increase or decrease), while its value 

indicates the steepness of the trend.  

4.3.2.4 Pettitt test  

The Pettitt test is a non-parametric approach derived from the Mann-Withney 

(Pettitt, 1979; Ceresta 1986; Servat et al., 1997) test to identify a breakpoint in a 

sequence of independent random variables Xi,. i = 1...N 

The null hypothesis of the test is the absence of a break in the time series. The 

implementation of the test assumes that for any time t varying from 1 to N series 

( ), 1,
i

x i t=  and ( ); 1ix i t= +  N belongs to the same population. 

Either i jDij = Sgn ( x - x ) with Sgn (x) = 1 if x>0;  0 if x=0, -1 if x<0.  

We consider the variable Ut,.N such that:  

,
1 1

t N

t N ji
i j t

U D
= = +

=                            

(4.11) 

Let KN denote the variable defined by maximum in absolute value of Ut,N for t 

varying from 1 to N-1 if K denotes the value of KN taken on the series studied under 

the null hypothesis, the probability of exceeding the value K is given approximately 

by: 
2 3 2Prod (KN>K) 2exp(-6k /(N +N ))             (4.12) 
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For a given first-order risk, if prob (kN>k) is less than α, the null hypothesis is 

rejected. This test is known for its robustness. 

4.4 CV temporal pattern evaluation  

4.4.1 Average CVs for the period 1918-1999 

The boxplot in Figure 4.1 depicts the average CV empirical distribution. The 

case study's minimum and maximum CV values, 14.37 % and 35.16 % respectively, 

appear to be higher than the extremes of CV range found by Gajbhiye et al. (2016) 

and Chandniha et al. (2017) in a tropical climate area, confirming the Mediterranean 

basin's highest variability. The median value is approximately 21%. The interquartile 

range, which represents a measure of data dispersion, is only 4.12 %. The data is 

skewed by a few outliers (8 rain gauge stations) that are only above the boxplot upper 

fence. They are all associated with average CV values greater than 29.29 %. Figure 

4.1 illustrates the spatial pattern of the average CV of the investigated area as 

estimated using an ordinary kriging geostatistical interpolation. The spatial patterns 

of average CVs do not appear to be well-organized. Moreover, the higher average 

CV values appear to be concentrated in the extreme areas of the studied area, that is 

in the southern and northern sections. Lower average CV values characterize the 

central area between these two sections and the entire inland area. 
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Figure 4.1 Spatial distribution of average CV over the studied region. 

4.4.2 CV temporal pattern for the period 1918-1999 

In terms of the temporal patterns of the 30-year moving window CVs, each 

rain gauge station clearly showed a different pattern, but they can be roughly 

classified into four different typologies, as shown in Figure 4.2. Aside from 

monotonic increasing (e.g., ID 3610) and decreasing (e.g., ID 3768) behaviour, 

several stations displayed complex patterns in which either a stationary condition 

(e.g., ID 3623) or a decreasing trend (e.g., ID 3747) precedes an increase in the CV 

trend, which generally occurs during the 1970s. 
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Figure 4.2. Typical CVs pattern over the studied region. ID = rain gauge station 

code 

Table 4.1 shows the relevant results of the Mann-Kendall (MK) and Modified Mann-

Kendall (MMK) tests for trend sign and significance (significance level = 5%). 
Table 4.1. Results for the Mann-Kendall (MK) and Modified Mann-Kendall 
(MMK) tests (α = 5%). 
 

 MK % MMK % 

stations with significant trend 80 73 

stations with not significant trend 20 27 

stations with positive trend 70 72 

stations with negative trend 30 28 
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MK and MMK both show how a substantial portion of rain gauge stations, 80 % and 

73%, respectively, show a significant trend. The MMK test locates a lower number 

of stations clearly displaying a significant trend, highlighting the potential effect of 

autocorrelation in the data that the MK does not account for. However, the difference 

in the number of stations exhibiting a significant trend between the MK and MMK 

tests does not appear to be significant, as it reports for only 8% of total stations. In 

terms of spatial variability, the results of the MMK test are discussed further below. 

Figure 4.3 (left panel) shows the spatial distribution of rain gauge stations with a 

significant/not significant trend as provided by a simple kriging geostatistical 

interpolation. As previously stated, the rain gauge stations exhibiting a significant 

trend predominate in the case study, and their spatial distribution is highly uniform. 

In terms of trend direction, MMK tests show that a large proportion of rain gauge 

stations, approximately 72 %, show a positive trend. Negative trends appear to 

dominate the region's southern area, though still not significantly (Figure 4.3 (right 

panel)). Instead, the remaining portion is dominated by positive trends. The overall 

findings of the MMK test indicate that there is a generalized condition of significant 

increase in inter-annual variability almost across the entire analysed area. 
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Figure 4.3.  MMK significance (left panel) and sign (right panel) over the studied region (α 

= 5%).   
Figure 4.4 depicts the magnitude of Sen's slope over the study area (α = 5%). The 

slope is expressed as a percentage of the annual increase or decrease in CV over the 

entire period of observations. The boxplot in Figure 4.4 illustrates the empirical 

distribution of Sen's slope values. The case study's minimum and maximum CV 

values are 0.36% (in absolute value)and 0.55%, respectively. The median value is 

approximately 0.06%. The interquartile range, which represents a measure of data 

dispersion, is only 0.19%. Only two outliers skew the data, one above and one below 

the 0.35% boxplot upper and lower fences. However apart from the overall 

generalized conditions of significant increase in inter-annual variability almost 

across the entire analyzed area as described by the MMK test results, the Sen's test 

results show a relatively moderate magnitude of the detected changes. There do not 
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appear to be well-organized spatial patterns of the magnitude of changes in CV, as 

there are in the case of the average CV spatial distribution. 

 
Figure 4.4. CV Sen’s slope trend magnitude over the studied region (α = 5%). The slope is 

expressed as the percentage of annual increase or decrease in CV over the whole observations 

recording period. 

Comparing Figures 4.1 and 4.4, it appears that areas with the lowest decrease in CV 

correspond to areas with the highest average CV values. In this regard, the rain gauge 

stations with the greatest average inter-annual variability appeared to be the least 

affected by temporal changes.Therefore, is not always a result that describes a 

phenomenon, but it could be due to a numerical correlation wherein the magnitude 

of interannual variability masks the possibility of detecting non-stationarity. 
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4.4.3 CV temporal patterns from 1918 to 2015, with comparisons to 

1918-1999 

As mentioned in section 4.2, Despite data availability (the stations share the 

same location in both datasets) and statistical homogeneity, only a subset of 30 

stations for the period 1918-2015 were investigated. Given the small number of rain 

gauge stations in this subset, the emphasis was solely on temporal CV variability, 

with no spatial features derived. Table 4.2 shows the list of the subset of stations, as 

well as the results of the MMK test (significance level = 5%). Furthermore, the Pettitt 

test (Pettitt 1979) indicates that there is no break point at any of the subset studied 

stations. Table 4.2 also includes a summary (significance level = 5%). 

The general tendency is still set on a large percentage of stations, 

approximately 64 percent, for which a significant trend in the CV temporal pattern 

was detected between 1918 and 2015. Furthermore, the trend is positive for the 

majority of stations, approximately 60%, during this period. This trend appeared to 

be consistent with the results reported in Table 4.1 for the larger set of 163 stations, 

where the percentage of stations exhibiting a significant and positive CV trend was 

only 17 % higher. Concerning the slope of the CV, an average value of 0.035 % was 

reported in the period 1918-2015, which is 40% lower than the average of about 0.06 

% reported in the period 1918-1999. 
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Table 4.2. Mann-Kendall test and Sen test results for the sub-set of 30 gauged stations (α = 

5%). Comparison between the periods 1918-1999 and 1918-2015. Yellow cells indicate the 

rain gauge stations for which a change in the sign of the trend was detected.   
 

Significance Sign Slope (%) 
 

(1918-1999) (1918-2015) (1918-1999) (1918-2015) (1918-1999) (1918-2015) 

Agerola (Fraz. S.Lazzaro) Trend No_trend Positive Positive 0,222 0,134 

Albanella (Ponte Barizzo) Trend No_trend Positive Negative 0,085 -0,015 

Benevento (Genio Civile) Trend No_trend Negative Positive -0,155 0,008 

Capua Trend Trend Positive Positive 0,241 0,224 

Caserta (Genio Civile) Trend Trend Positive Positive 0,064 0,063 

Cassano Irpino Trend Trend Negative Negative -0,246 -0,23 

Cava Dei Tirreni No_Trend Trend Negative Negative -0,063 -0,06 

Ercolano (Oss. Vesuviano) Trend No_trend Positive Positive 0,319 0,086 

Forino Trend Trend Negative Negative -0,127 -0,096 

Gragnano Trend Trend Positive Positive 0,3 0,268 

Grazzanise No_Trend Trend Negative Negative -0,066 -0,069 

Luogosano No_Trend No_trend Negative Positive -0,122 0,023 

Maiori Trend Trend Negative Negative -0,073 -0,068 

Massalubrense (Turro) Trend Trend Negative Negative -0,085 -0,126 

Mercato S.Severino Trend Trend Negative Negative -0,114 -0,091 

Morcone Trend Trend Positive Positive 0,118 0,098 

Morigerati Trend Trend Positive Positive 0,058 0,093 

Napoli (Capodimonte) No_Trend No_trend Negative Negative -0,055 -0,016 

Paduli No_Trend No_trend Positive Positive 0,047 0,057 

Pellezzano Trend Trend Negative Negative -0,049 -0,044 

Positano Trend Trend Positive Positive 0,28 0,198 

Pozzuoli Trend No_trend Positive Negative 0,192 -0,023 

Ravello No_Trend Trend Positive Positive 0,065 0,138 

Roccadaspide No_Trend Trend Positive Positive 0,043 0,123 

Rofrano Trend Trend Positive Positive 0,132 0,163 

S.Angelo D'alife No_Trend No_trend Positive Positive 0,022 0,05 

Sala Consilina Trend Trend Positive Positive 0,173 0,166 
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The comparison of the results for the same subset of 30 stations between 1918-1999 

and 1918-2015 provided in Table 4.3 only shows a very moderate impact of the last 

fifteen years of observation over the total length of the recording period. 

 
Table 4 . 3. Summary of the Mann-Kendall test results for the sub-set of 30 gauged 

stations (α= 5%). Comparison between the periods 1918-1999 and 1918-2015.   

 1918-1999 (%) 1918-2015 (%) 

stations with significant trend 73 64 

stations with not significant trend 27 34 

stations with positive trend 57 60 

stations with negative trend 43 40 

 
Indeed, over the last fifteen years, there has been a very moderate increase in the 

percentage of stations showing a positive trend (from 57 % to 60 %), a decrease in 

the percentage of stations showing a significant trend (from 73 % to 64 %), and a 

moderate decrease in the CV slope (from 0.047 % to 0.035 %). In particular, for the 

CV slope, only 16% of the analysed stations experienced a change in slope sign (both 

positive to negative and negative to positive) over the last fifteen years (Yellow cells 

in Table 4.2). 

Salerno (Genio Civile) * Trend Trend Negative Negative -0,047 -0,05 

Torraca Trend No_trend Negative Positive -0,061 0,011 

Tramonti (Chiunzi) Trend No_trend Positive Positive 0,2 0,024 

Average 
    

0,043 0,035 
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4.5 Overall evaluation 

As mentioned in section 4.1, in order to describe a general characterization of long-

term climate variability for the investigated study area, and in accordance with the 

findings reported in the relevant literature, it was necessary to comment on the 

observed results about inter-annual variability in light of previous findings reported 

by the same authors about the annual precipitation regime and intra-annual 

precipitation variability for the same area. Longobardi and Villani (2010) conducted 

a study on long-term changes in annual precipitation using the same data-base and 

region as the proposed investigation (163 stations for the period 1918-1999). It was 

noticed that, across the entire region, the trend in annual precipitation appears to be 

predominantly negative, but that the significance of the changes only holds for a 

very small number of total rain gauge stations, approximately 9% in the case of 

negative trends and 27% in the case of positive trends. Subsequently, in Longobardi 

et al. (2016), the intra-annual variability of the precipitation regime, as outlined by 

the PCI index, was investigated for a larger data-base and a larger region, which 

included the current study area. It was revealed that, for the specific region, the trend 

in intra-annual precipitation variability is predominantly negative, but that the 

significance of the changes only maintains for a very small proportion of the total 

rain gauge stations, of about 11%. The overall outcomes of these studies over the 

region under consideration delineated a general, but not statistically significant, 

tendency toward a reduction in total precipitation and a general, but not statistically 

significant, tendency toward a more uniform distribution of total precipitation during 

the year (reduction in climate seasonality).  

Figure 4.5 illustrates the comparison of the spatial distributions of mean annual 

precipitation, Precipitation Concentration Index, and average Coefficient of 

Variation. The orography of the region has a strong influence on the mean annual 



 Chapter 4:  REGIONAL CHANGES IN INTER-ANNUAL 

PRECIPITATION VARIABILITY   

 

 71 

 

precipitation spatial pattern, with the highest mountain reliefs running north-west to 

south-east, where the highest MAP values, between 1500 and 2000 mm, can be 

found. Besides that, the orography and distance from the coastline have a significant 

impact on the average PCI spatial distribution. 

 
Figure 4.5 Spatial distribution of mean annual precipitation (left panel), Precipitation 

Concentration Index (middle panel) and Precipitation coefficient of variation (right panel).   

Coastal areas have the highest PCI values, ranging from 13 to 16, whereas inland 

areas have average PCI values as low as 11. Whereas there appears to be a strong 

connection between the MAP and PCI spatial distributions across the region, the CV 

spatial distribution appears to be only partially influenced by the latter features. 

Evidently, higher CV values appear to be associated with higher MAP and PCI 

values, and vice versa, but the relationship between these variables is poor. This 

condition is also shown in Figure 4.6, where red dots represent observations, and a 

polynomial surface has been fitted to them. The goodness-of-fit is quite poor (R2 = 
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0.20), but higher CV values appear to be associated with higher MAP and PCI 

values. 

 
Figure 4.6. Relationship between MAP, PCI and CV for the studied region.  

 The specific findings reported for the region under investigation appeared to 

contradict the main findings illustrated in the relevant literature. Although some 

differences may influence the spatial distribution of the observed quantities due to 

interpolation issues, the main motivation is most likely represented by a limitation 

of the case study, which presents some rather characteristics of climatic homogeneity 

in general. A spatial extension of the rain gauge stations database is planned to 

investigate these specific features in greater depth. 
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4.6 Summary 

In order to depict a general characterization of the long-term climate 

variability for the Campania region, located in the Mediterranean basin, an analysis 

of the precipitation coefficient of variation CV, assumed as index of inter-annual 

climate variability, was performed over the period 1918-2015 and compared with 

the results of a previous investigation about the annual precipitation regime and the 

intra-annual precipitation variability of the same region. Understanding the inter-

annual precipitation variability from long term historical precipitation variability is 

necessary to plan mitigation strategies to face future climate change impacts in 

specific regions. In particular quantify the inter-annual precipitation variability is 

essential for a more realistic modelling of water resources availability under climate 

change scenario, which in turn results in a more effective quantification of 

socioeconomic impacts of planned complex water resources management tools.  

The results of the current study can be summarized as in the following: 

1. For what concerns the average CV characterization and spatial pattern, the 

findings illustrated a generalize conditions of statistically significant (73% of 

total stations) increase (72% of total stations) of inter-annual variability almost 

over the whole analyzed area, where a very moderate spatial consistency was 

however detected.  

2. For what concerns the magnitude of the changes, the results of the analysis 

reported about a rather moderate intensity of the detected changes, with minimum 

and maximum CV patterns slope, expressed as the percentage of annual increase 

or decrease in CV over the whole observations recording, which amount 

respectively to -0.36% and 0.55%. Similarly, to the average CV characterization, 

no strong spatial consistency was detected, but rain gauge stations featured by 
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the largest average inter-annual variability seemed to be the less affected by 

temporal changes. 

3. the effect of the last fifteen years of data, from 2000-2015 was only studied 

on a sub-set of stations because of data availability and statistical homogeneity. 

The comparative analysis of the statistical tests results for the period 1918-1999 

and 1918-2015 showed, beyond the same general tendency (significant positive 

trends for the largest percentage of stations), that some quantitative difference 

between the two observed periods exists but that such difference appeared very 

moderate.   

4. the relationship between average precipitation, intra-annual precipitation 

variability and inter-annual precipitation variability was not clearly identified for 

the studied region, but it was found that larger CV values appear associated to 

large MAP and large PCI values. 

5. The main message that arises from the comparative analysis of average 

precipitation, intra-annual precipitation variability and inter-annual precipitation 

variability showed how, if the variations in the annual precipitation regime and 

in the intra-annual precipitation variability are poorly significant (respectively for 

9% and 11% of total station), changes in inter-annual precipitation variability are 

strongly marked over the studied region. 

The current work has increased the knowledge about the long-term climatological 

characterization of a specific area. It furthermore has contributed to extend the body 

of literature relevant to the use of historical observation aimed at the detection of 

changes in inter-annual variability within the Mediterranean basin, known to be one 

the most responsive region to climate changes. As a future perspective an extension 

to a spatially wider database (Longobardi, Buttafuoco et al. 2016) is foreseen to 
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overcome the climatic homogeneity issue which, in the opinion of the authors, 

dampened the significance of the link between CV,MAP and PCI. 
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Chapter 5 

 CONSTRUCTION OF GRIDDED 

CLIMATOLOGICAL DATASET FROM TWO 

DIFFERENT GAUGING NRTWORKS 

5.1 Overview 

Many hydrological research and modelling purposes rely on environmental 

data. The accuracy of various hydrological analyses, such as climate change studies, 

drought management, and water management, is heavily reliant on accurately 

estimating the spatial distribution of various climate data (precipitation, temperature, 

streamflow, etc.)(Moral 2010, Wu, Chen et al. 2019), It frequently requires a dense 

network of rain gauges with numerous stations and long-term measurements 

(Adhikary, Muttil et al. 2017, Xu, Tian et al. 2017, Tang, Behrangi et al. 2018). In 

the previous chapter interannual variability (for the Campania region) for the period 

1918-1999 were evaluated. In addition, the knowledge about the long-term 

climatological characterization for a specific area has increased, it has also greatly 

expanded the body of literature on the use of historical observations to detect 

changes in inter-annual variability within the Mediterranean basin, which is known 

to be one of the most responsive regions to climate change. 

The existence of serially incomplete data sets, the distribution of climate 

stations and the change in morphometric characteristics of the gauging stations after 
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1999 (typology, spatial location, etc.) are much more serious problems as they can 

lead to the rejection of entire data sets. These problems can be solved by establishing 

a unified archive of quality climate data that can be publicly accessible. Although 

many techniques for estimating missing data values have been used, such as 

(Schneider 2001, Teegavarapu and Chandramouli 2005). In this context, the current 

chapter reports on the reconstruction of climatological gridded data at 10x10 km 

resolution for the Campania region (southern Italy), based on a monthly data set of 

over 380 stations covering the entire region and parts of the surrounding regions 

from 1918 to 2019. As stated previously, this data was obtained from two different 

agencies: the Servizio Idrografico e Mareografico Nazionale S.I.M.N. and the 

Campania Civil Protection Department. Furthermore, the characteristics of the 

techniques used are carefully examined, and their performance is evaluated in order 

to reconstruct a new historical database. 

