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1 Introduction

The transition metal oxides (TMO) are emerging as the natural playground where

the intriguing effects induced by electron correlations can be addressed. Since the s

electron of the transition metals are transferred to the oxygen ions, the remaining

electrons near the Fermi level have strongly correlated d character and are responsi-

ble for the physical properties of TMO. These electron correlations, together with

dimensionality and relativistic effect, play a crucial role in the formation and the

competition of different electronic, magnetic and structural phases, giving rise to

a rich phase diagram: Mott insulators, charge, spin and orbital orderings, metal-

insulator transitions, multiferroics and superconductivity [1, 2]. The investigation

of TMO correlated electron physics usually refers to 3d TMO, mainly because of

high-temperature superconductivity in the cuprates and in the iron-pnictides, and

colossal magneto-resistance in manganites, but also because the highly extended

4d-shells would a priori suggest a weaker ratio between the intra-atomic Coulomb

interaction and the electron bandwidth. Nevertheless, the extension of the 4d-shells

also points towards a strong coupling between the 4d-orbitals and the neighbour-

ing oxygen orbitals, implying that these TMO have the tendency to form distorted

structure with respect to the ideal one. As a consequence, the change in the M-O-

M bond angle often leads to a narrowing of the d-bandwidth, bringing the system

on the verge of a metal-insulator transition or into an insulating state. Hence, 4d

materials share common features with 3d systems having additionally a significant

sensitivity of the electronic states to the lattice structure, effective dimensionality

and, most importantly, to relativistic effects due to stronger spin-orbit coupling.

Recently, the increased capability to construct oxide heterostructures [3], and techni-

cal achievements in the nanometre-scale synthesis improved the possibility to explore

the above mentioned properties but also new phenomena that may emerge at inter-

face, opening too the possibility to make new devices [4]. Furthermore, the different

symmetry, the reconstruction of the charge, spin and orbital states at interfaces

produce new phenomena not always found in the bulk. Moreover, also the two-

dimensionality of this kind of systems enhances the effects of electron correlations

by reducing the kinetic energy electrons. As an example, it is known that at the

interfaces new magnetism and new gauge structures can appear. A natural starting

point to study the heterostructures is to determine their configuration at interfaces.

For instance, a charge transfer is observed, if the planes parallel to the interface

have different charge. In this case, the charge transfers to equilibrate the electron
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chemical interface potential, leading to interface screening in metals. The region

over which the local carrier density varies can traverse entire phase diagrams, span-

ning metallic, magnetic and superconducting phases. The rearrangement of charge

at oxide interfaces is driven primarily by electrostatic interactions, if is present. Be-

cause of the strong correlation between charge, spin and orbital degrees of freedom,

modulations of the charge density in TMO can lead to spin or orbital polarization.

Another source of orbital and spin polarization in oxide heterostructures is the epi-

taxial strain resulting from the mismatch of the two lattice parameters of the two

TMO constituents. In analogy to the size mismatch between anions and cations in

bulk TMO, this strain is accommodated by a combination of uniform deformations

and staggered rotations of the metal-oxide octahedra in perovskite compound, which

influence the orbital occupation through the crystal field. The lattice deformations

resulting from epitaxial strain are present in all the heterostructures. However,

unlike the charge-driven reconstructions discussed above, which can be effectively

screened at least in metallic or highly polarizable dielectric TMO, the strain-driven

spin and orbital polarization has a spatial range of tens of nanometres.

The main purpose of this thesis is a study of the mechanisms and the fundamental

interactions that control the formation and the competition of different magnetic and

structural phase driven by the electronic correlations, dimensionality and relativistic

effects in Ru-, Cr- and Mn- based perovskite systems, also considering what happens

in hybrid or eutectic structures.

Ruthenium oxide based perovskite materials are quite unique in the realm of oxides

because their properties change drastically as a function of the number of RuO2

layers and the way spin-orbital and lattice degrees of freedom get coupled to each

other. The number n of RuO2 layers in the unit cell of the Ruddlesden-Popper family

An+1RunO3n+1 [A=Sr,Ca with n=1,2..., ] of perovskite materials, indeed, represents

a critical parameter for obtaining distinct collective phenomena as spin triplet chi-

ral superconductivity, anisotropic metamagnetism, coexisting ferro/metamagnetism,

orbital selective Mottness, as well as complex spin-orbital correlated states exhibit-

ing colossal magnetoresistance (CMR) behaviour. The role played by the purity of

the single crystal ruthenate samples is crucial for determining their physical proper-

ties. In typical oxide perovskite materials, the transition metal ions are surrounded

by oxygen ions forming octahedra. In the ruthenates the deformations and relative

orientations of these corner-shared octahedra is depending on the number of RuO2

layers and in turn determines the crystalline-field splitting, the band structure, and

hence the magnetic and transport properties. As a result, the Srn+1RunO3n+1 are
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metallic and tend to be ferromagnetic or metamagnetic with the exception of the

n=1 member that is a spin triplet superconductor [5] , whereas the isoelectronic

Can+1RunO3n+1, with Ca replacing the larger Sr, tends to be at the verge of a

metal-insulator transition and prone to antiferromagnetism and orbital ordering.

