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A B S T R A C T

Biometric technologies have historically been explored as Pattern
Recognition systems. Over the past three decades, biometric-
based human recognition systems have significantly changed
and improved. Applications in forensics, surveillance, healthcare,
automotive, and human-computer interaction have benefited of
such advancements and are currently globally used. However,
the exclusive focus on pattern recognition may obscure or re-
strict the potential and capabilities of this discipline. Emerging
biometric modalities have begun to impact the security of sensi-
tive data, information, and systems. As the biometric challenges
increase, the solution strategies shifted the attention on human
behavior. Behavioral biometrics is the study of patterns in human
activities that can be uniquely identified and measured. Recent
technological advancements, especially in Artificial Intelligence,
as well as hardware development, have increased the potential
of biometric approaches and expanded their application fields.
Beginning with the wide concept of behavioral biometrics, this
thesis aims to advance the state-of-the-art in several applications,
such as estimating an individual’s head rotation to determine
its intent or attention and analyzing facial expressions to detect
human emotional state. Finally, behavioral biometric traits are in-
vestigated through users’ touch interactions with modern mobile
devices. For each of the presented methods, the complete pro-
cessing pipeline is described, including data acquisition, feature
extraction, experimental protocols, and decision-making, as well
as a comparison to state-of-the-art methods to show advantages
and discuss current challenges.
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1
I N T R O D U C T I O N

The idea behind biometrics dates back to the dawn of human
perception. Identity verification systems refer to the art of devel-
oping authentication strategies with the aid of biometric features
to automatically identify, measure, and validate a living human
being. As a wide variety of applications require reliable verifi-
cation schemes to confirm an individual’s identity, biometrics is
increasingly involved in everyday applications today. The need
for more modern and sophisticated authentication systems is
driving change in many organizations, exploring new key fac-
tors. The most promising of these is behavioral biometrics. In
this work, we have presented a series of techniques developed
during the three-year PhD course with a specific emphasis on
behavioral biometrics. The next Chapters and Sections will show
that human behavioral patterns are currently one of the most
emerging biometric modalities, encompassing a broad range of
application domains.

1.1 biometrics : definitions and applications

It is essential to first focus on the definition and history of biomet-
rics to fully understand how contemporary biometric technology
works. The study of the variability of characteristics between
populations of living beings is known as biometrics. These char-
acteristics can be defined by the meaning of the word "Biometrics",
composed of bios, "life", and metron, "measure". The scientific
assumptions of biometrics have led to the creation of biometric
technology, which allows the identification and verification of an
individual on the basis of physiological and behavioral traits. The
former are related to the characteristics of the human body and
include, for example, the iris, facial geometry, and fingerprints.
Through a person’s specific and repetitive behavior, behavioral
traits develop. Examples include gait, typing on a keyboard, or a
signature.

1



2 introduction

The first documented application of biometrics as a security
measure dates back to the mid-1800s. Lawmakers originally kept
records of photographs in loosely organized groups; this in-
efficient system made it difficult for police to identify repeat
offenders on a regular basis. The police quickly adopted the
anthropometric-based Bertillon identification system. This com-
plex identification system, called Bertillonage, provided that the
prisoner’s personal details, his body measurements, any descrip-
tions of physical anomalies, and photographs were reported
on a single identification card (Figure 1.1). In the early 1900s,

Figure 1.1: Anthropometric measurements in Bertillon’s system of iden-
tification [22].

fingerprints overtook the Bertillon technique as the principal
method of identifying criminals. Galton was interested in fin-
gerprints primarily as a tool for detecting heredity and racial
background. While he soon discovered that fingerprints did not
provide conclusive evidence of an individual’s intelligence or ge-
netic background, he was able to scientifically prove what some
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previous studies had hypothesized: fingerprints do not change
over the course of a person’s lifetime, and no two fingerprints
are identical. Galton identified the characteristics used to iden-
tify fingerprints. These features (minutia) are essentially still in
use today and are commonly known as Galton’s Details (Figure
1.2). The creation of the Bertillon system and Sir John Galton’s
elementary fingerprint recognition system served as inspiration
for the scientific community, which has dedicated its efforts to
discovering numerous biometric modalities.

Figure 1.2: Francis Galton’s diagram of primary patterns of the finger-
print [63].

Any physiological or behavioral attribute can be considered
a biometric trait as long as it meets certain requirements [157],
including: (i) Universality: possessed by all humans, (ii) Distinc-
tiveness: discriminatory among the population, (iii) Invariance: the
chosen biometric attribute must be time-invariant, (iv) Collectabil-
ity: ease of collection in terms of acquisition, digitization, and
extraction of features from the population, (v) Performance: refers
to the availability of resources, imposing real constraints on data
collection and ensuring high accuracy, (vi) Acceptability: the popu-
lation’s willingness to submit that characteristic to a recognition
system. (vii) Circumvention: robust to imitation or mimicry in the
case of fraudulent attacks on the recognition system.

A biometric system is a Pattern Recognition system that com-
pares the discriminatory characteristics (probe) acquired dur-
ing the enrollment/registration phase with the characteristics
of a previous one (gallery). Each biometric system has the com-
ponents indicated below. The Acquisition module collects the
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biometric trait and submits it to the system for processing. The
Feature extraction module extracts the discriminatory features
from the captured data to create a template. These templates
compose the Database module, which includes digital represen-
tation of previously acquired samples. The Matcher module, as
suggested by its name, matches the extracted features of the
probe with those of the gallery to obtain a match score. Figure
1.3 shows the structure of a typical biometric system. A biometric
system operates in one of the following modes: verification or
identification. The technical framework for processing the feature
models used in the comparison process is the cause. A 1:1 (one-to-
one) comparison is used to verify identity. Using fingerprints as
an example, a person’s fingerprints are compared to a particular
pattern that has already been registered on a specific medium.
The identification is based on a 1:N (one-to-many) comparison,
which means it tries to determine if any patterns in an existing
fingerprint database match the one checked. While the second
case aims at learning the identification, the first case seeks only
to verify it. A biometric system’s accuracy is typically measured

Figure 1.3: Composition of the biometric system.

in terms of performance errors. The False Accept Rate (FAR) is
the percentage measurement of invalid matches. It measures how
frequently the system identifies unauthorized users as genuine
ones. This error must be as small as feasible in order to have a
robust biometric system. The False Reject Rate (FRR) represents
the percentage of times the system identifies an authorized user
as an impostor. The point at which the FAR and the FRR are
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equal to one another is referred to as the Equal Error Rate (EER).
This is obtained through the Receiver Operating Characteristic
(ROC), which involves a trade-off between the false acceptance
and reject rates and a plot of FAR against the FRR. The ERR
measures the accuracy of a biometric system.

The growing interest in biometric-based identity management
systems by public and private entities is evidence of their superi-
ority over knowledge-based and possession-based systems. Statis-
tics on existing and projected revenues from the global biometric
technology market are a source of proof. By 2030, the biometric
systems market will be valued at $132.5 billion, up from $51.55
billion in 2022 (See Figure 1.4). A paradigm shift in business
discourse towards greater privacy and fewer security risks is one
of the major trends observed in the market for next-generation
biometrics. Instead of relying on conventional techniques, end
customers are continuously looking for integrated solutions. In
industrialized nations, advanced biometric identification solu-
tions are used to implement a variety of government programs,
including the use of electronic passports, electronic driver’s li-
censes, border control, and national identity documents. The low
cost of biometric technology allows manufacturers to use it in a
wider range of products, including biometric sensors that are be-
coming an increasingly common security feature in smartphones
and other devices. According to a recent study by Visa [185],
86% of consumers expressed interest in using biometric data to
verify identity or make payments; 70% of those who have used
biometrics said it is easier; and 46% believe biometric technology
is more secure than passwords or PINs. Therefore, the biometric
market is set to grow in the coming years as biometric technology
is progressively used in consumer electronics for authentication
and identification purposes.

1.2 behavioral biometrics : an emerging trend

Behavioral and biometrics are the origins of the term "Behavio-
metrics". Behavioral biometrics pertain to the personality and
behavior of an individual. Behaviometrics, or behavioral biomet-
rics, is a measurable behavior utilized to recognize or authenticate
an individual. Humans learn primarily through their sensory
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Figure 1.4: Biometric technology market size, 2021 to 2030 (USD Billion).
Source: [112].

systems and direct experience. Humans’ innate (inherited) and
acquired (learned) behavioral skills have both similarities and
differences. A behavior is a particular way of acting. Humans
are born with such behaviors and instinctively know what to
do in specific situations or conditions. In contrast, acquired or
learned behaviors are not inherited but rather gained via expe-
rience. Behavioral biometric traits are completely reliant on the
behavioral nature of human beings. It assesses human behavior,
which does not directly focus on measurements of body parts.
Few behavioral biometrics have such a direct correlation with
human physiological traits. The connection between the majority
of behavioral biometrics and human physiology is more complex
and often indirect. For instance, keystroke dynamics, i.e., the way
of interacting with a keyboard (typing rhythm), is connected not
only to how we use our hands to type on a keyboard but also
to the brain (learning and memorization) [153]. A human behav-
ioral pattern is comprised of several different behaviors that are
merged into a larger and more distinctive profile. Because a per-
son’s unique behavioral pattern is produced not just by biological
characteristics but also by social and psychological factors, it is
hard to imitate another person’s behavior. Based on the type of
information about the user being collected, behavioral biometrics
can be classified into several categories [132]. The ability to use
muscles is directly related to a person’s motor skills. The defini-
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tion of motor skill based on behavioral biometrics, as "kinetics",
represents the user’s distinctive and consistent muscular actions
in carrying out a given task. Therefore, motor skills reflect the
effectiveness of the functioning of such systems in an indirect
way, allowing the verification of the person. Most motor skills are
learned, not inherited. Authorship-based biometrics, for example,
analyze a text or a drawing produced by a person, identifying
the stylistic peculiarities of the author of the work in question.
Last but not least, biometrics based on Human-computer inter-
action (HCI) cover events that can be collected by observing user
behavior directly or indirectly with the aid of technological de-
vices. In particular, indirect HCI-based biometrics encompass the
events that can be collected by indirectly monitoring a user’s
behavior via observable low-level actions of device software. Di-
rect HCI-based interaction is classified into two classes. Human
interaction with input devices such as keyboards, touchscreen
devices, etc. comprises the first category. The second category
describes HCI-based behavioral biometrics, which evaluate so-
phisticated human behavior such as strategy, knowledge, or skill
exhibited by the subject when interacting with various software
applications.

Nowadays, behavioral biometrics are widely used in the con-
text of information security to identify individuals using the
distinctive characteristics of the activities they do, knowingly
or unknowingly. Most of the existing behavioral traits involve
voice and signature scanning, walking gait, keystroke and mouse
dynamics, touch gestures, and, generally, people’s movements
(for example, the way a person is moving his or her head, fa-
cial parts, etc.). Researchers have recently developed approaches
for speaker recognition by monitoring lip movements, perform-
ing biometric verification using finger motions, and extracting
speech features for person identification. With the increase in
mobile device usage, a new form of behavioral biometrics has
recently been introduced. The usage data of a mobile device can
be viewed as a unique profile due to the fact that people use
their devices to engage with applications and digital services in
a specific pattern. A user’s behavioral profile can be constructed
based on his interactions with either a network or a host. In the
first scenario, user behavior is observed based on their patterns
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of connecting to Wi-Fi networks, service providers, etc., whereas
in the second case, user behavior is monitored based on the man-
ner in which applications are utilized at various locations and
times [142]. Behavioral patterns do not disrupt normal workflow,
unlike many popular biometric solutions that require the user
to perform additional tasks. Numerous advantages related to
applying behavioral biometrics are related to data acquisition,
as it does not require specialized or dedicated hardware. Con-
sequently, it is also considered cost-effective. The majority of
behavioral features are acquired through simple, device-based
interactions. Furthermore, the data acquisition is totally trans-
parent for the user and does not involve delays in operations.
For these reasons, biometric systems based on behavioral models
are widely accepted in society. Although behavioral biometrics
alone are not sufficiently unique to identify a person with high
precision, they can obtain a high verification rate and enhance
the recognition rate as part of a multimodal biometric system.

1.3 artificial intelligence and biometrics

Since John McCarthy originally introduced the term Artificial
Intelligence (AI) at the Dartmouth Workshop in 1956, numerous
definitions have been proposed. One of the most significant
and comprehensive was actually devised by himself in 2004. He
claims that Artificial Intelligence "is the science and engineering of
making intelligent machines, especially intelligent computer programs.
It is related to the similar task of using computers to understand
human intelligence, but AI does not have to confine itself to methods
that are biologically observable" [114]. In computer science, AI is
defined as the study of "intelligent agents", which are devices
that "perceive their environment and take actions to maximize
their chance of success at some goal". Colloquially, the term AI is
used when a machine imitates "cognitive" processes that people
typically associate with other human minds, such as "learning"
and "problem solving" [120]. Depending on the input data, AI
systems can detect, reason, and act. ML and DL are two concepts
closely related to the idea of Artificial Intelligence. These are
subfields of AI (in fact, DL is itself a subfield of ML) and both
rely on pattern extraction to predict or classify data. However,
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they show some differences in the learning operations of their
algorithms [73].

As Arthur Samuel defined it, "The field of study that gives com-
puters the ability to learn without being explicitly programmed" is
Machine Learning (ML) [133]. ML is a branch of Artificial Intelli-
gence that investigates the development of algorithms capable of
learning and predicting data using a series of training examples.
Nowadays, ML is a widely adopted technique in the field of data
analysis, which allows researchers, data scientists, engineers, and
analysts to "produce reliable, repeatable decisions and results"
and discover "hidden insights" by learning from historical re-
lationships and trends in the data. In contrast, the concept of
Deep Learning (DL), first introduced by Hinton [74], involves
the use of Artificial Neural Network (ANN) models that mimic
the structure and function of the human brain, proving to have
strong abilities in detection, classification, segmentation, and
key point estimation. It generally necessitates stacking multiple
layers of learning algorithms to approximate highly nonlinear
functions. This allows DL algorithms to learn hierarchical rep-
resentations/features from the data. Lower-level layers learn
simple characteristics, while higher-level layers learn increasingly
complex features consisting of lower-level characteristics. This
allows both local and global properties to be encoded in the
final feature representation. In numerous fields, including com-
puter vision and natural language processing, this feature learn-
ing has largely replaced hand-engineered features. The learned
representations are distributed because a single factor can be
explained by multiple neurons, and a single neuron can help ex-
plain multiple factors. This many-to-many interaction produces
compact, dense representations that may generalize nonlocally
[148]. Convolutional Neural Network (CNN) for automatic feature
extraction and Recurrent Neural Network (RNN) for sequence
estimation are two well-known categories of DL architectures.

Nonetheless, it is important to remember that DL is a sub-
set of ML, and hence both can use labeled and unlabeled data.
Consequently, the learning process depends on the specific prob-
lem to be solved and the data structure. Three groups can be
distinguished [171]:
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• Supervised learning: examples of the input vectors and
associated target vectors are included in the training data.
Learning activities are defined as classification or pattern
recognition when the target vectors are categorical and
regression when the target vectors are real values. Conse-
quently, using the training data they have already learned,
the algorithms are trained to classify or predict the outcome
of new, unseen data.

• Unsupervised learning: the data is not labeled. Conse-
quently, the algorithms must identify patterns in the hidden
data and extract them, classifying the information accord-
ing to the found characteristics. Since the input is unlabeled,
the classification in this case depends on the structures
identified by the model. Clustering algorithms are the most
frequently used unsupervised learning methods.

• Reinforcement learning: this approach aims to create au-
tonomous agents able to choose the actions to be taken to
achieve certain objectives through their interaction with the
environment in which they are immersed. Unlike the other
two (i.e., supervised and unsupervised), this paradigm
deals with sequential decision problems where the action
to be performed depends on the current state of the system
and determines its future state. The quality of an action
is given by a numerical value of "reward" inspired by the
concept of reinforcement, which aims to favor the correct
behavior of the agent.

The application of AI techniques to explore large amounts of
heterogeneous biometric data and provide user authentication
and identification capabilities shows great potential. In this re-
gard, since biometrics involves identifying individuals based on
their features, it mostly requires supervised learning. In recent
years, DL approaches for automatic feature extraction and de-
scription have become increasingly popular. DL methods have an
edge over previous state-of-the-art techniques due to their ability
to learn features from data. For example, biometric modalities
such as face and voice require both local and global features and
are suitable for hierarchical and compositional feature learning.
Additionally, hand-crafting features for some modalities, such
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as behavioral biometrics, can obtain abstract and learning fea-
tures from raw data that will be useful for such purposes. With
a particular focus on the field of behavioral biometrics, due to
growing security and privacy concerns, researchers are exploring
user behavior-based implicit authentication. ML-based systems
are, in fact, able to learn from human behavior, continuously gen-
erating unique user profiles and discovering behavioral patterns
that persist over time - a fundamental approach to supporting
continuous authentication systems [95].

Currently, Internet of Things (IoT) technology is able to per-
meate every area of our daily lives due to recent technological
advances. Internet of Things (IoT) extends the Internet’s capa-
bilities to a vast range of devices that can be adopted in a vari-
ety of fields, including but not limited to smart homes, smart
cities, environment, agriculture, smart grid, industry, healthcare,
and transport [94]. However, the limits of low power and com-
putational processing prevent the implementation of advanced
security policies on IoT devices, particularly in terms of privacy,
authentication, communication encryption, and data storage pro-
tection. In this regard, biometrics offers an intriguing opportunity
to improve the usability and security of IoT, playing an essential
role in safeguarding a large array of smart devices. Recently, there
has been growing interest in Internet of Biometric Things (IoBT)
applications based on DL. AI-related technology is advancing,
which fosters the development of many disciplines. Nonetheless,
the proliferation of smart devices around us presents a number
of challenges for classical biometric techniques, demanding the
development of new mechanisms to suit the dynamic nature of
the smart environment [20].

1.4 contributions

Human behavior is the potential and expressed capacity (men-
tally, physically, and socially) of human individuals or groups
to respond to internal and external stimuli throughout their
live. The behavior of an individual is influenced by genetic and
environmental factors, including thoughts and feelings, which
provide insight into the individual psyche. Personality types
differ from person to person, resulting in uniquely distinctive
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actions and behaviors. Recently, behavior-based facial biometrics,
such as head dynamics and facial expressions, have gained a
lot of interest in literature. The term Head Pose, which actually
refers more specifically to face orientation in 3D space, repre-
sents a very popular key-word due to the vast number of related
research topics and applications. It is a fact that determining
how the human face is rotated with respect to an imaging sensor
may provide crucial information for many tasks such as face
recognition and analysis, body tracking, face frontalization, and
the estimation of a subject’s intention, just to name a few. The
first studies were carried out under controlled conditions, e.g.,
faces were captured with uniform illumination, a frontal pose,
and a neutral expression. However, to target real-world applica-
tions, the research has to face ever more challenging issues where
the detection and recognition of a specific trait, in particular a
behavioral characteristic, are usually affected by critical factors,
like uneven illumination, natural and/or artificial occlusions, or
self-occlusions. These factors play an especially important role
when dealing with unattended acquisition. A relevant example
is found in video surveillance, involving either partially or even
totally unaware subjects. Not surprisingly, then, head pose esti-
mation represents a hot research topic that has been approached
by a large number of methods. Based on these assumptions, the
methods presented here have shown promising results.