5.2 Study Area and Dataset Used 

The Campania Region was used as the case study to demonstrate the 

estimation of gridded climatological data. The details of the Campania region and 

its importance were described in Chapter 3. Similar to the inter-annual variability 

assessment, over 380 meteorological variables (i.e., rainfall, temperature) were used 

in the reconstruction of a historical database. The monthly time step was used in the 

reconstruction of the time series. The same data that was described and used in 

Chapter 4 were used in the current chapter to reconstruct climatological data for the 

Campania region. 
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5.3 Methodology Used for Reconstructing Gridded 

Climatological Database 

The methodological framework for the climate reconstruction/regeneration 

study includes spatial interpolation methods, including four geostatistical kriging-

based methods (OK, OCK, DK and EBK) and one deterministic method (IDW), as 

shown in Figure 5.1. This section provides an overview of these methods. Since 

variograms and their estimation methods are important components of kriging, they 

are grouped by kriging method. For more information on the methods used in the 

current study, see recent geostatistics references such as Journel and Huijbregts 

(1978), Isaaks and Srivastava (1989), Goovaerts (1997), Chilès and Delfiner (1999). 

give. Wackernagel (2003) and Webster and Oliver (2004). (2007). 

5.3.1 Overview of interpolation methods 

Surface modelling is a mathematical process by which a continuous surface 

is interpolated from a set of randomly distributed data (x, y, z). The result of this 

interpolation provides a structured data called "grid". The accuracy of the grid 

obtained depends on the starting data (number, distribution, etc.) but also on the 

algorithm used to calculate the grid points (Maron and Rihouey, 2002). Interpolation 

methods are numerous and vary greatly in complexity and efficiency (Drapeau, 

2000). The selection of one or the other is logically conditioned by the expected 

representativeness of the results that we are looking for and the objectives that we 

set (Renard and Comby, 2006). Two approaches of interpolation methods, one 

deterministic and the other probabilistic, are possible and can be suitable to the 

problem to be treated (El morjani, 2003). 
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5.3.1.1 Deterministic methods 

The so-called deterministic interpolation methods are based on mathematical 

functions that express either a weighting factor for the training values (inverse 

distance weighting) or a trend surface (polynomials, splines), or even a combination 

of both (Rogers, 2003). 

• The Inverse Distance Weighting (IDW) method calculates, for each point 

to be estimated, the average of the experimental values of its neighbors, 

favoring the closest points; the weighting factors are therefore calculated in 

proportion to the inverse of the distance: 1 ÷ d. This method makes it 

possible to obtain grids very quickly but creates circular zones around the 

observed values ("bull's eye" effect). This artifact can be smoothed by 

playing with the power and the neighborhood (El morjani, 2003).  

The IDW formula can be expressed as: 

1 2
1 2

n m
OCK OCK
i i
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And;  ( ) ( )
2 2

j j jd (r) = x- x + y- y                  (5.4) 

the distance between r and rj; p = decay determining parameter. 

A comprehensive discussion has been made by (Kravchenko and Bullock 1999) for 

the choice of parameter p, the effect of weight parameter for IDW interpolation is 

discussed by (Cecílio and Pruski 2003), a similar discussion has been made by 
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(Vicente-Serrano, Saz-Sánchez et al. 2003) over the importance of weight parameter 

in I.D.W. function for the prediction model. 

• The polynomial methods constitute polynomial surfaces of a given order 

linking the training points, with, in Geostatistical Analyst, the possibility of 

adjusting the degree of locality (one polynomial surface per measurement in 

a given neighborhood) and globality (a single polynomial surface for the 

entire study area expressing the first-order trend). 

• In the same way, the Radial Basis Function (RBF) method allows to 

interpolate or from randomly distributed data. This type of interpolation is 

made more flexible than polynomial interpolation by using a voltage 

parameter that controls the behavior of the interpolation function and the 

smoothing parameter (Drapeau, 2000). The RBF estimator can be thought of 

as a weighted linear function of the distance from grid point to data point 

plus a bias factor BF (Chilès & Delfiner, 1999)., for more details about the 

method see (Adhikary, Muttil et al. 2017). 

However, these deterministic techniques have drawbacks: they ignore the spatial 

structure of the variable and thus produce very smooth interpolated surfaces; very 

specific local situations may be omitted (areas of high or very low values).  

Finally, no statistical criteria to judge the accuracy of these maps are formulated. If 

we want to optimize the accuracy of the estimates, we will have to use other tools 

that will call upon probabilistic models (Despagne, 2006). 

5.3.1.2 Probabilistic (geostatistical) methods 

Geostatistics refers to the methods of probabilistic analysis to study spatially 

correlated phenomena called "regionalized phenomena". Geostatistical estimation 

methods are based on modelling the spatial structure from experimental data; the 
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parameters of the estimation depend on the spatial variability and the accuracy of 

the estimation is indicated by the estimation variance (De Fouquet, 1994). There is 

a series of geostatistical interpolation methods that can be performed in univariate 

(kriging) or multi-variate (co-kriging) mode (Rogers, 2003).  

• Ordinary Kriging  

Kriging methods have developed over the last thirty years in the mining industry and 

climatology in recent years. Kriging is a stochastic spatial interpolation method that considers 

both the geometric configuration of the observed points and the spatial structure of the 

estimated variable. There are three main types of Kriging: simple Kriging, Ordinary Kriging 

(OK), and Universal Kriging (Touazi, Laborde et al. 2004). The method, in general, is 

constructed in 5 steps: i) exploratory analysis (i.e., data visualization); ii) choice of the type 

of Kriging; iii) the so-called variography (Baillargeon 2005), i.e., the estimation of the 

variogram, its modelling and the choice of a model; iv) the realization of interpolations; (v) 

evaluating the quality of the best estimates, Kriging can also be used for the estimation of 

forecast errors. Nevertheless, what differentiates Kriging from the other previously described 

techniques is that it is the only method that considers the spatial dependency structure of the 

data. Thus, Kriging generates most accurate spatial predictions and estimates the more 

reliable errors than other stochastic methods. For the scientific community, Kriging  could 

be the most appropriate interpolation method  (Arnaud, Emery et al. 2001, Baillargeon 2005). 

We propose to test this by setting the four spatial interpolation methods in action, using the 

Campania Region as the experimental area. The ordinary Kriging us is given by: 

( ) ( )
n n

OK OK
OK 0 i i i

i=1 i=1
Ẑ s = w Z s  with w = 1                 (5.5) 

( )OK 0Ẑ s The estimated value of variable Z (i.e., Temperature, rainfall) at the unknown 

location 0s ; OK
i indicate the weights linked with the sampled location is 0s concerning; 

and n is the number of sampling points used in prediction. 



 Chapter 5:  RECONSTRUCTION OF GRIDDED 

CLIMATOLOGICAL DATA FROM THE TWO DATABASES   

 

 82 

 

By solving the system of (n+1) simultaneous linear equations, the OK weight can be obtained 

as follow:  

( ) ( )
N(d) 2

i i
i=1

1g(d) = Z s + d - Z s , for j = 1;………; n
2 N(d)

    ;      
n

OK
i

i=1
w = 1     (5.6) 

where γ ( )i js - s is the variogram values between sampling locations is and js ,  

γ ( )j 0s - s is the variogram values between the sampling and the target location js 0s , and

1
OK  is the Lagrange multiplier parameter. 

As shown in Equation 2, it is clear that OK highly depends on the experimental variogram 

model ( )d  that indicates the degree of spatial autocorrelation in datasets which are derived 

by; 

( ) ( )
N(d) 2

i i
i=1

1g(d) = Z s + d - Z s
2 N(d)

                     (5.7) 

( )
( )

iZ s + d iZ s
The variable values at corresponding sampling locations ( )is + d and

( )is , respectively, where d is the distance and N(d) is the number of data pairs.  

Using equation 3, a variogram in the form of a cloud point is generated, as shown in Figure 

5.1 
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Figure 5.1: A typical experimental variogram based on the variogram cloud fitted by a 

typical variogram model with its parameters. 

According to the literature (Johnston, Ver Hoef et al. 2001, Robertson 2008), 

Experimental variogram can be computed by subdividing the cloud variogram into 

several lags and then, estimating the mean of each lag interval. Hence, the resulted 

variogram model γ(d) will be then fitted to the experimental one. Depending on the 

form of  experimental semi-variogram, different geostatistical models can be fitted 

to the experimental semi-variogram, such as spherical, exponential, Gaussian, 

circular, and linear, wherein hydrology Exponential, Gaussian, and spherical models 

are the most commonly used variogram for kriging applications (Adhikary, Yilmaz 

et al. 2015), the different models are presented as follow; 

Spherical model
3

0 1

1.5
() 0.5

d d
yd C C

a a

   
= + −  

   

:                             (5.8) 

0 1

3
() 1exp

d
yd C C

a

 −  
= + −  

  
Exponential model:                             (5.9) 
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Gaussian model:
2

0 1 2

(3 )( ) 1 exp dy d C C
a

  − 
= + −  

   
                           (5.10) 

Linear model: 0 1( ) dy d C C
a

 
= +  

 
                                                                   (5.11) 

Circular model: 2
1

0 1 2

2( ) 1 cos 1d dy d C C
a a

−
   

= + − + −  
   

                         (5.12) 

where, C0 is the nugget coefficient, C0 + C1 = Sill, a range of the variogram model 

and d represents the distance of separation between two locations. 

• Detrended-Kriging (geo-regression) 

One method to improve data interpolation is co-kringing. The crux of this method is 

to extract   maximum information from (covariate) variables related to the average 

annual precipitation. This procedure requires the estimation of cross-variograms that 

describe the relationship between the variable of interest and the covariates in space. 

(Phillips, Dolph et al. 1992) showed how this methodology is of particular interest 

in estimating the average annual precipitation, by using elevation as a covariate and 

presented an alternative technique of simple application, even when the number of 

covariates is greater than one, represented by geo-regression. It consists of the 

identification of a regression model, generally multiple and linear, through which 

one can estimate the value of the interest that varies according to the values of a set 

of covariates. The estimation is improved by combining this result with the residues, 

interpolated, to give a spatial distribution through ordinary Kriging. This technique 

is known as elevation-detrended Kriging (DK or Geo-Regression). 

For the area in question, given the rather evident link found between the average 

annual precipitation and the topographic elevation, as previously indicated, a single 

covariate geo-regression model was chosen, represented by the elevation. The 

precipitation field, h(x) with x position in space, is described as: 
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 h(x) = m Z(x) + W(x) + e(x)                (5.13) 

where  ( )Z x is precisely the deterministic trend, estimated in correlation to the 

altimetric elevation, ( )W x is  the random field with a small scale and mean zero 

structure and ( )x is  purely a random error term. 

The residues for each measuring station can be calculated as the difference between 

observations and estimation concerning the topographic elevation and can be 

interpolated by ordinary Kriging to generate the corresponding spatial distribution 

over the whole study area. 

• Co-Kriging  

Co-Kriging is a well-known approach in geostatistics and has been used in various 

fields such as the tracing of organic matter in the soil (Pei, Qin et al. 2010), climate 

variables (i.e., precipitation, temperature, etc.; (Khelfi, Touaibia et al. 2017)), and 

the determination of the soil organic matter content (Goovaerts 1999), estimate 

environmental variables such as groundwater pollutants (Hoeksema, Clapp et al. 

1989, Desbarats, Logan et al. 2002, Guastaldi and Del Frate 2012).  This method is 

a modification of Kriging with the possibility of using more than one variable in the 

prediction process. The Co-kriging is used to enhance the primary variable's 

prediction by using the auxiliary variable, assuming that the variables are correlated 

with each other (Isaaks and Srivastava 1989).  

In our study, precipitation and temperature are considered primary variables, while 

altitude is the auxiliary variable. Like the OK method, the OCK aims to estimate the 

primary variable. The OCK estimator (Goovaerts 1997) considers a secondary 

variable (i.e., elevation), which is cross-correlated with the primary variable (i.e., 

precipitation) can be written as follows: 
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( ) ( ) ( )1 1 2 2
1 2

n m
OCK OCK

OCK 0 i i i i
i =1 i =1

Ẑ s = w Z s + w V s               (5.14) 

with; 
1 2

1 2

n m
OCK OCK
i i

i =1 i =1
w = 1; w = 0                                             (5.15) 

 
• Empirical Bayesian Kriging 

EBK is one of the special geostatistical interpolation methods  that is able to 

interpolate time series in  different spatial aspects, resulting in a valid kriging model 

(Baker, Kröger et al. 2015). The difference between the EBK and another 

geostatistical model is that it can automatically compute the model parameter 

through submission and simulations (Mirzaei, Sakizadeh et al. 2016), while other 

methods require a manual adjustment of the parameters. The basic idea of EBK 

method is to predict Z1(s) at an unknown location.  The Empirical Bayesian kriging 

is given by (Goovaerts, AvRuskin et al. 2005); E.S.R.I., 2014b):  

 ebk 1u u Zu u m     = + −                (5.16) 

where m is the population-weighted sample mean, λµα is the weight assigned to the 

rate observed at a location µα 

These methods are applicable both to variables that indicate some 

homogeneity of features in space (stationary variables) and to variables whose 

spatial structure shows strong trends in certain directions (non-stationary variables) 

(Martin et al., 1989). The interpolation of measurements of climatological variables 

(rainfall, temperature) is very often performed using co-kriging. Several authors 

(Kumar, 2007; Sun et al., 2009) have also presented comparative studies on the 

effectiveness of deterministic and probabilistic interpolation methods. However, it 

would seem that, for climatological variables where elevation is an important factor, 
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kriging with an external drift digital terrain model is the most suitable (Desbarats et 

al., 2002). 

 

5.3.2 Assessment of interpolation methods  

The performance of different interpolation methods (OK, OCK, DK, EBK, 

and IDW) used in this study are evaluated and compared through cross-validation 

process. Cross-validation is a simple leave-one-out validation procedure in which 

observations are removed from the dataset one at a time and then re-estimated using 

the adopted model from the remaining observations. It provides significant proof of 

interpolation method performance measures. The performance of all interpolation 

methods for rainfall estimation is compared in this study using the Mean absolute 

error (MAE), percent bias error (PBE), root mean square error (RMSE), and 

coefficient of determination (R2) values between the observed and estimated 

variable values, which are given by the following Equations: 

( ) ( )
n

i ii=1

1 ˆMAE = Z s - z s
n

             (5.17) 

The smaller the measurement error, the better is the model. In addition to these error 

measurements, Cross-Validation also delivers the Standardized Root Mean Square, which 

should be close to 1 to have a valid standard estimation error. A value greater than 1 indicates 

that the model is underestimating the variable to be predicted; vice versa, the model 

overestimates the variable. 

( ) ( )( )
2

n i i

i=1

Ẑ s - z s
RMSE =

n               (5.18) 

The percent Bias represent   the difference between the average values up or down 

from the observed values. The closer the PBIAS value is to zero, the smaller the bias 

between the predicted and observed values; therefore, the model describes the data 
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better. Overestimation occurs when the PBIAS value exceeds 0.0, and 

Underestimation occurs when the PBIAS value is less than 0.0. (Sorooshian, Duan 

et al. 1993). 
n

mod,i obs,i
i=1

n
obs,i

i=1

(Q - Q )
BIAS(%) = *100

Q





             (5.19) 

The Nash–Sutcliffe Efficiency coefficient (NSE) was used to assess the forecast 

power model's quality (Nash and Sutcliffe 1970). The model would be better for 

forecasting if the value of NSE is closer to 1. 
n 2

obs,i mod,i
i=1

n 2
obs,i obs

i=1

(Q - Q )
NSE = 1-

(Q - Q )





              (5.20) 

In this chapter, different geostatistical and deterministic interpolation 

methods, including EBK, OK, OCK, DK and IDW, are used to estimate the spatial 

distribution of climatological variables (Precipitation and monthly mean 

temperature) in the Campania region of southern Italy. Several performance 

measures such as Nash-Sutcliffe efficiency criterion (NSE), standard deviation, 

MAE, RMSE, correlation coefficient, and percent bias are used to provide the 

accuracy of the interpolator that predicts the observed data accurately. Lower values 

of Stdev, MAE, RMSE and Bias with higher NSE value of an interpolator indicate 

better prediction by the corresponding method. Furthermore, according to (Kumar 

Adhikary, Muttil et al. 2016), if all the distributed points in the scatterplot are close 

to the 45° line with the highest correlation value between the expected and observed 

values, it represents a better prediction. 
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5.3.2.1 Rainfall spatial interpolation  

Table 5.1 represents the different performance measures of the interpolation 

methods applied for monthly precipitation estimation over the study area. The 

different interpolation methods are compared in terms of performance to select the 

best interpolator for the study area. As can be seen in Table 5.1, the geostatistical 

interpolation methods (OK, OCK, DK, and EBK) perform better than the 

deterministic method (IDW) for estimating monthly climate data over the study area.   

Table 5.1: Performance of different interpolation (IDW, OK, DK, OCK, and EBK) methods 
for monthly rainfall and temperature estimation in the study area 

 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

  IDW 
NSE 0.53 0.48 0.47 0.50 0.58 0.69 0.58 0.26 0.45 0.59 0.48 0.47 

StDev 28.3 22.8 19.7 17.6 14.3 10.8 7.6 6.5 11.2 23.4 28.8 31.3 

MAE 19.53 18.34 15.33 13.64 10.07 5.70 4.61 6.10 9.52 15.43 22.98 24.68 
RMSE 25.54 22.98 19.57 17.31 12.69 7.62 6.23 7.75 12.11 20.47 29.65 31.78 

CC 0.73 0.70 0.69 0.71 0.76 0.83 0.76 0.54 0.67 0.77 0.70 0.69 
PBIAS 1.93 1.89 1.74 1.46 1.52 1.42 0.57 1.92 1.51 1.63 1.92 2.11  

OK 
NSE 0.59 0.57 0.55 0.57 0.67 0.76 0.64 0.39 0.51 0.65 0.55 0.55 

StDev 29.1 23.8 19.3 18.5 15.8 11.3 7.7 5.5 11.4 25.2 29.1 32.3 

MAE 18.16 16.67 14.28 12.73 8.88 5.00 4.18 5.48 8.85 13.97 20.90 22.53 
RMSE 23.66 20.94 18.01 16.08 11.18 6.69 5.81 7.05 11.42 18.73 27.69 29.27 

CC 0.77 0.75 0.74 0.75 0.82 0.87 0.80 0.62 0.71 0.81 0.74 0.74 
PBIAS 0.42 0.35 0.54 0.22 -0.14 -0.20 0.20 0.47 0.45 0.23 0.54 0.55 

  OCK 
NSE 0.55 0.59 0.56 0.63 0.73 0.80 0.66 0.39 0.47 0.60 0.54 0.55 

StDev 25.2 22.6 18.4 17.9 15.9 11.7 7.8 5.5 10.8 24.3 24.8 27.8 

MAE 19.22 16.40 14.16 11.87 8.03 4.50 3.96 5.44 9.20 14.64 21.68 23.34 
RMSE 24.80 20.50 17.84 14.88 10.18 6.03 5.60 7.02 11.89 20.06 27.90 29.42 

CC 0.75 0.77 0.75 0.80 0.86 0.90 0.81 0.62 0.68 0.78 0.75 0.75 
PBIAS 0.02 0.46 0.52 0.86 0.43 0.66 0.52 0.60 0.37 0.27 0.22 0.47 
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The OCK method provides the best results for the estimation of precipitation 

in the study area for all months considering all performance measures, especially in 

terms of variance (Figure 5.3) which is an important approach in geostatistical 

analysis (Guastaldi, Carloni et al. 2014). The DK method gives the second-best 

results, which are much more similar to the performance of the OCK method, but it 

is better than the OK method for estimating monthly precipitation and temperature 

over the study area, where IDW gives almost similar performance with a higher error 

in the precipitation estimation. 