Furthermore, the Curie temperature TC in the Srn+1RunO3n+1 increases with n,

whereas the Néel temperature, TN , in the Can+1RunO3n+1 decreases with increasing

n. In all these system we have an intricate behaviour emerging from multi-orbitals

layered correlated systems. The possibility of synthesizing eutectic systems, as nat-

urally occurring mesoscopic and nanoscopic interfaces, has opened novel routes for

functionalities based on the potential tuning of quantum collective properties. In-

deed, the modification of the pairing wave function in the proximity of normal or

magnetic systems as well as that of the quantum configurations and the collective

phenomena that might emerge at the interface between the embedded phases may

lead to exotic quantum phases. The main drive behind eutectic growth is given by

the possibility of developing composite materials with distinct properties from those

of the pure constituents. In this case, the presence of one phase embedding in an

other phase is not considered a random impurity but a correlated impurity, that per-

mits the emerging of eventual new properties of the system. In all the element of the

Ruddlesden-Popper series, the Ruthenium is in the form Ru4+ with four electrons in

the 4d shell. This is the same configuration of the the manganese in LaMnO3 and the

chromium in KCrF3, but the stronger electronic correlations of the 3d shell giving

rise to high spin configuration at low temperature. In perovskite managanite oxides,

the particular physical properties of the CMR materials are related to the fact that

their parent compound LaMnO3 contain Mn3+ ions. On the one hand, the presence

of these Jahn-Teller active ions leads to a strong coupling between the electrons and

the lattice, giving rise to polaron formation which is widely perceived to be essential

for the CMR effect. On the other hand, when doped, the d4 high spin state leads, via

the double exchange mechanism, to a ferromagnetic metallic state with a large mag-

netic moment, making the system easily susceptible to externally applied magnetic

fields. The presence of strong electron correlations and an orbital degree of freedom,

to which the Jahn-Teller effect is directly related, adds to the complexity and gives

rise to an extraordinarily rich phase diagram, displaying a wealth of spin, charge,

orbital, and magnetically ordered phases. Formally, high spin Cr2+ is electronically

equivalent to Mn3+ , however, due to its low ionization potential divalent Cr2+ is

rarely found in solid state systems. KCrF3 is a rare and intriguing example, reveal-

ing strong structural, electronic, and magnetic similarities with LaMnO3 including

the presence of Jahn- Teller distortions, orbital ordering and orbital melting at high

temperature. It was estimated that electronic correlation are bigger in KCrF3 re-
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spect to LaMnO3. This observation is an indication that the monoclinic-tetragonal

transition can be driven from electronic correlation, differently from LaMnO3 where

Jahn-Teller effect is fundamental. Also, the LaMnO3 doped with gallium presents

a reduced Jahn-Teller effect. The interplay of spin-orbital correlations, structural

distortions and the correlation between the gallium impurity make emerging a new

ferromagnetic ground state at intermediate concentration.

Take in account all the degrees of freedom of these compound it is a very difficult

task. Nevertheless, we have found that Density Functional Theory (DFT ) [6] and

many body theory [7] may be used in a clever way to capture the relevant physics

of TMO. We recall that the DFT allows for an evaluation from first principles of

the proprieties of these systems, while the model Hamiltonian approach permits to

stress the crucial role of the electronic correlation. From a methodological point of

view, we have applied ab-initio approaches using plane wave codes [8, 9, 10] for the

bulk systems and heterostructures to analyse the electronic structure and also the

magnetic and orbital order. Although one of the simplest approach is the generalized

gradient approximation (GGA), the large part of this thesis is developed within

techniques going beyond GGA. Furthermore, we have used many-body techniques

(based on multi-orbitals Hamiltonian) to describe itinerant electrons on the verge of

magnetic or superconducting instabilities both for bulk and inhomogenous systems.

In the attempt to describe the low-energy physics in a way that combine the ab-

initio with many-body approaches, we have used the maximally-localised Wannier

functions the extract the effective tight-binding Hamiltonian.

The dissertation is arranged as follows. In Chapter 2-5 we study the phenomena at

interface Sr2RuO4-Sr3Ru2O7, and the results obtained are compared with the bulk

case. In Chapter 6-8 we study the interplay between the spin-orbital correlations and

the structural distortions in bulk perovskite systems. Each chapter is organized as

follows: an abstract, an introduction, the results, the discussion and the conclusions.

In particular, in Chapter 2, the mean field theory of itinerant uniform ferro/ metam-

agnetism and its consequences are introduced. We present two analytically solvable

models: the M6 Landau theory and the full analytical solution of one-dimensional

tight binding density of state. We compute the analytical thermodynamic functional,

the phase diagram, the quantum critical endpoint and the critical magnetic field.

Necessary and sufficient conditions to have itinerant metamagnetism are examined.

In Chapter 3, we want to analyse the interface Sr2RuO4-Sr3Ru2O7. We study the
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modification of the electronic structure induced by nanometric inclusions of Sr2RuO4

embedded as c-axis stacking fault in Sr3Ru2O7 and viceversa. The change of the

density of states near the Fermi level is investigated as a function of the electron

density, the strength of the charge transfer at the interfaces between the inclusion

and the host, and of the distance from the inclusion. Then, we examine how the

tendency towards long range orders is affected by the presence of the nanometric

inclusions. This is done by looking at the basic criteria for broken symmetry states

such as superconductivity, ferromagnetism and metamagnetism. We show that,

according to the strength of the charge transfer coupling, the ordered phases may

be enhanced or hindered, as a consequence of the interplay between the host and the

inclusion, and we clarify the role played by the orbital degree of freedom showing

an orbital selective behaviour within the t2g bands. A discussion on the connections

between the theoretical outcome and the experimental observations is also presented.

Chapter 4 has the scope to study the effect of electronic correlation at interface

Sr2RuO4-Sr3Ru2O7. We study in detail the role of the electronic correlation in

systems based on nanometric inclusions of Sr2RuO4 embedded as c-axis stacking

fault in Sr3Ru2O7 and viceversa. The metamagnetic properties in mean field theory

approach using the realistic density of state are analyzed.

In Chapter 5, the main topic is the analysis of the electronic reconstruction at the

interface Sr2RuO4-Sr3Ru2O7. We study the fermiology of Sr2RuO4 and Sr3Ru2O7

from first principles: comparison, main features and calculation of effective hopping

Ru-Ru are performed. Effect of the octahedral rotation and dimensionality are

analyzed studying ab-initio the interface Sr2RuO4-Sr3Ru2O7. We show that the

rotations strongly reduce the main hopping parameter of the dxy band, making near

the Van Hove singularity to the Fermi level.

In Chapter 6, we study the tetragonal-monoclinic transition in the compoundKCrF3.