Human behavior is also greatly influenced by the emotional
state of the subject. The recognition of facial expression and
its intensity is a key component of behavioral biometrics. With
the increased use of images over the last decade, automated
facial analytics such as facial detection, recognition, and expres-
sion recognition have gained considerable importance. Facial
expression recognition is being used in a variety of real-world
applications in which a person’s emotional state serves as a cue
for the successful operation of these systems. Security and video
surveillance systems, human-computer interface design, emotive
marketing, and smart healthcare are only some of these. The crite-
rion for the accuracy of intensity detection of the seven observed
fundamental emotions is based on the analysis of facial behav-
ior components pertinent to emotional intensity communication.
This involves detecting the face and recognizing the intensity
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of emotion represented, both of which have been extensively
investigated in literature. Currently, DL algorithms, particularly
CNN architectures, are achieving promising results. Nonetheless,
certain issues still persist. As an example, in real-world scenarios,
the system should be able to recognize emotion from diverse fa-
cial angles. In addition, in unconstrained imaging environments,
the images may suffer from various noise artifacts. So, accepting
the current challenges and motivations behind this research, the
framework presented yielded significant results.

Human behavior recognition has been considered a core method
of user authentication. As smartphones have become an impor-
tant part of our daily lives, the industry and academic commu-
nities have asserted that touch-based gestures can be used to
uniquely identify a person. For this reason, in the context of
human-mobile device interaction, user touch behavior patterns
were investigated. Touch dynamics refers to the process of mea-
suring and evaluating the characteristics of touch gestures that
users perform on mobile devices such as tablets, touch panels,
smartphones, etc. Like all behavioral biometrics, its use becomes
particularly interesting when it is included in a multi-factor solu-
tion to increase the trust level of the system. The advantages of
using touch dynamics as a biometric trait are numerous, one of
which is certainly the non-intrusiveness, meaning that the user is
free to approach the personal device in the most natural way pos-
sible while the biometric behavioral data is captured. Over recent
years, the research efforts on the identification of so-called soft
biometrics, such as age, gender, ethnicity, degree of confidence
with a certain hardware, and so on, have paid off with interesting
results and the definition of potential application fields. Some of
the areas that could benefit from an ad-hoc analysis of behavioral
data from mobile devices include targeted advertising based on
the user, easier interaction with specific hardware, and the fusion
of other information for better identification or verification of
a subject. Based on the above, we have employed user touch-
interaction behavior data for subjects’ demographic classification
based on soft biometric traits.
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1.4.1 Outline of the Thesis

The thesis is structured as follows. The present Chapter intro-
duces the principles of biometrics and our motivations and con-
tributions. The next three Chapters define the core of the thesis:

• Chapter 2 is focused on Head Pose Estimation (HPE). We
present different approaches to estimating the actual head
orientation from 2D images by using fractal coding theory
and, particularly, Partitioned Iterated Function Systems. We
also develop a unified method for face recognition and HPE
that uses the same fractal encoding features for both tasks.

• Chapter 3 is focused on Facial Expression Recognition (FER).
Although FER uses multiple sensors, we limit our discus-
sion to exclusively using static images, with a focus on
recent DL-based FER systems. Therefore, we develop a CNN
architecture to categorize the principal facial expressions.
Here we also investigate the impact of facial expressions
on HPE.

• Chapter 4 is focused on Touch Dynamics (TD)-based behav-
ioral biometrics, that captures a person’s typing patterns on
mobile touchscreen devices. In particular, we explore the
integration of soft biometric traits with touch-interaction
behavior data. Our goal is to demonstrate how soft biomet-
ric analysis can be used to achieve lightweight continuous
verification and improve the identification mechanism.

In the concluding Chapter (Chapter 5), we will draw our con-
clusions and also propose some ongoing research and future
advances regarding the methodologies just presented.



2
H E A D P O S E E S T I M AT I O N : A
M U LT I F U N C T I O N A L B I O M E T R I C

The ability to determine the orientation of a person’s head is
called HPE. It can be used for a variety of purposes, such as a
preprocessing phase to determine the optimal frame for face
recognition in a video, a behavioral characteristic to determine
the subject’s intent, a descriptor to aid in face frontalization,
and so on. The study of HPE represents a subset of the wider
biometrics field. In order to develop a biometric system, the trait
that should be used is mostly determined by the availability of
processing resources and its applicability in terms of visible area.
In this context, the advent of behavioral and soft biometrics has
paved the way for the application of alternative biometrics. In
fact, HPE can be applied to both behavioral and soft biometrics.

In this Chapter, we discuss the multitude of strategies and
advancements in HPE as well as the impact of recent techniques
such as ML. The candidate’s research over the last three years has
been strongly related to HPE, making a positive contribution to
the state-of-the-art.

2.1 hpe domain

In terms of uniqueness, HPE shows a strong correlation to be-
havioral biometrics, exploring the distinctive properties of an
individual’s head movements. The head pose performs better in
terms of measurability than the majority of behavioral biometric
traits, where a subjective component may be seen. Each person
has a head rotation that can be observed and is age-independent.
Because they are the only identification traits involved, the ac-
ceptability of HPE can be compared to that of the face or, at most,
the ear. However, depending on the specific characteristics of the
technology being utilized, the shape of the head and face, which
varies from person to person, can affect HPE and its applicability.

15
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The main procedure to build a HPE technique, from the data to
the evaluation of the errors, can be summed up as follows:

Figure 2.1: The main steps of an HPE framework.

• Acquisition and Labeling: The involved trait is acquired
and categorized at this step. The same methods and tools
used for face acquisition, such as cameras, depth cameras,
near-infrared cameras, etc., are generally used. As a result,
the acquisition process is relatively simple; however, label-
ing is a more difficult operation. In addition, since rotation
angles are not human observable if they are small, it is chal-
lenging to estimate them manually in the absence of depth
data. Therefore, it is not advised for humans to participate
in this task.

• Preprocessing: The data must be normalized at this phase
in order to be ready for the HPE model. It differs signifi-
cantly between various architectures.

• Pose estimation: This is the fundamental component in
which the image, or the preprocessed data, is used to es-
timate the head pose. The final result will always be the
rotation in terms of angles, regardless of the input.
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• Evaluation of errors: The accuracy is typically shown in
this field as the angular difference between the true label
and the estimate.

The procedures just described are summarized in Figure 2.1.
Rotation angles are used to measure the variation in head pose.
The O(0, 0, 0) center point of the rotation is the center of the
head, or, in the absence of 3D data, the nose. The head is a
three-dimensional entity, so there are three possible angles of
rotation. The Motion Imagery Standards Board (MISB) [108]
traditionally refers to the axes as pitch, yaw and roll. The head’s
degrees of freedom are illustrated in Figure 2.2. Using the frontal
view as a reference point, the majority of individuals can turn
their heads ±90� in yaw, ±45� in roll, and ±30� in pitch. Since
facial recognition is often the primary focus of HPE, severe head
postures produced by body motions are rarely considered. Even
though there are numerous ways to describe a 3D rotation, the
Euler angles, the rotation matrix, and the quaternions are the
most popular representations in HPE databases and algorithms.

Figure 2.2: The Pitch, Yaw and Roll axes.

Leonhard Euler devised two types of Euler angles - proper Eu-
ler angles and Tait-Bryan angles - to characterize the orientation
of a rigid body in space. As previously introduced, the MISB
rules are followed during the head pose rotation. The Tait-Bryan
angles are assumed to describe the rotations. After the rotation,
X, Y, and Z are the axes, whereas x, y, and z are the original axes.
The intersection of plans xy and YZ defines the line of nodes
N. These conventions allow the following formulation of Euler
angles:

• f the rotation angle between x and N, covering a range of
2p.
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• q the rotation angle between z and Z, covering a range of
p.

• y the rotation angle between N and X, covering a range of
2p.

Using the rotation matrix, which can define three rotation
matrices, one for each axis, one rotation angle q can be used to
calculate the rotation with respect to the axis. If we define the
rotations in yaw, pitch, and roll as a, b, and g, respectively, the
final rotation matrix will be:

2

4
cos a cos b cos a sin b sin g � sin a cos g cos a sin b cos g + sin a sin g

sin a cos b sin a sin b sin g + cos a cos g sin a sin b cos g � cos a sin g

� sin b cos b sin g cos b cos g

3

5

(2.1)

Since using this representation might not be convenient, the
Rodrigues’ formula can be used to turn the rotation matrix into
a rotation vector:

vrot(q) = v cos q + (k ⇥ v) sin q + k(k · v)(1 � cos q) (2.2)

Where v is a 3-D vector, k is a unit-vector indicating the axis
around which v rotates by an angle q according to the right hand
rule, k ⇥ v is a cross product, and k · v is the scalar product.

Last but not least, William Rowan Hamilton introduced the
quaternions, also referred to as versors, which are currently very
popular among game creators. We can introduce the generic form
for expressing quaternions based on the concepts of complex
number and complex plane.

q = s + xi + yj + zk (2.3)

where s, x, y, z 2 R and i, j, z are imaginary number that follow
the rules:

i2 = j2 = k2 = ijk = �1 (2.4)
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and

ij = k, jk = i, ki = j, ji = �k, kj = �i, ik = �j (2.5)

The Euler angles are more "self-explanatory", but they can lead
to ambiguity issues. This implies that for the same rotations that
result in an obviously problematic estimate problem, we will
have an endless number of pose estimation solutions. Quater-
nions, on the other hand, are easier to construct and do not have
this issue. Their representation is more compact than the rotation
matrix. Since different datasets may have different annotations
for the angles, the testing methods often select a representation
and normalize the dataset’s label in accordance using transforma-
tion formulas. In contrast, there is consistency in the evaluation
of errors. The angular values of the differences between the esti-
mated pitch, yaw, and roll and the true pitch, yaw, and roll for
each head in the data represent the error predictions. To achieve
valuable results, the algorithms measure these three errors, and
then they compute the Mean Absolute Error (MAE) for each axis
as follows:

MAE =
1
n

n

Â
j=1

|qj � q̂j| (2.6)

where qj is the ground truth, i.e. the true angular value and
q̂j is the prediction, i.e. the predicted angular value. An overall
MAE of the error along the three axes is also computed.

2.2 datasets with hp annotations

To perform HPE, there are primarily three types of input data:
depth images, 2D images, and video. Depth image datasets include
both RGB and depth information from the same image. Many
datasets have been proposed in the last decade that are helpful for
evaluating the applicability of HPE techniques. The BIWI Kinect
Head Pose Database (BIWI) [59] is without a doubt one of the
most well-known depth datasets. BIWI includes 24 sequences of
20 individuals, totaling over 15 K images captured by a Kinect
1. The yaw and pitch variations of the head pose are ±75� and
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±60�, respectively.The head postures have been annotated using
Faceshift. ICT-3DHP [11] is a database collected with the Kinect
and is made up of 10 RGB-D videos for a total of roughly 1,400
frames. A Polhemus FASTRACK was used to obtain the labels.
With the new Kinect 2, data from the SASE benchmark [106]
was gathered. There are 50 total subjects, and each subject has
an average of 600 frames. They use five blue stickers applied to
the face to provide pitch, yaw, and roll. SASE has a yaw range
of ±75� and a pitch range of ±45�. Over 10 K images and 20
subjects are included in the ETH Face Pose Range Image Dataset
[28]. The 3D nose tip coordinates and the coordinates of a vector
pointing in the face direction serve as the ground truth. ETH has
a pitch range of ±45� and a yaw range of ±90�. The Kinect 1 was
used to capture images for the Pandora dataset [27]. The set of
22 subjects contains over 250 K frames, with each subject having
5 recordings.

Despite having reliable labels, depth datasets are not the pre-
ferred input for developing and testing HPE techniques. This is
due to the fact that depth images require controlled environ-
ments, whereas HPE approaches employing only 2D RGB images
are designed and evolved to address in-the-wild problems. The
datasets without depth information and how they were labelled
are presented below. A stereo camera approach is used to esti-
mate the head pose on the RGB images in the CMU-MultiPIE
dataset [69]. With more than 750 K images of 337 subjects in 13
positions, 4 recording sessions, and 6 facial emotions, this dataset
is an expansion of the earlier CMU-PIE [140]. The PRIMA Lab
created the Pointing’04 Head Pose Image Database [68] with 15
subjects. There are two series of 93 pictures for each subject, for a
total of 2,790 images. The roll angle rotation is not included. The
dataset contains only a few poses (9 for pitch and 13 for yaw)
and their combinations between ±90�. The authors asked people
to stare at the 93 post-it notes without moving their eyes in order
to capture positions with known labels. The Annotated Facial
Landmark in the Wild (AFLW) dataset [87], which consists of
roughly 25 K images collected from the web, has a wide range
of poses, expressions, ages, genders, and ethnicities. AFLW2000,
which includes the first 2000 pictures of AFLW annotated using
a 3DMM fitting and can be obtained at [60], is a more accurate
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version of AFLW. The Flicks images that make up the Annotated
Face in the Wild (AFW) dataset [182] were gathered. There are
just 205 images totaling roughly 468 faces in the collection, which
is extremely little. The 300W_lp Dataset [184] is an expansion of
300W, which contains 68 landmark localizations. The datasets
that 300W_lp gathers include AFW, LFPW, HELEN, IBUG, and
XM2VTS. There are 61,225 images total, including 17,860 from
IBUG, 5,207 from AFW, 16,556 from LFPW, and 37,676 from HE-
LEN. The CAS-PEAL database [64] contains 99,594 images of
1040 different subjects. In all, 27 distinct poses are present in
a controlled environment. 3425 YouTube videos of 1595 partic-
ipants are included in the Youtube Faces database [164]; over
600 K extracted and annotated frames are available. Faces are
identified with the Viola-Jones method, which we will discuss
in Section 2.3. The McGill real-world face video database [43] is
a collection of video sequences for investigating the problem of
unconstrained face classification. This database comprises 18,000
frames from 60 video sequences, each of which was captured
from a different subject (31 females and 29 males). The partic-
ipants’ movements were completely free, resulting in arbitrary
face scales, facial expressions, head poses (in yaw, pitch, and roll),
motion blur, and local or global occlusions. Finally, GOTCHA-I
[16] is a recent multiview video dataset containing video from
cooperative and non-cooperative subjects. GOTCHA-I consists
of 682 recordings of individuals walking in different areas made
by 62 subjects in 11 different locations. There are 137,826 labeled
frames with 2223 head poses per subject. In Table 2.1, an overview
of depth and 2D datasets with head pose annotations and key
information is provided.

The application of HPE to videos has the goal of using several
frames to comprehend the user’s behavior. Actually, in the HPE
domain, video datasets have not gained a lot of popularity. The
majority of the benchmarks described below are used for HPE
tracking, which necessitates a few key properties. There are 120
videos of 10 different subjects in the UPNA Head Pose Database
[9]. The authors gathered six guided-motion sequences and six
free-motion sequences because this dataset was designed for
head tracking and pose estimation. Each video has 300 frames.
They identified the head position by using the frontal face’s
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Table 2.1: Depth and 2D RGB datasets that contain pose annotation.
Dataset Year Type #Subj #Frames Limit
ETH 2008 Depth+RGB 20 +10 K \

ICT-3DHP 2012 Depth+RGB 10 1400 \

BIWI 2013 Depth+RGB 20 +15 K \

SASE 2016 Depth+RGB 50 +30 K \

Pandora 2017 Depth+RGB 22 +250 K \

Pointing’04 2004 RGB 15 2790 No roll

CAS-PEAL 2008 RGB 1040 +99 K 27 poses

AFLW 2011 RGB 20 25K \

Youtube Faces 2011 RGB 1595 +600 K \

AFW 2012 RGB nd 205 No pitch

McGill 2013 RGB 60 +18 K No pitch No roll

CMU MultiPIE 2013 RGB 337 +750 K 15 poses

300W_lp 2016 RGB nd +61 K

AFLW2000 2018 RGB nd 2000 \

Gotcha-I 2020 Video 62 +137 K \

nd = "not declared".

initial frame as a reference point. The Boston University Head
Pose Database [88] is composed of 45 video sequences in which 5
subjects were instructed to perform 9 different head movements
under uniform illumination in a standard office setting. The head
is constantly visible, and there are no occlusions except for small
self-occlusions. The Head Pose and Eye Gaze Dataset (HPEG)
[10] is a collection of 20 videos with 10 people that were produced
in lab conditions. Each video contains roughly 400 frames. Three
LEDs are used to track their positions in each frame in order to
gather the ground truth. Only yaw and pitch angles are accessible
in this dataset. The EYEDIAP Database [62] was created with
the intention of tracking gaze. They captured 94 sessions with
16 participants while simultaneously using the Kinect and an
HD camera that was positioned as close to the Kinect as possible.
4860 frames or so make up each video. Also, the labels for the
UBIPose dataset [118] were obtained using a Kinect; only 22 of
the 32 videos include annotations. There are roughly 10 K frames
available for the head pose. Finally, the second Strategic Highway
Research Program (SHRP2) [30] is a video dataset made up of
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subjects driving. The database is fairly large, containing more
than 3100 videos of the same number of participants shot over
the course of two years. Nevertheless, only 63 K out of 41 frames
include head pose annotations. As previously introduced, the
labelled frames are approximately 1537 per video; however, they
are each about 15 minutes long and captured at 15 frames per
second.

2.3 preprocessing techniques

The head region or some keypoint on the face is typically de-
tected using several preprocessing techniques. These methods
can be divided into three major categories: face detection; landmark
detection; 3D head modeling.

Most HPE algorithms use face detection as a preliminary step
to exclude from analysis other parts of the body or the scene.
The Viola-Jones face detection method has been a prominent
technique for a long time [160]. However, this approach would
fail to locate the face if the head posture was extreme (greater
than 60�). For this reason, the Histogram of Oriented Gradients
(HOG) and linear Support Vector Machine (SVM) combination
presented by Pang et al. [122] was favored first, followed by learn-
ing methods such as the training of random forests [105] or deep
architectures like ArcFace [45]. In recent years, the effect of such
existing detectors in the case of facial masks has also been of
major relevance [81]. Face detection can be used in conjunction
with or as a substitute for landmark detection. Facial keypoints
are the positions of certain particular facial characteristics, such
as the mouth, eyes, and nose. Some authors developed adaptive
boosting methods to locate these keypoints, while others used
SVM or the aforementioned random forest classifier. The appli-
cation of DL has gained popularity in this field [42]. Landmark
detection produces on results similar to the ones in Figure 2.3.
The data is expressed in terms of spatial coordinates. For an
in-depth investigation of landmark detection, refer to Wu and Ji
[166]. Finally, 3D modeling is a technique that aims to build a
3D face model in order to determine the position of the head. In
this situation, having access to a depth image may be essential to
building a realistic model [39, 125, 138].
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Figure 2.3: 68 landmarks detected on a 2D RGB image [84].

2.4 methods

The most difficult and dynamic field of HPE application is 2D RGB
images. This is why it is important to distinguish the different
methodologies used given the numerous works that have been
published in the last five years. The use of training techniques is
the primary distinction that can be made [4].

2d rgb hpe using training-free techniques The pro-
cedures utilizing training are superior to the techniques using
training-free methods. In training techniques, a part of the test
data from the same dataset is further altered to produce a trained
neural network, whereas training-free methods use certain im-
ages as just a reference for features. The quad-tree based tech-
nique is the core of HPE in [17]. After face detection, the method
continues to work only on landmarks. The same procedure is
carried out for images of a reference synthetic model, and pitch
and yaw angles are detected by comparing the trees in binary
vector form. This work has been improved in [1], adopting a
more accurate reference synthetic model. Additionally, it pre-
sented a YouTube video’s best frame selection experiments for
locating non-frontal faces. In [13] the authors first detect the po-
sitions of 68 well-known facial landmarks and, after that, apply
a web-shaped model over the detected landmarks to associate
each of them with a specific face sector. AFLW2000, BIWI, and
Pointing’04 have all been used to test this strategy. Only three key-
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points are detected in [119], and the emphasis is on mobile device
applications. The experiments, however, were conducted using
a few smartphones and a homemade dataset, so they cannot be
compared to state-of-the-art methods. Peng et al. [124] tackle the
3D HPE problem by taking advantage of a characteristic of 3D
spheres during rotation. A technique known as "Homeomorphic
Manifold Analysis" serves as the foundation for the 3D sphere’s
function as a model of the head’s potential rotation. Proença et
al. [125] do something similar by estimating the head pose using
geometric properties on a synthetic model. Projective geometry
is used in the synthetic model to connect the images 2D points.
The set of landmarks in the model that produce results that are
closest to the input is chosen using convex energy minimization
techniques. The work in [131] represents a methodology using
feature-based techniques. In this study, a similarity kernel that is
identity-invariant is learned by utilizing the feature correspon-
dences of Geometric Blur. The difficulty of identifying hidden
head positions in [134] enhances the difference with a classical
HPE using training. Here, the posture angle of a facial image is
represented by a multivariate label distribution.