For IDW, EBK,OK,DK and OCK methods, the average NSE values for 

precipitation (Table 5.1) in the Campania region are 51,56,58,59, and 59% , 

respectively, whereas the average RMSE values are 17.81,16.88,16.38,16.21, and 

16.34, respectively, and the average values of the mean absolute errors are 

13.83,12.96,12.64,12.46 and 12.70 mm respectively. 

 For IDW, EBK, OK, DK and OCK methods, the average Correlation (CC) 

are 0.71, 0.75, 0.76, 0.77 and 0.77 respectively, whereas the average Bias values are 

  DK 
NSE 0.58 0.59 0.58 0.62 0.72 0.80 0.63 0.38 0.48 0.61 0.54 0.57 

StDev 28.3 23.4 19.6 17.7 15.2 11.6 7.4 5.7 11.4 25.2 28.8 30.7 

MAE 18.44 16.28 13.67 11.89 8.04 4.48 4.17 5.45 9.13 14.66 21.04 22.25 
RMSE 24.03 20.50 17.46 15.02 10.33 6.07 5.87 7.08 11.67 19.87 27.73 28.86 

CC 0.76 0.77 0.76 0.79 0.85 0.90 0.79 0.62 0.70 0.78 0.74 0.75 
PBIAS 0.65 0.51 0.53 0.46 0.33 0.40 0.27 0.65 0.35 0.19 0.55 0.61 

  EBK 
NSE 0.57 0.54 0.53 0.53 0.64 0.74 0.63 0.38 0.48 0.63 0.52 0.52 

StDev 29.7 23.8 19.4 18.4 15.9 12.1 8.0 5.2 10.8 24.9 29.0 31.6 

MAE 18.68 17.22 14.40 13.09 9.06 5.09 4.31 5.58 9.16 14.16 21.56 23.21 
RMSE 24.49 21.73 18.37 16.68 11.72 6.93 5.89 7.09 11.69 19.33 28.41 30.25 

CC 0.75 0.73 0.73 0.73 0.80 0.86 0.79 0.62 0.69 0.79 0.72 0.72 
PBIAS 0.51 0.28 0.19 0.20 0.03 -0.04 0.19 0.66 0.37 0.02 0.44 0.52 

https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.11163#hyp11163-tbl-0006
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1.63,0.28,0.30,0.46 and 0.45. In addition, Figure 5.2 shows the results obtained by 

the analtsis carried out of the years 2009 and 2010. IDW appears to be the least 

reliable interpolation method as it gives the highest errors, as well as higher standard 

deviation and variance than the other methods. Ordinary Kriging and Ordinary 

CoKriging provide comparable mean error and RMSE values. However, it is evident 

that spherical CoKriging is preferable because it provides the lowest maximum 

prediction error, lower standard deviation, and most importantly, significantly 

smaller data variance.  Therefore, it was decided to focus on Ordinary CoKriging 

(spherical model) for geostatistical analysis after these two applications. 

 
Figure 5.2: IDW, OCK and OK Comparison Test Results for spherical model 

 

Moreover, in terms of variance, Figure  shows that the ordinary cokriging present 

less variance than other interpolation methods, while in the summer period all 

models show a similar variance. This due to the lower scattered data 
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Figure 5.3: Variance of interpolated and observed values across the average months. 

In the OCK and DK methods, the higher CC score implies that using elevation 

as a secondary variable brings more data under the kriging-based geostatistical 

analysis system in the rainfall estimation process. In addition, the Ok method is the 

one that most often reports a smaller maximum prediction error than the others, 

while the others report an average error of the same order of magnitude, which was 

confirmed earlier by the strong correlation between the predicted and observed 

values for the other methods.  

5.3.2.2 Temperature spatial interpolation 

As mentioned in section 5.3, the same methodology has been applied for the 

spatial prediction of the temperature. The two methods considered for spatial 

interpolation were Ordinary Kriging, which considers only the spatial variability of 

the temperature data, and Ordinary Cokriging, which on the other hand gives the 

possibility to use as auxiliary variable the elevation at which the thermometric 

stations providing the observations are located. 
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A further distinction was the choice of the model to be used for the definition 

of the semi variogram and therefore of the spatial autocorrelation of the data. To this 

purpose, two models that could best fit the case study were compared: the 

exponential model and the spherical model. To carry out the choice of the optimal 

model, two years were selected from the database (2009 and 2010) and, on the 

monthly averages, the Cross Validation results were performed. Cross Validation is 

a statistical technique used to evaluate the ability of a model to make the required 

predictions. Cross Validation results on monthly mean temperatures are shown in 

Figures 5.4 and 5.5. In particular it is evident that CoKriging always provides better 

results than Ordinary Kriging, regardless of the model used to describe the 

semivariogram. The standard deviation of the values predicted by the CoKriging 

method tends to be closer to the standard deviation of the observed values, compared 

to what is obtained by performing Kriging. In addition, the error parameters are 

significantly smaller using the CoKriging method, with respect to the mean error 

which is more or less similar for both methods. 

  



 Chapter 5:  RECONSTRUCTION OF GRIDDED 

CLIMATOLOGICAL DATA FROM THE TWO DATABASES   

 

 94 

 

 
Figure 5.4 Cross validation results on Monthly Mean Temperature for the 

year 2009 
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Figure 5.5: Cross validation results on Monthly Mean Temperature for the year 
2010 
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The same gap is not found for the choice of function to model the semivariogram. It 

was not possible to find a dominant model between the exponential and the spherical, 

as far as monthly averages are concerned. For this reason, the same test was carried 

out on the long-term annual mean temperatures (Figure 5.6): in this scenario, it is 

evident that the exponential model gives better results in terms of error. Although 

the tests were carried out only on a small sample of data, these were sufficient to 

choose the Ordinary Cokriging method and the exponential model, used for the 

subsequent spatial interpolations. 

 

 
Figure 5.6: Cross validation results for the Mean Temperature  

5.3.2.3 Variograms temporal pattern  

The geostatistical analysis of climatological data (e.g., precipitation, 

temperature) requires the estimation of direct variogram models. In this analysis, an 

isotropic experimental variogram was calculated for each month using both rainfall 
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and temperature data, assuming equal spatial correlation in all directions and 

avoiding the effect of anisotropy on variogram parameters. Isotropy is a natural 

occurrence or data property in which directional influence is considered negligible 

and spatial dependence (autocorrelation) only varies with distance between two 

points (Johnston, Ver Hoef et al. 2001). Under the isotropic condition, the semi-

variance is assumed to be the same for a given distance regardless of direction. 

Firstly, directional experimental variograms are computed from each monthly 

rainfall dataset. Instead, the directional variograms are found to be noisy due to the 

lower number of gauge stations in the region under investigation. The directional 

effect is therefore neglected in the estimation of the experimental variogram. 

Furthermore, prior to modelling, problems in geostatistical data analysis such as 

non-normality, pattern, seasonality, and outlier behaviour must be resolved. 

In this study, a statistical analysis of historical variogram parameters (Nugget, 

sill and range) times series using the Mann-Kendall and the Pettitt tests was 

performed for more realistic estimation. The values of the following analyzed 

variables are derived from the parameters of each variogram model fitted on 

experimental semi-variograms of either precipitation or temperature, excluding the 

main outliers found in each time series from 1918 to 2019 (Precipitation) and 1924 

to 2019 (Temperature). 

• Nugget_no_out: the nugget effect value, without outliers 

• Sill_no_out: partial sill value of spherical structure, without outliers 

• Range_no_out: range, without outliers 

• Ratio_no_out: ratio between nugget effect and partial sill of spherical model, 

without outliers. 

 
Table 5.2 represents statistical summary of parameters of precipitation 

variogram without outliers. It includes measures of mean, median, skewness, 
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variance, standard deviation, kurtosis as well as minimum and maximum values. The 

skewness has all positive values between 1.78 and 2.59 which represents that 90% 

of the values for each parameter are rightly skewed. Higher values of kurtosis also 

represent that the graph is heavily tailed towards right (Figure 5.7). This means that 

greater portion of the values fall under 2000 m. In figure 5.7., we plot histograms for 

each precipitation variogram parameter and found that this represents an asymmetric 

distribution with which is also proved by high skewness and kurtosis values.   

Table 5.2: statistical summary of parameters of precipitation variograms’ model without 
outliers 

  Nugget 
no_out [mm2] 

Partial_Sill 
no_out[mm2] 

Range 
no_out[m] 

Ratio_no_out 

Min. 0 0 0 0 
1st Qu. 66.53 265.8 18170 0.1427 
Median 291.4 745.5 29260 0.51 
Mean 622.6 1346 46280 0.7258 
3rd Qu. 796.5 1812 57430 0.726 
Max. 4955 9877 221400 14.02 
IQR 7.299.787 1546.05 392.582.807 0.5832 
sd 8.627.825 16.279.959 441.465.028 12.199 
cv 13.858 12.091 0.9538 16.807 
Skewness 2.332 21.503 20.173 57.758 
Kurtosis 59.703 53.243 41.565 464.169 
Observations 1236 1236 1236 1236 
Outlier threshold 5000 10000 230000 20 
No. of outliers 21 13 1 85 
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Figure 5.7: Frequency distribution of Precipitation variograms’ parameters without outliers 

with mean values (red lines) 

By Creating the Precipitation time series, the numeric vectors of variograms’ 

parameters were converted into R time series objects, starting and ending each series 

by the first and last observation (from 1918 to 2020) with a monthly frequency 

(Figure 5.8). These graphs clearly depict that nugget and range represents tendency 

whereas, sill shows no tendency that means the amplitude does not vary or has no 

effect throughout the whole period. This is also proved by the Mann-Kandall and the 

Pettitt’s test as shown in Table 5.3. 

Table 5.3: statistical summary of the Mann-Kendall and Pettitt’s test 
 

Mann Kendall Pettitt's Test 

 
z n p_value Break Point 
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Nugget -6.33 1236 2.34E-10 1999 
Sill 0.76 1236 0.45 2003 
Range -6.10 1236 0.00 1997 

 

 

Figure 5.8: Time series plots of Precipitation variograms’ parameters (no outliers) from 1918 

to 2020 fitted by linear regression models (red line) 

Cycle calculating across the years and cycle aggregating could highlight a 

year-on-year trend (Figure 5.9), that clearly describes that variogram’s parameters 

acquire negative tendency from year 2000 which is due to the change of 

meteorological agencies in the region aforementioned in introduction, while the box 

plot across months could provide a sense on seasonal effect (Figure 5..A). Seasonal 

trends seem to be present in all model parameters, in particular the spatial variability 

components (nugget and partial sill) are less variable in summer months on average, 

while the range values tend to be more variable from July to October. These 
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behaviors could be highlighted also by plotting the month subseries for each 

variograms’ parameters time series (Figure 5.10.B). 

 

Figure 5.9: Aggregation of cycles of Precipitation variograms' parameters without outliers 

across the years 

A B 
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Figure 5.10: Box plots (A) and month subseries (B) of Precipitation variograms' parameters 

without outliers across the months 

In other hand, the same analysis was carried out for the temperature 

variogram’s parameters where Outliers were removed from data. Table 5.4 

represents statistical summary of parameters of temperature variogram without 

outliers. It includes measures of mean, median, skewness, variance, standard 

deviation, kurtosis as well as minimum and maximum values. The skewness has all 

positive values between such that nugget shows asymmetric distribution while sill 

and range depict symmetric distribution which means that sill and range are varying 

uniformly for temperature. Higher value of kurtosis for nugget represents that it is 

heavily tailed towards right whereas lower kurtosis value for sill and range 

represents the normal distribution (Figure 5.11).  

Table 5.4: statistical summary of parameters of temperature variograms’ model without 
outliers 

  Nugget 
no_out [C°] 

Partial_Sill 
no_out[C°] 

Range 
no_out[m] 

Ratio_no_out 

Min. 0 0 22270 0 
1st Qu. 0 3.63 43020 0 
Median 0.235 7.565 58150 0.03 
Mean 1.774 7.624 67530 0.3197 
3rd Qu. 0.8525 9.542 88060 0.12 
Max. 28.89 29.16 187100 16.63 
IQR 0.8525 59.125 450.423.225 0.12 
sd 43.262 50.994 31.602.176 14.084 
cv 24.382 0.6689 0.468 4.405 
Skewness 34.524 1.209 10.791 75.661 
Kurtosis 125.074 23.502 12.249 654.136 
Observations 1164 1164 1164 1164 

Outlier threshold 30 30 180000 20000 
No. of outliers 3 4 4 69 
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Figure 5.11: Frequency distribution of temperature variograms’ parameters without outliers 

with mean values (red lines) 

The numeric vectors of variograms’ parameters were converted into R time 

series objects, starting and ending each series by the first and last observation (from 

1924 to 2020) with a monthly frequency (Figure 5.11 and Table 5.4). 
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Figure 5.12: Time series plots of Temperature variograms’ parameters (no outliers) from 

1924 to 2020 fitted by linear regression models (red line) 

 

Cycle calculating across the years and cycle aggregating could highlight a 

year-on-year trend (Figure 5.13) that clearly describes that variogram’s parameters 

are greatly affected from 2000 due to the change of meteorological agencies, while 

the box plot across months could provide a sense on seasonal effect (Figure 5.14.A). 

In particular, Sill and Range monthly boxplots display a slight lower dispersion in 

spring and summer months (Figure 5.14.A). This could be highlighted also by 

plotting the month subseries for each variograms’ parameters time series (Figure 

5.14.B). 
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Figure 5.13: Aggregation of cycles of Temperature variograms' parameters without outliers 

across the years 

 A  B 
Figure 5.14: Box plots (A) and month subseries (B) of Temperature variograms' parameters 

without outliers across the months 
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Finally, by analyzing the ratio nugget to sell which indicates the spatial 

dependency of variables, There are three classifications used for model explanation: 

If the ratio is less than 25 %, it shows strong spatial dependence; if the ratio is in 

between 25 and 75 %, it indicates moderate spatial dependence; and if the ratio is 

more than 75 %, it represents weak spatial dependence, according to this it could be 

concluded that rainfall show a moderate spatial dependency while, it was not the 

case for temperature data where the ratio is less than 25% which mean a strong 

spatial dependency between samples. 

5.3.3 From point data to grid data 

After determining the most suitable geostatistical interpolator for the case 

study, we proceeded to the actual merging of the two databases. Given the different 

spatial and temporal consistency of the two historical series, it was deemed necessary 

to standardize them, moving from a set gauge station data to a grid-based 

representation. Therefore, beyond the ArcGIS 10.8 software and applying the 

Ordinary Cokriging method, prediction surfaces have been generated, starting from 

the monthly average rainfall and temperatures previously estimated based on 

observations collected by S.I.M.N. and the Civil Protection Functional Centre. This 

allowed the reconstruction of all those points of the Campania Region where there 

were no measurements. The spatial interpolation operation was performed again for 

all the months; 102 years (1918-2019 for precipitation) and 96 years (1924-2019 for 

temperatures) for which observations were available, for a total of 1224 and 1152 

spatial interpolations for precipitation and temperature data respectively. The area 

obtained in ArcGIS through spatial interpolation is typically contained within a 

Geostatistical Layer, showing a fairly uniform area of predictions. In order to move 

to a grid representation, it was necessary to export the GALayers into Rasters. In 
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fact, a Raster is defined as an image composed of a grid with square meshes (pixels). 

For the case study in object, it was considered suitable to operate on a grid with 

meshes of 10 km2. In fact, while rain may be seen as a more localized meteorological 

phenomenon, the spatial distribution of climate variables covers larger areas; and 

having to subsequently put together the gridded data of rain and temperature for the 

calculation of different drought indicator that will be highlighted in the next chapter, 

a grid of 10 km2 was the right compromise for both meteorological variable, a 

resolution of this type was appropriate for the meteorological phenomenon because 

it is a localized event (Molnar et al.,2000). Hence, when exporting to rasters, a cell 

size of 10,000 meters was set. Thus, the value assigned to each cell of the Raster in 

the output was nothing more than the average of all forecasts within that cell. In 

Figure 5.15, it is possible to observe both an example of the forecast surface resulting 

from the spatial interpolation and an example of the Raster. 
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Figure 5.15: Sample of spatial interpolation and transformation to Raster 

Finally, the shapefile of a grid (fishnet) was created to cover only the areas 

of interest in the Campania Region. This process was needed only to be able, after 

the creation of all the Rasters, to project the values of each pixel on the grid mesh 

barycentric points. This has allowed the extraction of data in Excel and the 

subsequent calculation of the drought indicators. As represented in Figure 5.16, the 

grid was made of 191 cells of 10x10 km. 
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Figure 5.16 Gridded point Rainfall and temperature measurement in the 

Campania region  

5.4 ERA5 versus Gridded datasets results 

The most advanced global reanalysis data produced in Europe by ECMWF 

(ERA5 single levels (Hersbach et al., 2020)), was used in this study. Table 5.5 

summarizes the main technical details of these reanalysis datasets. 
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Table 5.5. Main technical details of the reanalysis datasets used in this study. 

Reanalysis dataset 
characteristics 

ERA5 

Data type Gridded 

Projection Regular latitude-longitude 
grid 

Horizontal coverage Global 

Horizontal resolution 
(atmosphere) 

0.25° x 0.25° 

Temporal coverage 1979 to present 

Temporal resolution Monthly 

 

The ERA5 dataset is the fifth generation of ECMWF global reanalysis, 

succeeding ERA-Interim and covering the entire globe from 1979 to the present at a 

spatial resolution of approximately 30 km. By replaying the land component of the 

ERA5 climate reanalysis from 1981 to 2-3 months before the present, the ERA5-L 

dataset is generated for the entire globe with a native horizontal resolution of about 

9 km (released on a regular 0.1 x 0.1 grid). 

The ERA5 datasets were compared in the current thesis with the gridded 

datasets resulted above (precipitation and Temperature). 

During the period 1979-2019, all of the gridded data sets were significantly 

positively correlated with ERA5 extracted datasets (p < 0.01). (Table 5.6).  