We present the electronic structure and the volume relaxation study for the KCrF3

in the two different crystalline phases. Following the usual definition of the eg orbital

| θ >= cos θ
2
|3z2−1⟩+sin θ

2
|x2−y2⟩, the calculation of the orbital gives θ = 110.5◦ for

the tetragonal structure, that is similar to LaMnO3. For the monoclinic phase, we

find θ = 120.9◦ and 102.2◦ for the two types of octahedron. We discuss similarities

with KCuF3 and LaMnO3 in the orbital order.

In Chapter 7, we deepen the study of KCrF3 studying the low-energy physics and

the non-collinear properties of its antiferromagnetic ground state. We present and
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compare the hopping parameters for the cubic, tetragonal and monoclinic structures

of KCrF3 using the eg basis and the Maximally localised Wannier functions. More-

over, we analyse the strength of electronic correlation using the Cococcioni method

based on linear response approach. Although, the atomic number of chromium is

relatively small, it is observed experimentally that the spin-orbit effect can play a

non trivial role at low temperature. We go beyond the spin collinear approximation,

the spin-orbit coupling and the weak ferromagnetism are also examined.

In Chapter 8, we study from first principles the magnetic, electronic, orbital and

structural properties of the LaMnO3 doped with gallium atoms. The gallium atoms

reduce the Jahn-Teller effect, and accordingly reduce the charge gap. Surprisingly,

the system does not go towards a metallic phase. The doping tends to reduce the

orbital order by weakening the antiferromagnetic phase and by favoring an unusual

insulating ferromagnetic phase due to the effect of the correlated disorder.

The final chapter contains a general discussion on the results obtained and some

comments on prospective and open questions.
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2 Metamagnetism of itinerant electrons: theory and effec-

tive models

The mean field theory of itinerant uniform ferro/metamagnetism and its conse-

quences are introduced. We present two analytically solvable models: the M6 Landau

theory and the full analytical solution of one-dimensional tight binding density of

state. We compute the analytical thermodynamic functional, the phase diagram, the

quantum critical endpoint and the critical magnetic field. Necessary and sufficient

conditions to have itinerant metamagnetism are examined.

2.1 Introduction

Most of the non-magnetic materials are Pauli paramagnets and their magnetization

presents a linear behaviour in applied magnetic field. Nevertheless non linear effects

occur. This property is observed when the system is near to two different possible

configurations for its ground state. The transition that happens when there is a

superlinear behaviour (or a jump at T = 0) in the magnetization is called metam-

agnetic transition. The magnetic field induces a crossover in the system from the

ground state to another state close in energy, the abrupt change of ground state

strongly modifies magnetic ordering, specific heat, critical temperature, resistivity,

etc... As the actual magnetic fields reproducible in laboratory are relatively small,

the two competing phases must be very close in energy to give rise to this kind of

transition.

The main mechanisms that generate the metamagnetism are three:

1. small crystal field splitting

2. electronic correlations

3. band structure effects

The first case occurs when the magnetic field is comparable to the crystal field

splitting, and therefore it can produce a drastic effect on the level structure, including

the possibility to field-induced transition due to level crossing. The metamagnetic
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transition appears if the crystal field separates two electron configurations, with

different spin quantum numbers, that respond differently under magnetic field. This

mechanism can generate multiple jumps of the order of 1 µB in the magnetization

as experimentally found in URu2Si2 [12].

The second mechanism is the most studied and most present in nature. This phe-

nomena is very interesting because can drive the system towards a metal-insulator

transition or insulator-metal transition. Let us consider strongly correlated antifer-

romagnetic insulators; it is known that electronic correlations create metamagnetic

transition [13, 14], but, the mean field theory can not describe metamagnetism in

antiferromagnetic insulator [15] and we need to overcome it. Therefore the meta-

magnetic properties of antiferromagnetic insulators have to be derive from the full

physics of the Hubbard model. Using dynamical mean field theory, it is possible

to describe qualitatively several scenario: metamagnetic transition from antiferro-

magnetic insulator to paramagnetic insulator, insulator to metal transition, metallic

antiferromagnetic to paramagnetic metal [15]. The uniform magnetic field favours

competing phase compared to the antiferromagnetism. In the antiferromagnetic

case, there is a competition between the antiferromagnetic insulator ground state

and the paramagnetic (or ferromagnetic) phase, that at low temperatures can co-

exist in a mixed phase [13]. The jump in the magnetization destroys the staggered

magnetization, i.e. the order parameter of the antiferromagnetic phase [15], creating

a completely new phase for the system. Metamagnetic effects are found in the Hub-

bard model without band structure effects [16]. Now, let us consider a correlated

metallic state close to the antiferromagnetic insulator instabilities described by the

Hubbard model. Then the switching on of the magnetic field has a similar effect as

increasing U . If the system is near the Brinkman-Rice transition the magnetic field

can induce localization. At half filling, the system jumps from a metallic state with a

finite number of double occupancy to an insulating state without double occupancy

[14, 17].

Having in mind to study the realistic system Sr3Ru2O7, we will analyse in detail the

metamagnetism caused by band structure effects in the weak coupling limit. The

Coulomb repulsion is also important, but, differently from the other mechanisms is

mandatory to take in account the shape of the density of state. In some compounds

metamagnetic transitions, smeared over a wide range of fields and occurring with

hysteresis, are observed. This theory can explain also the hysteresis in metamagnetic

transition [18]. Our results for the magnetization as a function of field, temperature

and the band filling are in qualitative agreement with observed properties of the two-
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and three-layer ruthenate compounds [19, 20], and suggest that the general magnetic

phase diagram of n-layer ruthenates might be understood in terms of band structure

properties. Respect to the previous mechanism the transition is less drastic, because

the system goes from the paramagnetic ground state to the ferromagnetic phase.