2d rgb hpe using training techniques Recent litera-
ture has, as stated, focused more on techniques based on training.
In order to enhance performance over the BIWI, AFLW2000, and
Pointing’04 datasets, various regression techniques are evaluated.
Following this direction, the features retrieved using the method
[13] are combined with regression in [2]. The method in [49] for-
mulates the head pose as a high-dimensional to low-dimensional
mixture of linear regression problem. Liu et al. [101] propose a
multi-level structured hybrid forest (MSHF) for joint head de-
tection and pose estimation. Regression is used in a completely
different way in Cao et al. [34], where three vectors in a rotation
matrix as the representation in HPE are used and develop a new
neural network based on the characteristics of such a representa-
tion. When the issue involves low-resolution images, regression
seems to work especially well. The HOG features are merged
with non-linear regression in Chen et al. [40], just like in the
earlier technique. Here, the Support Vector Regression (SVR) is
specifically trained using incredibly low-resolution images. The
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authors also offer enhancements based on depth information.
This is why BIWI was used as the dataset; HOG was also used by
Diaz-Chito et al. [48]. This approach, which combines continuous
local regression, generalized discriminative common vectors, and
HOG, is based on manifold learning-based methods. In [50] a
mixture of linear regressions with partially-latent output is intro-
duced. This regression method learns to map high-dimensional
feature vectors (extracted from bounding boxes of faces) onto
the joint space of head-pose angles and bounding-box shifts. In
Alioua et al. [6], a novel descriptor resulting from the fusion
of four most relevant orientation-based head descriptors is pro-
posed. [161] is another tree-based algorithm that employs HOG.
Presented here is a system known as Stacked Auto Encoder with
Extreme Gradient Boosting (SAE-XGB). In contrast to other stud-
ies that extract features through a separate procedure, Liu et al.
regression approach [96] is backed by a synthetic model. There
are 37 head models in use, and there are 74K frames that repre-
sent the poses. A mixture of linear inverse regression is utilized
by Lathuiliére et al. [89]. In particular, they propose the coupling
of a Gaussian mixture of linear inverse regressions with a CNN
(ConvNet), describing the methodological foundations and the
associated algorithm to jointly train the deep network and the
regression function. Multi-regression is also the strategy of Hsu
et al. [75]. Yang et al. [173] propose another regression-based
technique that is very recent. The method combines feature ag-
gregation methods and soft stagewise regression. In [128], the
image intensity is used in a multi-loss network with a classifica-
tion and regression component, using a different loss function
for each angle. In contrast to the preceding approach, [71] and
[33] analyze the relationship between keypoints to increase ac-
curacy. The work in [126] uses the method of locating faces and
landmarks as additional features. This approach uses CNNs to si-
multaneously perform face identification, landmark localization,
pose estimation, and gender recognition. In Xia et al. [167], the
landmarks detection is likewise offered as a support for CNNs.

While using face landmarks in the HPE process could help
increase accuracy on the one hand, it can also have a negative
influence on the computational time required. The goal of [162]
is to obtain a very quick technique because the use of HPE is
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concentrated on video. According to the experiments conducted,
the method only needs 21.8 ms to obtain the HPE on a standard
device. The 3D mean of landmark placement, specifically with
10 landmarks, is used to estimate the head posture. Shao et al.
[136] investigate proper face localization and its implications
for HPE by proposing a new loss approach in CNN. The appli-
cation of ResNet is also discussed by Rieger et al. [127]. In Li
et al. [91], a completely different strategy is suggested. The pro-
posed method integrates the deep Task-Simplification oriented
Image Regularization (TSIR) module with the Anchor-Guided
Pose Estimation (AGPE) module, and formulate the HPE prob-
lem into a unified end-to-end learning framework. The driver’s
attention is highlighted in [143]. However, this time around, an
object detection algorithm SSD which has inherent capabilities of
simultaneous classify and regress, is used to create a lightweight
network. The usage of conditional random fields (CRF) in [86]
represents the method’s fundamental component. The model
trained assigns probabilities to each segmented face portion in
order to classify each image in input. The goal of [115] is to make
the approach insensitive to external factors. Here, the images
are transformed into one-dimensional vectors as time series us-
ing the Peano–Hilbert space-filling curve. The multivariate label
technique was changed in [169] to address issues resulting from
its use in unconstrained environments. To prevent overfitting,
they added regularization terms to the loss function using the
weighted Jeffreys divergence. In [100], the authors propose a
deep convolutional neural forests to handle occlusions and low
image quality (D-CNF). In [102], the shortage of training data
for many poses is tackled as a label distribution learning prob-
lem. They consider each face image as an example associated
with a Gaussian label distribution, as opposed to a single label,
and trained a CNN with a multi-loss function to predict facial
poses directly from color images. Zhang et al. [175] proposed a
three-branch network architecture, termed as Feature Decoupling
Network (FDN), a powerful architecture for landmark-free head
pose estimation from a single RGB image. Finally, Valle et al.
[158] suggested a network architecture (an encoder-decoder CNN
with residual blocks and lateral skip connections) and training
strategy that harness the strong dependencies among facial pos-
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ture, alignment and visibility, to produce a top performing model
for all three tasks.

2.5 contribution to the literature

Estimating the actual head orientation from 2D images with re-
gard to its three degrees of freedom is a well-known problem that
is highly significant for a large number of applications involving
head pose knowledge. This explains the growing interest in liter-
ature, as detailed in Section 2.4. In the last three years, we have
developed different approaches to this topic by using Fractal Cod-
ing theory and particularly Partitioned Iterated Function Systems.
Initially, these methods were devised as training-free techniques,
capable of providing similar if not better performance. Recent
advances in ML algorithms and the use of various regression
techniques to improve HPE performance have meant that the
characteristics extracted from the proposed methods can also be
used in combination with different regression models.

2.5.1 HP2IFS: PIFS Fractal Encoding approach

Based on Partitioned Iterated Function System (PIFS) and fractal
image coding, HP2IFS [24] is a novel method for HPE. PIFS, which
was originally used as a lossy image compression algorithm, is
exploited as a means to encode auto-similarities within the face
image. Benoit B. Mandelbrot pioneered fractal theory in the early
1980s. He starts from the observation that there are self-similar
structures in nature, called fractals, which have almost identical
features at any level of detail they are enlarged.

The Iterated Function System, Fixed-Point Theory, and Collage
Theorem form the fractal theoretical basis of image coding. Frac-
tal coding is based on the idea that an image can be represented
by a contractive transform whose fixed point is close to the image.
Banach’s Fixed-Point Theorem, also known as the Contraction
Theorem, guarantees that, in a complete metric space, the fixed
point of such a transform may be recovered by iterated appli-
cation thereof to an arbitrary initial element of that space. The
Collage Theorem establishes a distance bound between the image
to be encoded and the fixed point of a transform, in terms of
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the distance between the transform of the image and the im-
age itself. In the early 1980s, Barnsley applied his fractal and
mathematical knowledge to image compression, noting that this
transform was formed of the union of a series of affine mappings
on the entire image - an Iterated Function System (IFS). By mak-
ing the partitioned-IFS, which is different from an IFS in that each
mapping works on a subset of the picture instead of the whole
picture, Jacquin made it possible to use fractal compression in
real life. Each PIFS includes a complete metric space (X, d) and a
set of contraction mappings wi : M ! M as defined in this space.
Fractal image coding just uses a PIFS to represent an original
image so that the image after iterative decoding closely approxi-
mates the attractor of this PIFS as well as the original image. The
coefficients of contraction mapping constitute the fractal coding
of the original image.

The fractal image encoding algorithm works, in principle, as
follows:

• The image to be encoded is partitioned into Ri, non over-
lapping Range blocks.

• The image is then partitioned into larger non overlapping
blocks Dj called Domain blocks.

• For every Range block Ri, a Domain block DRi is found
such that a contractive affine transformation w, transforms
this Domain block to a good approximation of the Range
block.

The contracted D block is extended by eight isometric trans-
formations: identity, rotation through 90�, rotation through 180�,
rotation through 270�, reflection about the middle vertical axis,
reflection about the middle horizontal axis, reflection about the
first diagonal, and reflection about the second diagonal. The ex-
tended domain pool used to generate a codebook is denoted as
{D̃}. Wi contraction mapping transformation is defined as:
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Where x and y are spatial coordinates, z is pixel value; ai, bi,
ci, and di define one of the eight isometric transformations; si
is a brightness adjustment factor with an absolute value less
than 1, and oi is a brightness offset factor. This operation finds
the best matching block from the extended domain pool {D̃} for
each R block while minimizing distortion error E(R, D̃), which
is defined as follows:

E(R, D̃) = ||R � (s · D̃ + o · I)|| (2.8)

Figure 2.4: The transformations between the domain blocks (D) and the
range blocks (R) on image pairs featuring similar angular
values..

After fractal parameters of all DRi blocks are stored as the result
of compression, the total fractal encoding process is completed.
In Figure 2.4, we can see the transformation of the block of the
domain into the block of the range. Images shown are from the
dataset AFLW2000, to which we have applied a mask. The two
images are labeled with the same head pose: 5� Pitch, 30� Yaw
and �5� Roll. We obtain that the same blocks of domain will go
in the same blocks of range for both images within an acceptable
margin of error due to the self-similarity induced by the fractal
codec (Figure 2.5).
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Figure 2.5: A detail of the fractal coding process, in particular the
rotation and the lighting variation leading to the range
located in row 8 and column 2.

HP2IFS method is composed of three phases, which are sum-
marized below and illustrated in Figure 2.6:

1. Face detection and landmark prediction;

2. Fractal image coding algorithm to generate a matrix con-
taining fractal codes;

3. Pose estimation, transforming the fractal parameters into
an array and comparing it to the angular array references
obtained in the same way through the Hamming distance
metric.

Figure 2.6: The HP2IFS workflow.

As a result of detection and landmark prediction, the input
image is used to generate a facial mask based on the boundary
landmarks detected. The image is then scaled to 256⇥256 pixels
and encoded with an 8⇥8 domain and 4⇥4 range. The resulting
codec matrix is of 256 rows and 6 columns where each row
defines a block. The first two columns are the block coordinates;
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the third is the affine value of the inversion; the fourth is the
affine value of the rotation; the final two columns are, respectively,
brightness and contrast. In order to perform the comparisons, the
matrix is transformed into a 1536-element array. The latter are
carried out using the Hamming distance metric, which is ideal
for comparing two data strings of the same length and is defined
as the number of bit positions in which the two bits differ, as
follows:

d(s, t) =
n

Â
i=1

d(si, ti) (2.9)

where s and t are the strings to compare having length n and
d(si, ti) is the following function:

d(si, ti) =

8
<

:
1, if si 6= ti

0 if si = ti

(2.10)

This metric is renowned for being straightforward to imple-
ment and fast to compute, as its time complexity is proportional
to the length of the string. The minimal result obtained by calcu-
lating the Hamming Distance between the model arrays and the
input array provides the most similar head pose and its pitch,
yaw, and roll values. The experiments are conducted on BIWI and
AFLW2000 datasets. Figure 2.7 shows some image samples of
these datasets. The BIWI database provides numerous images per
identity. Because of this, the model is created using the one-left-
out strategy, in which only one individual is used as a tester and
the others as a model for carrying out the comparisons. For the
AFLW200 dataset, in order to obtain the subdivision necessary
for HP2IFS, about 80% of the dataset images randomly selected
are used to build the model and the remaining to perform the
tests. The results can be seen in Table 2.2.

Figure 2.8 shows the overall trend of errors as a percentage of
images tested. For BIWI, we can observe the same trend antic-
ipated by the numerical results. In terms of pitch, around 35%
of images have no error, 77% have an error equal to or less than
5�, 95% have an error equal to or less than 10�, and almost all
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Figure 2.7: Samples from BIWI and AFLW2000 databases with different
head-poses.

Table 2.2: HP2IFS: Mean Absolute Error of yaw, pitch and roll angles
over BIWI and AFLW2000 datasets.

Dataset E_yaw E_pitch E_roll MAE
BIWI 4.05 6.23 3.30 4.52

AFLW2000 6.28 7.46 5.53 6.42

images have an error less than 15�. In terms of yaw, the results
are more promising. Approximately 55% of images are error-free,
90% of images have an error of 5� or less, 97% have an error
of 10� or less, and practically all images have an error of less
than 15�. Roll achieved the best results, as approximately 71% of
images are error-free, 97% of images have an error of 5� or less,
and nearly all images have an error of 10� or less. For AFLW2000,
the behavior of the error along the three axes is comparable to
that of BIWI. Particularly for pitch, yaw, and roll, around 30% of
images are error-free. Also in this case, roll errors are the better
results: 72% of images have an error equal to or less than 5�, 92%
have an error equal to or less than 10�, 98% have an error equal
to or less than 15�, and almost all images have an error less than
20�.
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Figure 2.8: Errors on BIWI and AFLW2000 datasets in terms of percent-
age of tested images.

2.5.1.1 PIFS by Regression models

Starting from HP2IFS algorithm to identify the pose, the method
presented in [3] adopted different regression models to predict
the angular value errors. This approach combines the fractal im-
age compression characteristics, such as self-similar structures in
order to identify similar head rotations, with regression analysis
prediction. The procedure is illustrated in Figure 2.9.

The classification approach employed in HP2IFS, shown in
Figure 2.9-(b), and the regression method are compared to iden-
tify the pose in the extracted array. In order to find the most
similar one, the pose feature array from the classification method
is compared with prototypical vectors extracted using the same
method from samples whose poses are known. A pose’s encod-
ing in terms of pitch, yaw, and roll is represented by each of the
arrays. The pose classification is carried out in [24] by compar-
ing the extracted pose feature vector with those stored in the
dataset. The result is the pose whose reference vector has the
lowest distance (Hamming) from the extracted vector of the input
image. Regression is used to get findings that outperform those
obtained using the same methodology. So, for each experiment,
three different regression models are built: for pitch, yaw and
roll (Figure 2.9-(c)).

To evaluate the predictive power of regression analysis, four
different models are involved in the experiments as follows: Lin-
ear regression (HP2IFS-LR), Bayesian Ridge regression (HP2IFS-
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Figure 2.9: The HP2IFS Regression workflow: a) HP2IFS approach; b)
Classification; c) Regression.

BRR), Lasso regression (HP2IFS-LsR) and, finally, Logistic re-
gression (HP2IFS-LgR). The datasets used for experimentation
and comparison are BIWI and AFLW2000. The same data split-
ting protocol adopted in HP2IFS (BIWI: one-left-out technique,
AFLW2000: 80/20 ratio) to perform the experiments is applied.
Tables 2.3 and 2.4 show, respectively, the results obtained on BIWI
and AFLW2000 datasets and compared with the classic HP2IFS
approach. Analyzing the Bayesian Ridge regression model for
BIWI dataset (Table 2.3), it is possible to note that the roll angular
error and the overall MAE are comparable to the HP2IFS classifi-
cation method, and the pitch angular error is improved over the
traditional approach.

The comparison findings from the AFLW2000 database are
shown in Table 2.4. The Lasso regression model delivers the
lowest MAE value, including pitch and roll angular errors. Addi-
tionally, it should be noticed that the yaw angular error value in
HP2IFS-LsR and HP2IFS are very close.
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Table 2.3: HP2IFS Regression: Mean Absolute Error of yaw, pitch and
roll angles on BIWI dataset.

Method E_yaw E_pitch E_roll MAE
HP2IFS 4.05 6.23 3.30 4.52
HP2IFS-LR 6.57 5.47 3.80 5.28

HP2IFS-BRR 6.59 5.46 3.80 5.28

HP2IFS-LgR 9.73 5.82 6.22 7.86

HP2IFS-LsR 6.58 5.29 3.80 5.28

Table 2.4: HP2IFS Regression: Mean Absolute Error of yaw, pitch and
roll angles on AFLW2000 dataset.

Method E_yaw E_pitch E_roll MAE
HP2IFS 6.28 7.46 5.53 6.42

HP2IFS-LR 6.71 6.90 4.48 6.03

HP2IFS-BRR 6.59 7 5.19 6.26

HP2IFS-LgR 8.16 7.71 5.86 7.24

HP2IFS-LsR 6.70 6.90 4.48 6.02

2.5.2 FASHE: Optimized Fractal Encoding algorithm

A new fractal-based HPE approach called FASHE has been de-
veloped in [23] that exploits a single frontal face image as the
reference to build only once the domain blocks required for the
fractal encoding algorithm, thus increasing both accuracy and
efficiency of pose estimation. The adoption of the classic fractal
encoding algorithm in fact foresees that the domain and range
blocks belong to the same image. In FASHE, the same reference
image is used to build the domain blocks regardless of which
image we want to estimate the head pose from. For this purpose,
the best candidate image should have a neutral frontal head pose,
that is, 0� Pitch, 0� Yaw and 0� Roll. Also note that the reference
image does not necessarily have to come from the same subject
whose pose you want to estimate; rather, the domain block is
built only once during the entire process using a generic front
image of a random subject. A detail of the optimized fractal
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encoding process is show in Figure 2.10. The following steps,
described extensively in Section 2.5.1, are the most representative
of the overall method.

Figure 2.10: FASHE: a detail of the optimized fractal encoding process.

• Step 1: Face detection;

• Step 2: Landmark prediction;

• Step 3: Facial Mask creation;

• Step 4: Fractal codec array;

• Step 5: Hamming distance.

The overall framework of this method can be found in Figure
2.11. It is crucial to note that a filter is necessary before carrying
out the aforementioned steps if the input image contains a back-
ground with a lot of detail. To determine whether the filter is
required, the overall entropy of the image is calculated as follows:

E = �Â
i

pi log2(pi) (2.11)

Where pi is the probability of the i-th gray level. When the
entropy is higher than the mean entropy of the images stored in
the model, it can be assumed that there is a lot of information
in the image that can result in excessive differences between two
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Figure 2.11: The FASHE workflow.

images, even when they have the same head pose. In this scenario,
a Gaussian filter will be applied to the original image. Figure
2.12 illustrates an example of the action taken in this instance.
This step will now be added to the modules (a) and (b) of the
workflow shown in Figure 2.11.

Figure 2.12: FASHE: the additional step for chaotic images.

In order to test and evaluate the performance of the proposed
scheme, the experiments are conducted on images taken from
BIWI, AFLW2000 and Pointing’04 databases, respectively. In Fig-
ure 2.13 we can see some images from Pointing’04 dataset.

FASHE approach likewise uses the configuration of 4 as Range
and 8 as Domain, as indicated in Section 2.5.1. By using BIWI
to test various range and domain configurations, we are able to
demonstrate why (4, 8) is the optimal choice. First of all, since
compression is not important to our scope, we can simply set the
domain to be twice the range. Next, we can see that both range
and domain values must precisely divide the image’s dimension,
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Figure 2.13: Images from Pointing’04 database.

in this case 256. From those observations, we can analyze the fol-
lowing pairs of ranges and domains: (2, 4), (4, 8), (8, 16), (16, 32),
(32, 64), (64, 128) and (128, 256). We excluded from our analysis
the first pair, because it required 2.53 seconds per image to be
computed, resulting in a non-real-time application. Additionally,
we do not compare the last two couples because they do not
leave enough blocks to compare. By examining the remaining
pairs, we are able to determine the Biwi angular values errors
and computational times that are shown in Table 2.5. These find-
ings allow us to identify the ideal configuration in (4, 8) that we
used in our experiments. Finally, some experiments using the

Table 2.5: FASHE: different errors and computational time in seconds,
in different range and domain configurations.