  



 Chapter 5:  RECONSTRUCTION OF GRIDDED 

CLIMATOLOGICAL DATA FROM THE TWO DATABASES   

 

 111 

 

Table 5.6. Evaluation results of the gridded datasets and the ERA5 monthly scales 

during 1979–2019 
 

RMSE Pearson correlation BIAS (%) 
Precipitation 52,63 0,96 -0,94 
Temperature 0,83 0,99 3,93 

 

For monthly precipitation, gridded datasets showed a strong correlation with ERA5 

precipitation (CC = 0.96) and the lowest underestimation (Bias = 0.94%), indicating 

higher accuracy measurements; however, a high root mean square error (RMSE = 

52.63) was recorded. Temperature had a stronger correlation within ERA5 datasets 

(CC = 0.99) than precipitation, despite having a higher overestimation (Bias = 

3.93%) and a lower root mean square error (RMSE=0.83). Indeed, the monthly 

precipitation and temperature scatterplots show that the resulting gridded datasets 

have high measurement accuracy (Figure 5.17).  

 

 
Figure 5.17. Scatterplots of monthly precipitation and temperature versus EA5 datasets: (a) 

ERA5 versus gridded precipitation (b) ERA5 versus gridded temperature during 1979–2019. 
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5.5 Overall evaluation  

When choosing a spatial interpolation process, range, variance, and input 

data values are all essential performance metrics to be considered.  The choice of a 

spatial interpolation technique is determined by many variable characteristics (range, 

variance, and relationship with other variables) (Collins and Bolstad 1996). These 

findings confirm (Kumar Adhikary, Muttil, et al. 2016) conclusions, that the data 

density, data measurement accuracy, data distribution, and spatial uncertainty have 

a significant influence on interpolation accuracy. Since IDW is an absolute 

interpolator, it provides a rough surface when the input data is highly variable.  The 

created surface passes through the value at each gauge station, which captures local 

gradients but can result in absurdly steep gradients in areas with low network 

density, such as the south of the study area. In addition, IDW interpolation is readily 

influenced by disproportionate distributions of observational data points when each 

point is given the same weight even though it is in a cluster, which explains why the 

estimates for the boundary areas are less reliable. There were substantial differences 

in MAE and RMSE between IDW and other interpolators (Table 5.1), it was more 

likely to yield skewed estimates. Moreover, the IDW performs especially poorly for 

datasets with sudden shifts over short distances, whereas projected rainfall and 

temperature are declining for mountainous areas along the coast, this finding does 

not recommend the interpolator in the case of spaced data and complex orography. 

In station-sparse areas, IDW provided inaccurate results, as did most alternate 

smoothing techniques, such as predicting negative values of the variable in term of 

precipitation, which were usually rewritten to zero to prevent doubtful results. 

In comparison to IDW, kriging is a somewhat more advanced interpolation 

strategy that specifically accounts for spatial variation and has a clear propensity to 

give lower RMSE, MAE, and PBIAS values. (Di Piazza et al. 2011) concluded that 



 Chapter 5:  RECONSTRUCTION OF GRIDDED 

CLIMATOLOGICAL DATA FROM THE TWO DATABASES   

 

 113 

 

Kriging was found to be superior to other traditional interpolation strategies such as 

RBF and IDW, which is consistent with the findings of this research. The differences 

in RMSE, MAE, and PBIAS between ordinary and empirical Bayesian kriging were 

small overall, but the Bayesian method had higher errors and less overlapping 

between observed and predicted values. One advantage of kriging is that it produces 

measurement errors that can be used to calculate interpolation uncertainty. This error 

information is very useful in analysing the efficiency of each function in the kriged 

map because it represents the density and distribution of control points as well as the 

degree of spatial similarity within the layer. The error map can also be used to decide 

where further detail is required, allowing further sampling to be prepared if needed. 

The advantage of using elevation as a covariate coincides with the findings of 

(Kumar Adhikary et al. 2016) and (Pellicone et al. 2019), who demonstrated that 

cokriging generated estimates with greater ‘precision' than kriging. Furthermore, 

cokriging and detrended kriging tend to reflect rainfall patterns more accurately in 

mountainous areas. Both approaches are the most time-consuming interpolation 

techniques since they involve fitting two semi-variograms and one semi-cross 

variogram for each sample, but they were the chosen technique in this study due to 

the high precision needed. 

Both variance analysis and statistical comparisons showed that cokriging 

was more likely to have the best estimate of a continuous surface for temporal 

rainfall and temperature precision with less variance in the kriged map than 

detrended kriging, which generates a significant variance in the predicted map. 

When interpolating rainfall / temperature data, only elevation was viewed as a 

covariate, but other variables (e.g., distance to the coastline) would influence the 

variable conditions. Slope and aspect knowledge may be derived from the same 

digital elevation model used to calculate average altitude around meteorological 

stations and used as additional covariates to potentially boost rainfall prediction. 
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Therefore, after these analyses, it was decided to focus on the Ordinary Cokriging 

for the geostatistical analysis. Hence, the OCK method (the best interpolator) is used 

to produce a continuous rainfall/temperature dataset of monthly average 

rainfall/temperature for the entire Campania region which is shown in figure 5.17 

and figure 5.18, respectively. In another hand, all the resulted variograms from 1918 

to 2020 were tested in terms of tendency using the Mann Kendall and Pettitt's test, 

the analysis confirms that the tendency in all variogram’s parameters (sill, range, 

and nugget) has no relation with the rainfall variability but with the changes occurred 

in the measurement structure as can be seen by Table 5.2. All the breaks point were 

highlighted between 1999 and 2003. At this point, the cokriging interpolator is the 

preferred approach to construct historical rainfall data from 1918 to 2019 and 

temperature data from 1924 to 2019. 
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Figure 5.17 Spatial distribution of monthly rainfall in the Campania region using the 

ordinary cokriging (the best interpolator in this study) interpolation method 
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Figure 5.18 Spatial distribution of monthly temperature in the Campania region 

using the ordinary cokriging (the best interpolator in this study) interpolation method 
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5.6 Summary  

In this study, the spatial distribution of monthly mean rainfall and 

temperature in the Campania region of southern Italy was estimated using four 

kriging-based geostatistical (EBK, OK, DK, and OCK) and one deterministic (IDW) 

interpolation method. The aim was to evaluate the results of these interpolation 

methods in order to select the best interpolation method for producing a high-quality 

continuous gridded rainfall/temperature dataset, initially not homogeneous, in the 

form of a rainfall/temperature chart at the regional scale. In addition to 

rainfall/temperature data, elevation data from a DEM of the study area is used as a 

secondary attribute in the cokriging analysis using the OCK and DK methods. The 

results show that geostatistical methods outperform deterministic methods for spatial 

interpolation of rainfall/temperature over a century in a morphologically complex 

region like Campania. The IDW approach produced the worst results for the sample 

field, whereas the cokriging methods (OCK and DK) performed better than other 

geostatistical methods. OCK outperformed all other interpolators by producing more 

reliable rainfall estimates for all monthly data over a century. OCK had the lowest 

prediction errors and uncertainty, as well as the highest correlations between 

predicted and measured monthly average rainfall/temperature. As a result, OCK 

emerged as the best interpolator in this study for estimating the spatial distribution 

of rainfall/temperature in the study area. The findings show that adding elevation as 

an auxiliary variable to rainfall/temperature data improves the variable prediction in 

mountainous areas with complex orography. As a result, the current study 

recommends using OCK to generate continuous climate variables maps, particularly 

in areas with high spatial variation in rainfall and elevation.
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Chapter 6 

 EVALUATION OF SELECTED DROUGHT 

INDICES AND DROUGHT CONDITIONS  

6.1 Overview 

Drought indices are widely used all over the world to assess and quantify 

drought conditions. As discussed in Section 2.1, most drought indicators were 

developed for a specific region and may not be directly applicable to other regions 

due to the inherent complexity of the drought phenomenon, different hydro-climatic 

conditions, and different area characteristics (Redmond, 2002; Smakhtin and 

Hughes, 2007; Mishra and Singh, 2010). The suitability of some existing drought 

indicators for various climatic regions around the world has been investigated, with 

details available in Keyantash and Dracup (2002), Heim Jr (2002), Smakhtin and 

Hughes (2004), and Morid et al (2006). However, no such study had been conducted 

in the Campania region (southern Italy), which is known as the driest inhabited 

region in the Italian territory (Polemio and Casarano 2008). 

(Polemio and Casarano 2008) stated that the 5-year average deviation has 

been continuously negative since 1983, they also noted a prevailing increasing trend 

in observed temperature in Campania region, in addition, their results show a slight 

prevalence of increasing trends in the Campania region where an increase of 

temperature starting from about 1980 were observed. Longobardi and Villani (2010) 

noted that the trend in rainfall in the Campania region appears to be predominantly 
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negative, both on an annual and seasonal scale, with the exception of the summer 

period, when it appears to be positive; they also noted that over the entire period 

(1918-1999), positive and negative trends were significant for 9 and 27% of total 

stations, respectively, and over the last 30 years, a negative trend is significant for 

97 % of total stations. Droughts are more prevalent in southern Italy than elsewhere 

in the Mediterranean basin, and they have become more frequent in the last 50 years, 

particularly in the south-eastern part of the country (Piccarreta, Capolongo et al. 

2004, Capra, Scicolone et al. 2012, Buttafuoco, Caloiero et al. 2015). For these 

reasons, it is worthwhile to investigate the suitability of existing drought indicators 

for use in drought management in southern Italy; these drought indicators are 

primarily designed for use in other parts of the world. 

This chapter's work is an important component of a current research project 

aimed at assessing drought conditions for water resource management in the 

Campania region. Water resource management in this area is critical to the 

Campanian community and the surrounding area, as described in Section 3.4.2. 

Selecting a suitable drought index to use in defining drought conditions in the 

Campania region is thus a critical issue for this project. The first step in this chapter 

was to evaluate two existing drought indicators based on water cycle components 

(rainfall, temperature, and evapotranspiration) from various drought perspectives 

(i.e., meteorological, hydrological, and agricultural). They were widely used 

rainfall-based drought indicators, namely, the standardized precipitation index (SPI) 

and the Standardized Precipitation Evapotranspiration Index (SPEI). In addition, and 

as a second part of the current chapter three existing drought indicators namely 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI), and Normalized Difference Water Index (NDWI), based on remote sensing 

from the agricultural drought perspective were evaluated to study drought-related 

vegetation stress. 
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SPI has been used in Italian territory in the past, as mentioned in Section 2.2 

(Capra, Scicolone et al. 2012, Brunetti, Maugeri et al. 2014, Bonaccorso, Cancelliere 

et al. 2015, Buttafuoco, Caloiero et al. 2015), but only a few studies used SPEI and 

other vegetation indices in Italy to date, except for a few studies carried out by 

(Bonaccorso and Cancelliere 2015, Colangelo, Camarero et al. 2017). This is one of 

the first studies in Italy to assess the suitability of existing drought indicators for 

drought management in a southern Italian area, using an in-situ measurement 

database comprising a centennial period from 1918 to 2019 and a historical database 

of vegetation indexes spanning a long period from 1984 to 2020. Section 2.2 

discussed the qualitative assessment of the above-mentioned selected drought 

indicators. The current chapter aims to perform a quantitative assessment of these 

indicators for the Campania region. The chapter begins with a brief description of 

the study area and the data used in this study (detailed in Chapter 5), followed by the 

methodology used to develop the five drought indicators chosen. The indices are 

then analyzed and evaluated. The study's summary is provided at the end of the 

chapter. 

6.2 Study Area and Data Used 

The Campania region was used in this study. The details of the area and the 

importance of its water resources for Campanian people and surrounding areas were 

elaborated in Chapter 3. Three meteorological variables (i.e., rainfall, temperature, 

and potential evapotranspiration) which have effects on droughts were used in the 

evaluation of drought indicators. Measurement locations of these data were shown 

in Figure 5.15, and the data processing to obtain the monthly values as described in 

Chapter 5. Data from 1918 to 2019 (102 years) and from 1924 to 2019 (96 years) 
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were used in this study which was available from the previous chapter for all three 

variables. 

6.3 Methodology Used for Evaluation of Drought Indices  

6.3.1 Standardized Precipitation Index  

The SPI drought index is computed for any given location using the 

cumulative rainfall record over a specified timescale and the probability density 

function "Gamma," which fits only positive and null values (McKee et al., 1993; 

Husak et al., 2007). According to previous studies and the literature, rainfall time 

series are first fitted to the Gamma distribution and then standardized by 

transformation into a normal distribution (Caloiero et al., 2018; Martinez et al., 2019; 

Stagge et al., 2015; Zhou and Liu, 2016). The following equation can be used to 

express the probability density function for the Gamma distribution: 

𝑔(𝑥) =  
1

𝛽𝛼𝛤(𝛼)
𝑥𝛼−1𝑒−𝑥 𝛽⁄       

where α, β and x are respectively the shape parameter, the scale parameter and the 

amount of precipitation (α, β and x > 0). Γ(α) is the gamma function expressed as 

follows: 

Γ(𝛼) = ∫ 𝑦𝛼−1
∞

0

𝑒−𝑦  𝑑𝑦     

Parameters 𝛼̂ and 𝛽̂ are assessed through the maximum likelihood method (McKee 

et al., 1993; Liu et al., 2016): 

𝛼̂ =
1

4𝐴
(1 + √1 +

 4𝐴

3
)     and    𝛽̂ = 𝑥̂

𝛼̂
  , 

Where:  𝐴 =  𝑙𝑛(𝑥̅) − 1

𝑛
∑ 𝑙𝑛(𝑥)𝑛  
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for n observations. By integrating the density of probability function g(x), the 

cumulative probability G(x) is obtained: 

𝐺(𝑥)  =  ∫ 𝑔(𝑥)
𝑥

0

𝑑𝑥 =
1

𝛽̂𝛼̂Γ(𝛼̂)
∫ 𝑥𝛼̂−1𝑒−𝑥 𝛽̂⁄ 𝑑𝑥
𝑥

0

 

 

Given that the Gamma distribution is not defined for x values equal to zero and that 

instead the cumulative rainfall series may contain null values, the cumulative 

distribution is re-defined as follows: 

𝐻(𝑥)  =  𝑞 + (1 −  𝑞) 𝐺(𝑥) 

where q is the probability of zero precipitation. Then, the value of the SPI can be 

obtained through the approximation proposed in Abramowitz and Stegun (1964) 

which converts the cumulative distribution H(x) to a normal random variable Z: 

 

𝑍 = 𝑆𝑃𝐼 =

{
 
 

 
 −(𝑡 −

𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2

1 + 𝑑1𝑡 + 𝑑2𝑡2 + 𝑑3𝑡3
)  𝑝𝑒𝑟 0 < 𝐻(𝑥) ≤ 0,5

+(ℎ −
𝑐0 + 𝑐1ℎ + 𝑐2ℎ

2

1 + 𝑑1𝑡 + 𝑑2𝑡2 + 𝑑3𝑡3
)𝑝𝑒𝑟 0,5 < 𝐻(𝑥) ≤ 1

 

 

𝑡 =

{
 
 

 
 

√𝑙𝑛 (
1

(𝐻(𝑥))2
)𝑝𝑒𝑟 0 < 𝐻(𝑥) ≤ 0,5;

√𝑙𝑛 (
1

(1 − 𝐻(𝑥))2
) 𝑝𝑒𝑟 0,5 < 𝐻(𝑥) ≤ 1

 

Where:   𝑐0 = 2,515517  𝑐1 = 0,802853 

     𝑑1 = 1,432788  𝑑2 = 0,189269 

As discussed in Section 2.2.5, SPI values can be calculated for multiple monthly 

time scales of interest (e.g., 3-, 6-, 12-, 24-, and 48-month time scales). In this study, 
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however, SPI was calculated using a monthly time step. Table 6.1 displays the SPI 

threshold ranges used to define drought conditions (McKee et al., 1993). 
Table 6.1: Drought classification based on SPI (McKee et al., 1993) 

 
 

 

 

 

 

 

 

6.3.2 Standardized Precipitation Evapotranspiration Index 

The SPEI, developed by Vicente-Serrano et al. (2010), has the advantage of 

considering the effects of temperature variability on drought in relative terms to the 

SPI (Naumann et al., 2014). The SPEI is calculated by subtracting precipitation from 

potential evapotranspiration (PET) and fitting the data to a log-logistic PDF. 

In this section, we summarize the steps involved in calculating the SPEI using 

monthly precipitation and temperature data. Vicente Serrano et al. (2010) presented 

a detailed procedure for estimating the SPEI. 

 

Step 1: Estimate the water surplus or deficit in month j (Dj) using the 

difference between precipitation (Pj) and potential evapotranspiration (PETj).  

𝐷𝑗 = 𝑃𝑗 − 𝑃𝐸𝑇𝑗 

The Thornthwaite (1948) method is used to calculate potential evapotranspiration, 

which requires the monthly temperature, latitude, day, and month. 

2.00 or more Extremely wet 

1.50 to 1.99 Very wet 

1.00 to 1.49 Moderately wet 

0.99 to -0.99 Near normal 

-1.00 to -1.49 Moderate drought 

-1.50 to -1.99 Severe drought 

-2.00 or less Extreme drought 
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Step 2: Calculate the cumulative difference (𝑋𝑖,𝑗𝑘 ) in a given month j and year 

i over a timescale k. For example, based on a 12-month timescale, the cumulative 

difference for a month in a particular year can be calculated as follows: 
12

, 1, ,
13 1

 if 
j

k
i j i l i j

l k j l
X D D j k−

= − + =

=  +   , 

, ,
1

,  if 
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i j i l

l j k
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= − +

=    

Step 3: Fit the cumulative difference to a log-logistic distribution as follows: 
1

( ) 1F X
x






−

  
= +  

−   

  

where F (X) is the cumulative probability function of a three-parameter log-logistic 

distribution and, and represent the scale, shape, and origin parameters. The L-

moment procedure (Hosking, 1990) is used for model fitting because it is one of the 

most robust and simple approaches. 

Step 4: Calculate the SPEI using the estimated F(X). The SPEI can be 

estimated using the standardized values of F(X) and the classical approximation of 

Abramowitz and Stegun (1964), as described by Vicente Serrano et al (2010). Table 

6.2 shows the estimated drought index for moderate, extreme, and very extreme 

cases. In this study, we focused on the SPEI with various lag times, such as 1, 3, 6, 

12, 24, and 48 months. 
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Table 6.2: Drought classification based on SPEI  

 

 

 

 

 

 

 

6.3.3 Normalized Difference Vegetation Index 

The NDVI is a widely used remote sensing index (Bhandari, Kumar, & Singh, 

2012). The ratio of TOA (top of atmosphere) reflectance of a red band (𝜌𝑟𝑒𝑑) around 

0.66 µm and a near-infrared (NIR) band (𝜌𝑛𝑖𝑟) around 0.86 µm is used to calculate 

NDVI. A densely vegetated area's NDVI will tend toward positive values, whereas 

water and built-up areas will have near zero or negative values see table 6.1. Braun 

and Herold (2004) define NDVI as follows: 

nir red 

nir red 

NDVI  

 

−
=

+
  

The figure 6.1 depict actual values, but real vegetation is much more varied.  