The chapter is organized as follows. In paragraph 2 we introduce the mean field

theory of itinerant uniform ferro/metamagnetism and its conseguences as the Stoner

criterion. In paragraph 3 the theory is applied to two cases: the phase diagram, the

quantum critical endpoint (QCEP ) and the critical magnetic field are also shown.

Paragraph 4 is devoted to general considerations about this approach.

2.2 Mean-field theory of itinerant uniform ferro/metamagnetism

Here, we will examine in detail all the aspects of mean field theory of itinerant

uniform ferro/metamagnetism and its consequences as the Stoner criterion, QCEP

and the maximum in the susceptibility.

The thermodynamic potential which is extremely useful for the study of quantum

system is the grand potential Ω. It is a thermodynamic potential energy for process

carried out in open system where particle number and magnetic field can vary but

the temperature T , the magnetization M and the chemical potential µ are fixed.

T , M , µ are the variable of the this thermodynamic potential, and calculations are

easy to perform in this ensemble. If we call U the internal energy, then the grand

potential is

Ω(T, µ,M) = U − TS − µN (1)

Now, we are interested in fixing particle number and magnetic field because this

is the experimental situation. So, we will change the thermodynamic potential by

Legendre transformation:

G(T,N, h) = Ω + µN − hM (2)

where h = g0µBH is the reduced field and H is the magnetic field. We consider a

single-band model of electrons interacting via on-site Coulomb repulsion U in mean
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field approximation. We consider an Hubbard term ĤU in the Hamiltonian:

ĤU = Un̂↑n̂↓ (3)

ĤMF
U = U < n̂↑ > n̂↓ + Un̂↑ < n̂↓ > −U < n̂↑ >< n̂↓ > (4)

< ĤMF
U > = U < n̂↑ >< n̂↓ > (5)

We add the Hubbard term to the thermodynamic potential, consider the two spin

channels and obtain:

G(T, n↑, n↓, h) =
∑
σ=↑,↓

(Ω(µσ, T ) + µσnσ) + Un↑n↓ − hM (6)

The thermodynamically stable solution minimizes the Gibbs free energy in equation

(6). The only information about the band structure which enters in the mean field

theory is the density of state (DOS) for spin as a function of energy ρ(ε). Given

the DOS, one obtains the grand canonical functional:

Ω(µσ, T ) = −kBT
∫

dερ(ε)ln(1 + e−β(ε−µσ)) (7)

where kB is the Boltzmann constant and β = 1
kBT

. The chemical potential is given

implicitly by

nσ(µσ) = −∂µσΩ0(µσ, T ) =

∫
dερ(ε)f(ε− µσ, T ) (8)

where f(ε, T ) is the Fermi function. Once the Gibbs free energy is determined, we

obtain the thermodynamic equation of state for magnetic systems. We can develop

the Taylor series for G(M) about the point M = 0:

G(M,T, n) =
∞∑
k=0

G(k)(M = 0, T, n)

k!
Mk (9)

To calculate the derivatives G(n)(0), we need to make explicit the dependence of M

from the variables n↑ and n↓ by{
M =

n↑−n↓
2

n =
n↑+n↓

2

(10)

We note that the maximum of the magnetization Mmax is n if n < 1
2
and 1 − n if

n > 1
2
for single band model.

Another quantity that is needs to calculate is ∂µσ

∂M
; we can determine this quantity

by using two ways:{
∂nσ

∂M
= ∂(n+σM)

∂M
= σ

∂nσ

∂M
=

∂
∫
dερ(ε)f(ε−µσ ,T )

∂M
=

∫
dερ(ε)∂f(ε−µσ ,T )

∂(ε−µσ)
∂(ε−µσ)

∂µσ

∂µσ

∂M
= A0(µσ, T )

∂µσ

∂M
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where

An(µ, T ) =

∫
dερ(n+1)(ε)f(ε− µ, T ) (11)

We note that

lim
T−→0

An(µ, T ) = ρ(n)(µ) = ρ(n)(εF ) (12)

where ρ(n)(µ) denotes the n-th derivative of the DOS at the Fermi level. Putting

together the two expressions for ∂nσ

∂M
we have:

∂µσ

∂M
=

σ

A0(µσ, T )
(13)

∂An(µσ, T )

∂M
=

σAn+1(µσ, T )

A0(µσ, T )
(14)

Now, we can take the derivative of the equation (6) and using (7), (8) and (10) we

get:

G(1)(M,T ) =
∑
σ=↑,↓

σµσ − 2UM − h (15)

and we can make high order derivative using (11), (13) and (14) to get at M = 0:

G(1)(M = 0, T ) = −h
G(2)(M = 0, T ) =

∑
σ=↑,↓(

1
A0(εF ,T )

)− 2U = 2( 1
A0(εF ,T )

− U)

G(3)(M = 0, T ) = 0

G(4)(M = 0, T ) =
∑

σ=↑,↓(
3A2

1−A0A2

A5
0

) = 2(
3A2

1−A0A2

A5
0

)

........

We stress that G(M = 0) is an arbitrary constant that we set to zero, and we can

obtain the entire functional G(M,T ) from equation (9).

G(M,T, εF ) =
1

A0(εF , T )
M2 +


(

A1

A0

)2

−
(

A2

3A0

)
A3

0

 M4

4
+ ....− UM2 − hM (16)

All the derivatives of the DOS give contribution, in different way, to make the

thermodynamic functional G(M). Increasing U from 0, magnetization sets in if for

some M, G(M,T ) can have an absolute minimum for M different from zero. This

paramagnetic-ferromagnetic transition may be either first-order or second-order, de-

pending on the band structure. We can observe that magnetic field and Coulomb

repulsion have a similar effect on the thermodynamic potential, so, also the mag-

netic field can induce first-order transition. The two differences between h and U

are the energy range and power of the coefficient. Indeed, U is around 1 eV and

h can induces effects around 10−4 eV. The linear power of h in the polynomial is

responsible for the linear character of M(h), when h goes to zero.
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2.2.1 The Stoner criterion and its generalization