Configuration E_yaw E_pitch E_roll Comp_time
(4,8) 3.13 4.61 2.74 0.1553

(8,16) 3.41 4.81 3.22 0.013

(16,32) 4.13 5.51 4.09 0.0015

(32,64) 9.83 10.08 7.26 0.0002

Gotcha Video Dataset, a multiview video database that includes
video from both cooperative and non-cooperative subjects, are
depicted in Figure 2.14. This kind of data, in particular the non-
cooperative subjects, is highly helpful to assess the efficacy of a
head pose estimate approach to locate the (most) frontal face in
a video-sequence acquired in the wild. The experiment findings
showed that FASHE was able to identify the closest match to a
frontal face pose among the frames provided for each person in
the database.
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Figure 2.14: Gotcha video sequence: the most frontal pose detected by
FASHE algorithm is in yellow.

Table 2.6: FASHE: Mean Absolute Error of yaw, pitch and roll angles
over BIWI, AFLW2000 and Pointing’04 datasets.

Dataset E_yaw E_pitch E_roll MAE
BIWI 3.13 4.61 2.74 3.50

AFLW2000 4.54 6.42 3.71 4.89

Pointing’04 6.6 9 \ 7.8

Table 2.6 shows the results of FASHE method over the three
datasets. Note that Pointing’04 database does not contain roll
information. The percentage of images in BIWI, AFLW2000, and
Pointing’04 datasets with errors below a given angle are illus-
trated in Figure 2.15. More than half of the images on BIWI have
an error of 0�, while less than 5% of images have an error greater
than 5�. On AFLW2000, approximately 30% of images have an
error of 0�, approximately 80% of images have an error of 5� or
less, and less than 5% of images have an error greater than 5�.
On Pointing’04, the distinction between pitch and yaw is more
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Figure 2.15: Errors on BIWI, AFLW2000 and Pointing’04 datasets in
terms of percentage of tested images.

marked. Approximately 40% of images for pitch and 60% of
images for yaw have an error of approximately 0�, and there are
no images with an error greater than 10�.

2.5.2.1 FASHE: Gradient boosting regression model

This work [18] focuses on improving the efficiency of fractal en-
coding in the context of HPE, aiming at real-time operation while
further enhancing the accuracy of the pose estimation. For this
purpose, we combine an efficient application of the optimized
fractal encoding algorithm, i.e. FASHE Method, with the Gradi-
ent Boosting Regressor model (GBR) and the Extreme Gradient
Boosting model (XGBoost), yielding a significant improvement in
terms of both prediction accuracy and computational efficiency.
Figure 2.16 shows an overview of our HPE system.

In FASHE, we modify the classic fractal image compression
algorithm and adopt an optimization technique to speed up the
blocks search (Figure 2.16-(a)). The neutral frontal head pose, that
is 0� pitch, 0� yaw, and 0� roll, is selected as the best candidate
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Figure 2.16: The FASHE Regression workflow: a) FASHE approach; b)
GBR and XGBoost regression models.

by using the same reference image as when building the domain
blocks. In fact, the adoption of the classic fractal algorithm fore-
sees that domain and range blocks belong to the same image.
Using the Hamming distance, the experimental results from the
different encoded poses are performed. Starting from this strat-
egy, we outperform the results using GBR and XGBoost, two
powerful approaches for building supervised regression mod-
els (Figure 2.16-(b)). Gradient boosted machines (GBMs) are a
boosting machine learning model that adopts a series of "weak"
learners in order to create an arbitrarily accurate strong learner.
GBMs are additive gradient-based learning models in which a
new weak learner is added and trained to reduce the overall
error of the entire model while not modifying the weak learners
present in the model. Although XGBoost and GBR both adhere to
the gradient boosting principle, XGBoost utilizes a more regular-
ized model formalization to avoid overfitting and to better utilize
the computational resources. To do this, the objective functions
can be made simpler while still allowing an optimal computation
speed. The proposed optimised fractal coding combined with
GBMs regression models is evaluated on BIWI and AFLW2000
datasets. The errors are listed in Tables 2.7 and 2.8, showing an
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improved estimation accuracy on the yaw and roll axes and on
MAE as well, depending on the regression model used.

Table 2.7: FASHE Regression: Mean Absolute Error of yaw, pitch and
roll angles on BIWI dataset.

Method E_yaw E_pitch E_roll MAE
FASHE 3.13 4.61 2.74 3.50

FASHE-GBR 3.83 4.60 3.49 3.97

FASHE-XGBoost 3.25 4.01 3.15 3.47

Table 2.8: FASHE Regression: Mean Absolute Error of yaw, pitch and
roll angles on AFLW2000 dataset.

Method E_yaw E_pitch E_roll MAE
FASHE 4.54 6.42 3.71 4.89

FASHE-GBR 4.93 5.97 3.54 4.81
FASHE-XGBoost 5.19 5.91 3.81 4.97

Finally, Table 2.9 reports the comparison with FASHE approach
regarding the computing time, including the hardware config-
uration on which the experimental evaluation was carried out.
Both approaches were performed on a MacBook Pro Intel i7 @
2.6 GHz CPU. As we can see in Table 2.9, our method takes only
0.006 seconds, showing a reduction in computing time of about
three orders of magnitude, also highlighting its suitability for
real-time operation.

Table 2.9: FASHE-GBMs vs. FASHE: computational time.

Method Hardware Total time (in seconds)
FASHE-GBMs i7 @ 2.6 GHz CPU 0.006
FASHE i7 @ 2.6 GHz CPU 6.604
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2.5.3 HPE Comparisons

As stated in Section 2.4, there are more training techniques than
training-free approaches. The reason is the recent popularity of
DL algorithms that result in greater precision. In Tables 2.10–2.12,
the results produced by the methods described on the most pop-
ular datasets, BIWI, AFLW, and Pointing’04, are shown. Because
AFLW2000 is a subset of AFLW and exhibits the same hetero-
geneity and environment characteristics, we include both AFLW
and AFLW2000 in the AFLW table. In the tables below, the best
results in terms of angular error for yaw, pitch, roll, and MAE
are presented. The protocol chosen throughout our experimental
phase calls for the use of the same dataset to perform both train-
ing and testing. As a result, in order to conduct a fair comparison,
we only report works that used the same strategy. The minimum
error on BIWI is approximately 2.5�, as shown in Table 2.10. For
both yaw and roll axes, the best results are comparable to those
of PIFS-based approaches. From the point of view of the repre-
sentation used for the angles, the only method using quaternions
is [75]; Euler angles are employed by the other BIWI techniques.
In this instance, there is no significant difference between the
performances obtained using either representation.

Table 2.11 shows that the best result for AFLW is around 1.5�.
All methods use the representation of the Euler angle; the only
exception is in Xia et al. [167], which adopt a matrix representa-
tion, achieving the best results. However, as these are not in line
with other state-of-the-art methods, it can be assumed that the
representation used is not indicative of the performance of the
algorithm.

In Pointing’04, the best result is around 1�. It is obtained
in correspondence with a technique that performs the testing
using a cross-fold validation approach. To estimate the angles,
all of the approaches reported prefer the Euler representation. In
general, most of the methods mentioned are not able to achieve
considerable results. In this sense, we have to underline that
this dataset was collected using 15� as a step instead of 5�. This
means that all the approaches are under the level of sensitivity
of the dataset, which makes them acceptable.
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Table 2.10: The errors in degree for the methods using 2D RGB images
of the BIWI dataset.

RGB on BIWI E_yaw E_pitch E_roll MAE
Drouard et al. [49] (2015) 4.9 5.9 4.7 5.17
Chen et al. [40] (2016) 9.9 12.9 6.9 9.90
Lathuiliére et al. [89] (2017) 3.12 4.68 3.07 3.62
Drouard et al. [50] (2017) 6.06 7.65 5.62 6.44
Hsu et al. [75] (2018) 4.01 5.49 2.93 4.14
Gupta et al. [71] (2019) 3.46 3.49 2.74 3.23

Abate et al. [2] (2020) 3.12 2.31 1.88 2.43

HP2IFS* 4.05 6.23 3.30 4.52
HP2IFS-LsR 6.58 5.29 3.80 5.28
FASHE* 3.13 4.61 2.74 3.50

FASHE-XGBoost 3.25 4.01 3.15 3.47

Table 2.11: The errors in degree for the methods using 2D RGB images
of the AFLW/AFLW2000 dataset.

RGB on AFLW E_yaw E_pitch E_roll MAE
Ranjan et al. [126] (2017) 6.24 5.33 3.29 4.95
Cao et al. [33] (2018) 7.04 7.14 3.86 6.01
Rieger et al. [127] (2019) 8.5 6.5 3.9 6.30
Xia et al. [167] (2019) 0.63 2.05 1.70 1.46
Gupta et al. [71] (2019) 5.22 4.43 2.53 4.06
Khan et al. [86] (2020) 4.25 4.89 3.20 4.11
Abate et al. [2] (2020) 4.31 5.43 2.62 4.09

HP2IFS* 6.28 7.46 5.53 6.42
HP2IFS-LsR 6.70 6.90 4.48 6.02
FASHE* 4.54 6.42 3.71 4.89
FASHE-GBR 4.93 5.97 3.54 4.81

All of those results should be taken into account in light of
the specific data and framework employed in the methodologies.
Several methods in the tables involve manually annotated land-
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Table 2.12: The errors in degree for the methods using 2D RGB images
of Ponting’04 dataset.

RGB on Pointing’04 E_yaw E_pitch MAE
Drouard et al. [49] (2015) 7.5 7.3 7.40
Alioua et al. [6] (2016) 6.1 4.6 5.35
Liu et al. [101] (2017) nd nd 6.6
Drouard et al. [50] (2017) 7.93 8.47 8.20
Diaz-Chito et al. [48] (2018) 8.1 9.6 8.85
Xu et al. [169] (2019) 3.92 \ 3.92
Vo et al. [161] (2019) 7.17 6.16 6.67
Bounoua et al. [115] (2020) 1.78 0.82 1.30
Khan et al. [86] (2020) 2.68 1.32 2.00
Abate et al. [2] (2020) 4.44 7.55 5.99

FASHE* 6.6 9 7.8

marks, facial annotations, etc. Furthermore, approaches marked
with an asterisk (*) do not use training techniques. The methods
described lead us to the conclusion that approaches that appear
to produce the worst results in terms of angular error frequently
have a low computational time requirement because they priori-
tize speed above accuracy. As a final point, approaches that adopt
a previously existing network (such as VGG16, GoogLeNet, or
ResNet50) inherit the starting weight resulting from a lengthy
training phase. This could have a significant advantage in terms
of training time, compensating for the very small datasets that
are currently accessible.

2.5.4 SHEEF: PIFS Scheme for HPE aimed at a faster Face recognition

In the context of one of the most common computer vision tasks,
face recognition, where head orientation (especially in the case
of large angles) represents a challenging intra-class variation, the
information offered by HPE may be significant. In this work [25],
head pose estimation is viewed as a synergistic component of
a fast face recognition method in which three crucial biometric
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pipeline steps - feature extraction, pose estimation, and feature
vector matching - exploit the PIFS and fractal encoding to achieve
high efficiency and accuracy. The goal of this study is to dra-
matically increase the efficiency of face recognition by utilizing
the same type of fractal features for both tasks, building on the
HPE approach introduced in Section 2.5.1. The framework that
results will be defined as SHEEF: partitioned iterated function
systems Scheme for HEad Pose Estimation aimed at a faster Face
recognition. SHEEF claims that when the face in the probe image
has been detected and extracted, face features are encoded using
PIFS, and HPE is then carried out by comparing the fractal code
that results to a set of pre-computed codes in a reference template
in order to determine the minimum distance. By finding the most
similar poses (encoded in the related feature vectors) out of all
those available for each subject in the gallery, the resulting pose
angles are used to speed up the future matching stage. Finally,
the probe’s identity is determined by matching it to the gallery’s
template with similar poses through a metric distance. The main
contributions of this work can be summarized as follows:

• a synergistic combination of HPE and face recognition achiev-
ing high processing efficiency in one-to-many matching
scenarios and real-time applications;

• the same fractal code is conveniently used for both tasks,
achieving an high accuracy for both pose estimation and
face recognition;

• newly recognized probes of the same subject can be used to
extend his gallery template, thus increasing future chance
to find a match for a greater range of presentations.

Figure 2.17 illustrates the SHEEF workflow. The main steps
can be summarized as follows: face detection using HOG+SVM;
face encoding using partitioned iterated functions; face extraction
using regression trees; HPE, using the distances between encod-
ings; searching for similar poses through the estimated head
pose; identity estimation using the distances between encodings
among similar poses; and finally, extension of the template by
possibly adding the new head pose fractal encoding of the subject
in his/her template.
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Figure 2.17: The SHEEF workflow.

Searching for similar poses in the template can dramatically
increase speed without significantly decreasing recognition ac-
curacy, as we will demonstrate in the results. For this reason, in
this step, we have to choose the strategy with which to perform
the comparisons. The predicted Yaw, Pitch and Roll angles are
defined as Y, P and R, respectively. The technique will look for
encodings whose poses fall within the range specified by a step
of ±5�, e.g., Y ± 5�, P± 5�, R± 5�. If a subject’s poses are missing
from the template, the research for this subject will be expanded
by a further step of ±5�. This procedure is repeated until, for
each individual, at least one encoding can be extracted in order
to perform the comparisons. It is clear that, if we proceed in this
manner, we will have the set of encodes for each subject with the
most similar head pose to the input image.

The use of the same encoding for head pose estimation and
identity identification is one aspect of this approach that deserves
to be highlighted. It follows that changing the distance metric
is sufficient to draw attention to various parts of the fractal
encoding that are useful for HPE or identity identification, rather
than extracting different features to do those two tasks. This has
a double advantage. On the one hand, we create a fast approach
by performing the feature extraction task just once for both
purposes. On the other hand, we only need to keep one template
with two types of labels (subject and head pose), which greatly
reduces the amount of storage space needed. The fact that the
framework structure allows for template updating at any time
- either by adding new head poses to existing subjects or by
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introducing new subjects to be recognized - is another significant
component of the framework. To ensure that a new subject will
be included in the comparisons, just one additional frame of
that subject is required. Our technique is significantly different
from a traditional neural network architecture in that it may be
totally re-adapted at any moment without the need for further
training stages or modifications to previously learned structures
or information.

comparison of different distance metrics After com-
puting the fractal encoding, we have to use a metric that can
compare the fractal codes and provide the correct label. Our
goal in this instance is to experiment with different metrics that
emphasize the characteristics of fractal encoding for both tasks.
Several distances, including Hamming, Canberra, Jaccard, City-
block, Correlation, Chebyschev, Euclidean, and Braycurtis, were
used in our tests. It is evident that each of them can accomplish
the given tasks - HPE and Face Recognition - more or less effec-
tively. For this reason, we tested the two datasets introduced in
Section 2.5.1 using all of these metrics. Tables 2.13 and 2.14 show
that Canberra is the best distance for solving the HPE problem.
Canberra proves to be equally as effective as Hamming, which
was utilized in [24]. Table 2.15 reveals that Canberra, once more,
is the best distance for resolving the Face Recognition task. Here,
we used 80% of the faces in the template and the remaining 20%
for testing. This configuration will be known as SHEEF (step=inf).
The time complexity of this metric is linear with respect to the
length of the strings being compared, making it very simple to
implement.

overall results of hpe We investigated widely used im-
age compression methods such as the Discrete Cosine Trans-
form (DCT) and the Discrete Wavelet Transform (DWT) in order
to highlight the potential of the fractal encoding approach and,
therefore, the characteristics obtained from fractal objects self-
similarity. The results of utilizing DCT and DWT image compres-
sion techniques on both datasets are reported in Tables 2.16 and
2.17, respectively, along with a comparison with the proposed
fractal encoding algorithm. We used the same configurations
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Table 2.13: The distances evaluated on Biwi HPE problem.

HPE - BIWI Dataset
Distance E_yaw E_pitch E_roll MAE

Hamming 4.05 6.23 3.3 4.52

Canberra 3.18 4.63 2.84 3.55
Jaccard 3.75 5.39 3.33 4.15

Cityblock 10.31 8.55 6.56 8.47

Correlation 9.26 8.34 7.04 8.21

Chebyschev 18.51 13.77 12.66 14.98

Euclidean 15.26 10.49 8.49 11.41

Braycurtis 6.97 7.62 5.76 6.78

Table 2.14: The distances evaluated on AFLW2000 HPE problem.

HPE - AFLW2000 Dataset
Distance E_yaw E_pitch E_roll MAE

Hamming 6.28 7.46 5.53 6.42

Canberra 6.49 7.28 4.54 6.10
Jaccard 7.62 8.61 5.59 7.27

Cityblock 11.04 10 6.18 9.07

Correlation 10.7 9.26 6.32 8.76

Chebyschev 12.31 12.57 6.38 10.42

Euclidean 12.51 9.94 6.77 9.74

Braycurtis 9.88 8.89 5.56 8.11

in all three cases: face detector and face mask with Dlib [84];
encoding of the face mask with the corresponding algorithm;
Canberra distance to perform comparisons. Finally, the same
data splitting protocol adopted in all HPE experiments is applied
(BIWI: one-left-out technique, AFLW2000: 80/20 ratio).

face recognition Fractal encoding has been used to per-
form facial recognition in several works [52, 116, 150]. However,
none of these consider HPE from the perspective of enhancing
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Table 2.15: The distances evaluated on BIWI Face Recognition problem.

Face Recognition - Biwi Dataset
Distance Accuracy (%)

Hamming 92.02

Jaccard 92.49

Canberra 94.69
Cityblock 89.91

Correlation 76.46

Chebyschev 17.27

Euclidian 74.82

Braycurtis 90.14

Table 2.16: Comparative results with DCT and DWT on BIWI dataset.

Method E_yaw E_pitch E_roll MAE
DCT 20.37 9.87 12.63 14.29
DWT 15.18 9.81 11.72 12.23
PIFS 3.18 4.63 2.84 3.55

Table 2.17: Comparative results with DCT and DWT on AFLW2000
dataset.

Method E_yaw E_pitch E_roll MAE
DCT 15.81 10 8.16 11.32
DWT 12.88 11.12 8.30 10.76
PIFS 6.42 7.28 4.54 6.103

the framework. In fact, since the faces stored in the template are
ideally frontal, a non-frontal head pose is sometimes viewed as a
disadvantage in face recognition. On the other hand, in our study,
we want to exploit the head pose information to our advantage
when employing fractal encoding for recognition. There isn’t yet
a database created expressly to study HPE and face recognition
together. Due to this, we used the HPE dataset, which includes
subjects’ identity information (i.e., BIWI). In fact, AFLW has no
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label for the subject identities, despite being more competitive for
HPE. To the best of our knowledge, there are no face recognition
datasets that have the head pose labeled along the three axes.
Following the procedure in Figure 2.17 on BIWI (Step = 5), the
results obtained in recognition reached an accuracy of 94.84%
and a mean processing time per image of 0.003s.

Figure 2.18: Accuracy over time, an initial-step evaluation.