2.00 or more Extremely wet 

1.50 to 1.99 Very wet 

1.00 to 1.49 Moderately wet 

0.99 to -0.99 Near normal 

-1.00 to -1.49 Moderate drought 

-1.50 to -1.99 Severe drought 

-2.00 or less Extreme drought 
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Figure 6.1. Robert Simmon illustration. (Measuring Vegetation (NDVI & EVI) 

(nasa.gov)). 

Table 6.1 classification of vegetation presence based on the NDVI 

Range Classe 

<0 Water 

0-0,03 Barre soil 

0,03-0,3 Sparse vegetation 

0,3-0,5 Moderate vegetation 

0,5-1 Dense vegetation 

 

6.3.4 Enhanced Vegetation Index  

The enhanced vegetation index (EVI) was created as a suitable alternative 

vegetation index to address some of the NDVI's limitations. EVI is more sensitive 

to differences in plant canopy such as leaf area index (LAI), canopy structure, plant 

phenology, and stress than NDVI, which generally responds only to the amount of 

https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
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chlorophyll present. NASA adopted EVI as a standard MODIS product with the 

launch of the MODIS sensors, which is distributed by the USGS. 

EVI is calculated as follow: 

( )1 2

( )2.5 NIR REDEVI
NIR C RED C BLUE L

−
= 

+ −  +
  

where NIR, RED, and BLUE are atmospherically corrected (or partially 

atmospherically corrected) surface reflectance, and C1, C2, and L are coefficients to 

correct for atmospheric condition (i.e., aerosol resistance). For the standard MODIS 

EVI product, L=1, C1=6, and C2=7.5. (Measuring Vegetation (NDVI & EVI) 

(nasa.gov)). 

Table 6.2 classification of vegetation presence based on the EVI 

Pixel Range Classe 

<0 Stressed vegetation 

0-0,2 No vegetative cover 

0,2-0,8 Healthy vegetation cover 

0,8-1 high vegetative cover 

6.3.5 Normalized Difference Water Index 

As it mentioned in section 2.2.2, McFeeters (1996) proposed the NDWI index. 

Its primary application today is to detect and monitor minor changes in the water 

content of bodies of water. The NDWI is calculated as follows: 

NDWI ( PIR MIR) / ( PIR MIR)   = − +   

Where;   MIR: Reflectance in the mid-infrared band. 

  PIR: Reflectance in the near infrared band. 

The logic is the same here for the reason of being NDWI indices value from -

1 to 1. 

https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_4.php
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_4.php
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The NDWI maximizes water reflectance by absorbing a maximum of wavelength 

and minimizes NIR reflectance by absorbing a maximum of wavelength. As a result, 

having positive values enhances water features while having zero or negative values 

suppresses vegetation and soil. 

6.3.6 Run Theory and Drought Characteristics 

To characterize the meteorological drought features of the selected area, the 

occurrence of drought events was assessed for each cell of the gridded dataset using 

the SPI and SPEI thresholds, and the average over the observation period was shown. 

To detect the behavior of the region in response to moderate and extremely severe 

drought conditions, two different SPI and SPEI thresholds were used, SPI≤ -1, SPEI 

≤ -1 and SPI≤ -2, SPEI ≤ -2. (See Table 6.1). The accumulation period's impact was 

investigated. In addition, three drought characteristics were chosen (Guo et al., 2018; 

Wang et al., 2019; Fung et al., 2020). These are mean drought duration (MDD), 

mean drought severity (MDS), and mean drought intensity (MDP). MDD and MDS 

were estimated using the SPI and SPEI data in conjunction with the "run theory" 

proposed by Yevjevich (1967) and Wang et al. (2019):  

1
DD

MDD

N

i
i

N
=


=   

1
DS

MDS

N

i
i

N
=


=   

DD
DS SPI

i
i =    

where, considering a given SPI/SPEI threshold, DD is the period with 

continuous (negative) SPI/SPEI values below the given threshold (i.e., drought spell 

duration in the run theory), i is the number of the sequence of DD, N is the total 



 Chapter 6:  EVALUATION OF SELECTED DROUGHT INDICES 

AND DROUGHT CONDITIONS   

 

 129 

 

number of drought spells observed during the studied period, and DSi is the drought 

severity value associated with the period DDi (Figure 6.3) 

 
Figure 6.3 Drought characteristic identification using the “run theory” (Yevjevich, 

1967). 

Only events with DD 3 months were accounted for. Furthermore, the mean drought 

intensity MDP was calculated as the ratio of MDS to MDD (Li et al., 2017). As with 

the computation of MDD, MDS, and MDP, the two different thresholds, SPI/SPEI 

≤ -1 and SPI/SPEI ≤ -2, were considered. The effects of the accumulation scale as 

well as the spatial patterns were studied. 

6.3.7 Remote Sensing and Google Earth Engine (GEE) 

Google Earth Engine is a cloud computing platform that processes satellite 

imagery as well as other geospatial and observational data. It gives users access to a 

large database of satellite imagery as well as the computational power required to 

analyze the images (Gardner 2010). 
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It permits the monitoring of dynamic changes in agriculture, natural resources, 

and climate through the use of geospatial data from the Landsat satellite program, 

which passes over the same locations on the Earth every sixteen (16) days (Jenner 

2013). In collaboration with GCS (Google Cloud Storage), GEE has evolved into a 

platform that makes Landsat and Sentinel-2 (Figure6.4) data easily accessible to 

researchers "New Public Application of Landsat Images Released".  

 

 
Figure 6.4 Image collections in the GEE 

 

GEE offers a data catalogue as well as computers for analysis (Figure 6.5) , 

allowing scientists to collaborate with data, algorithms, and visualizations (Gorelick 

2013).  

http://www.nasa.gov/content/new-public-application-of-landsat-images-released/#.UynQuvldWht
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Figure 6.5.  The GEE program interface 

The platform includes a graphical user interface for developing applications 

as well as Python and JavaScript application programming interfaces for making 

requests to servers. 

In 2013, researchers from the University of Maryland used Earth Engine to 

create the first high-resolution global forest cover and loss maps, revealing an overall 

loss in global forest cover (Hansen et al., 2013). Other early Earth Engine 

applications covered a wide range of topics, such as global surface water Pekel et 

al., 2016),increases in vegetation around Mount Everest Lobell et al. (2015), and the 

annual Forest Landscape Integrity Index (Tsai et al., 2018). Since then, Earth Engine 

has been used to create hundreds of scientific journal articles in a variety of fields 

such as forestry and agriculture, hydrology, natural disaster monitoring and 

assessment, urban mapping, atmospheric and climate sciences, and soil mapping. 

https://www.sciencedirect.com/science/article/pii/S0034425717302900#bb0135
https://www.sciencedirect.com/science/article/pii/S0034425717302900#bb0135
https://www.sciencedirect.com/science/article/pii/S0034425717302900#bb0105
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6.4 Temporal Analysis 

6.4.1 Standardized Precipitation Index 

The temporal patterns of the SPI time series in the investigated region at 

various timescales have the potential to provide insights into the temporal variation 

of droughts in the Campania region. As an example, Figure 6.7 depicts SPI 6, SPI 

12, and SPI 24 for two grid data cells (Figure 3.1). The left panels show an example 

from the southern coastal area, while the right panels show an example from the 

northern inland area. 

 
Figure 6.7 SPI_6, SPI_12 and SPI_24 for cell no. 2 (southern area – a, c, e) and cell no. 108 

(northern area – b, d, f). 

Figure 6.7 highlights the drought periods that affected the Campania region 

around 1940–1950 and 1990–2010. This finding appears to be consistent with the 

findings of a European-scale assessment study, which stated that the period between 

1985 and 1995 was characterized by the widest spread of extreme drought events, 

with most of them mainly located on the Iberian Peninsula, southern Europe, the 

Balkans, and western Turkey (Bonaccorso et al., 2013). Drought severity appears to 

be less pronounced in the northern inland areas, particularly when the longest 
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accumulation timescale is considered. Drought severity appears to be less 

pronounced in the northern inland areas, particularly when the longest accumulation 

timescale is considered. Drought tends to be more persistent in the southern areas 

than in the northern ones, which have also been impacted only slightly by the region's 

drought conditions since 2015. More information on the spatial variability of drought 

features will be discussed in following section. 

To investigate temporal trends, sign, significance, and magnitude in SPI time 

series over the studied period, the modified Mann–Kendall (MMK) test and the Sen's 

slope estimator were used. The relevant MMK results for trend sign and significance 

(significance level = 5%) are depicted in Figures 6.8 and 6.9. 

 
Figure 6.8: SPI MMK test sign for the different accumulation scales (α= 5 %). 
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From SPI 3 to SPI 12, the downward trend becomes dominant in the study 

area, especially in the north-western and southern sectors (Figure 6.8), which 

correspond to the area with the highest mean annual precipitation and the highest 

precipitation downward trend (Longobardi and Villani, 2010). For the SPI 24 to SPI 

48, the proportion of negative to positive trends remains nearly identical, with 

negative values still dominating in more than 60% of the cells. Concerning the 

trend's significance (Figure 6.9), the MMK test demonstrated how a very large 

proportion of the gridded SPI showed a significant trend over the different 

timescales, particularly from the SPI 3 accumulation scale to the SPI 24 

accumulation scale (Figure 6.9). The negative trend is especially noticeable for SPI 

3, SPI 6, and SPI 12, with a percentage of grid cells of around 55 percent for both 

SPI 3 and SPI 6 and 65 percent for SPI 12. In terms of trend spatial distribution, the 

SPI 24 is the most significant, accounting for nearly 70% of the grid cells. Beyond 

this scale, temporal variations did not appear to be significant. 
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Figure 6.9: SPI MMK test significance (α= 5 %) for the different accumulation scales. 
 

Because the region's groundwater systems have long delay times and are thus 

potentially impacted by SPI accumulated on a large scale, climate temporal 

variations are unlikely to have a significant impact on those systems (Longobardi 

and Van Loon, 2018). On a national scale, the obtained results were well in line with 

the general overview outlined in previous research by Delitala et al. (2000) and Bordi 

et al. (2001) for other regions of southern Italy (Sardinia, Sicily, and Puglia), and 

were also in perfect agreement with the results provided by Buttafuoco and Caloiero 

(2014) for the Calabria region in southern Italy. 

At the local scale, the modified Mann–Kendall trend test findings are also 

consistent with previous climatological studies on precipitation regime investigation 

(Longobardi and Villani, 2010; Longobardi et al., 2016). Indeed, annual and 
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seasonal precipitation in the region were found to have a generalized negative trend 

over the last century, despite the fact that the downward tendencies, contrary to the 

SPI tendencies, were significant for a very small number of rain gauge stations. 

Figure 6.10 depicts the magnitude of the trend in the SPI time series as 

determined by Sen's estimator. In accordance with the MMK test results, the trend 

was dominantly negative across the region, which is consistent with the trend sign 

depicted in Figure 6.8, with the exception of a west–east transect at the region's 

middle latitudes, which corresponds to an area with moderate mean annual 

precipitation values and the lowest downward precipitation trends (Longobardi and 

Villani, 2010). 

 
Figure 6.10: SPI Sen's slope for the different accumulation timescales. 
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However, the overall tendency toward drier conditions was moderate, with an 

amplification with increasing accumulation timescale. In the case of SPI 6, the 

increase in the SPI index is approximately 10% over a ten-year period. It rises by up 

to 15% and 24% in ten years for SPI 12 and SPI 48, respectively. On the spatial 

scale, the variability in the minimum and maximum assessed trend increases as the 

accumulation timescale increases. 

 

6.4.2 Standardized Precipitation Evapotranspiration Index 

The patterns of the SPEI time series in the studied region at different 

timescales have the potential to provide insights into the temporal variation of 

droughts in the Campania region. Figure 6.11 depicts SPEI 6, SPEI 12, and SPEI 24 

for two grid data cells as an example (Figure 3.1). The examples on the left are from 

the southern coastal area, while the examples on the right are from the northern 

inland area. 

 
Figure 6.11: SPEI_6, SPEI_12 and SPEI_24 for cell no. 2 (southern area – a, c, e) and cell 

no. 108 (northern area – b, d, f). 
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Figure 6.11 depicts the drought periods that affected the Campania region in 

the years 1940–1950 and 1990–2010. This finding confirms the SPI index results in 

section 6.4.1, and it appears to be consistent with the findings of a European-scale 

assessment study, which stated that the period between 1985 and 1995 was 

characterized by the widest spread of extreme drought events, with the majority of 

them primarily located on the Iberian Peninsula, southern Europe, the Balkans, and 

western Turkey (Bonaccorso et al., 2013). Drought severity appears to be less 

noticeable in the northern inland areas, especially when the longest accumulation 

timescale is assessed. Drought is more persistent in the south than in the north, which 

has also been impacted only slightly by the region's drought conditions since 2015.  

The modified Mann–Kendall (MMK) test and the Sen's slope estimator were 

used, as mentioned in section 6.4.1, to investigate temporal trends, sign, significance, 

and magnitude in SPEI time series over the studied period. Figures 6.8 and 6.9 show 

the relevant MMK results for trend sign and significance (significance level = 5%). 
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Figure 6.12 SPEI MMK test sign for the different accumulation scales (α= 5 %). 

From SPEI 3 to SPEI 12, the downtrend dominates and its percentage 

increases as the time scale increases in the study area, particularly in the north-

western and southern sectors (Figure 6.12), which correspond to the area with the 

highest mean annual precipitation and the highest precipitation downward trend 

(Longobardi and Villani, 2010). The proportion of negative to positive trends 

remains nearly identical from SPI 24 to SPI 48, with negative values dominating in 

more than 70% of the cells. Concerning the trend's significance (Figure 6.13), the 

MMK test demonstrated how a very large proportion of the gridded SPI showed a 

significant trend over the different timescales, particularly from the SPI 3 

accumulation scale to the SPI 24 accumulation scale (Figure 6.9). The negative trend 

is especially noticeable for SPI 3, SPI 6, and SPI 12, with a percentage of grid cells 

of around 55 percent for both SPI 3 and SPI 6 and 65 percent for SPI 12. In terms of 
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trend spatial distribution, the SPI 24 is the most significant, accounting for nearly 

70% of the grid cells. Beyond this scale, temporal variations did not appear to be 

significant. 

Concerning the significance of the trend (Figure 6.13), the MMK test revealed 

that a very large proportion of the gridded SPEI showed a significant trend across 

timescales, particularly from the SPEI 3 accumulation scale to the SPEI 12 

accumulation scale (Figure 6.13). The negative trend is most noticeable for SPEI 3, 

SPEI 6, SPEI 12, and SPEI 24, with grid cell percentages of 64, 67, 71, and 65 

percent, respectively. The SPEI 12 is the most significant in terms of trend spatial 

distribution, by almost 72 percent of the grid cells. Temporal variations did not 

appear to be significant above this scale. 

 
Figure 6.13 SPEI MMK test significance (α= 5 %) for the different accumulation scales. 
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The results of the modified Mann–Kendall trend test were well in line with 

prior climatological studies on precipitation and temperature regime investigation 

(Toreti, Desiato et al. 2008, Longobardi and Villani, 2010; Longobardi et al., 2016). 

Indeed, according to previous studied carried out in the region by (Longobardi and 

Villani, 2010; Longobardi et al., 2016), annual and seasonal precipitation in the 

region were found to have a generalized negative trend over the last century, despite 

the fact that the downward tendencies were significant for a very small number of 

rain gauge stations, contrary to the SPEI tendencies. 

The magnitude of the trend in the SPEI time series as determined by Sen's 

estimator is represented in Figure 6.14. According to the MMK test results, the trend 

was predominantly negative across the region, which corresponds to the trend sign 

depicted in Figure 6.12, except for a Northeast part and some central cells of the 

studied area, which corresponds to an area with moderate mean annual precipitation 

values and the lowest downward precipitation trends (Longobardi and Villani, 

2010). 
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Figure 6.14  SPEI Sen's slope for the different accumulation timescales. 
 

The overall tendency toward drier conditions, on the other hand, was 

moderate, with an amplification with increasing accumulation timescale. In addition, 

the variability in the minimum and maximum assessed trend increases as the 

accumulation timescale increases on the spatial scale. 

6.5 Drought Characteristics Assessment  

6.5.1 Standardized precipitation index  

Figures 6.15 and 6.16 highlight the total number of drought events detected in 

the SPI time series from 1918 to 2019 for moderate drought conditions and 
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extremely severe drought conditions of threshold SPI≤ -1 and SPI≤ -2, respectively 

at each grid point for all accumulation scales considered. In the case of moderate 

drought events (figure 6.15), the SPI 3 was found to be associated with the greatest 

number of droughts, on average 95, for the entire period of observation across the 

191 grid cells. Drought frequency decreased with increasing accumulation scale, 

given the large theoretical autocorrelation in SPI time series for the larger 

accumulation scale, with the SPI 24 to SPI 48 patterns approximately identical 

among them (Figure 6.15). The findings appeared to be in good agreement with those 

of other authors (McKee et al., 1993; Buttafuoco et al., 2015; Marini et al., 2019; 

Fung et al., 2020). Except for the lower number compared to moderate events, 

extremely severe drought episodes reflected very similar behavior (figure 6.16). The 

average number of drought events in the case of SPI 3 for the threshold SPI ≤ -2 was 

27 for the entire observation period across the 191 grid cells. In terms of spatial 

patterns, while a moderate correlation was observed for small clusters of cells, no 

clear concentration of drought event occurrence in a specific area was discovered. 
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Figure 6.15 Number of drought events for the different accumulation timescales over the 
whole period of observation 1918–2019 (threshold SPI≤ -1). 
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Figure 6.16 Number of drought events for the different accumulation timescales over the 

whole period of observation 1918–2019 (threshold SPI≤ -2). 
More perspectives are therefore obtained from the analysis of the MDD, 

MDS, and MDP, as displayed in Figures 6.17, 6.18 and 6.19 with reference to an 

SPI≤ -1 threshold value. 
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Figure 6.17 MDD (mean drought duration) for the different accumulation periods considered 

(SPI ≤−1). 

In terms of the MDD (figure 6.17), besides what occurred with drought 

frequency, the mean drought duration increased with accumulation timescale, 

ranging from 4 to 5 months for the SPI 3 to 8 to 60 months for the SPI 48. The MDD 

spatial behavior was also influenced by the accumulation timescale (figure 6.17). 

The average MDD values affected nearly the entire region in the case of SPI 3 and 

SPI 6. The largest MDD values were found along a northwest to southeast transect 

in the case of SPI 12, SPI 24, SPI 36, and SPI 48, and more clearly in the southern 

areas of the region under investigation. Northern sections are the most impacted at 

the smallest timescales (SPI 3). For longer accumulation timescales, the maximum 
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values detected in the southern region were mainly caused by severe drought periods 

that occurred in the region in 1990, 2003, and 2017. 

In terms of the MDS (Figure 6.18), the drought severity increased due to the 

MDD characteristics, with the accumulation timescale ranging from 6 to 8 for the 

SPI 3 to 11 to 90 for the SPI 48 (Figure 6.18). The accumulation timescale, as in the 

case of MDD, seemed to influence the spatial pattern of MDS. MDS showed a 

significant severity in the northern area for SPI-3, whereas from SPI-12 to SPI-48, 

MDS severity moved from the northern to southern areas and almost disappeared 

with an even distribution set at an almost constant value (about -10). 