Let us set the external field h = 0. The Gibbs free energy for M −→ 0

G(M,T, εF ) ≈
(

1

A0(εF , T )
− U

)
M2 (17)

consists of two terms: spin polarization costs band energy which goes as M2 and it

gains interaction energy which is also proportional to M2. When U is smaller than

the critical value

UStoner =
1

A0(εF , T )
(18)

the energy is minimized by M = 0, while for U > UStoner, the energy is lowered

making M finite. The paramagnetic state becomes unstable against the onset of

ferromagnetic ordering. Equation (18) is the well known Stoner criterion [21]. Using

the Stoner criterion, we conclude that it is favourable for the appearance of ferro-

magnetism if εF is sitting in a sharp peak of the density of state. If this criterion is

verified, a second order transition occurs: the magnetization changes continuously

if increases U or decreases T . Now, we can find the critical temperature TC for the

second-order transition. Using the finite temperature criterion,

UStoner =
1

A0(εF , TC)
(19)

we find that TC is overestimated by a factor of ∼ 5. The essential reason for the

discrepancy is that the mean field theory grossly underestimates the entropy of

the paramagnetic metal: we consider only the entropy coming from electron-hole

excitation, but neglect the fact that disordered moments exist also above TC giving

rise to a high spin entropy.

However, the second order transition occurs if the system is not already ferromag-

netic when the Stoner criterion is verified. Sometimes, it is possible to have a

first-order transition before the Stoner transition. A first order transition means

that the non-magnetic state becomes unstable against a finite-M state. When the

transition occurs in presence of magnetic field, the magnetization presents a jump

for a critical magnetic field Hc and the transition is called metamagnetic. In this

case, the onset of ferromagnetism is governed by the finite-magnetization Stoner

criterion [7] for a first order onset:

2UM

µ↑ − µ↓
= 1 (20)

The finite magnetization criterion holds for all M once the system is polarized, ir-

respective of the order of the onset. Just how large M will be, can not be decided
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unless we return to the full energy expression (16). This finite-magnetization cri-

terion is less powerful than the Stoner criterion, because we need to calculate µ↑

and µ↓. The presence of a Van Hove singularity (V HS) , or at least a pronounced

maximum in the DOS, in the first order transition is necessary. When µσ nearer the

V HS, there is no stable solution for the system and µσ goes from one side to another

side of the V HS to create the jump in the magnetization. The critical magnetic

field strongly depends from the distance of V HS from Fermi energy. If the Fermi

energy is far from V HS, the system can exhibit metamagnetism just at huge critical

magnetic field because the chemical potential needs to arrive to V HS to create the

jump in the magnetization. If we introduce the mean value of the DOS ρ:

2M = n↑ − n↓ =

∫ µ↓

µ↑

ρ(ε)dε = ρ(µ↑ − µ↓) (21)

we can recover the original form of the Stoner criterion

Uρ = 1 (22)

If there is a V HS near the Fermi level, the mean value can be higher than the DOS

evaluated at Fermi energy. In this case, the first-order criterion is verified for U

smaller than UStoner. The first-order transition occurs before the Stoner transition.

It is possible to find other generalizations of the Stoner criterion for non uniform

magnetization and spin waves [7]. When the density of state decreases, then UStoner

increases and the system goes far from ferromagnetism. On the other hand, when

the density of state decreases, the modulus of fourth order coefficient increases.

We will demonstrate that, if the conditions for metamagnetism are verified, the

metamagnetic properties of the systems increase when the modulus of the fourth

order coefficient increases. For this reason, a high value of density of state favours

ferromagnetism in comparison to metamagnetism.

In the case of zero temperature, the expression of the functional becomes easy to

understand. The Ω functional is given by

Ω(µσ, T = 0) =

∫ µσ

−∞
(ε− µσ)ρ(ε)dε (23)

We can calculate explicitly all the coefficients of the functional using equation (12).
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Here, we report the coefficients of the low order terms

G(2)(M = 0, T = 0) = 2

(
1

ρ(εF )
− U

)
(24)

G(4)(M = 0, T = 0) = 2
3ρ

′
(εF )

2 − ρ
′′
(εF )ρ(εF )

ρ(εF )5
(25)

G(6)(M = 0, T = 0) = 2
105ρ

′4 − 105ρρ
′2
ρ

′′
+ 10ρ2ρ

′′2
+ 15ρ2ρ

′
ρ

′′′ − ρ3ρ′′′′

ρ(εF )9
(26)

where the factor 2 is due to spin degeneracy. If all the coefficients of the functional

G(M,T = 0) are known, the complete function DOS can be evaluated by Taylor

series expansion. We have the Stoner transition when G(2)(M = 0, T = 0)=0.

However, it is very difficult to calculate numerically high derivatives of the DOS, in

particular, the ab-initio evaluation of G(6)(M = 0, T = 0) and higher terms.

2.2.2 QCEP and effect of the temperature on susceptibility

First-order transitions do not normally show critical fluctuations as the material

moves discontinuously from one phase into another one. However, if the first order

phase transition does not involve a change of symmetry, then the phase diagram can

contain a critical endpoint where the first-order phase transition terminates. Such

an endpoint has a divergent susceptibility. The transition between the liquid and

gas phases is an example of a first-order transition without a change of symmetry

and the critical endpoint is characterized by critical fluctuations known as critical

opalescence. A quantum critical endpoint arises when a finite temperature critical

point is tuned to zero temperature. One of the best studied examples occurs in the

layered ruthenate metal, Sr3Ru2O7 in a magnetic field [22]. This material shows

metamagnetism with a low-temperature first-order metamagnetic transition where

the magnetization jumps when a magnetic field is applied within the directions of

the layers. The first-order jump terminates in a critical endpoint at T ≈ 1K. By

switching the direction of the magnetic field so that it points almost perpendicular

to the layers, the critical endpoint is tuned to zero temperature at a field of about 8

teslas. The resulting quantum critical fluctuations dominate the physical properties

of this material at nonzero temperatures and away from the critical magnetic field.