To enhance the contributions of the HPE in order to consid-
erably accelerate face recognition in a real-time application situ-
ation, we investigated the dependencies between accuracy and
time. We increased the initial step to determine whether the se-
lective HPE search’s improved speed is associated with a loss of
precision. Figure 2.18 illustrates the obtained results. As can be
observed, the overall variation in accuracy is only 0.5% across the
initial steps. In contrast, the processing time required is vastly
different, ranging from 0.003 seconds for the initial step 5 to 0.161
seconds for the exhaustive search, e.g., without knowing HPE.
This means that checking for similar poses requires only 1.86%
of the time of an exhaustive search. As stated in previous works,
HPE is a real-time process; thus, it is convenient to search for
similar poses in the dataset. This result is particularly observable
for fractal encoding. This is due to the fact that fractal encoding
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is the most expensive step in the process and only needs to be
performed once, regardless of whether the HPE improvement is
utilized or not. We must emphasize that similar poses are always
considered, and the pool of search results is only changed around
those poses.

Table 2.18: Performance comparisons with state-of-the-art Deep Neural
Networks on BIWI dataset.

Method Time (s) Accuracy (%)
FaceNet [135] 0.09 91.22
Facenet512 [135] 0.12 96.49
OpenFace [12] 0.11 56.14
DeepFace [149] 0.48 70.17
DeepID [165] 0.12 72.80
ArcFace [45] 0.14 94.73
VGGFace [123] 0.114 93.85
VGGFace2 [32] 0.09 94.73

SHEEF (step=inf) 0.161 96.99
SHEEF (step=5) 0.003 94.84
SHEEF (step=10) 0.012 95.39

Since we used BIWI for face recognition for the first time, we
fine-tuned the most popular networks in literature with avail-
able code to obtain their performances in accuracy and efficiency.
FaceNet and FaceNet512 [135], OpenFace [12], DeepFace [149],
DeepID [165], ArcFace [45], VGGFace [123] and VGGFace2 [32]
are the architectures that we tested. Table 2.18 displays the result-
ing accuracy and time in comparison to our results. The same
device was used to measure all computational times. We have
listed three SHEEF versions in this table. We indicate the exhaus-
tive search along the template with Step = inf. The framework
shown in Figure 2.17 starts with Step = 5, which requires the
lower computational time, and, finally, the result of Step = 10 is
shown. Even if the dataset structure affects the best-performance
step, there are few oscillations and only a small 0.5% difference
between it and the standard step 5. We can see that SHEEF
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surpasses the other ML methods when performing exhaustive
comparisons. However, with only a slight loss in accuracy and
a significant time difference between SHEEF and the fastest of
the reported techniques, our method is able to determine the
identification in the shortest time (FaceNet and VGGFace2). If we
consider that SHEEF has further room for improvement when
the image per subject grows and that it may be used without
retraining on new subjects, this is a remarkable advantage. In
conclusion, SHEEF accuracy and computational efficiency are
comparable to those of ML methods.

impact of the face detector Dlib was the face detector
utilized in previous experiments. The most notable Dlib advan-
tage is its computational speed. To examine the impact of face
detector performance on the final results, we conducted fur-
ther experiments with RetinaFace [44]. RetinaFace is a recent
regression-based face landmarks detector. Table 2.19 presents the
results achieved for HPE and face recognition using both face
detectors on the identical image sets.

Table 2.19: The overall accuracy compared using different Face Detec-
tors.

HPE-AFLW
Detector E_Yaw E_Pitch E_Roll MAE
Dlib 6.49 7.28 4.54 6.10
RetinaFace 12.63 8.35 5.2 8.72

HPE-BIWI
Detector Err_Pitch Err_Yaw Err_Roll MAE
Dlib 3.18 4.63 2.84 3.55
RetinaFace 3.67 4.5 3.11 3.76

FACE RECOGNITION-BIWI
Detector Accuracy (%)
Dlib 94.69

RetinaFace 96.99
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As can be seen, the accuracy of the detectors is similar on Biwi,
however, RetinaFace is superior on the face recognition task and
Dlib on the AFLW database. Here, we ensure that the errors
obtained are evaluated on the same set of images. However, we
want to highlight that RetinaFace is able to detect more faces
than Dlib, despite having very similar performance to that shown
in this table. Thus, we can deduce that RetinaFace could only be
used if Dlib failed to detect the face.

2.6 conclusions

In order to considerably reduce computing time, we proposed
various fractal encoding-based HPE methods that initially explore
training-free techniques before combining the features extracted
with well-known regression models. The core of the proposed
approaches is considerably different from current research rely-
ing on CNNs methods, as they are based on Partitioned Iterated
Function Systems to represent the self-similarity characteristics of
two images exhibiting similar head rotation. In general, the main
problem in IFS-based encoding resides in finding the domain
that can be best transformed into a given range. This process,
which must be carried out for each range-domain couple, is very
expensive computationally. To overcome these limitations, we
subsequently adopted an optimization algorithm to speed up the
search of the blocks while also modifying the classic fractal im-
age compression technique. Extensive experiments conducted on
challenging databases show competitive accuracy with current
state-of-the-art approaches, highlighting a significant gain with
regard to the time required to estimate the pose, thus making
the method fully suited to real-time applications. We also devel-
oped a unified method for face recognition and HPE that uses the
same fractal encoding features for both tasks. An increase in face
recognition efficiency is made possible by precise pose estima-
tion. Furthermore, the advantage of our framework in terms of
matching time and overall time-to-recognition may be especially
helpful in light of the fact that the almost universal availability
of imaging devices capable of capturing video is changing the
operational horizon for face recognition applications. On the
other hand, currently, one of the main limitations is undoubtedly
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the need to work with multiple frames for each subject. In fact,
in the event that few frames are available or are very different
from those inserted as input, the system performance could drop
drastically.

Looking at the new challenges, we can conclude that HPE has
the potential to be effective in more emerging fields than have
been presented so far. With a booming literature, HPE is an inter-
esting technique to apply in support of biometric frameworks.
Due to the growing interest in driver applications, we will carry
over our approaches to depth imaging in the near future. In
fact, in addition to improved best frame selection and facial
recognition, HPE has proven its worth in assessing the subject’s
attentional state. This confirms the great horizontal expansion
that HPE approaches can achieve in the future, supporting the
growing number of methods that have already emerged in this
field.



3
FA C I A L E X P R E S S I O N R E C O G N I T I O N A S
B E H AV I O R A L B I O M E T R I C S

Facial expression is one of the most powerful, natural, and imme-
diate means for human beings to communicate their emotions
and intentions. Since emotion state is involved in activating the
facial muscles movements, FER can be classified as behavioral
biometrics. In the field of computer vision and pattern recog-
nition, significant progress has been made in the development
of computer systems that can interpret and utilize this natural
form of human communication. In this Chapter, we explore the
main existing models in literature for quantifying affective fa-
cial behaviors, with a special emphasis on the categorical model.
Although FER uses multiple sensors, we limit our discussion to
exclusively using static images, with a focus on recent DL-based
FER systems. Therefore, motivated by these studies, we devel-
oped a CNN-based approach to categorize the principal facial
expressions. As a further contribution, we also investigate the
impact of facial expressions on HPE, specifically the axis most
affected by the error when a specific facial expression is visible.

3.1 background

The human face is an important interface for conveying non-
verbal emotional information. Individuals’ facial expressions
reflect their reactions to personal thoughts or external stimuli.
These can offer valuable biometric data to automated human
recognition systems. The study of FER has received extensive
attention in the fields of psychology, computer vision, and pat-
tern recognition. FER has broad applications in multiple domains,
including virtual and augmented reality, human-computer inter-
action, advanced driver assistance systems, education, entertain-
ment, and healthcare [19, 76]. Facial behaviors can be thought of
as observable patterns that explain how facial expressions change
over time. Different facial expressions, as well as their frequency,

57
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duration, and intervals between expressions, all contribute to
the subject’s facial behavior. Although typical human emotions
are nearly universal, facial behavior reveals their temporal and
interdependent relationships. FER is based on face muscle ac-
tivation analysis obtained from its deformation or movement.
Since the emotional state is related to the activation of the facial
muscles, facial expression analysis can be classified as behavioral
biometrics [55]. FER has gained popularity in affective computing
due to the premise that the human face carries more information
through non-verbal communication channels than speech and
body movement. Previous emotional events and physical factors
can both have an indirect effect on an individual’s emotional state,
biasing various facial expressions. However, as with any other
behavioral biometric, it is possible to make some safe assump-
tions when, in a normal and consistent situation, an emotional
state is considered.

In literature, there are several models for quantifying affective
facial behaviors: 1) categorical model, in which the emotion or
affect belongs to a list of affective-related categories such as the
six basic emotions identified by Ekman et al. [53], 2) dimensional
model [129], where a value is selected from a continuous emo-
tional scale, such as valence and arousal, and 3) Facial Action
Coding System (FACS) model [54], in which all possible facial ac-
tions are defined in terms of Action Units (AUs). The FACS model
describes facial movements but does not directly reflect affective
states. There are various methods for converting AUs to affect
space (e.g., EMFACS [61] states that the occurrence of AU6 and
AU12 is a sign of happiness). In 1971, Ekman and Friesen defined
six essential emotions based on cross-cultural research suggesting
that humans perceive certain basic emotions equally regardless of
culture [53]. These facial expressions are anger, disgust, fear, hap-
piness, sadness, and surprise (as well as neutral). Contempt was
later identified as one of the fundamental emotions [113]. Recent
neuroscientific research has argued that the six major emotional
paradigms are culture-specific and not universal [78]. Some years
later, inspired by cognitive and psychological studies, Ekman
and Friesen developed the FACS for describing facial expressions
using AUs. They focused on physical cues and anatomical knowl-
edge of face behavior to guide facial expression recognition. FACS
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measures and classifies facial behavior by correlating momentary
changes in appearance with muscle action. It can also describe
emotion intensities and compound emotions, as well as distin-
guishing between fake and authentic emotional expressions. The
FACS employs AUs, which reflect the muscular activities required
to define and analyze facial expressions. A single muscle is used
by the majority of AUs. However, in certain cases, two or more
AUs are involved to represent the relatively independent actions
of different parts of a single muscle. Currently, FACS is composed
of a total of 46 AUs. Figure 3.1 illustrates some sample images for
specific AUs.

Figure 3.1: Facial Action Coding System: Action Units [54, 180].

In the categorical model, it is impossible to translate complex
emotions into a small number of words [51]. To circumvent this
issue, some studies sought to define numerous unique compound
emotion categories (e.g., happily surprised, sadly fearful). The
set is still limited, and the categorical model cannot characterize
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the strength or intensity of the emotions. On the other hand,
the dimensional model can differentiate between subtly different
affect displays and capture minor changes in the intensity of
each emotion, such as valence and arousal, on a continuous
scale. Valence relates to whether an event is positive or negative,
whereas arousal indicates if an event is exciting, agitating, or
soothing. As shown in Figure 3.2, there are several affect types
and minute variations within the same emotion that cannot be
adequately mapped into the limited vocabulary of the categorical
model. The dimensional model incorporates both intensity and
distinct emotion categories in the continuous domain. Despite
this, there have been few studies focusing on the development of
automated methods for evaluating affect using the continuous-
dimensional model.

Figure 3.2: The 2D valence-arousal emotion space.

Even though the affective model related to basic emotions is
limited in its ability to represent the complexity and subtlety of
our daily affective manifestations and other models of describing
emotions, such as the FACS and the continuous model that uses
the affective dimensions, represent a wider range of emotions
[70], the categorical model is still the most popular perspective
for FER due to its pioneering studies and direct and intuitive
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definition of facial expressions. In this Chapter, we will focus on
FER using the categorical model. Figure 3.3 illustrates the seven
basic facial expressions.

Figure 3.3: Basic facial expressions (sample image from the Extended
Cohn–Kanade (CK+) database [103]).

FER systems can be divided into two main categories based
on their feature representations: static images and dynamic se-
quences. Static-based methods encode the feature representation
using only spatial information from the current image, whereas
dynamic-based methods consider the temporal relationship be-
tween consecutive frames in the input facial expression sequence.
Before researchers can select the most suitable feature extraction
and classification method for the target dataset, the image must
be preprocessed. Figure 3.4 depicts the FER system architecture,
which consists of three basic steps: image preprocessing, feature
extraction, and expression categorization. The performance of
feature extraction and expression classification is directly affected
by image preprocessing. Noise reduction, face detection, image
normalization, and histogram equalization are examples of typ-
ical image processing techniques. Most traditional FER systems
depended mainly on laboratory-controlled databases and em-
ployed hand-crafted features or shallow learning. Due to the
significantly increased chip processing capabilities (e.g., GPU
units), well-designed network architectures, and more effective
training data, numerous DL techniques have been developed in
literature to deal with expression information in facial representa-
tions. These approaches have improved recognition accuracy and
achieved higher performance levels than conventional methods.
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Recently, the research community has focused its attention on
in-the-wild settings, implicitly promoting the transition of FER
from lab-controlled to real-world scenarios.

Figure 3.4: FER system architecture.

facial expression databases Researchers have access to
numerous databases in order to build FER systems capable of
producing results comparable to related work. The following is
an overview of the most well-known 2D datasets that contain
basic expressions and are widely used in literature. Table 3.1
provides a summary of these datasets, such as the number of
participants, images or video samples collected, the collection
environment, and the distribution of the expressions.

The Extended Cohn–Kanade (CK+) database [103] is the most
extensively used laboratory-controlled dataset. The CK+ database
was released in 2010 as an extension of the Cohn–Kanade (CK)
database. Specifically, the number of emotion states in CK+ was
increased to eight, and all emotion labels were modified and
validated to improve database performance. Meanwhile, the com-
plexity of recognizing expressions has substantially increased.
The CK+ database contains 593 image sequences from 123 partic-
ipants as well as eight core emotion categories: anger, contempt,
disgust, fear, happiness, sadness, surprise, and neutral. It should
be noted that image sequences range in length from 10 to 60
frames, with the same criteria that show a shift from neutral ex-
pression to peak expression. The MMI Facial Expression database
[159] is also laboratory-controlled. It contains more than 2900
videos and high-resolution images of 75 subjects. Each AU in
the videos is exhaustively annotated. In contrast to CK+, MMI
sequences are classified onset-apex-offset, i.e., the sequence be-
gins with a neutral expression, reaches a peak in the middle, and
then returns to a neutral expression. The Karolinska Directed
Emotional Faces (KDEF) database [104] involves 4900 images of
human facial expressions. The dataset includes 70 people (35 fe-
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males and 35 males) who portray the six different basic emotions
as well as the neutral expression. Each expression was captured
in two sessions and from five distinct angles. The Oulu-CASIA
dataset [178] includes 2,880 image sequences from 80 subjects,
each with six basic expressions. Every video was captured us-
ing one of two imaging systems, near-infrared (NIR) or visible
light (VIS), under three different lighting conditions. Subjects
were instructed to produce a facial expression based on an ex-
ample provided in picture sequences. The first frame, similar
to CK+, is neutral, while the last frame has the peak expres-
sion. The Japanese Female Facial Expression (JAFFE) database
[107] is composed of 213 samples of posed expression from 10
Japanese female models. Each subject has 34 images of each of
the six fundamental facial emotions and one neutral expression.
The Acted Facial Expressions in the Wild (AFEW) dataset [47]
is a dynamic temporal facial expression database comprised of
video clips belonging to various films with spontaneous facial
expressions, diverse head poses, occlusions, and illuminations.
The AFEW is divided into three data partitions based on subject
and movie or TV source, ensuring that the data in the three sets
pertains to mutually exclusive films and actors. The Static Facial
Expressions in the Wild (SFEW) dataset [46] was produced by
selecting frames from the AFEW database. The Facial Expression
Recognition 2013 (FER2013) database [67] is a large-scale and
unconstrained database automatically collected using the Google
image search API. The dataset consists of 35,887 images resized
to 48x48 pixels, including 28,709 training sets, 3,589 verification
sets, and 589 test sets. These samples are classified into seven
categories: angry, disgusting, fearful, happy, neutral, sad, and
amazed. FER2013 contains a substantial diversity in age, gender,
ethnicity, and pose, simulating the real world. The EmotioNet
[58] is an extensive database containing one million images of
facial expressions gathered from the Internet. The automatic ac-
tion unit detection model in [58] labeled 950,000 images, while
the remaining 25,000 were manually annotated with 11 AUs. The
EmotioNet Challenge’s second track [21] includes six basic ex-
pressions and ten compound expressions, as well as 2,478 images
with expression labels. The Expression in-the-Wild Database
(ExpW) [176] and the Real-world Affective Face Database (RAF-
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DB) [93] are additional real-world datasets containing a variety
of facial images collected from the Internet and Google image
search, respectively. The ExpW database includes 91,793 manu-
ally annotated faces belonging to one of the seven expressions.
RAF-DB is made up of 29,672 highly different facial images that
have been manually labeled by about 40 annotators for a total
of seven basic and twelve compound emotion labels. Finally, the
AffectNet database [117] comprises over one million images ac-
quired from the Internet by querying multiple search engines
with emotion-related tags. It is by far the largest dataset with
facial expressions in two different emotion models (categorical
model and dimensional model). With eight basic expressions,
450,000 frames were manually labeled.

Table 3.1: Summary of FER-related databases [92].
Dataset Samples #Subj Source Elicit. Expressions

CK+ 593 image
sequences

123 Lab P & S 7 basic expr. plus
contempt

MMI 740 images and
2,900 videos

25 Lab P 7 basic expr.

KDEF 4,900 images 70 Lab P 7 basic expr.

Oulu-CASIA 2,880 image
sequences

80 Lab P 6 basic expr.

JAFFE 213 images 10 Lab P 7 basic expr.

AFEW 1,809 videos nd Movie P & S 7 basic expr.

SFEW 1,766 images nd Movie P & S 7 basic expr.

FER2013 35,887 images nd Web P & S 7 basic expr.

EmotioNet 1,000,000 images nd Internet P & S 23 basic expr. or
compound expr.

ExpW 91,793 images nd Internet P & S 7 basic expr.

RAF-DB 29,672 images nd Internet P & S 7 basic expr. and
12 compound expr.

AffectNet 450,000 images
(labeled)

nd Internet P & S 7 basic expr.

nd = "not declared", expr. = "expressions", Elicit. = "elicitation method", P =
"posed", S = "spontaneous".
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3.2 literature review

In traditional FER systems, hand-crafted appearance and/or geo-
metric features are employed to recognize basic facial expressions.
Geometric features define the face shape and its components,
whereas appearance features represent information about the im-
age texture using gray values of pixels along with their neighbors.
There has been a lot of interest in using DL in recent years [92].
However, handcrafted features are still used. The authors in [155]
classified FER features into three groups: geometric, appearance,
and deep features. The recognition of facial expressions using
geometric features has been adopted in [170]. The authors have
extracted motion-based characteristics via the facial landmarks
to encode the expression intensity. Kas et al. [83] combine geo-
metric and appearance feature methods. Although the results of
both approaches are encouraging, they were not assessed under
uncontrolled conditions. Geometric feature extraction typically
requires a precise face and landmark detection procedure; how-
ever, in appearance feature-based methods, the feature vector is
frequently produced by convolution of the facial image using
hand-crafted filters. In this regard, the Gabor filter is a popular
and commonly employed FER method. Local Binary Patterns
(LBP) are another image texture descriptor approach that has
been used in this field, and its variants have been utilized to ex-
tract facial appearance features. The authors in [111] proposed a
novel edge-based descriptor, Local Prominent Directional Pattern
(LPDP), which used pixel neighborhood information to encode
more meaningful and reliable information than existing descrip-
tors. Several histogram-based image descriptors have also been
presented for FER problem [155].