 
Figure 6.18: MDS (mean drought severity) for the different accumulation periods considered 

(SPI ≤−1).   



 Chapter 6:  EVALUATION OF SELECTED DROUGHT INDICES 

AND DROUGHT CONDITIONS   

 

 148 

 

In the case of the MDP (Figure 6.19), as previously demonstrated for the 

MDD and MDS, the minimum (about -1.5 on average) and maximum (about -2.3 on 

average) values appeared similar for the different accumulation timescales and were 

likely more marked for the lower accumulation scales where MDP's largest peaks 

are concentrated in the northern area. The spatial pattern, on the other hand, was 

found to be particularly complex, with no clear tendency related to the accumulation 

timescale (figure 6.19). Moreover, the highest peaks for the SPI-3 to SPI-6 are 

located in the northern areas of the region. With the exception of some coastline cells 

in the north of the region, there was a general tendency for a dominant low peak 

spatial distribution from SPI-24 to SPI-48. In addition, The SPI 12 reflected a neutral 

condition, with marked minimum and maximum SPI values distributed across the 

region. 

 



 Chapter 6:  EVALUATION OF SELECTED DROUGHT INDICES 

AND DROUGHT CONDITIONS   

 

 149 

 

Figure 6.19 MDP (mean drought peak) for the different accumulation periods considered 

(SPI ≤−1). 

By increasing the threshold for SPI values, from SPI 1 to SPI 2, it was possible 

to investigate the region's extremely severe drought conditions. In terms of the MDD 

(figure 6.20), the average drought duration increased with accumulation timescale, 

ranging from 3 months for the SPI 3 to 47 months for the SPI 48. 

When compared to moderate drought events, the mean drought duration for 

each accumulation scale decreased for extremely severe events. In term of spatial 

distribution, in case of extreme drought condition (SPI ≤ -2), the same consideration 

provided for the case of SPI ≤−1 was held.  

 
Figure 6.20: MDD (mean drought duration) for the different accumulation periods 

considered (SPI ≤−2). 
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The drought severity increased with the accumulation timescale ranging from 

16 for the SPI 3 to 109 for the SPI 48, with reference to the MDS and thus to the 

MDD (figure 6.21). In comparison to moderate drought events, the mean drought 

severity increased for each accumulation scale during extremely severe drought 

events. More about the spatial pattern of MDS, it emerged as a common feature that 

the highest MDS values appeared in the region's center, with some spot cells located 

on the region's extreme southern and northern coastlines. The lower SPI 3 provided 

an exception. 

 
Figure 6.21: MDS (mean drought severity) for the different accumulation periods considered 

(SPI ≤−2).   

In the end, unlike the MDD and MDS, the minimum (about -2.5 on average) 

and maximum (about -3.5 on average) values for the different accumulation 
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timescales of MDP appeared similar and likely more pronounced for the lower 

accumulation timescales (-4.09 for SPI 6), (figure 6.22). The spatial pattern was 

found to be particularly complex, with no clear tendency related to the accumulation 

timescale (figure 6.22). Larger peaks remained concentrated in the central cells of 

the region, but the area covered changed with accumulation timescale, becoming 

more moderate for the larger SPI accumulation scale. In the case of the largest 

accumulation periods, SPI 36 and SPI 48, a large peak appeared to spread throughout 

the region. 

 
Figure 6.22: MDP (mean drought peak) for the different accumulation periods considered 

(SPI ≤−2). 
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6.5.2 Standardized Precipitation Evapotranspiration Index 

Figures 6.23 and 6.24 show the total number of drought events detected in the 

SPEI time series from 1924 to 2019 for moderate and extremely severe drought 

conditions of SPEI≤ -1 and SPEI≤ -2, respectively, at each grid point for all 

accumulation scales considered. In the case of moderate drought events (figure 

6.23), the SPEI-3 was found to be associated with the greatest number of droughts, 

on average around 90, over the entire observation period across the 191 grid cells. 

Drought frequency decreased with increasing accumulation scale, given the large 

theoretical autocorrelation in SPEI time series for larger accumulation scales, with 

the SPEI 24 to SPEI 48 patterns seeming to be pretty much identical (Figure 6.23). 

The results appeared to be in good agreement with the SPI temporal pattern (section 

6.5.1). Furthermore, these findings are consistent with those of other authors 

(McKee et al., 1993; Buttafuoco et al., 2015; Marini et al., 2019; Fung et al., 2020). 

With the exception of a lower number when compared to moderate events, extremely 

severe drought episodes exhibited very similar behavior (figure 6.24). For the entire 

observation period across the 191 grid cells, the average number of drought events 

in the case of SPEI-3 for the threshold SPEI ≤ -2 was however almost 10. In terms 

of spatial patterns, while there was a moderate correlation for small clusters of cells, 

large clusters seemed to be concentrated in the northeastern part of the region, 

indicating a clear concentration of drought event occurrence. 
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Figure 6.23: Number of drought events for the different accumulation timescales over the 

whole period of observation 1924–2019 (threshold SPEI≤ -1). 
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Figure 6.24: Number of drought events for the different accumulation timescales over the 

whole period of observation 1924–2019 (threshold SPEI≤ -1). 

 

The analysis of the MDD, MDS, and MDP, as shown in Figures 6.25, 6.26, and 6.27 with 

reference to an SPEI ≤ -1 threshold value, yields more perspectives. In terms of MDD (Figure 

6.25), in addition to what occurred with drought frequency, the average duration of drought 

increased with accumulation time scale, ranging from 4-5 months for SPEI 3 to 9-167 months 

for SPEI 48. The spatial behavior of MDD was also influenced by the accumulation time 

scale (Figure 6.25). average MDD values affected almost the entire region in the case of SPI 

3 and SPI 6, while minimum values were detected in the northern region except for some 

cells in the southern part of the region for SPI 12. The largest MDD values were found along 

a northwest to southeast transect in the case of SPEI 24, SPEI 36, and SPEI 48, and most 



 Chapter 6:  EVALUATION OF SELECTED DROUGHT INDICES 

AND DROUGHT CONDITIONS   

 

 155 

 

clearly in the southern areas of the study region. The northern sections are most affected at 

the smallest time scales (SPEI 3, and SPEI-12 in particular). As mentioned in section 6.5.1, 

for longer accumulation time scales, the maximum values detected in the southern region are 

primarily caused by the severe drought periods that occurred in the region in 1990, 2003, and 

2017. 

 
Figure 6.25 MDD (mean drought duration) for the different accumulation periods considered 

(SPEI ≤−1). 
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Figure 6.26: MDS (mean drought severity) for the different accumulation periods considered 

(SPEI ≤−1).   

The drought severity increased due to the MDD characteristics, with the 

accumulation timescale ranging from 6 to 8 for the SPEI-3 to 14 to 270 for the SPEI-

48, according to the MDS (Figure 6.26). As with MDD, the accumulation timescale 

appeared to influence the spatial pattern of drought severity. MDS showed a 

significant severity in the northern area for SPI-3, whereas from SPI-12 to SPI-48, 

MDS severity moved from the northern to southern areas and almost disappeared 

with an even distribution set at an almost constant value (about -14), except some 

cells in the Napoli and Cilento coastal areas where the severity indicates maximal 

values over 200.  
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In the case of the MDP (Figure 6.27), as previously demonstrated for the 

MDD and MDS, the minimum (about -1.5 on average) and maximum (about -1.92 

on average) values appeared similar for the different accumulation timescales and 

were likely more pronounced for lower accumulation timescales where MDP's 

largest peaks are concentrated in the northern, central, and east northern areas. The 

spatial pattern, on the other hand, was discovered to be extremely complex, with no 

clear tendency related to the accumulation timescale (figure 6.27). Furthermore, the 

highest SPEI-3 to SPEI-6 peaks were located in the region's northern and central 

areas. With the exception of some coastline cells in the region's north, there was a 

general tendency for a dominant low peak spatial distribution from SPEI-24 to SPEI-

48. Besides that, the SPEI 12 reflected a neutral condition, with marked minimum 

and maximum SPI values distributed across the region. 
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Figure 6.27: MDP (mean drought Peak) for the different accumulation periods considered 

(SPEI ≤−1).   

As mentioned in section 6.5.1, it was possible to investigate extreme severe 

drought conditions in the region by increasing the threshold for SPEI values from 

SPIE≤ -1 to SPI≤ -2. The average drought duration increased with accumulation 

timescale in terms of the MDD (figure 6.28), ranging from 3 months for the SPEI-3 

to 29 months for the SPI-36, with an exception for the SPEI-48, which had a 

maximum value of 23 months. The mean drought duration for each accumulation 

scale decreased for extremely severe events when compared to moderate drought 

events. In terms of spatial distribution, in the case of extreme drought (SPEI≤ -2), 

the same consideration as in the case of SPEI≤ -1 was adapted. 
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Figure 6.28 MDD (mean drought duration) for the different accumulation periods considered 

(SPEI ≤−2). 

Consequently, the severity of the drought increased with the accumulation 

timescale, which ranged from 13 for the SPEI-3 to 50 for the SPEI-48 in terms of 

MDS and thus MDD (figure 6.29). In comparison to moderate drought events, the 

mean drought severity increased for each accumulation scale during extremely 

severe drought events. More on the spatial pattern of MDS, it occurred as a common 

feature that the highest MDS values appeared in the region's south-eastern for the 

smallest scale accumulation. besides that, the maximum value of MDS appeared in 

the region's north-western area for the largest scale accumulation, with some spot 

cells located on extreme southern coastlines of the region. 

 
Figure 6.29: MDS (mean drought severity) for the different accumulation periods considered 

(SPEI ≤−2).   
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Figure 6.30: MDP (mean drought Peak) for the different accumulation periods considered 

(SPEI ≤−2).   

Finally, unlike the MDD and MDS, the MDP's minimum (about -1.4 on 

average) and maximum (about -2.9 on average) values for the various accumulation 

timescales appeared similar, and likely more pronounced for the lower accumulation 

timescales (-3.25 for SPEI 6). (Figure 6.30). The spatial pattern was discovered to 

be particularly complex, with no noticeable tendency related to the accumulation 

timescale (figure 6.22). Greater peaks remained concentrated in the region's north-

western and north-eastern cells, but the area covered changed with accumulation 

timescale, becoming more moderate for the larger SPEI accumulation scale. In the 

case of the largest accumulation periods, SPEI 36 and SPEI 48, a large peak of -2.6 
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on average covered almost the entire study area, which is not the case when studying 

SPI patterns. 

6.6 Assessment of the relationship between SPI and SPEI 

Pearson correlation coefficient (PCC), also known as the product-moment 

correlation coefficient, was used to test the linear relationship between SPI and SPEI. 

According to Adler et al., 2010 and Giavarina (2015), PCC is the most commonly 

used statistical technique for determining how strongly two variables are related to 

one another. This is assisted by research from different fields of study that have 

successfully worked on and/or used PCC as a tool to test linear relationships between 

variables or methods (Hines et al., 1987, Artusi et al., 2002, Tsakiris et al., 2007). 

Figure 6.31 shows that SPI and SPEI had a strong and significant relationship 

at all time scales (r ≥ 0.7, p < 0.01).  

 
Figure 6.31: Pearson correlation coefficient (PCC) for different time scales  

Figure 6.32 compares the SPEI and SPI in terms of drought characteristics 

(duration, severity, and peak). In terms of duration, the graph shows nearly identical 

results for both indices. Because the durations have a similar distribution, the two 
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indices describe the drought in the same way in terms of timing. In terms of severity, 

the figure shows that the SPI is possibly more severe than the SPEI; additionally, the 

SPI has a slightly higher interquartile range, indicating that its distribution is heavier 

in the center; these differences result from the distribution type used in the 

calculation of the SPEI (Log-logistic distribution). In addition, overall, the average 

values of the peaks are very similar to each other. In terms of average values, perhaps 

the SPI has a slightly wider interquartile range, and it is always may due to the 

distribution fact. 

 

 
Figure 6.32: Drought characteristics for both indices SOI and SPEI (first row correspond to 

SPEI and the second to SPI)  

Moreover, figure 6.33 shows an example about how SPI and SPEI behave within a drought 

event in different time scales (drought event of 2017). The figure shows that SPI is slightly 

more severe than SPEI, this was due to the consistent lack of rain since December 2016, 

especially during spring 2017 (http://edo.jrc.ec.europa.eu/). 

http://edo.jrc.ec.europa.eu/


 Chapter 6:  EVALUATION OF SELECTED DROUGHT INDICES 

AND DROUGHT CONDITIONS   

 

 163 

 

 
Figure 6.33: Drought event of the 2017 by SPI and SPEI indexes 

6.7 Overall evaluation  

Concerning the drought temporal features, the trend was found to be 

dominantly negative, and the percentage of impacted cells increased with 

accumulation scale. It remained almost similar for SPI/SPEI time series computed 

over 24 months or longer intervals. The significance was also found to be 

particularly evident approaching 70 % of grid cells for SPI_24/SPEI_24. Beyond 

this timescale threshold, significance in temporal variability strongly decreased. The 

SPI increase over time, ranging from about 10 % in 10 years for the case of 

SPI/SPEI_6 and 24 % for the SPI/SPEI_48. In the case of moderate dry conditions, 

MDD increased with the accumulation timescale, ranging from about 5 months for 

the SPI_6 to 60 months for the SPI_48 where for the SPEI MDD ranging from 4-5 



 Chapter 6:  EVALUATION OF SELECTED DROUGHT INDICES 

AND DROUGHT CONDITIONS   

 

 164 

 

months for SPEI 3 to 9-167 months for SPEI 48. Accordingly, MDS increased with 

accumulation scale, moving from about −10 in the case of SPI_6 to about −50 in the 

case of SPI_48, and from -6 in the case of SPEI_3 to -270 for the SPEI_48. MDP 

did not change significantly for both indices with the accumulation scale and was 

particularly pronounced in the case of the shorter temporal scales. Extremely severe 

events were featured by shorter durations and larger severity compared to the 

moderate drought events but were much less frequent (over 75 % less then). 

In term of spatial pattern, the negative trends appeared to occur along a 

northwest to southeast transect, whereas positive trends were focused along a west–

east transect at the middle latitude of the region. These areas are respectively 

featured by large mean annual precipitation coupled with the largest negative trends 

and by low to moderate mean annual precipitation and lowest negative trends. Those 

two regions are quite different in terms of orography. While the first is characterized 

by mountainous relief approaching or close to the coastline, the second features a 

large plain devoted to agricultural practices, crossed by the longest river of the 

region, the Volturno River, which probably represents an access corridor to 

atmospheric weather systems. The complex orography of the region appears then to 

impact both the average precipitation spatial distribution and the relevant temporal 

variability. The accumulation timescale affected the MDD spatial behavior. At the 

lowest accumulation scale, the northern area appeared to be more affected, whereas 

large MDD values were detected along a northwest to southeast transect and were 

however more evident in the southern sectors of the region. The maximum values 

detected in the southern area for the longer accumulation timescale were mainly 

caused by severe drought periods occurring in 1990, 2003 and 2017 in the region. 

The MDS spatial pattern was also affected by accumulation scale. It showed a 

concentration on the northern region area for the shorter temporal scales and instead 

a constant spatial distribution for the longer temporal scales, with an exception for a 
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northwest to southeast transect and for the southern sectors of the region where the 

largest MDS values were detected. In the end, the MDP spatial pattern was found to 

be particularly complex and did not show a clear tendency related to the 

accumulation timescale. At least for the shorter timescale, the largest drought peaks 

seemed concentrated on the norther inland area of the region, which overall could 

be addressed as an area potentially prone to agricultural drought stress. 

6.8 Summary 

Drought is defined as a prolonged period of lower-than-normal water 

availability. It is a recurring and global phenomenon, but the Mediterranean Basin 

is regarded as a particularly vulnerable environment in this regard. The primary goal 

of this study was to assess drought characteristics in the Campania region of southern 

Italy by analyzing the spatial and temporal pattern characteristics of SPI time series 

computed at different accumulation scales over a centennial period from 1918 to 

2019. To describe the temporal trend significance and magnitude, the modified 

Mann–Kendall test and Sen's test were used. Furthermore, for both moderate (SPI≤ 

-1) and extremely severe (SPI≤ -2) drought conditions, the "run theory" (Yevjevich, 

1967) was used to illustrate the frequency, duration, peak, and severity of drought 

events. The current study demonstrated how historical in situ long-term 

measurements are critical for understanding historical drought conditions and 

planning mitigation strategies to deal with future climate change impacts. As a result 

of the findings of this study, it is possible to conclude that SPI and SPEI performs 

similarly in the Campania region. However, the relationship and agreement analyses 

revealed that SPI can be used in place of SPEI at all time scales and vice versa, 

despite the fact that the two indices agreed to some extent. Hence, in the absence of 

temperature data and/or appropriate analysis tools to perform SPEI, it is safe to 
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conclude that SPI can be used to assess drought in the study area at all investigated 

time scales.
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Chapter 7 

 DROUGHT HOT SPOT ANALYSIS USING 

LOCAL INDICATORS OF SPATIAL 

AUTOCORRELATION 

 

7.1 Overview 

The following work aims to analyse drought as seen through the SPI and SPEI 

climate indicators and water stress on vegetation measured through the NDVI 

vegetation index, limiting considerations to the Campania Region, in order to 

delineate any connections that are present between the two drought phenomenon. 

7.2 Assessment of different historical drought events in the 

Campania Region  

7.2.1 Comparison of SPEI and NDVI 

7.2.1.1 Drought event of the year 2003 

One of the most well-known and severe droughts to affect Italy - and the rest 

of Europe - was the summer of 2003, when there was an extraordinary heatwave 
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with average temperatures exceeding 40°C. According to reports, the event lasted 

from May to the end of August. Figures 7.1-7.9 depict the temporal evolution of the 

2003 drought in terms of SPEI aggregated at various time scales. 

The meteorological drought, as depicted by the SPEI on a three-month scale, 

began in March 2003, a few months earlier than what was reported in the 

bibliographic record. In fact, small yellow "spots" can be seen near the border with 

Basilicata. The phenomenon appears to end in October 2003, restoring normalcy 

(green), but then resumes with less intensity until February 2004, when the last signs 

of a moderate drought appear (orange). In this case, the drought peaks in July 2003, 

with drought values ranging from severe to extreme (orange, red, and dark red) in 

the provinces of Caserta and Naples. 

The 6-month scale depicts an agricultural drought that began in March 2003 

with moderate SPEI values (yellow) and ended between February and April 2004 

with very mild (yellow) and localized effects in small areas. The most severe 

moment occurred in August 2003, surpassing the severity of the SPEI 3 peak. The 

indicator's extreme values cover the entire Campania Region (dark orange and red). 

On a 12-month scale, the drought begins slowly and almost invisible between 

May and July 2003; however, it quickly expands, reaching the most critical effects 

on the hydrological compartment in January 2004, when the Provinces of Caserta 

and Naples are characterized by moderate to severe dry conditions. The return to 

normalcy occurs after April 2004, when the effects of moderate drought are still 

visible (orange). 