Finally, the resistivity shows a non-Fermi liquid response.

The susceptibility in the Hubbard model at zero temperature in mean field approx-



15

imation is

χ =
(gµB)

2ρ(εF )

2

1

1− Uρ(εF )
(27)

where the first factor is the usual Pauli susceptibility. The susceptibility is enhanced

by the electron-electron interaction, and this factor is called exchange enhancement

factor. If U is somewhat smaller than UStoner, then the exchange enhancement factor

is large and we expect to see a nearly ferromagnetic metal with a large susceptibility.

It is thought that the anomalously large susceptibility of Palladium is basically of

such a nature. Now, if we consider the Sommerfeld expansion we obtain in two limit

cases [7]

χ

2µ2
B

≈ ρ(εF ) +
π2

12

(
ρ(εF )ρ

′′
(εF )− 2ρ

′
(εF )

2

ρ(ε)

)
(kBT )

2 for T −→ 0 (28)

χ

2µ2
B

≈ 1

4kBT
for T −→ +∞ (29)

If the condition

G(4)(M = 0, T = 0) ∝ 3ρ
′
(εF )

2 − ρ(εF )ρ
′′
(εF ) < 0 (30)

is verified, χ(T,M = 0) is not monotonous, but has a maximum as a function of

T as we can see from equations (28) and (29). Moreover, the entropy S = −∂F
∂T

at

low temperatures does not decrease monotonously with the magnetization, but has

a maximum at a finite M. An example of not monotonous susceptibility is presented

in Fig. 1.

Figure 1: Zero-field spin susceptibility as a function of temperature for three different

fillings, the top curve is for filling nearer the V HS from [23]. The same maximum appear

if U increases [7]. We can observe experimentally a similar maximum in the Sr3Ru2O7

susceptibility [24].
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2.3 Effective models

We will analyse two effective models at T = 0. The first is the oversimplified model

M6, the second is the complete theory for a particular case: the one-dimensional

density of state for tight binding. In both cases, we will see that the metamagnetic

phase is realized in a wide region in the phase diagram between the paramagnetic

and the ferromagnetic regions. We will see that the quantity G(4)(M = 0) is fun-

damental for the magnetic properties, but is not necessary and not sufficient to

produce metamagnetic transition, because other quantity like G(6)(M = 0) can give

rise the same properties. If the negative value G(4)(M = 0) decreases, then the

metamagnetic properties increase and the critical magnetic field will be lower.

2.3.1 The M6 theory

The M6 theory was introduced by Landau, who described multicritical behaviour

within his phenomenological theory of phase transition [25]. This simple model

shows how the G(4)(M = 0, T = 0) coefficient is essential to understand the mete-

magnetism for itinerant electrons. The magnetization M in the single band model

must be less than 1
2
by definition (10). Because M is small, we can consider an

approximation of the Taylor series cutting higher terms. We study a M6 theory

because is it the minimal model to have metamagnetism. Within the mean field

approximation, let us consider:

G(M) = AM2 −BM4 + CM6 − hM (31)

where A and C are respectively G(2)(M = 0, T = 0) and G(6)(M = 0, T = 0). In-

stead, we set B = −G(4)(M = 0, T = 0). For simplicity, we take C to be a positive

fixed constant; whereas A and B are variable parameters. The only case where we

can find metamagnetism is for A and B positive. In this M6 approximation, the

fourth order coefficient negative is condition necessary but not sufficient to have

metamagnetism [26]. In the complete case, this condition is not necessary because

other term like the 6-order coefficient or the 8-order coefficient can have the same

role. The simplified M6 model can reproduce just two minima: one paramagnetic

minimum and one ferromagnetic minimum. For this reason, it is possible to repro-

duce just one jump from a paramagnetic solution to a ferromagnetic solution. To

reproduce two metamagnetic jumps or a jump between two ferromagnetic solutions,

we need a M8 theory [27]. The M6 model does not contain important information,
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like the distance of V HS from Fermi energy, because we lost information about

the DOS in the Taylor series cutting. In this simplified model just the first four

derivatives are present, instead, in the complete model the functional contains all the

derivatives of the DOS and the distance from the V HS is an important parameter.

We will consider the case without magnetic field, and we will find when there is the

ferromagnetic solution. Because G(0) = 0, we have a ferromagnetic solution if there

are other values of magnetization so that G(M) = 0. We will find a magnetization

different from zero if the determinant of the equation (31) is greater then zero. So,

the ferromagnetic solution is stable if

B2 − 4AC > 0 =⇒ B > 2
√
AC (32)

When we switch on the magnetic field, it is possible to find the metamagnetic phase.

The limit case that separates the paramagnetic and metamagnetic cases is when,

in presence of magnetic field, the paramagnetic minimum and the ferromagnetic

minimum degenerate in the same magnetization M̄ . In this case, the functional

will assume the form G(M) = D(M)(M − M̄)4 where D(M) is a second order

polynomial. The analytic condition to find this separation line in the diagram phase

is

G′(M̄) = 0

G′′(M̄) = 0 (33)

G′′′(M̄) = 0

From these equations we obtain the separation line between the paramagnetic and

the ferromagnetic region in the phase diagram, the critical magnetic field at the

onset of the transition and the value of M̄ as function of A,B,C and h. The critical

magnetic field at the onset of the transition is nothing else that the magnetic field

at quantum critical end point hQCEP . The separation line is given by:

B =

√
5

3
AC

and hQCEP is given by:

hQCEP =
16

5

(
1

3

) 3
2

√
A3

B
∼= 0.616

√
A3

B
(34)

or make explicit the magnetic field H:

HQCEP =
16

10µB

(
1

3

) 3
2

√
A3

B
∼= 5.32× 104

Tesla

eV

√
A3

B
(35)
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Figure 2: Phase Diagram of the M6 theory with respect to A and B (arbitrary units). The

phase are FM: ferromagnetic, P: paramagnetic, MM1: metamagnetic region with critical

magnetic field under 104 Tesla, MM2: metamagnetic region with critical magnetic field

above 104 Tesla. The y-axis is the Stoner criterion equation.