In the past few years, several DL-based algorithms for FER
have been presented. Yang et al. [172] introduced a novel fea-
ture separation model exchange-Generative Adversarial Network
(GAN), which divides expression-related features and expression-
independent features with great precision. The authors in [97]
suggested a facial expression recognition scheme via a gener-
ation scheme termed Identity-Disentangled Facial Expression
Recognition Machine (IDFERM) that separates identity factors
from other facial expression-causing factors. They claimed that
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the identity-preserving neutral face image generation is efficient
for hard negative mining, requiring fewer similarity comparisons.
Li and Xu [90] presented a framework based on reinforcement
learning for pre-selecting useful images(RLPS) for emotion classi-
fication in the wild. In [168], a feature sparseness-based L2-norm
regularization that learns deep features with better generaliza-
tion capability is proposed. In [146], the authors proposed a
self-adaptive approach to learn and extract active features based
on a priori knowledge. Ji et al. [82] introduced, respectively, an
intra-category common feature representation channel and an
inter-category distinction feature representation channel, finally
combining the learned features of the two channels in cross
databases. Another study [144] presented an eleven-layered CNN
with visual attention. In a video-based FER method [99], the au-
thors advised utilizing CNN to extract spatio-temporal features. It
is important to underline that video data gives more information
than static images; nevertheless, videos are not always accessi-
ble and are more computationally complex. Furthermore, the
proposed FER system, which is detailed below, is designed for
single frames (static). Consequently, this comprehensive review
is focused only on 2D images.

Sun et al. [145] designed a deep model for fine-tuning a pre-
specified deep CNN. To increase the facial expressions, they de-
signed a novel data augmentation strategy called artificial face.
The authors in [179] proposed a novel selective feature-sharing
method, and establish a multi-task CNN network for facial expres-
sion synthesis and recognition. In [130], a deep histogram metric
learning in a CNN was presented. FER is currently working on
different attention approaches using deep networks for detecting
salient and facial features. In [65], for example, the authors devel-
oped an attention based architecture devoid of external sources
like landmark detector. Recently, Liu et al. [98] utilized three par-
allel multi-channel CNN to learn fused global and local features
from different facial regions. DML-Net, a Dynamic Multi-channel
metric Learning network for pose-aware and identity-invariant
representations of facial expressions, was proposed in order to
render the system invariant to these two crucial challenges in
FER.
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3.3 deep facial expression recognition : proposed
approach

Inspired by the above discussions, we designed a novel DL-based
facial expression recognition system [156]. The proposed frame-
work is divided into three main components: (a) face detection,
(b) feature learning using a CNN architecture, and (c) prediction
of facial expressions. Some data augmentation techniques were
applied to strengthen the model’s training capabilities, including
the fine-tuning of hyperparameters to improve the FER system’s
performance. Further details are shown below.

face detection Various challenging issues could affect the
robustness of the FER approaches, such as illumination changes,
pose variations, occlusions, and individual differences. Compared
with other nuisance factors such as illumination, occlusion, and
individual difference, pose variation has a greater impact on
FER performance, according to conventional FER literature. For
this purpose, the Tree-Structured Part Model (TSPM) technique
[183] is employed. The TSPM operating principle is based on the
combination of trees, with each tree T representing a node with
two elements, namely the facial landmarks as parts V and the
connection between those parts, i.e., E. As a result, T = (V, E) for
each tree. The TSPM performs a global composition of capturing
topological changes owing to multiple viewpoints of the facial
region, utilizing a separate template that is a mixture of each
tree, i.e., Tm = (Vm, Em), where m indicates a mixture and Vm
✓ V. It computes the Histogram of orientated Gradient (HoG)
descriptors for each template and applies the Tree-structured
component model to those descriptors to find 68 landmark points
for the frontal face region and 39 landmark points for the profile
face region. Figure 3.5 shows the TPSM-based face detection
process and some examples of the detected faces in different
poses and expressions used in the proposed system.

image augmentation and deep cnn Training a CNN on
limited datasets makes it prone to overfitting, which hinders its
ability to generalize to unseen invariant data. One of the po-
tential solutions is image augmentation [139], a regularization
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Figure 3.5: On the left, the TPSM-based face detection. On the right,
some samples of the detected faces in different poses and
expressions.

strategy in DL models that artificially adds new samples to the
dataset via label-preserving modifications. This method, which
is used to enhance performance, generates similar new samples
based on the original one, allowing the model to learn from
further examples. Classic image augmentation techniques mostly
include geometric transformations and other image processing
functions. Image sharpening, image smoothing, and affine trans-
formations (rotation, flipping, reflection, shearing, and scaling)
are the augmentation techniques applied to enhance our CNN
model. These transformations encode many of the previously
discussed invariances that present challenges for facial expres-
sion classification and, more generally, in image recognition tasks.
Edge enhancement techniques such as bilateral filtering, unsharp
mask filtering, and image sharpening not only preserve edge in-
formation but also increase tone mapping and contrast stretching
during multiscale image decomposition for feature extraction.
Image noise that reduces texture information is suppressed us-
ing the image smoothing technique. Image rotation and flipping
increase the number of training examples, improving the classi-
fication mode’s robustness and effectiveness for unknown test
samples. Finally, image scaling, zooming, and shear mapping all
contribute to the image resolution by expanding or reducing the
image size with more or fewer pixels. Figure 3.6 demonstrates the
effects of some geometric transformations applied to the facial
expression images.
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Figure 3.6: Some geometric transformations example: (a) the original
face image, (b) result of image rotation, (c) result of image
zooming, (d) result of image scaling, (e) result of image
shearing.

CNN is a type of DL model for processing data inspired by the
organization of the animal visual cortex [85] and designed to
automatically and adaptively learn spatial hierarchies of features,
from low-level to high-level patterns. A CNN is typically made
up of three layers (or building blocks): convolution, pooling, and
fully connected layers. The CNN convolution layer extracts fea-
tures by combining linear and nonlinear operations, particularly
the convolution operation and the activation function. A non-
linear activation function is applied to the outputs of a linear
operation (such as convolution). The most common nonlinear
activation function is the Rectified Linear Unit (ReLU). A pool-
ing layer implements a standard downsampling procedure that
reduces the in-plane dimensionality of the feature maps and
decreases the number of subsequent learnable parameters. Max
pooling is a widely used pooling operation that takes patches
from the input feature maps, outputs the maximum value in each
patch, and discards all other values. The output feature maps
from the final convolution or pooling layer are usually flattened
- that is, made into a one-dimensional array of numbers - and
connected to one or more dense layers, also known as fully con-
nected layers, where each input is connected to each output by a
learnable weight. A subset of fully connected layers transfers the
features to the network’s final outputs, such as the probabilities
for each class in classification tasks, after the features have been
recovered by the convolution layers and downsampled by the
pooling layers. There are typically the same number of output
nodes as classes in the final fully connected layer. A nonlinear
function such as ReLU follows each fully connected layer. Fig-
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ure 3.7 shows the general architecture of the proposed CNN. As
can be seen, there are six blocks (with each block containing
convolution layers, batch normalization, activation, maxpooling,
and dropout layers), two fully connected layers, and three dense
layers, the last of which provides the probability scores for the
seven facial expression classes (and two facial expression types
for the GENKI-4K database). Batch normalization is a type of
supplementary layer that adaptively normalizes the input values
of the following layer, thereby reducing the risk of overfitting
and boosting gradient flow through the network, enabling higher
learning rates. Dropout is a recently introduced regularization
method that makes the model less sensitive to individual network
weights by randomly setting activations to 0 during training. The
activation function applied to the last fully connected layer dif-
fers from that of the preceding ones. For each task, the proper
activation function must be determined. In our scenario, the ac-
tivation function employed for the facial expression multiclass
classification task is a softmax function, which transforms output
real values from the last fully connected layer into target class
probabilities. Our CNN model is described in detail in Table 3.2.

experimental results The experiments are conducted
on two well-known FER databases: CK+ and KDEF (see Table
3.1). Further experiments are also carried out on the GENKI-
4K dataset [163]. The GENKI-4K contains 4000 labelled images
of human faces covering a wide range of subjects, facial ap-
pearances, lighting, geographic locations, imaging settings, and
camera models. 2162 are identified as smiling or happy, while
1838 are classified as non-smiling or non-happy. The images were
collected from the Internet in various real-world scenarios, mak-
ing detection more difficult. Currently, the GENKI-4K database
has become the standard dataset for evaluating smile recognition
algorithms in the wild. Figure 3.8 shows some image samples of
these datasets. Each database is randomly partitioned, with 50%
of the data for the training set and the remaining 50% for the
test set. To obtain fair evaluations of the proposed method, we
use a subject-independent methodology, k-fold cross-validation
(K = 10), and report the average results. This technique enhances
classifier generalizability (the test set does not include training



3.3 deep facial expression recognition : proposed approach 71

Figure 3.7: Architecture of the proposed CNN model.
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Table 3.2: Overview of all layers and model parameters of the proposed
CNN architecture.

Layer Output
Shape

Image
Size

Parameters Layer Output
Shape

Image
Size

Parameters

Block-1 Block-4

Convolution2D
(3x3)@64

(n,n,64) (128,128,64) ((3x3)+1)x64
=640

Convolution2D
(3x3)x512

(n3, n3, 512) (16,16,512)
((3x3x128)+1)

x 512
=590336

Batch
Normalization

(n,n,64) (128,128,64) 4x64=256
Batch

Normalization
(n3, n3, 512) (16,16,512) 4x512=2048

Activation
Relu

(n,n,64) (128,128,64) 0
Activation

Relu
(n3, n3, 512) (16,16,512) 0

Maxpooling2D
(2x2)

(n1, n1, 64)
n1 = n/2

(64,64,64) 0
Maxpooling2D

(2x2)
(n4, n4, 512)
n4 = n3/2

(8,8,512) 0

Dropout (n1, n1, 64) (64,64,64) 0 Dropout (n4, n4, 512) (8,8,512) 0

Block-2 Block-5

Convolution2D
(5x5)@128

(n1, n1, 128) (64,64,128)
((5x5x64)+1)

x 128
=204928

Convolution2D
(3x3)@512

(n4, n4, 512) (8,8,512)
((3x3x512)+1)

x 512=
2359808

Batch
Normalization

(n1, n1, 128) (64,64,128) 4x128=512
Batch

Normalization
(n4, n4, 512) (8,8,512) 2048

Activation
Relu

(n1, n1, 128) (64, 64, 128) 0
Activation

Relu
(n4, n4.512) (8,8,512) 0

Maxpooling2D
(2x2)

(n2, n2, 128)
n2 = n1/2

(32, 32, 128) 0
Maxpooling2D

(2x2)
(n5, n5, 512)
n5 = n4/2

(4,4,512) 0

Dropout (n2, n2, 128) (32, 32, 128) 0 Dropout (n5, n5, 512) (4,4,512) 0

Block-3 Block-6

Convolution2D
(5x5)@128

(n2, n2, 128) (32,32,128)
((5x5x128)+1)

x 128
=409728

Convolution2D
(3x3)@1024

(n5, n5, 1024) (4,4,1024)
((3x3x512)+1)

x 1024=
47,19,616

Batch
Normalization

(n2, n2, 128) (32,32,128) 4x128=512
Batch

Normalization
(n5, n5, 1024) (4,4,1024) 4,096

Activation
Relu

(n2, n2, 128) (32,32,128) 0
Activation

Relu
(n5, n5, 1024) (4,4,1024) 0

Maxpooling2D
(2x2)

(n3, n3, 128)
n3 = n2/2

(16,16,128) 0
Maxpooling2D

(2x2)
(n6, n6, 1024)

n6 = n5/2
(2,2,1024) 0

Dropout (n3, n3, 128) (16,16,128) 0 Dropout (n6, n6, 1024) (2,2,1024) 0

Layer Output Shape Image Size Parameter
Flatten (1, n6 ⇥ n6 ⇥ 1024) (1,4096) 0

Dense (1,256) (1,256) (4096+1)x256= 1048832

Batch Normalization (1,256) (1,256) 1024

Activation Relu (1,256) (1,256) 0

Dropout (1,256) (1,256) 0

Dense (1,512) (1,512) (256+1)x512= 131584

Batch Normalization (1,512) (1,512) 2048

Activation Relu (1,512) (1,512) 0

Dropout (1,512) (1,512) 0

Dense (1,7) (1,7) (512+1)x7= 3591

Total Parameters for Image (I) size (128 x 128) 9481607

subjects) [66]. It is widely acknowledged that evaluations without
overlapping subjects are more standardized and equitable. The
objective of the first experiment is to evaluate the effectiveness
of multiresolution and multiscaling images of various sizes, in-
cluding 48⇥48, 64⇥64, 96⇥96, and 128⇥128. In ML, an epoch is
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Figure 3.8: Some examples from the FER datasets. From top to bottom:
KDEF,GENKI-4K, CK+.

defined as the number of times an algorithm "sees" a dataset. In
other words, it specifies the number of epochs, or full passes,
of the entire training dataset through the algorithm’s learning
procedure. Many hyperparameters have to be tuned for a robust
CNN that can properly classify facial expressions. One of the
most important is the batch size [77], which is the number of
images utilized to train the network during each epoch. Setting
this hyperparameter too high can cause the network to take too
long to converge, while setting it too low can cause the network
to oscillate without achieving acceptable performance. For this
purpose, the Mini-Batch Gradient Descent technique was uti-
lized with varying batch sizes (20, 30, 40) and number of epochs
(50, 100, 200, 500). Figure 3.9 illustrates the performance of the
proposed FER system (with different image sizes) based on the
trade-off between batch sizes and the number of epochs, without
data-augmented training images.

A further experiment is conducted without applying the image
augmentation techniques, with the aim of demonstrating their
effectiveness. Artificially augmenting training samples has been
observed to improve performance by approximately 10% across
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Figure 3.9: Performance comparison of the proposed CNN model’s
trade-off between number of epochs and batch size.

all experimental datasets. The final results obtained in terms
of accuracy (measured by the proportion of facial expressions
correctly classified in the test phase) on the KDEF, GENKI-4K,
and CK+ databases are presented in Table 3.3. Specifically, the
proposed FER system achieved outstanding performance with an
image size of 128⇥128.

Table 3.3: Performance of the proposed FER system in accuracy (%)
due to varying image sizes.

Image size KDEF GENKI-4K CK+
48x48 73.67 80.34 87.23
64x64 75.89 84.78 91.87
96x96 78.92 89.45 94.35
128x128 82.79 94.33 97.69

According to a recent comprehensive survey of Deep FER net-
works [92], our results are highly competitive with state-of-the-art
methods. In particular, on CK+ database, our model achieved
97.8%, a result very close to the work of Zhang et al. [177], which
reported 98.9% accuracy (but on six facial expressions). In Table
3.3, it is evident that the performance of KDEF dataset is lower
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than that of the other databases involved in the experimenta-
tion. This is due to the following reasons: although KDEF is a
lab-controlled database, it includes many visual facial expression
patterns from different viewpoints, resulting in an overall recog-
nition effect that is not ideal. Consequently, some literary works
employ only frontal images. Nonetheless, the accuracy obtained
is competitive with several recent studies [121, 147].

3.4 ifepe : on the impact of facial expression in hpe

HPE is applied in a wide range of application fields, from surveil-
lance to user authentication, from autonomous systems to human-
robot interactions (Chapter 2). Facial expressions are known to
impact HPE evaluation errors, particularly if faces are captured
in real-world scenarios. Based on this premise, in [26] we inves-
tigated the correlations between facial expressions, head pose
errors, and facial keypoint distances. In particular, the aim of our
study is to highlight the quantitative relationships between HPE
errors and facial expressions, identifying and relating the axis
most affected by the error when a specific type of facial expres-
sion is observable. To the best of our knowledge, this study is
the first of its kind.

To extract pertinent information for our research, we have cho-
sen two distinct techniques. Our HP2IFS method [24] is used
to perform HPE. As extensively described in Section 2.5.1, this
approach is based on the concept of PIFS and, consequently,
fractal compression. PIFS allows to reconstruct an image using
self-similarities in the image itself. So, fractal image compression
is adopted to evaluate the self-similarity of two pose images that
result in a similar head rotation. In contrast to the HP2IFS tech-
nique, we prefer an DL-based framework for FER, namely Facial
Motion Prior Networks (FMPN), presented in [41] (because it
produces faster results than training-free algorithms). The FMPN
comprises three networks, as shown in Figure 3.10: Facial-Motion
Mask Generator (FMG), Prior Fusion Net (PFN), and Classification
Net (CN). The goal of FMG is to develop a mask, specifically
a facial-motion mask, that emphasizes the moving areas of a
grayscale expressive face. PFN combines the original input image
with the FMG-generated facial-motion mask to bring domain
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knowledge to the entire framework. CN is a common CNN for
feature extraction and classification.

Figure 3.10: The architecture of the FMPN framework [41].

As previously discussed, facial expressions are produced by
the contraction of facial muscles, and individuals with the same
expression share a similar pattern. Thus, in FMG, for a certain
type of facial expression, muscle-moving areas are modeled as
the difference between an expressive face and its corresponding
neutral face. On the other hand, the similarity characteristic
is modeled by averaging the above differences of all training
examples in the same facial expression category. The ground
truth mask Im(k) is built for a k-th type of facial expression as
follows:

I(k)m = f
� 1

Nk

Nk

Â
i

��g(Rk
e,i)� g(Rk

n,i)
��� (3.1)

where R(k)
e denotes the raw face with the k-th type of facial

expressions, R(k)
n is the corresponding neutral face, Nk represents

the number of faces in the k-th expression category, and g(⇤) and
f (⇤) define the pre-processing and post-processing, respectively.
The Mean Square Error (MSE) is used for the training objective
function of FMG.

Prior Fusion Net (PFN) fuses the original face input with the
mask learned using FMG. Specifically, PFN produces a fused
output Is by a weighted sum, defines as:
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Is = w1 ⇤ Ie0 + w2 ⇤ (Ie ⌦ fG(Ie))) (3.2)

where Ie0 is the RGB image version of Ie, ⌦ is the element-wise
multiplication between the face and its corresponding mask, and
w1 and w2 are weights of convolutional layers updated during
the training. After PFN, the fused output Is will then be fed into
a CNN-based classification network. Three well-known popular
databases were used to train and evaluate the FMPN frame-
work, namely CK+, MMI, and AffectNet (Table 3.1) , achieving
considerable performance compared to state-of-the-art methods.

Figure 3.11: Images from 300W-LP 300W_lp dataset.

Our experiments are conducted on the 300W_lp dataset [184].
The 300W_lp dataset is an extension of the 300W, which standard-
izes 68 landmark points for several face alignment benchmarks,
such as AFW, LFPW, HELEN, and IBUG. There are a total of
61,225 images, consisting of 17,860 from IBUG, 5,207 from AFW,
16,556 from LFPW, and 37,675 from HELEN. As illustrated in
Figure 3.11, digitally generated rotations do not respect all of the
relationships between facial keypoints, resulting in higher HPE
errors along the three axes than those reported in [24].

To evaluate the correlations between the HPE and facial expres-
sion results, we examine the variations in facial point distances
during expressions. Due to the large diversity in expression per
subject, we analyze samples from the dataset described in [51].
The classification of the seven expressions, including neutral, by
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the FMPN algorithm is illustrated in Figure 3.12-(a). Then, using
the same method as HP2IFS, facial landmarks are detected (Fig-
ure 3.12-(b)). Since the landmark detector is equivalent, HPE will
verify the same scenario regardless of the presence of wrongly
positioned landmarks.

Figure 3.12: Facial expressions considered for the distances analysis (a)
and their landmark locations (b). Sample images from [51].

Each landmark point is numbered and occupies a fixed lo-
cation within the array; for instance, the nose is always in the
33rd array position. On the basis of these arrays, we established
some distances that are crucial for facial recognition due to their
changes in facial expressions:

• Eye_l: the left eye opening, i.e., the distance between the
landmark corresponding to the eyelid and the landmark
related to the lower part of the eye.

• Eye_r: the right eye opening, computed identically to EL
for the right eye.

• H_Mouth: the horizontal opening of the mouth, measured
at its farthest horizontal points.

• V_Mouth: the vertical opening of the mouth, measured as
the distance between the mouth’s highest and lowest points.

• Eyeb_l: The distance between the left eye and the left eye-
brow (in the center).