This was also a drought that affected almost the entire Campania Region, with 

the effects being most severe along the Tyrrhenian coast. The Apennines are rarely 

affected by the drought event, with the exception of a few instances, such as August 

2003 (6 months scale) with extreme values (dark red) and other rare instances with 

moderate SPEI values (orange). 
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Figure 7.1:  SPEI map of the year 2002 on a 3-month scale 
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Figure 7.2: SPEI map of the year 2003 on a 3-month scale 
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Figure 7.3: SPEI map of the year 2004 on a 3-month scale 
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Figure 7.4: SPEI map of the year 2002 on a 6-month scale 
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Figure 7.5:  SPEI map of the year 2003 on a 6-month scale 
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Figure 7.6:  SPEI map of the year 2004 on a 6-month scale 
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Figure 7.7:  SPEI map of the year 2002 on a 12-month scale 
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Figure 7.8. SPEI map of the year 2003 on a 12-month scale 
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Figure 7.9: SPEI map of the year 2004 on a 12-month scale 

The NDVI maps (Figure 7.10-7.12) show, on the one hand, the seasonality of 

the vegetation, while, on the other hand, only in 2003 is there a slight reduction of 

dense vegetation (dark green), but during the winter period there is a condition of 

scarcity (green) and severe scarcity (light green) until February 2004. The 

Mediterranean bush is not uniform across the entire coastal territory; in fact, because 
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of the different conformity of the ground, it allows different types of plants to grow, 

which also depends on rainfall; in places where it is scarcer, the vegetation becomes 

more rugged. 

Because vegetation growth is comparable to that of a normal year, it is 

impossible to say definitively that meteorological drought corresponds to vegetation 

stress. 

EVI (Figure 7.13-7.15) shows that there is no green cover in the area 

perpendicular to the Apennines in February 2004, as there was in February 2002. 

This phenomenon, however, does not appear to be related to the 2003 drought. 
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Figure 7.10:  NDVI map of the year 2002 
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Figure 7.11:  NDVI map of the year 2003 
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Figure 7.12:  NDVI map of the year 2004 
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Figure 7.13:  EVI map of the year 2002 
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Figure 7.14: EVI map of the year 2003 
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Figure 7.15:  EVI map of the year 2004 
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7.2.1.2 Drought event of the year 2017 

The 2017 drought began in December 2016 as a result of a large rainfall 

deficit, which was concentrated in both winter and the following spring. 

Furthermore, there were heat waves of unprecedented magnitude in the summer, 

with temperatures reaching 40°C. As a result of this event, many regions were forced 

to declare a state of water crisis, and the government declared a national emergency. 

For smaller time scales, the SPEI index perfectly illustrates the effects of 

different drought declines since December 2016, but the duration of the drought 

event does not match the information collected. 

On a 3-month scale, the meteorological drought will continue until December 

2017, after which the study region will turn green. Between May and July of this 

year, the most severe effects are visible. During these months, severe to extreme 

SPEI index values (red and dark red) cover almost the entire Campania Region, with 

only moderate (orange) values in the Apennines. The most severe values are found 

along the Tyrrhenian coast, specifically in Caserta, Salerno, and, to a lesser extent, 

Naples. 

At the 6-month aggregation scale, agricultural drought continues into January 

2018, with areas still experiencing moderate drought (orange). The severity of the 

storm peaked in August of 2017. During the peak month, the entire Campania 

Region is in a critical situation, with very extreme conditions (dark red) in the 

Provinces of Caserta and Salerno. 

The 12-month scale captures the effects of the 2015 drought on the 

hydrological compartment, which lasted until the end of 2016 with moderate drought 

conditions (orange with small areas of red) localized along the Tyrrhenian coast; the 

drought gradually expands spatially, until it subsides in February 2018. The most 

severe conditions can be attributed to the month of October 2017, when very extreme 
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drought conditions (dark red) were observed for the first time at the highest 

aggregation scales, primarily in the Province of Caserta. 

The 2017 drought event affected a large area, completely affecting the 

Campania Region, with very severe effects on the Tyrrhenian coast and less severe 

internal effects towards the Apennines.. 

 
Figure 7.16. SPEI map of the year 2016 on a 3-month scale 
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Figure 7.17. SPEI map of the year 2017 on a 3-month scale 
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Figure 7.18. SPEI map of the year 2018 on a 3-month scale 
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Figure 7.19. SPEI map of the year 2016 on a 6-month scale 
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Figure 7.20. SPEI map of the year 2017 on a 6-month scale 
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Figure 7.21. SPEI map of the year 2018 on a 6-month scale 
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Figure 7.22. SPEI map of the year 2016 on a 12-month scale 
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Figure 7.23. SPEI map of the year 2017 on a 12-month scale 
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Figure 7.24. SPEI map of the year 2018 on a 12-month scale 

The NDVI and EVI for this drought event show no signs of vegetation stress 

or loss of green cover. This also results in insufficient information for the year 2003, 

because it was a very dry year compared to 2017, and a more severe effect on 
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vegetation should have been obtained; thus, vegetation indices (NDVI and EVI) do 

not reflect drought conditions. 

 
Figure 7.25. NDVI map of the year 2016 
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Figure 7.26. NDVI map of the year 2017 
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Figure 7.27. NDVI map of the year 2018 



 Chapter 7:  DROUGHT HOT SPOT ANALYSIS USING LOCAL 

INDICATORS OF SPATIAL AUTOCORRELATION   

 

 198 

 

 
Figure 7.28. EVI map of the year 2016 
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Figure 7.29. EVI map of the year 2017 
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Figure 7.30. EVI map of the year 2018 
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The analysis of the NDVI and SPEI maps revealed the need to observe the 

phenomenon in a limited time span in order to observe primarily the ground effects 

of the meteorological phenomenon because the hydrological responses of the basin 

are placed in different time horizons. As a result, considering the year preceding and 

following the drought year does not allow for considerations about the effect on 

vegetation, as will be seen in the following. 

The EVI index, which provides information on vegetation health, was 

obtained through remote sensing, but it did not add to the information provided by 

the NDVI. The NDVI and EVI were obtained using remote sensing in the same way, 

except that once the effect of the atmosphere is removed, the EVI provides more 

information if the study area is smaller than the one considered here. In fact, viewing 

the image at a scale of 30 meters yields a more detailed distribution of the data and, 

as a result, greater spatial variability of the index. This observation narrowed the 

scope of the study to areas that are not intended for anthropogenic human activity 

but are affected by water scarcity in terms of water balance. The wooded areas, 

grazing areas, bushes, sclerophyllous vegetation areas, and shrubby vegetation areas 

have been identified using the land use map from the "Corine Land Cover" 

inventory. These areas are highlighted in green in Figure 7.31. This observation 

narrowed the scope of the study to areas that are not intended for anthropogenic 

human activity but are affected by water scarcity in terms of water balance. The 

wooded areas, grazing areas, bushes, sclerophyllous vegetation areas, and shrubby 

vegetation areas have been identified using the land use map from the "Corine Land 

Cover" inventory. These areas are highlighted in green in Figure 7.31. 

CORINE Land Cover (CLC) inventory began in 1985. (The reference year 

1990). The updates were created in the years 2000, 2006, 2012, and 2018. It is made 

up of a land cover inventory divided into 44 classes. For area phenomena, CLC uses 

a minimum mapping unit (MMU) of 25 hectares (ha) and a minimum width of 100m 
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for linear phenomena. The initiative's main goal is to dynamically verify the state of 

the environment in the community, to provide support for the development of 

common policies, to monitor their effects, and to propose any corrective 

measures..(https://www.isprambiente.gov.it/it/attivita/suolo-e-

territorio/copertura-del-suolo/corine-land-cover) 
We move from a comprehensive regional analysis to a regional scale analysis 

that is limited to forested areas. These areas' NDVI and SPEI maps have been 

represented to evaluate both the temporal evolution of vegetation and the effects of 

drought on the density of vegetative land cover. It is important to note that the 

seasonality of vegetation has a significant impact on land cover because the 

maximum coverage of leaves of the canopy of trees of any type occurs during the 

summer period, while there is a loss of green during the autumn period, and then we 

observe a lower green coverage through remote sensing and, as a result, through the 

indices. This phenomenon is not related to a lack of water resources in comparison 

to the budget because there is more rainfall in the autumn season than in the summer 

season, but it is related to climatic characteristics. 

Rainfall in Mediterranean environments is highly seasonal, occurring 

primarily in autumn and winter, during the vegetative resting season. In addition, 

there is a clear distinction between the summer-spring season and the rest of the year 

in terms of solar radiation and temperatures, which govern evapo-transpirative 

processes. We distinguish between modeling the vegetation growing season and the 

dormant (or resting) season to describe the seasonality of climate forcings. 

Because the map analysis revealed that the vegetation cover of a drought year 

showed no significant difference from the normal year, a six-month average (May-

October) was used to compare the difference to the normal year average. The maps 

did not show a clear difference; however, it was possible to see it through the 

https://www.isprambiente.gov.it/it/attivita/suolo-e-territorio/copertura-del-suolo/corine-land-cover
https://www.isprambiente.gov.it/it/attivita/suolo-e-territorio/copertura-del-suolo/corine-land-cover
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probability distribution, which showed vegetation water stress due to an extreme 

drought phenomenon. 

 
Figure 7.31 Corine Land cover use map 

 
The extraction of non-irrigated areas yielded the same results as the maps shown in 

Figures 7.1-7.30 of this study. This is because, while extracting the areas affected by 

potential water stress, the grid scale remains constant, and thus the maps obtained 

now only allow us to focus on the areas potentially tested by drought. As a result, a 

six-monthly average of both NDVI and SPEI was calculated for the drought year. It 

should be noted, however, that taking a year before and after the drought year had 

no additional value in determining the ground effect of the drought event. 
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As shown in Figure 7.32, the six-month average (May-October) for 1996 was 

compared to that of 2003, and similarly, the average of the normal year was 

compared to that of 2017. 

The average NDVI map for 1996 shows moderate vegetation and dense 

vegetation in an area that runs parallel to the Apennines. As seen in the average 

SPEI, this type of vegetation is associated with a normal condition. 

In a drought year, such as 2003, the average NDVI map becomes increasingly 

dark green (dense vegetation), once again in the area parallel to the Apennines. The 

2003 mean SPEI indicates moderate drought in Caserta and Naples. 

In 2017, the mean NDVI shows many areas of dense vegetation (dark green) 

in most of the region; however, the SPEI shows severe drought (red) primarily 

affecting the Provinces of Naples, Avellino, and Salerno, all against an orange 

background, indicating that the rest of the region is characterized by moderate 

drought. 

When only the 1996 NDVI average map and the 2003 NDVI average map are 

used, an increase in dense vegetation areas is seen in 2003. Similarly, it can be seen 

when comparing the average NDVI 1996 map to the average NDVI 2017 map. Even 

though there is a severe drought, the vegetative cover appears dense. 

It should be remembered that the semester observed is the semester of 

vegetation growth, so observing vegetation during its growth period may be 

insignificant. The effects on vegetation were observed during the winter semester, 

i.e., October-March. Because the vegetation is in the dormant (or resting) phase this 

semester, it should have a lower vegetative cover than in the growth phase. 

A six-month average (October-March) for the year 1996 and for the year 2017 

of the NDVI was again carried out, as we want to observe the effect of that drought 

period on a later time, keeping the spatial context unchanged (Figure 7.33). 
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Figure 7.32 Comparison map of NDVI averages and SPEI averages. 
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In the 1996 average map, it is evident that the entire region is characterized 

by green i.e., moderate vegetative cover. The same cannot be said for the year 2017. 

In fact, in the year 2017, we observe a vegetation that is still moderate (green), 

however, we notice more those darker green areas that indicate a dense cover. 

This analysis led to consider only the year in which the drought event was 

most extreme, hence the choice to represent in Figure 7.33 the average NDVI only 

for the years 1996 and 2017 in order to compare what occurs in a normal year and 

what occurs following the drought event.  

 
Figure 7.33 Comparison map of the NDVI averages and the SPEI averages for the half-year 

October-March. 
Because what is visually observed when comparing the frames is not 

exhaustive, further statistical analysis was required to interpret the maps. The 
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datasets required to obtain the empirical probability distributions for the seasonal 

averages from May to October were obtained. 

 
Figure 7.34. Empirical distribution year 1996 Average NDVI semester May-

October 

 
Figure 7.35 Empirical distribution year 2003 Average NDVI semester May-

October 
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Figure 7.36 Empirical distribution year 2017 Average NDVI semester May-

October 

When comparing drought and normal years, the probability density shown in 

Figure 7.34 is used as a reference. The probability density for the year 2003 is more 

pointed. The modal value is concentrated around 0.55, which represents dense 

vegetation in the NDVI classification. Similarly, the modal value is observed 

between 0.5 and 0.7 in the 2017 distribution, which also has a wider range of values; 

in fact, the probability distribution differs from that of 2003 because it is more 

flattened. Furthermore, the density of larger values (closer to the unit value) is higher 

in the 2017 distribution than in 2003. 

When we compare the distributions from 2003 and 2017, we notice a 

similarity in the frequency distribution of the data as well as the modal value. 

This outcome was predictable because the drought phenomenon in 2003 was 

not as severe as it was in 2017, when not only were extreme drought values of the 

SPEI recorded, but the phenomenon also affected the entire region. 

An analogy with a non-drought year cannot be drawn for the year 2017. The 

drought was significant; however, the NDVI showed a trend of vegetation growth; 

in fact, the highest probability density occurs for the highest NDVI values.  
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Discussion of the results 

The results reported in the preceding paragraph show a weak correlation 

between the two indices, whether observing the drought period, observing the 

subsequent period, or observing only forests and all those areas with natural 

irrigation. It can be seen that NDVI and SPEI are not in a cause-effect relationship. 

These results were obtained for two reasons: the first is the climatic condition 

of the last 30 years, and the second is the very low correlation between NDVI and 

SPEI. 

Moreover, the correlation between NDVI and precipitation (P), NDVI and 

SPEI at each aggregation scale was calculated. The results were compiled in Table 

7.1 

Table 7.1. The correlation between the SPEI and NDVI  

 Correlation index 

NDVI-P 0,25 

NDVI-SPEI_3 -0,01 

NDVI-SPEI_6 -0,005 

NDVI-SPEI_12 -0,006 

 

The correlation between the meteorological indices SPEI and NDVI 

vegetation is rather low, in fact, the values of the correlation indices are 

approximated to 0 (no correlation), at different scales of aggregation and this justifies 

why in times of drought the values of NDVI are not low. Slightly more significant 

is the correlation between NDVI and precipitation, so the long- and short-term trend 

of both precipitation and NDVI will be considered later. 
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Climate condition over the past 30 years. 

The temporal analysis of the SPEI showed that in the long term there is a 

decrease in the index associated with decreasing precipitation and increasing 

temperatures. In fact, this can be seen in Figure 7.38 which for the period from 1924 

to 2019 shows a decreasing trend in the trend function (in red), thus towards a drier 

climate. 

 
Figure 7.37 Evolution of the SPEI over the last 100 years. 

 

The climate trend over the past 30 years, however, is toward a wet climate as 

seen in the precipitation figure 7.37. In particular, the trend curve is increasing over 

time, so precipitation is higher. The data we have for the NDVI index is for the last 

30 years. The NDVI trend appears to be increasing, although in some areas of the 

region this trend is less pronounced. 

As a result, if precipitation increases, the NDVI index becomes increasing 

rather than stationary, and the vegetation cover increases. Looking at the last 30 

years rather than the scale of events, we can see that the index has been increasing. 

This is why, even after an extreme drought event like the one in 2017, the NDVI 
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continues to rise. What can be seen is that the curve's points are both lower and 

higher than the trend curve. These large differences are typical of the Mediterranean 

climate, which has a year with less precipitation followed by a year with more 

precipitation. The representation of NDVI and precipitation for three different cells 

can be seen in the three graphs below (figures 7.38-7.40). However, having only the 

last 30 years of data available limits the ability to determine the trend of NDVI versus 

precipitation. If one were to examine the NDVI dataset for the last 100 years, one 

would most likely notice a similar trend to that of precipitation for the last 100 years, 

resulting in a decrease in the vegetation index. 

 

 
Figure 7.38 Trend of cell 36 precipitation and NDVI 
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Figure 7.39 Trend of cell 85 precipitation and NDVI 

 

 
Figure 7.40 Trend of cell 186 precipitation and NDVI 
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7.3 SPATIAL AUTOCORRELATION OF HISTORICAL 

EVENTS 

The application of Spatial Autocorrelation has the utility of identifying, 

through Moran's Index, the presence of a dependence in the data, both in values 

above the mean and for those below it, (Chieppa, 1994). 

After we have studied durations and intensities, we want to find out if the 

different events studied have similar characteristics in terms of spatial aggregation, 

that is, if there are areas that are increasingly affected by drought and how these are 

affected. 

By using spatial autocorrelation maps it was possible to evaluate how much 

the various points on the grid influence each other; we will have Moran indices, 

mostly positive, which determine the presence of autocorrelation. 

It can be high, so High-High represented by the red color, or low, so Low-

Low represented by the blue color; in addition, on the grid there are many points 

represented by gray color or those points that are not significant (points that do not 

depend on the neighbor). 

7.3.1 The Drought event of 1962, 1989 and 2003 

With respect to the consideration of the drought event, some thoughts can be 

made regarding spatial autocorrelation. Using the local indicator of spatial 

association (LISA) method, several spatial autocorrelation maps resulted. 

Analyzing the 1962,1989 and 2003 events and comparing the drought maps, 

obtained by SPI and SPEI, with these maps obtained by LISA (Figure 7.41-7.49), 

we could make some considerations. The first thing to say is that first of all, many 

points on the grid are not significant (gray color). It is possible, moreover, to observe 

that in the areas characterized by moderate and severe drought conditions it happens 
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that the spatial autocorrelation between the points on the grid is of the Low-Low 

type (blue color), i.e. a low autocorrelation that does not mean that Moran's I index 

is negative but simply means that the influence of the various neighboring points is 

not high.  

On the other hand, for the areas characterized by drought conditions in the 

norm it happens that the spatial autocorrelation between the points on the grid is of 

the High-High type (red color), i.e., a high autocorrelation, meaning that the 

influence of the various neighboring points is high. 

 

Figure 7.41 - Spatial autocorrelation maps using LISA (September 1961 - February 

1962) 
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Figure 7.42 - Spatial autocorrelation maps using LISA (March 1962 - August 1962) 
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Figure 7.43 Spatial autocorrelation maps using LISA (September 1962 - February 

1963) 
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Figure 7.44 - Spatial autocorrelation maps using LISA (September 1988 - February 

1989) 
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Figure 7.45 - Spatial autocorrelation maps using LISA (March 1989 - August 1989) 
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Figure 7.46 - Spatial autocorrelation maps using LISA (September 1989 - February 

1990) 
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Figure 7.47 - Spatial autocorrelation maps using LISA (September 2002 - February 

2003) 



 Chapter 7:  DROUGHT HOT SPOT ANALYSIS USING LOCAL 

INDICATORS OF SPATIAL AUTOCORRELATION   

 

 221 

 

 

Figure 7.48 - Spatial autocorrelation maps using LISA (March 2003 - August 2003) 

 



 Chapter 7:  DROUGHT HOT SPOT ANALYSIS USING LOCAL 

INDICATORS OF SPATIAL AUTOCORRELATION   

 

 222 

 

 

Figure 7.49 - Spatial autocorrelation maps using LISA (September 2003 - February 

2004) 

7.3.2 The Drought event of 2017 

Looking at the 2017 event and comparing the drought maps to the spatial 

autocorrelation maps, some observations can be made. The sequence of frames is 

shown in Figures 7.50-7.52. First, we can make that many points on the grid are not 

significant (gray color).  