TheHQCEP is not always physically accessible, the only possibility is that the system

is near the Stoner instability or we need a very high value for the coefficient B. The

limit for h −→ 0 is:

h =
√
2
4AC −B2

4AC

√
A3

B
(36)

The conclusion we have reached are summarized in the phase diagram in the AB

plane, in Fig. 2. The point A = B = 0 marks the termination of second-order

Stoner phase transition, and the ordinary critical point of a first order transition.

Landau called it a ”critical point of the second-order transition”, but now is adopted

the common designation ”tricritical point” suggested by Griffiths [28]. We need B

between
√

5
3

√
AC and 2

√
AC to have metamagnetism, or equivalently

5

3
AC < B2 < 4AC (37)

but the critical magnetic field can be very high. The orange region in the Fig.

2 has critical magnetic field less than 104 Tesla (for typical C value). We can

understand that the physical accessible region is much narrow in the phase diagram.

We can speculate that some materials that, today, we suppose to be paramagnetic

are metamagnetic with a very high critical metamagnetic field. A general issue

is that the metamagnetic region is between the paramagnetic and ferromagnetic

regions, but to be physically accessible we need low critical magnetic field; therefore

the system must be near the ferromagnetic instability. When we go close to the

ferromagnetic phase, then the critical magnetic field gets lower and lower. At the

ferromagnetic instabilities the critical magnetic field is zero. When ρ(εF ) increases,

the value of A and B decrease. The position of the system on the phase diagram

moves towards the origin and the system tends to lost the metamagnetism. We can
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Figure 3: Critical metamagnetic field function of coefficient A (left panel) and B (right

panel) setting C=30. In the left panel we fix B=12 (solid line), B=20 (dashed line) and

B=26 (dotted line). In the right panel we fix A=1 (solid line), A=5 (dashed line) and

A=9 (dotted line). The circle red dots are the quantum critical endpoints.

conclude that an elevated DOS at Fermi level reduces the probability of obtaining

metamagnetism. To have a high value of the B coefficient we need:

ρ(εF ) << 1 (38)

ρ
′
(εF ) ∼= 0 (39)

ρ
′′
(εF ) >> 1 (40)

We will see that, when all these conditions are verified, is it possible to have meta-

magnetism for any U > 0.

In Fig. 3, we show the critical magnetic field as a function of A and B. We can

observe that, near to ferromagnetic instability, a very low magnetic field can induce

first-order phase transition.

2.3.2 The one-dimensional density of state

We can observe that in the mean field theory, we just need the density of state

to calculate the phase diagram and the thermodynamic properties [18]. In this

paragraph, we will consider the density of state

ρ(ε) =
1

π
√

(2t)2 − (ε− ε0)2
(41)
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that comes from the one-dimensional tight binding dispersion relation

ε(k) = ε0 − 2t cos(k) (42)

and we will calculate analytically the functional G(M), the phase diagram and the

magnetization as a function of magnetic field and Coulomb repulsion. Tough the one-

dimensional Hubbard model is antiferromagnetic, we analyze just the competition

between the paramagnetic and the ferromagnetic phase. At half filling, the function

(41) presents a low value for ρ(εF ), ρ
′
(ε) = 0 and ρ

′′
(ε) >> 1. These conditions

makes G4 optimal to find the metamagnetism in the system. Considering that the

odd terms of G(M) Taylor expansion are zero, we can calculate all the terms of the

series using:

G(n+2)(M = 0, T = 0, εF ) =
1

ρ(ε)

d

dε

(
1

ρ(ε)

dG(n+2)(M = 0, T = 0, ε)

dε

) ∣∣∣∣
ε=εF

(43)

from which, we obtain:

G(2)(M = 0, T = 0, εF ) = 2
(
π
√

(2t)2 − (εF − ε0)2 − U
)
= 2 (2tπ sin(πn)− U)

G(4)(M = 0, T = 0, εF ) = 2
(
−π3

√
(2t)2 − (εF − ε0)2

)
G(6)(M = 0, T = 0, εF ) = 2

(
π5
√
(2t)2 − (εF − ε0)2

)
(44)

The quartic term is always negative, therefore it is very likely that we will find

metamagnetism for any filling. Now, we can use the equation (103) from Appendix

A to remove the explicit dependence from the Fermi energy:

G(2)(M = 0, T = 0, εF ) = 2 (2tπ sin(πn)− U) (45)

When the second order term G(2)(M = 0, T = 0, εF ) is zero, we have the Stoner

criterion. The Stoner solution appears for U > 2tπ sin(πn), but we will show that

it is not the ground state, because the ground state is the solution coming from

first-order transition. We introduce the filling variable instead of εF in the whole

functional and we have:

G(M,T = 0, n) = 2(2t sin(πn))

(
π

2!
M2 − π3

4!
M4 +

π5

6!
M5 + .....

)
− UM2 − hM

(46)

We are able to factorize the dependence from the filling, this simplification happens

accidentally because all the coefficients in equation (44) have the same dependence

from the filling. Introducing the cosine’s Taylor series, we obtain:

G(M,T = 0, n) =
4t sin(πn)

π
cos(πM)− UM2 − hM (47)
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An other way to obtain (47) with an easier way to understand the magnetic solution

is presented in appendix B.