• Eyeb_r: the distance between the right eye and the right
eyebrow (in the center)
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• Chin_Mouth: the distance between the chin and the mouth’s
lower landmark.

After computing these distances, we assessed their variation
using a neutral expression as a reference. Table 3.4 presents the
percentages of increasing or decreasing distances in relation to
the facial expression.

Table 3.4: The percentages of variation of relative distances for different
facial expressions.

Expr/Dist % Eye_l Eye_r H_Mouth V_Mouth Eyeb_l Eyeb_r Chin_Mouth
Angry -24.55 -25.58 -7.22 -10.97 -37.19 -36.75 11.60

Contempt -25.58 -24.55 -2.46 -10.97 -36.26 -44.25 19.23

Disgust -25.58 -37.98 -4.84 21.98 -12.28 -22.14 34.67

Fear -0.77 0.00 23.76 98.78 -12.50 -16.61 -3.85

Happy -37.98 -25.58 30.83 76.69 0.20 -5.70 3.92

Neutral 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sad -25.58 -24.55 -0.08 -0.61 -12.28 -22.34 15.45

Surprise 24.65 24.65 -11.97 220.25 25.00 10.94 -11.54

Figure 3.13 shows a histogram to better visualize those val-
ues. First of all, the V_Mouth distance is greatest for surprise,
followed by fear and happiness. Except in cases of surprise, the
Eye_l and Eye_r decrease in all cases. The behavior of anger
and contempt is mostly similar. In disgust, the Eye_r distance
changes (relative to angry and contemptuous expressions) and
the V_Mouth increases. Sadness emerges as the emotion with
the fewest noticeable changes. At this point, we evaluated the
angular error values produced by the HPE method. Specifically,
each of the 300W-LP, AFW, HELEN, IBUG, and LFPW datasets
was sequentially chosen as the method reference model. For the
remaining images, we extracted the angular error along the three
axes. The same images are used in FMPN to classify the subject’s
facial expressions. The result is a set of relative errors in facial
expressions, divided by the provided reference model. So, we
estimated the percentage increases or decreases of the errors
relative to the neutral image. However, the test data obtained
is not uniform in terms of the image numbers for each facial
expression. As a result, we evaluated the weighted mean relative
errors, shown in Figure 3.14.

As regards the rotation axes, it can be stated that:
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Figure 3.13: Histogram of increasing or decreasing distances in differ-
ent facial expressions.

Figure 3.14: Histogram of the mean weighted error percentage increas-
ing or decreasing with respect to the facial expressions.

• Pitch error for the expressions contempt, fear, happiness,
and, in particular, disgust is decreasing. The same is in-
creasing for anger, sadness, and surprise.

• Yaw error is decreasing for angry, disgusted, fearful, happy,
sad, and especially contempt. Surprise is the only expres-
sion that is increasing.
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• Roll error for the expressions contempt, disgust, sadness,
and, in particular, fear is decreasing. The same is increasing
for anger, happiness, and surprise.

In the final step of our analysis, we show the direct relation-
ships between facial point distances and relative errors. The
relationships were defined as being directly proportional when an
increase in distances leads to a rise in errors and vice versa. On
the other hand, we evaluated that the relationships are inversely
proportional when an increase in distances implies a decrease in
errors and vice versa. After establishing our criteria, the final
considerations are as follows:

• The distances between eyes and eyebrows (Eyeb_l and
Eyeb_r) are directly proportional to yaw errors.

• The vertical mouth opening (V_Mouth) is directly propor-
tional to the yaw errors.

• The horizontal mouth opening (H_Mouth) is inversely pro-
portional to roll errors.

• Mouth variations (V_Mouth and H_Mouth) in the absence
of eye variation (Eye_l, Eyeb_r, Eyeb_l, and Eyeb_r) are
inversely proportional to roll errors.

• The distance between the mouth and chin (Chin_Mouth)
seems to be related to pitch.

Due to the mismatched values obtained in the expressions of
anger and contempt, we cannot say with certainty whether the
relationship between Chin_Mouth and pitch errors is direct or
inverse. This can be related to the HPE method chosen to perform
the error evaluations. The HP2IFS technique, in its original form,
presents the larger error values precisely on pitch. In addition,
the error is less homogeneous along this axis, since having some
outliers may result in a larger error than yaw and roll. Despite
this, it is obvious that facial point distances and HPE method
errors are directly related, and facial expression estimation may
be able to derive this relationship efficiently.

To further demonstrate this claim, we selected the facial ex-
pression with the minimum mean error in HPE method along
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Figure 3.15: Histogram of the percentage of distances increasing con-
sidering the expression "contempt" as a reference.

Figure 3.16: Histogram of the percentage of mean error increasing con-
sidering the expression "contempt" as a reference.

the entire dataset, i.e., the expression of contempt. We show the
histograms of Figures 3.13 and 3.14, respectively, in Figures 3.15
and 3.16, using the expression "contempt" as a reference. As can
be seen, all the distances are increasing, as are the errors. The
disgust expression is the only relevant exception, with overall
distance increasing by small values and eye distances decreasing,
with a relevant pitch error decreasing.
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3.5 conclusions

FER is an important research problem in the AI domain due to its
widespread applications in both academia and industry. While
FER can be accomplished using a variety of sensors, research in-
dicates that the use of images and/or video is superior, as visual
expressions convey significant emotional information. Recently,
DL approaches have been increasingly implemented to deal with
the challenging factors for emotion recognition in nature. Mo-
tivated by this, we designed a CNN-based model with the aim
of recognizing expression types in images. We focused the most
on sophisticated data augmentation techniques as well as the
fine-tuning of hyperparameters to solve the emotion recogni-
tion task. The obtained results were very encouraging, with the
proposed CNN architecture achieving nearly 98% accuracy on
the CK+ database, one of the most widely used test beds for
the development and evaluation of FER algorithms. Although
facial expression recognition based on 2D images might achieve
promising results, facial expression is simply a component of hu-
man behavior. For expression classification, we only investigated
seven distinct and unique emotion classes. Furthermore, most of
the datasets used in the experimental phase and training proce-
dure contain frames acquired in the laboratory. Consequently, in
the future, we intend to analyze classes of compound emotions
while also examining images from real-world scenarios.

Despite the powerful feature learning ability of deep learn-
ing, there are still difficulties when applied to FER. Deep neural
networks require massive amounts of training data to avoid
overfitting. Existing facial expression databases, with a few ex-
ceptions, are insufficient to train the well-known neural network
with deep architecture. Due to changes in personal traits, pos-
ture, illumination, and occlusion, there are also significant inter-
subject discrepancies when facial expressions are acquired in
unconstrained scenarios. Another major issue that requires con-
sideration is that, due to the ease of data processing and their
availability, a significant number of studies conducted expression
recognition tasks utilizing 2D static images without addressing
temporal information. In this regard, 3D FER with 3D face shape
models and depth information can capture subtle facial deforma-
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tions that are naturally resistant to pose and lighting variations.
In light of the numerous open problems in this field that may
inspire new techniques to improve FER systems in the future, we
can conclude that FER will play an increasingly vital part in our
daily lives. Future human-machine environment applications will
be multimodal, combining additional information from dynamic
behavior, voice, text, audio, and image, so as to make machines’
use as intuitive and natural as feasible.



4
T O U C H D Y N A M I C S I N M O B I L E D E V I C E S

TD, one of the most powerful behavioral biometrics, captures a
person’s typing patterns on mobile touchscreen devices. When
an individual interacts with such devices, a digital signature is
generated that is highly discriminatory and unique. Since most
touchscreen devices already include sensors, this technology
can be widely adopted to implement continuous authentication
methods, making the system even more secure and reliable to
prevent access by impostors.

This Chapter explores the integration of soft biometric traits
with TD-based behavioral biometrics. The goal is to analyze users’
typing patterns for demographic classification in age, gender,
and user experience. Using traditional lightweight ML classifica-
tion algorithms, it is possible to achieve effective demographic
analysis as well as contribute to improving the identification
mechanism.

4.1 modelling touch and typing behavior

Biometric technology is becoming increasingly widespread and
accepted by society, primarily because of its success on mobile
devices. Traditional biometric modalities used in modern smart-
phones include fingerprints, iris, and face recognition. The re-
search community has explored novel identifying systems based
on behavioral biometric traits such as gesture, keystroke, and
gait as a result of the weakness of conventional authentication
mechanisms. It has been demonstrated that behavioral biomet-
rics provide higher security than physiological features and can
be used in a mobile multimodal authentication system. This is
because mobile devices have multiple sensors that are capable
of simultaneously acquiring a vast amount of behavioral bio-
metric data. This data can also reveal a significant amount of
information about the user [141].

85
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Nowadays, increasingly difficult online operations are per-
formed via mobile devices due to their portability and ease of
use compared to large desktop systems, as well as the availability
of fast wireless Internet connections. These activities often require
the submission of sensitive and valuable data, such as personal
identifiers, passwords, bank accounts, credit card information,
and so on. As a result, serious issues arise with the security and
privacy of such data. In order to control production costs, consid-
erable attention is paid to the creation of solutions that do not use
dedicated hardware. In this circumstance, using TD as a biometric
identifier on a mobile device seems like a natural choice. Based
on interactions such as typing rhythm, finger-swiping speed, and
device-holding posture, TD-based biometric approaches gener-
ate a behavioral model of a user. Touchscreen gestures provide
user discrimination since they represent an indication of muscle
behavior [57]. The built-in sensors on the mobile device record
touch data such as timestamps, finger pressure, and finger area
in contact. This raw data contributes to creating a user model
for enrollment, which is then used for identification and ver-
ification purposes. There are many research papers that deal
with the study of how people interact with smartphones and,
specifically, how each user performs the screen pressure phase.
The way in which each human being interacts with the touch-
screen (and, in turn, with the device) can be seen as a kind
of digital signature closely related to the individual interacting
with the system. Such a signature is considered a distinctive
element that uniquely identifies a particular person. During the
Second World War, it was not uncommon for telegraphists to
state with certainty whether or not a message was typed by the
same operator. Since 1980, experimental studies have confirmed
the existence of discriminative features in each subject’s typing
behavior. These are typically considered to be the first docu-
mented cases of identifying a human being by looking at how it
interacts with a keyboard [110]. Numerous efforts in this field
have been made since then, in particular with physical keyboards.
Clearly, the situation just described is from the last century, but
thanks to modern technologies and the increase in the use of
smartphones, performing the same recognition is becoming very
simple. As already mentioned, recording these particular traits
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does not require the use of any additional hardware because
a person’s regular typing rhythm may be obtained by utilizing
a simple keystroke logging software to capture the timings of
key-related interactions. Furthermore, due to the presence of
multiple embedded sensors, some not necessarily designed for
biometric identification, modern smartphones constitute a par-
ticularly suitable environment to perform TD-based recognition.
In the context of mobile applications, the user’s touch pattern
has evolved into a non-intrusive biometrics model that can be
implicitly captured. Additionally, it provides a better balance be-
tween security and usability because the user’s touch-interaction
behaviors are not considered private information. Active and
continuous authentication, offered by touch biometrics, can be
summarized as the continuous confirmation of the identity of a
person based on specific features of their behavior when interact-
ing with a computing device. TD-based authentication maintains
a constant state during the entire time the user interacts with the
device, thanks to periodic, transparent re-authentication tasks.
Without interfering with the user’s activities, the entire process
can be run in the background. Over the years, many existing
classification techniques have been utilized in touch biometrics
research. Classical statistical methods as well as advanced ML
methodologies were applied. K-Nearest Neighbor classifiers, K-
mean methods, Bayesian classifiers, Fuzzy Logic, Boost learning,
Random Forests and Support Vector Machines are some of the
most commonly used ML approaches. Several metrics, includ-
ing Euclidean distance, Mahalanobis distance, and Manhattan
distance, were also used. However, because the research used
diverse datasets and evaluation criteria, a valid comparison of
numerous approaches is not possible [137].

Although a user’s typing is highly unique and governed by
a person’s neurophysiological path, it can also be influenced by
their psychological state [72]. It should be noted that human
touch interactions show high instability due to numerous tran-
sient stimuli such as emotions, stress, etc. External factors, such
as the input keyboard device used, which could have a different
layout of the keys, also have an impact [181]. The plethora of
features offered by mobile devices allows for the capture and stor-
age of a wide variety of behavioral and physiological attributes.
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Recently, several studies have suggested that by combining differ-
ent biometric traits to form a multimodal model, the accuracy of
the recognition system could be further improved. For example,
the front camera enables users to interact with the device screen
even with eye movements, thus opening up a new dimension of
data collection in real-world conditions. In light of this, it may
be easy to consider the gaze as an additional biometric aspect
[35, 36]. On the assumption that each mobile device is used by
a single user, behavioral profiling-based active authentication
mechanisms have also been developed. Behavioral profiling de-
scribes the user’s interactions with mobile sensors and services
[109]. Mobile devices involve multiple sensors (camera, gyro-
scope, magnetometer, accelerometer, GPS location, touchscreen,
etc.) and full connectivity (e.g., Bluetooth, WiFi, 4G, app usage).
All of this information is generated by the user’s normal smart-
phone usage, and it has been proven that it can be exploited for
person identification under specific conditions [5]. In the context
of mobile devices, Figure 4.1 illustrates the sensors and services
that can be utilized to obtain behavioral biometric data.

Figure 4.1: Sensors and accessories available in a mobile device.

4.2 touch dynamics system : overview

Touch biometrics-based continuous user authentication is similar
to a classic biometric recognition system in that it involves an
enrollment phase and a verification or identification phase. Dur-
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ing the enrollment phase, the scheme collects the touch features
from the user’s touch gestures, generates a template for each
individual, and stores it as a user profile in a database. During
the recognition phase, the user’s touch data is recorded in order
to extract the relevant key information. Using a classification
algorithm, the system compares these features with the user’s
profile. The current user is identified as legitimate if the classifier
scores are higher than the predefined threshold. Otherwise, the
user will be labeled as an illegitimate user. The main modules
involved in the enrollment and recognition phases are described
below.

data acquisition The choice of the device for data acquisi-
tion is critical. Smartphones are used as data collection devices
for the vast majority of research work in the field of touch dy-
namics. This is partly caused by the fact that more people use
smartphones than, for example, digital tablets. Modern devices
typically have sensors with higher resolution and accuracy, ca-
pable of recording higher-quality features. In addition, modern
devices have more computing power and resources, which makes
it easier to apply more sophisticated algorithms and powerful
sensors. The proposed development platform associated with
a mobile operating system is an additional criterion for device
selection. Additionally, modern devices have more computing
power and resources, which makes it easier to apply more so-
phisticated algorithms and powerful sensors. To collect touch
dynamics data, a toolkit must be used. According to a literature
review [151], Android is the most widely used development
platform for acquiring touch dynamics data, followed by iOS
and Windows. Unlike its rivals, Android offers open-source li-
brary functions that enable developers to modify the application
framework, providing them with more freedom in designing and
customizing their applications.

Data collection can take place in two possible contexts: under
strict supervision or not monitored at all. The vast majority of
studies published in literature have been conducted in monitored
and controlled situations. Controlling an experiment is done
primarily to reduce the degree of variance in touch dynamics
patterns induced by external variables such as cognitive load,
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distractions, and so on. The main experimental variables (for
example, the discriminative abilities of the characteristics or the
accuracy of the performance of classifiers) can be evaluated more
correctly when an experiment is tightly controlled with a rigor-
ous methodology. However, compared to the results found in
uncontrolled settings, the performance obtained in supervised
settings is overly optimistic. Two distinct scenarios, Fixed text and
Free text, can be considered for touch data acquisition on both
desktop and mobile frameworks. Fixed text uses personal identi-
fication numbers (PINs), passwords, or passphrases. The PINs
used to log in to mobile phones are normally four digits long,
but longer number sequences can also be used depending on
the applications evaluated and the desired level of security. The
sequences of alphabetic or numeric characters make up the pass-
words. The standard password length is between six and fifteen
characters, including special characters, which are typically used
to increase security. Last but not least are passphrases, in which
users type sentences or paragraphs that are reproduced during
the recognition phase after being preset during enrollment. The
length of the inputs in this situation can be in the order of several
dozens of characters. Unlike in previous cases, users can enter
any free text-related information, regardless of what was previ-
ously collected during the enrollment phase. Typing free text is
obviously much more challenging in the context of recognition.
Since they can only be used once before the sequence becomes
unusable, one-time passwords can be seen as a specific example
of free text input.

feature extraction Various signals can be employed to
characterize users by analyzing the raw data collected from a
subject. Timing, spatial, and motion are the three categories of
common features described in literature [151]. Most of the meth-
ods that use TD for biometric recognition rely on timing data to
distinguish the users. The availability of timestamp information,
which records the precise moments when certain keys are pressed
and released, is typically provided by mobile devices. Several
measures can then be computed from such information. The first
one is called the Dwell Time (DT), and it describes how long a
touch event lasts when the same key is pressed. In literature, it is
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often referred to as "interval," "press," or "hold time." This value
is calculated by subtracting the key release timestamp value from
the key press timestamp value. Flight Time (FT) describes the time
period between the touch events of two successive keys. It is also
known as latency. There are four different FT variations, as shown
in Figure 4.2. In more detail, given an input string and any two

Figure 4.2: Touch Dynamics features: Dwell Time and Flight Time.

distinct characters within it, the extracted main features represent
the timing differences between two events, i.e., press/press, re-
lease/release, press/release, and release/press. Different feature
lengths can be extracted to derive a timing feature. The timing
feature that is obtained by taking the touch event timestamp
values of the same key is referred to as "uni-graph". Similarly, the
terms "di-graph" and "n-graph", respectively, refer to the timing
features that can be derived from two or more keys. Figure 4.3
represents the different n-graph lengths. The typical number of
words the considering user may type in a minute is one metric
that can be used to estimate the user’s typing speed from the TD
data collected. Other metrics, for example, the adjusted words
per minute that take typing errors into account or the keystrokes
per second, which include the backspace key, are also considered.

A touch event can result in the acquisition of a spatial feature,
which is a property connected to physical interactions between a
fingertip and a device’s touchscreen surface. Touch size, pressure,
and position are the three spatial characteristics that are most
frequently mentioned in literature. The touch size is related to
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the screen area touched during a touch event. The size of the
subject’s fingertip influences the user’s "touch size" value. Ac-
cording to several studies, adult male subjects often produce
larger touch size values than do children or female subjects. A
touch pressure value represents the approximate force applied
to the screen upon each touch event. It is important to note that
each individual’s particular finger muscle is connected to a touch
pressure value. As a result, it is challenging for a user to repli-
cate another subject’s touch. Finally, the touch position, which
captures the location where a fingertip lands on a device screen,
is a two-dimensional matrix feature (or key). A pixel-based x and

Figure 4.3: The different timing feature lengths: n-graph.

y coordinate can be assigned to each touch event. The size of
the fingertip and an individual’s cognitive preference influence
where a user should touch a key. Thus, it is possible to identify a
subject by using the touch position as a discriminating feature.
The touch position can be described in one of two ways: as an off-
set from the key’s center or as the absolute coordinates of a touch
event relative to the full screen. Some mathematical manipula-
tions can also be used to derive new features, i.e., the distance or
angle between two touch events. This coordinate representation
does have a drawback, though, in that the screen’s coordinate
system is device-dependent. The values of the collected touch
positions are inconsistent between devices. Therefore, touch posi-
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tion values should be normalized unless data collection is carried
out on similar devices.

The accelerometer and gyroscope, two hardware motion sen-
sors, are built into most modern mobile devices. Typically, each
touch event causes the device to move or rotate slightly. The
accelerometer sensor measures the rate of linear acceleration
applied to a device over time. It is designed to track motion
along the x, y, and z axes in both positive and negative directions.
The gyroscope sensor, on the other hand, measures the speed
of rotation that a device undergoes in relation to the three axes:
forward and backward tilt (pitch), side-to-side rotation (roll), and
vertical-to-horizontal rotation (yaw). Figure 4.4 shows the various
motions detected by both sensors.