Referring to past experiences, i.e., the 62', 89' and 03' events, we would have 

expected many clusters representing low spatial autocorrelation (blue color) since in 
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this drought event the whole Campania region was affected, but this was not the 

case.  

We can say that, therefore, the points on the grid are correlated but not 

significantly. We always have areas with high spatial correlation, High-High, (red 

color) there where the drought event was little or no, but the areas with low spatial 

correlation, Low-Low, (blue color) in this case refer to areas where the drought has 

occurred at extreme levels.  

 

Figure 7.50 - Spatial autocorrelation maps using LISA (September 2016 - February 

2017) 
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Figure 7.51 - Spatial autocorrelation maps using LISA (March 2017 - August 2017) 
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Figure 7.52 - Spatial autocorrelation maps using LISA (September 2017 - February 

2018) 
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7.4 SPATIAL AUTOCORRELATION OF MEAN 

ANNUAL PRECIPITATION  

After having analyzed the effect of the spatial autocorrelation on the drought 

indices, we thought it appropriate to also consider the spatial trend of the average 

annual precipitation over the Campania region (Figure 7.53). 

Analyzing the following maps, some considerations came out; first of all, it is 

possible to highlight that where rainfall is high (dark blue color) the spatial 

autocorrelation will be High-High (red cluster) and, consequently, where rainfall is 

scarce (light blue color) also the autocorrelation will be Low-Low (blue cluster). 

Always observing the maps, it was noted that the rainfall and therefore the 

autocorrelation are high in areas where there are morphometric relief, that is, in the 

hinterland of the region. It is well known for a complex orography; the altitude of 

the region varies well above 2000 m a.s.l. (above sea level) in the Apennine 

Mountains to the coast. The region is characterized by a complex climate pattern 

because of the orography. It could be, therefore, mostly the relief that provides high 

spatial autocorrelation where it is present and low autocorrelation where it is not. 
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Figure 7.53. Maps of the spatial autocorrelation of the average annual rainfall 

using LISA 
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7.5 Overall evaluation  

Investigating and understanding the phenomenon of drought becomes critical 

if we are to aim for sustainable management of the water resource. Climate change 

must push society to change in turn by identifying better management strategies for 

infrastructure and resources on the ground. The goal must be to increase the 

efficiency of the works already present on the territory and those to be built in the 

future, to drastically reduce waste and consumption. The purpose of this study was 

to assess the health of forests based on the drought events that characterized 

Campania in the period of 2003 and 2017. 

This study showed a correlation of vegetation stress by NDVI, with the 

meteorological phenomenon of drought by SPEI; however, the impact of drought is 

underappreciated when NDVI and EVI index values from a drought year are 

compared to those from a normal year. Exploring the maps of the NDVI and EVI is 

not the only way to assess the phenomenon. In fact, another way may be to look at 

agricultural land use (nonagricultural use was considered in this thesis work) and 

measure the impact on the ground by considering the moisture content index of 

surface states that is obtained through remote sensing. It will, then, be necessary to 

reduce the scale of the case study, for example, considering a 30mx30m mesh grid, 

because land use varies from meter to meter. 

Throughout concluding, the NDVI can represent the evolution of vegetation; 

however, due to limitations caused by both the low correlation of the same with the 

SPEI index and the limited time horizon for which NDVI data are available, it is not 

possible to state that there is a water deficit for vegetation due to the rainfall deficits 

shown by the SPEI because the climatic condition of the Campania Region fits into 

a sub-humid climate; perhaps if it had been arid a greater. 
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The study of spatial autocorrelation was also significant, as it is a very effective 

technique for analyzing the spatial distribution of variables while assessing the 

extent to which they are influenced by and related to neighboring elements. Spatial 

autocorrelation was used to determine whether the various events studied have 

similar spatial aggregation characteristics, that is, whether there are areas that are 

increasingly affected by drought and how these are affected.  

For the 1962,1989 and 2003 events, it was immediately noticeable that in the areas 

characterized by moderate and severe drought conditions the spatial autocorrelation 

between the points on the grid was low, i.e., Low-Low. Therefore, large low-low 

clusters were formed on the maps, which thus went to define that autocorrelation 

was present but not in a high manner. Whereas, in areas characterized by drought 

conditions that were within the normal range, the spatial autocorrelation was of the 

High-High type, i.e., high, so much so that these large, red-colored clusters were 

formed on the maps, which therefore went to define that autocorrelation was present 

and was also very high. Based on the previous events' experiences, we would have 

expected large blue clusters, and thus very low spatial autocorrelation of the points, 

for the 2017 event, but this was not the case. Small blue clusters appeared only in 

areas where the drought was extremely severe, while small red clusters appeared in 

areas where the drought was moderate to severe. In addition, the average annual 

rainfall was subjected to a spatial correlation analysis. It was deduced from this that 

where there are morphometric reliefs, in the region's hinterland, we will have high 

rainfall and indices characterized by drought under normal conditions. As a result, 

the spatial autocorrelation in these areas will be of the High-High type, that is, very 

high. In contrast, where there are no morphometric reliefs, we can see that 

precipitation is low and drought indices are moderate or extreme. As a result, the 

spatial autocorrelation will be Low-Low, that is, low. 

In Addition, according to Fotheringham, (2009), Local variants of spatial 
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regression models, such as spatial lag and spatial error models, can be formulated 

to model both spatial non-stationarity and spatial dependency at the same time. 

This model allows not only the relationships within the model to vary spatially 

but also the degree of spatial dependence. in either the dependent variable or the 

residuals. The often-subjective nature of the definition of a spatial weights matrix, 

representing the scale of the spatial dependency being measured, remains a 

weakness in calculating any spatial autocorrelation statistic. To some extent, local 

spatial models address this issue by determining an optimal spatial weights matrix 

based on model goodness of fit. What is surprising is that a geographically 

weighted version of a spatial lag model, which would allow for a more objective 

estimation of local spatial autocorrelation statistics via estimates of local 

parameters on the lagged dependent variable term, is not used more frequently. 
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Chapter 8 

 SUMMARY AND CONCLUSIONS AND 

RECOMMENDATIONS  

8.1 Summary and Conclusions  

The main aim of this study was to assess drought conditions in the 

Campania region, southern Italy. Moreover, the study performed a detailed 

evaluation of existing Drought Indices to investigate their usefulness under 

different climatic conditions for which they were not originally developed for. 

The aim of the study was achieved by undertaking the following tasks: 

 
1. Selection of the study area, and data collection and processing 

 
2. Review and evaluation of the existing Drought Indices 

 
3. Analysis of inter-annual precipitation variability 

 
4. Reconstruction of historical gridded database 

 
5. Evaluation of drought indices and drought conditions 

 
6. Assessment of different historical drought events 

 
A brief summary and the conclusions drawn from each of these tasks 

are  presented in the following sections. 
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8.1.1 Selection of Study Area, and Data Collection and Processing 

The Campania region, Southern Italy was selected as the case study in this 

research. It was chosen because the management of water resources in this region 

has great importance, since it is a major source of water supply for the region and its 

limitrophe area. Almost all population (approximately 6 million) depends on the 

water resources of this region. Moreover, the water resources of the study area 

support a range of uses valued by the Campanian community, including urban water 

supply, agricultural and horticultural industries, and downstream user requirements, 

as well as flow requirements for maintaining environmental flows. Therefore, the 

assessment of the drought conditions can be a useful tool for the management of 

water resources in the Campania region. 

Data related to several hydro-meteorological variables (i.e., rainfall, potential 

evapotranspiration…etc.) were collected or computed for the Campania region. 

These data were required for the computation of different drought indicators. The 

required data were collected for this study from a number of organizations such as 

SIMN of Naples and the Civil protection department. Data used for the drought 

indicators were obtained from chapter 5 they were from 1918-2019 (102 years). Data 

processing was carried out to obtain the area representative monthly values as 

drought indicators were developed in this study using a monthly time step. Monthly 

drought indicators are suitable for operational purposes and have lower sensitivity 

to observational errors (McKee et al., 1993). Several historical droughts recorded in 

Campania including 1962,1989, 2003, and 2017 onwards were used in this study to 

evaluate the drought indicators. 

8.1.2 Review And Evaluation of Existing Drought Indices  

There are many drought indices that have been developed in the past 
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around the world to define drought conditions. Limited use of  drought indices 

has been carried for the Campania region in the past, and therefore the 

usefulness of the existing drought indices was first reviewed in this study. It 

was found that majority of the drought indicators had been developed for 

specific regions, and therefore may not be directly applicable to other regions 

due to different hydro- climatic conditions. Moreover, it was also found that the 

researchers and professionals are confronted with the ambiguity of the drought 

definition. Some researchers and professionals argue that drought is just 

deficiency in rainfall and should be defined     with the rainfall as the single 

variable.  

Drought is classified into four types: meteorological, agricultural, hydrological, 

and socioeconomic. These droughts may not occur at the same time, but 

meteorological drought is the driving force behind the others. It is characterized 

by a reduction or poor distribution of rainfall in a given region for an extended 

period of time. However, many others believe that the definition of drought 

should consider significant components of the water cycle (such as rainfall, 

streamflow, and temperature), because the drought depends on numerous 

factors, such as water supplies and demands, hydrological and political 

boundaries, and antecedent conditions. Therefore, an evaluation study of the 

existing drought indicators was performed in this research to investigate whether 

they are applicable to a region, in this case the Campania region, for which these 

drought indices were not specifically developed. 

A quantitative assessment of four existing drought indicators selected 

from different drought perspectives (i.e., meteorological, hydrological, and 

agricultural), was first conducted in this study to investigate how well these 

drought indicators can define the historical droughts in the Campania region. 
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The selected drought indicators namely, Standardized Precipitation Index (SPI), 

Standardized Precipitation Evapotranspiration Index (SPEI), Normalized 

Difference Vegetation Index (NDVI) and The Enhanced Vegetation Index (EVI). 

Thereafter, an evaluation of these drought indicators was carried  out based on 

both qualitative and quantitative assessments to select the most appropriate 

drought index for defining drought conditions in the Campania region. 

8.1.3 Regional Changes in Interannual Precipitation Variability 

Quantifying inter-annual precipitation variability is critical for more 

realistic modeling of water resource availability under climate change scenarios, 

which leads to a more effective quantification of the socioeconomic impact of 

planned complex water resource management tools. 

The results show a generalized condition of statistically significant 

increase of inter-annual variability almost over the whole analyzed area, where 

a very moderate spatial consistency was however detected. In addition, the 

magnitude of the changes reported about a rather moderate intensity of the 

detected changes, with minimum and maximum CV patterns slope, expressed 

as the percentage of annual increase or decrease in CV over the whole 

observations recording. Moreover, no strong spatial consistency was detected, 

but rain gauge stations featured by the largest average inter-annual variability 

seemed to be the less affected by temporal changes. 

Because of data availability and statistical homogeneity, the effect of 

the last fifteen years of data, from 2000 to 2015, was only studied on a subset of 

stations. A comparison of the statistical test results for the periods 1918-1999 

and 1918-2015 revealed that, aside from the same general tendency (significant 

positive trends for the greatest percentage of stations), there is some quantitative 

difference between the two observed periods, but it appears to be very minor. 
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The relationship between average precipitation, intra-annual 

precipitation variability and inter-annual precipitation variability was not clearly 

identified for the studied region, but it was found that larger CV values appear 

associated to large MAP and large PCI values. 

The primary point from the comparative analysis of average 

precipitation, intra-annual precipitation variability, and inter-annual 

precipitation variability is that, while variations in the annual precipitation 

regime and intra-annual precipitation variability are not statistically significant 

changes in inter-annual precipitation variability were indeed. 

 

8.1.4 Reconstruction Of Gridded Climatological Data from The Two 

Database 

The spatial distribution of monthly mean rainfall and temperature in the 

Campania region of southern Italy was estimated in this study using four kriging-

based geostatistical interpolation methods (EBK, OK, DK, and OCK) and one 

deterministic (IDW). The goal is to compare the results of these interpolation 

methods in order to choose the best interpolation method for producing a high-

quality continuous gridded rainfall/temperature dataset, which is initially 

heterogeneous, in the form of a rainfall/temperature chart at the regional scale. 

Elevation data from a DEM of the study area is used as a secondary attribute in the 

cokriging analysis using the OCK and DK methods, in addition to 

rainfall/temperature data. Geostatistical methods outperform deterministic methods 

for spatial interpolation of rainfall/temperature over a century in a morphologically 

complex region like Campania, according to the results. The IDW method yielded 

the worst results for the sample field, while cokriging methods (OCK and DK) 

outperformed other geostatistical methods. OCK outperformed all other 
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interpolators over a century by producing more reliable rainfall estimates for all 

monthly data. OCK had the smallest prediction errors and uncertainty, as well as the 

strongest correlations between predicted and measured monthly average 

rainfall/temperature. In this study, OCK proved to be the best interpolator for 

estimating the spatial distribution of rainfall/temperature in the study area. The 

results show that incorporating elevation as an auxiliary variable into 

rainfall/temperature data improves variable prediction in mountainous areas with 

complex orography. As a result, the current study suggests that OCK be used to 

generate continuous climate variable maps, particularly in areas with high spatial 

variation in rainfall and elevation. The comparison of the resulting OCK datasets 

with those of the ERA5 database revealed a high correlation between both datasets, 

confirming the accuracy of the geostatistical model's precipitation and temperature 

predictions over the Campania region. 

8.1.5 Evaluation Of Drought Indices and Drought Conditions  

In terms of drought temporal features, the trend was found to be prevalently 

negative, and the percentage of impacted cells increased with accumulation scale. It 

was nearly identical for SPI/SPEI time series calculated over 24 months or longer 

intervals. The significance was also discovered to be especially evident near 70% of 

grid cells for SPI 24/SPEI 24. Beyond this timescale threshold, the significance of 

temporal variability decreased dramatically. As a result, MDS increased with 

accumulation scale, rising from around 10 for SPI 6 to around 50 for SPI 48, and 

from -6 for SPEI 3 to -270 for SPEI 48. MDP did not change significantly with the 

accumulation scale for both indices, and this was especially noticeable with the 

shorter temporal scales. Extremely severe events had shorter durations and greater 

severity than moderate drought events, but they were much less common (over 75% 

less frequent). The region's complex orography appears to have an impact on both 
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the average precipitation spatial distribution and the relevant temporal variability. 

The accumulation timescale influenced the spatial behavior of the MDD. At the 

lowest accumulation scale, the northern area appeared to be more affected, whereas 

large MDD values were detected along a northwest to southeast transect but were 

more visible in the region's southern sectors. The maximum accumulation timescale 

values detected in the southern area were primarily caused by severe drought periods 

in the region in 1990, 2003, and 2017. The SPEI findings confirms the results 

reported by the SPI index, the main message in the current study is that we can not 

ignore the effect of temperature and evapotranspiration when evaluating drought 

conditions in a specific area. The accumulation scale had an effect on the MDS 

spatial pattern as well. Apart from a northwest to southeast transect and the southern 

sectors of the region where the highest MDS values were detected, it showed a 

concentration on the northern region area for the shorter temporal scales and a 

constant spatial distribution for the longer temporal scales. Finally, the MDP spatial 

pattern was discovered to be particularly complex, with no clear tendency related to 

the accumulation timescale. The largest drought peaks appeared to be concentrated 

on the region's northern inland area, which could be addressed as an area potentially 

prone to agricultural drought stress on a shorter timescale. 
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8.1.6 Drought Hot Spot Analysis Using Local Indicators of Spatial 

Autocorrelation 

 

From the current research, we stated that the NDVI can reflect the evolution 

of vegetation; however, due to limitations caused by both the low correlation with 

the SPEI index and the restricted time horizon for which NDVI data are available, it 

was not possible to detect a link between SPEI and NDVI. This can be reflected to 

the climatic conditions of the Campania Region which would have been present fits 

into a sub-humid climate; perhaps if it had been arid, a greater vegetation stress. This 

study states that the SPEI and SPI indices adequately represent and describe drought 

phenomena, providing significant indications of their severity and temporal extent. 

Drought is a multi-scalar phenomenon that has occurred over time in an ever-

changing manner, even within the same year, as seen in the SPI and SPEI maps, and 

its spatial evolution is difficult to predict. As a result, studying spatial autocorrelation 

was also necessary to determine whether and how the points on the grid were related 

to one another. It was concluded from this that when the drought phenomenon 

occurs, the spatial autocorrelation is of the Low-Low type, whereas when the 

drought phenomenon does not occur, the autocorrelation is of the High-High type. 

8.2 Limitation Of the Study and Recommendations for 

Further Research 

Some limitations of the present study can be discussed and  

recommendations can be suggested for future studies to alleviate them.  

As was discussed in section 1.4.2 several data were not available such 
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as the soil moisture data, stream flow storage reservoir volume …etc., for that 

we could not test different drought indicators for instance the Palmar (1965) 

index (PDSI) or the aggregated drought index (ADI). The latter is a multivariate 

drought index that comprehensively considers all physical forms of drought 

(i.e., meteorological, hydrological, and agricultural). It takes into account the 

most important eight variables that define the hydrologic cycle: rainfall, 

potential evapotranspiration, streamflow, storage reservoir volume, soil 

moisture content, snow water content, groundwater flow, and temperature. 

Keyantash and Dracup used six influential variables for ADI formulation: 

rainfall, potential evapotranspiration, streamflow, storage reservoir volume, soil 

moisture content, and snow water content (2004). These variables except the 

rainfall and evapotranspiration were not considered in this study. According to 

Keyantash and Dracup (2004), groundwater flow was excluded from this study 

for three reasons: (1) data on historic groundwater levels were not easily 

accessible for this catchment; (2) groundwater flow into heterogeneous aquifers 

across the catchment is difficult to assess; and (3) groundwater 

recharge/depletion is a slow process that occurs over longer time scales. For 

what concern the drought indicator derived from remote sensing (NDVI, EVI), 

it could be better to test these indicators on micro area for example river, 

agricultural lands …etc., as it was mentioned in section 7.5 the NDVI and the 

EVI could not highlight the drought at large scale. In addition, it should be noted 

that the spatial autocorrelation needs to be developed for different section in the 

study area, the Analytic Hierarchy Process AHP could be an efficient process to 

better locate drought in the study area, however, Using pair-wise comparison 

matrices, AHP can be used to calculate the weights for each criterion and 

drought type. Individual drought categories and overall drought vulnerability 

maps should be created using the weighted overlay technique and the 
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corresponding criteria. In the current research we could not apply the process 

for the lack of different parameters.  

Last but not least, there is no community or private sector 

preparedness or training for drought management, as there is for disaster 

response training. Water companies are required by law to revise their drought 

plans on an annual basis to reflect changing conditions in water supply and 

demand.
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