Figure 4.4: The different motion data recorded by the mobile sensors.

classification/matching During the enrollment phase,
methods such as distance-based metrics and ML algorithms are
utilized to generate a user profile. The authentication task can be
viewed as a two-class classification problem (legitimate users vs.
impostors), in which the classifiers analyze touch behavior data
and distinguish between legitimate users and impostors. If the
module adopts a one-class classification problem (as opposed
to conventional binary classification), the information is only
available to a single class, i.e., legitimate users. Each classifier has
a training phase in which a set of feature vectors is used to build
a model of the user’s touch behavior, followed by a test phase
where each new test vector is assigned a classification score. In
the identification scenarios, the recognition phase is carried out
by selecting probe samples from the considered users and making
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a decision about the identity of their owners by exploiting trained
ML approaches to perform one-to-many comparisons [174].

4.3 soft biometric traits through typing patterns

In literature, soft biometric traits are defined as "characteristics that
provide some information about the individual, but lack the distinctive-
ness and permanence to sufficiently differentiate any two individuals"
[79]. Automatic recognition of common personal traits, such as
age range and gender, is a current research topic. There are
a number of possible applications for estimating a user’s soft
biometric attributes while using a mobile device. By estimating
the age, it is possible to prevent access to particular multimedia
content by people belonging to certain age groups. Conversely,
gender detection can be used for marketing purposes to pro-
mote personalized products, while touch-experience detection
would improve the usability of the device. These features could
also be used to improve the performance of the authentication
systems by combining their contributions with other reliable bio-
metric traits (such as fingerprints, faces, eyes, and the like). Pupil
size [31, 37], gait [14], and the 2D human skeleton [15], among
others, can be exploited to extract such soft information with
convincing performance. Concerning the use of smartphones
and similar portable devices, demographic information can be
inferred from the keystroke dynamics resulting from interac-
tion with a keyboard. There are several works that, over the
years, have explored this interaction and obtained interesting
performances for different soft attributes. Tsimperidis and Aram-
patzis [154] demonstrate how this biometric attribute can be used
to determine the user’s gender, age, handedness, and level of
confidence with the hardware. With the rapid development of
technologies, and in particular touchscreen mobile devices such
as tablets or smartphones, research activities have also focused
on so-called touch biometrics. Numerous studies have used this
new biometric trait to recognize a subject who uses a touch de-
vice, either by relying solely on the information obtained from
this type of interaction or by combining it with other biometric
features. However, there are currently no exhaustive works in lit-
erature that address the situation mentioned above. Additionally,
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almost all of the research utilizes verification protocols that, by
not ensuring that training and testing phases are carried out on
unseen users, introduce a biometric bias into the experimentation.
The state-of-the-art in soft biometrics using touch screen behavior
data reveals great accuracy and performance levels, which leads
one to believe that behavioral traits can be consistently processed
for soft biometrics analysis. When experimental methods are not
strictly one-left-out, the models are more likely to be trained to
recognize the subject’s identity than the desired soft features.
One of the first works to use touch data to acquire information
about the gender and subjects’ level of experience with hardware
is presented in [7]. Due to the extremely uneven nature of the
dataset (56 men and 15 women), the authors chose to focus on
a subset of only 9 subjects for each class. Performance is 88%
with a single stroke (defined as a vector of 5 components, in-
cluding touch position coordinates, timestamp, pressure, area
covered, and the number of points belonging to the hit) and 99%
with a sequence of ten strokes. However, they claim to utilize
a 3-fold cross-validation, thus not taking into account the fact
that there may be samples from the same individual in both
the training and testing phases, hence risking affecting the same
prediction. The same problem applies to classifying a user’s tac-
tile experience. The authors divided users into four categories:
inexperienced, moderately experienced, experienced, and very
experienced. Experiments were conducted on 24 participants, 6
from each class. The accuracy reported ranges from 81% for a
single stroke to 100% for twenty strokes. In each experiment,
three well-known ML classifiers were evaluated. Buriro et al. [29]
have also conducted research on age, gender, and operating-
handedness classification. Using the publicly available dataset
TDAS, they test different classifiers, of which Random Forest
is the best-performing. The accuracy obtained is 82.8% for gen-
der recognition, 95.5% for operating handedness, and 87.9% for
age prediction, through a random selection of 80% of the data
samples as training. Even in this instance, merely dividing the
samples without taking into account the possibility that training
and test samples could contain the same subject could have a
significant impact on overall performance. The work in [80], on
the other hand, focuses solely on gender recognition by utiliz-
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ing touchscreen movements and other behavioral data derived
from accelerometer, gyroscope, and orientation sensor readings.
The authors evaluated their method by employing two distinct
devices and, this time, placing samples from the same subject
either only in the training set or only in the test set. Considering
only a selection of four gestures and applying fusion techniques
across the several classifiers employed in the two experiments
yields an average accuracy of approximately 90%. There is also a
comparison of the individual performances of both the sensors
and the touch features, and it is evident that for each gesture, the
contribution of the sensors is very strong.

All of the above observations served as inspiration for our work
[38], which aims to demonstrate how, through a rigorous protocol
adapted to a real case study in which a first-time user uses a
touch device, performance decreases dramatically. In any case, it
is clear that this biometric feature has the potential to discriminate
for this type of classification. To the best of our knowledge, this
study is the first to employ soft biometric analysis using the
datasets described below. The Touch Dynamics based multi-factor
Authentication Solution (TDAS) dataset is the sole exception.

datasets Although there are many benchmarks in literature
reporting touch dynamics data, there are few publicly accessi-
ble datasets that include subjects’ soft biometric features. RHU
KeyStroke Benchmark [56], Keystroke Dynamics Android plat-
form (KDAp) database [8], and Touch Dynamics based multi-
factor Authentication Solution (TDAS) dataset [152] were the
three databases we employed in this work. These datasets are fre-
quently discussed in literature for the purposes of identification
and authentication.

The RHU Keystroke benchmark has four "key event" features:
Press-to-Press (PP), Press-to-Release (PR), Release-to-Press (RP),
and Release-to-Release (RR), which store, respectively, the time
of the event between two key pressures, one key pressure and
one key release, one key release and a key pressure, and fi-
nally two key releases. All participants entered the password
"rhu.university" 15 times over three different time periods during
the acquisition process. The four characteristics mentioned above
also have sub-features that indicate the different time values for
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typing the password: RR, RP, and PP each have 13 data, whereas
PR has 14 values. As a result, there are 53 features in total for each
subject. In the Keystroke Dynamics Android platform (KDAp)
database, the typing patterns of 42 individuals were recorded
in a controlled environment in two sessions over the course of
two weeks. The users input the same password (.tie5Roanl) 30
times through an Android application created for data collection.
The system records the finger area, pressure, and timestamp. The
features extracted and examined for a total of 71 user-specific
touch dynamics characteristics include the key hold time, the
down-down time, the up-down time, the key hold pressure, the
finger area, the average hold time, the average finger area, and
the average pressure. The Touch Dynamics based multi-factor
Authentication Solution (TDAS) dataset consists of 150 individ-
uals with 10 samples per subject. The keystroke timings, touch
pressure, and touch size represent the three main characteristics
extracted. The two numeric inputs, i.e., 4 digits (5560) and 16 dig-
its (13796666624680852), were typed to acquire these properties.
Details of the individuals’ soft biometric information for each
database are shown in Table 4.1.

Table 4.1: Soft biometrics information of users.

Dataset Users Password Controlled
acquisition

Age range,
n° per class

Gender
User touchscreen

experience,
n° per class

RHU 51 rhu.university Yes
7-17, 11

18-29, 30
30-65, 10

26 male
25 female

-

KDAp 42 .tie5Roanl Yes 20-46 , - 24 male
18 female

0-7, 24
8-9, 18

TDAS 150
5560 (Short)

1379666624680852 (Long)
No

<20, 69
20-40, 46
>40, 35

45 male
105 female

-

experimental protocol Several statistical indices, includ-
ing maximum, minimum, mean, standard deviation, quantiles,
and median absolute deviation, are extracted from each dataset
prior to model building. Statistical-based preprocessing tech-
niques are useful to prepare data as input for modeling and/or
analysis using ML algorithms. In the experimental phase, we
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used six well-known ML algorithms: AdaBoost, Decision Tree,
Random Forest, Support Vector Machine, Nearest Neighbors,
and Gaussian Naive Bayes for binary (i.e., gender and user tactile
experience) and multi-class (age) classification. The best hyperpa-
rameters of the model were found using the Grid-search tuning
optimization technique. For each dataset, we used two different
strategies:

• an independent dataset subdivision by subject designed to
prevent biometric factors from biasing training and testing;

• a random subdivision of the dataset where 70% is used for
training and the remaining 30% is used to generate the test
set.

The use of two distinct sample splitting procedures was guided
by the observation that soft biometric analysis is often influ-
enced by subject identification. The way samples are distributed
throughout training and testing sets can have a significant impact
on results when the goal of the experiment is to classify demo-
graphic characteristics rather than authenticate the subject. On
the other hand, similar searches in literature often use a random
selection of samples for training and testing. This allows for a fair
comparison of works, but as the results will show, identity-bias
has a significant impact on the level of performance achieved. A
further experimental evaluation was performed on the charac-
teristics of each dataset. The goal is to draw attention to which
biometric touch feature has the greatest impact on performance
as a whole. It is also interesting to see which of the three macro
categories (time, pressure, and area covered) found in the three
data sets performs better than the others or, conversely, is not
suitable for the classification task.

results In line with the first strategy, the maximum accuracy
for estimating gender and age on RHU dataset using Decision
Tree and Random Forest is 61% and 68%, respectively. The tem-
poral differences between two key pressures and two key releases
constitute the most discriminating factors in both gender and age
estimation tasks. The highest accuracies for estimating gender
and user tactile experience (obtained with Support Vector Ma-
chine and GaussianNB) for the KDap database are 86% and 79%,
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respectively. It is important to note that the age estimation task
could not be applied as the dataset is heavily biased in favor of
the age group 21–23. In addition, a binary classification was used
to evaluate the user’s tactile experience by dividing it into two
classes, one for levels 0 to 7 and the other for levels 8 to 9. In this
way, it was possible to balance the number of subjects in each of
the two groups. The down-down time and the finger area are the
most crucial characteristics for the aforementioned estimation
tasks. The TDAS database is very unbalanced. The distribution of
the samples consists of 105 females and 45 males, as previously
stated in Table 4.1. For this reason, we randomly divided the
female subjects into two different subsets, performing the experi-
ments on both. By calculating the average of the performances
achieved in each of the two subgroups, the results for the gender
estimate were obtained. Support Vector Machine and Nearest
Neighbors achieved the highest accuracy of 62% and 30%, respec-
tively. Note that regardless of the classifier used, performance
is particularly poor for the age estimation task. Finally, on the
TDAS dataset, the most distinctive feature for gender estimation
is the finger touch size, while the time release and time pressure
characteristics are decisive in determining age.

The second strategy adopted in the experiments involves ran-
domly dividing each dataset into 70% for training and the re-
maining 30% for the test set. The performances achieved are very
promising, as can be seen from Table 4.2, which summarizes all
of the experimental results. More specifically, we can see that the
TDAS dataset reached 92% for gender estimation using Nearest
Neighbors (as opposed to 62% in the first strategy). Compared to
the results of Buriro et al. [29], our performance is significantly
better. The accuracy rate reported by the authors is 82.8%. This
is achieved despite the work adopting the synthetic minority
oversampling technique (SMOTE) and a 50:50 random train:test
division strategy. Regarding age-related results, the TDAS dataset
surprisingly reaches 84% with Nearest Neighbors (versus 30% in
the first strategy). This time, compared to the work of Buriro et
al., our results have a slight decline (84% against 87.9%).
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Table 4.2: Results for gender, age and user-touch experience estimation.
Datasets Gender Age User-touch experience

RHU Subject independent: 61%
Random: 76.30%

Subject independent: 68%
Random: 74.71%

-

KDAp Subject independent: 86%
Random: 88%

- Subject independent: 79%
Random: 81%

TDAS Subject independent: 62%
Random: 92%

Subject independent: 30%
Random: 84%

-

4.4 conclusions

TD refers to an individual’s regular patterns or rhythms while typ-
ing on a touchscreen device. These behavioral patterns provide
enough information to serve as a powerful biometric identifier.
Compared to other biometric modalities, touch biometrics is a
cost-effective, user-friendly, and continuous user authentication
mechanism. TD as a soft biometric for demographic classification
represents a current research topic that has not yet been fully
explored. As a result, we investigated how ML classification al-
gorithms can handle touch-interaction behavior data to classify
users based on age, gender, and experience level of smartphone
usage. The results obtained aim to show how lightweight continu-
ous verification can be achieved by the analysis of soft biometrics
and improve the identification mechanism through additional
features such as soft biometric traits. Our study also highlights
a typical bias affecting the experimentation of approaches for
biometric behavioral analysis.

Nowadays, touch biometrics has unrivaled usability and huge
potential for cybersecurity applications. New feature extraction
and classification algorithms continue to be in high demand. On
the assumption that each mobile device is used by a single user,
behavioral profiling approaches will be explored. In particular,
a user’s identity can be verified through their applications’ us-
age in a continuous and transparent manner by monitoring a
subject’s calling or location activities and using historical call-
ing information. Undoubtedly, mobile authentication solutions
based on behavioral traits do not attain the same performance as
their counterparts based on physiological features, such as face
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or fingerprint. The restricted amount of data collected during
individual acquisition sessions per user is also a crucial factor to
consider. It is essential, in the context of mobile behavioral bio-
metrics, to separate the concepts of user and device. The amount
of biometric data included throughout the device’s entire op-
erating time is likely to be less than during capture sessions
designed to extract the more distinctive features of mobile HCI.
So, it would be interesting to find out how much of the success
of identification can be attributed to the models’ ability to extract
and recognize features of the device instead of the user. Based
on the above assumptions, to compensate for the inability to ob-
tain a large database, future work will involve the generation of
synthetic data, a technique that has proven successful in similar
fields. We will further analyze the fusion of typing behavior pat-
terns with other biometric modalities to provide a comprehensive
and secure authentication solution.





5
C O N C L U S I O N S A N D F U T U R E W O R K S

In this Thesis, beginning with the wide concept of behavioral
biometrics and with a particular focus on the recent AI tech-
nologies in biometric pattern recognition, we focused on their
potential by assessing the contexts and environments in which
their usage becomes essential. We analyzed both novel techniques
to successfully recognize and estimate a behavioral trait (as in
the case of head pose) as well as data that presented both new
opportunities and challenges (as in the case of facial expressions
in the visual domain). Finally, we demonstrated that through
user typing behavior on mobile devices, subjects’ demographic
classification can be processed feasibly and reliably. Based on our
experience gained in this context, we can assert that behavioral
biometric features are not intended as an alternative to classical
biometrics but rather as an additional source of information. The
distinction between behavioral biometrics and physical features
is quite labile. The same behavioral characteristic can be used
in a variety of ways to obtain different types of information.
Behavioral biometrics have an exceptionally broad variety of ap-
plications, which is another significant finding of our analysis. In
contrast to the recognition task, which can be applied to multiple
situations without departing from the main objective, that is,
the identification of the subject, behavioral biometrics is more
flexible and can be applied in contexts completely unrelated to
user identification. It is possible to analyze these considerations
from a purely technical point of view in relation to the specific
methodologies that we have presented.

In the field of human activity detection, automated pose esti-
mation is becoming an intriguing topic of research. Head pose
represents an important visual cue in numerous areas, such as
human intent, motivation, and attention, among others. We pro-
posed various implementations of the fractal encoding approach
that investigate training-free strategies prior to combining the
fractal parameters obtained with well-known regression models.
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Partitioned Iterated Function Systems are used to represent the
self-similarity properties of two images exhibiting similar head
rotation, which is a substantial shift from prior research that
employs CNN approaches. The training time, which depends on
the size of the training set and the number of epochs, is an inter-
esting parameter that should not be underestimated, even though
CNN-based models are currently the best-performing. The time
achieved by the proposed approaches highlights their suitabil-
ity for real-time operation, even if compared with competing
methods that use significantly more performant architectures.
Nowadays, particularly in the automotive context, HPE is one of
the most important factors for monitoring attention and analyz-
ing driver behavior. A precise estimation of the driver’s head
pose is crucial for analyzing driver attention and behavior moni-
toring during driving. To achieve this objective, the placement
and selection of the most suitable sensing device are critical.
Specifically, the final system should be able to function in various
illumination conditions, which can substantially alter the image
quality and visual performance. For this reason, it will be of great
interest to apply this method with different sensors, like thermal,
infrared, or, even more interestingly, depth images that actually
surpass traditional RGB sensors.

Facial expression analysis is a valuable source for assessing
human attitude and behavior. In recent years, building a sys-
tem capable of automatically identifying facial expressions from
images and videos has been the subject of intensive research.
Early studies of emotional expression were primarily concerned
with determining whether or not perceivers could infer emotions
from static depictions of prototypical facial muscle configurations
thought to communicate anger, contempt, fear, sadness, and sur-
prise. Currently, DL algorithms, particularly CNN architectures,
are achieving promising results. Therefore, we developed a CNN-
based approach to categorize the principal facial expressions
(according to the categorical model). To enhance the performance
of the proposed system, some novel data augmentation tech-
niques have been applied to enrich the learning parameters of the
proposed CNN model. Furthermore, for fine-tuning the trained
CNN model, a trade-off between data augmentation and deep
learning features was performed. The results achieved are highly
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competitive with state-of-the-art methods. We conducted a fur-
ther study to analyze the correlations between facial expressions,
head pose errors, and facial keypoint distances, obtaining a set of
configurations that can help HPE method authors better predict
and handle HPE errors related to facial expressions in an uncon-
trolled environment. Even though significant progress has been
made as a result of the widespread use of DL-based algorithms,
the majority of existing techniques that employ 2D features are
incapable of resolving the challenging issues of illumination and
pose variations, which could be naturally overcome by 3D tech-
niques. Further, in the past two decades, the research community
has demonstrated that facial expressions are "multimodal, dynamic
patterns of behavior" involving facial action, vocalization, body
movement, gaze, gesture, head motions, touch, etc. In light of
this, in addition to exploring multiple data sources, future re-
search should focus its attention on developing novel multimodal
biometric applications and showing which fusion approaches are
more suitable for emotion recognition.

Finally, with the rapid and widespread adoption of new tech-
nologies and the incorporation of more advanced sensors into
mobile devices, biometric recognition can be performed in real-
world applications by leveraging each user’s behavioral typing
patterns, based on such interactions as typing rhythm, finger-
swiping speed, and device-holding posture. The advantages of
using TD as a biometric trait are numerous, one of which is
certainly its non-intrusiveness. Over recent years, the research
efforts on the identification of so-called soft biometrics, such as
age, gender, ethnicity, degree of confidence with a certain hard-
ware, and so on, have paid off with interesting results and the
definition of potential application fields. TD as a soft biometric
for demographic classification represents an emerging research
area that has not yet been fully explored. Despite this, our pre-
liminary study shows how lightweight continuous verification
can be achieved by the analysis of soft traits, improving the
identification mechanism. We also highlight a typical bias affect-
ing the experimentation of approaches for biometric behavioral
analysis, showing how, through the two different strategies of
splitting data into training and test sets, it is possible to con-
firm the expected result. Several aspects should unquestionably
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be investigated further, perhaps by utilizing new data acquired
from the use of numerous built-in sensors on mobile devices or
by fusing the typing behavioral patterns with other biometric
modalities to provide a comprehensive and secure authentication
solution. Therefore, future research will incorporate a variety of
typing behavior data and the exploration of fresh data fusion
techniques.
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