Now, we will compute the separation line between the metamagnetic and the para-

magnetic solutions. We need to replace the equations (33) used in the previous

paragraph with: 
G′(M̄) = 0

G′′(M̄) = 0

M̄ = Mmax

From these equations we obtain the separation line, the critical magnetic field at

the quantum critical endpoint and the value of M̄ as function of n and U . Thus the

paramagnetic solution is the ground state for

U

t
<

{
π sin(2nπ) for n < 1

2

π sin(2(1− n)π) for n > 1
2

and the critical magnetic field at the quantum critical endpoint is

hQCEP

t
=

{
2 sin(πn)(2 sin(πn)− πn cos(πn)) for n < 1

2

2 sin(π(1− n))(2 sin(π(1− n))− π(1− n) cos(π(1− n))) for n > 1
2

Comparing the energy, it is possible to show that the partially polarized solution

(the Stoner solution) is never the ground state, but, the fully polarized ferromagnetic

solution is the ground state for

U

t
>

{
22| sin(nπ)|−sin(2nπ)

n2π
for n < 1

2

22| sin((1−n)π)|−sin(2(1−n)π)
(1−n)2π

for n > 1
2

We put all these information in the phase diagram in Fig. 4. We can observe the

particle-hole symmetry and the Stoner criterion verified when the system is already

ferromagnetic. The metamagnetic region is very wide, but the magnetic field is not

always physically accessible. We can see that the magnetic properties increase at half

filling, where the system is metamagnetic for every U > 0. This happens because

the fourth order coefficient is maximum at half-filling. Though the Fermi energy

is far from V HS’s, the large value of this coefficient increases the metamagnetic

properties. We need at least a V HS to have metamagnetism, but the fourth order

coefficient is also important. At the edge of the filling, the high value of the DOS

favours the ferromagnetism deleting the metamagnetism. It was already known that

this system exhibits metamagnetic behaviour up to saturation at half filling [29], but

now we find the exact solution for every filling. We stress that for every filling, the
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Figure 4: Phase diagram of the one-dimensional density of state. The phase are FM:

ferromagnetic, P: paramagnetic, MM: metamagnetic region. The black solid line is the

Stoner criterion equation. The phase diagram is symmetrical about half-filling.

system goes from a state with zero magnetization to a fully polarized state tuning

U at zero magnetic field.

This result is not trivial because metamagnetism can be found far from the V HS

too, and can not be found for all types of density of state. For instance, using

this technique with the infinite dimension tight binding model there is no metam-

agnetism. Where the DOS for the infinite dimension is given by:

ρ(ε) =
1√
2πt2

exp

(
− ε2

2t2

)
(48)

But, using dynamical mean field theory, Held et al [15] found the metamagnetic

transition for antiferromagnets also when the non-interacting DOS is (48). This

demonstrates that the metamagnetism that comes from band structure effects is

different from metamagnetism coming from the full physics of the Hubbard model.

Now, we will calculate the magnetization as function of the magnetic field, filling

and the Hubbard repulsion. In Fig. 5, we show the jump in the magnetization

that occurs for every U at half filling (right panel), but just for U
t
> π at quarter

filling (left panel). A change in the microscopic properties of the system can shift the

critical metamagnetic field. After the jump, the system is always in a fully polarized

state because the chemical potential jumps to the other side of the V HS. This is

a confirmation that the jump is possible because the presence of the V HS. The

position of the V HS at the edge of theDOS causes the fully polarized state after the

jump. We can stress the different roles of h and U observing the difference between

M(U) and M(h). M(U) is a stepwise function that is 0 until the critical value of

U and is equal to Mmax after the jump. Instead, M(h) has a linear (paramagnetic)

behaviour as h approaches to zero and a smaller jump at critical magnetic field.
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Figure 5: Magnetization vs. magnetic field for the one-dimensional model. We show the

jump in the magnetization at quarter filling (left panel) and at half filling (right panel). We

tune U
t =0 (solid line), U

t =1.7 (dashed line), U
t =3.4 (dot-dashed line) and U

t =6.8 (dotted

line).

These considerations can be generalized for every system: if there is a jump in

M(U) then there is always a smaller jump in M(h). In Fig. 6, we show the critical

magnetic field as function of n and U . We observe that the critical magnetic field

at half filling can arrive to h = 4, and decreases with the increase of U . The critical

magnetic field goes to zero at the ferromagnetic instabilities. If we examine the

phase diagram respect to h and n at U
t
=2.9 eV (Fig. 6 left panel), we have that

the system can be paramagnetic, metamagnetic or ferromagnetic. The interesting

region is around half filling, where we are far from V HS’s but the great value of

G(4) makes possible to achieve a metamagnetic transition condition. For instance,

at quarter-filled the Fermi level is nearer to V HS’s but is not metamagnetic. These

observation make clear that the conditions for metamagnetism are a complicated

mix where V HS, Coulomb repulsion and derivatives of the DOS play different, but

equally important roles.

Finding that the T = 0 paramagnetic-ferromagnetic transition is first-order, is in

itself not unphysical at all. However, it does not necessarily follow that M should

immediately jump to the saturation value Mmax. The DOS model in equation (41)

meant to imitate merely a sharp structure around the Fermi energy but not the

entire band structure. If the V HS’s or maximums are in the middle of DOS, we

should have an abrupt first-order transition to an M < Mmax. A similar case is

solved numerically by Fazekas [7], he found similar result using a double-peak DOS
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Figure 6: Critical metamagnetic field function of U for n = 1
4 (solid line), n = 3

8 (dashed

line) and n = 1
2 dotted line (left panel). Phase diagram at U

t =2.9 . The phase are FM:

ferromagnetic, P: paramagnetic, MM: metamagnetic region (right panel). The circle red

dots are the quantum critical endpoints.

at half-filled:

ρ(ε) =
15

26

(
1

4
+

7

16
ε2 − 1

8
ε4
)

for |ε| ≤ 2 (49)

and solving it numerically. The Stoner criterion is satisfied for U = 104
15
. However,

the condition for the appearance of finite-amplitude ferromagnetism is much less

stringent. For H = 0, the first-order transition to saturation magnetization sets in

at U = 4.23. Choosing a marginally subthreshold value U = 3.8, a metamagnetic

transition occurs at h ≈ 0.225.

2.4 Conclusions

We summarise the necessary and sufficient conditions to have metamagnetism in the

mean field theory. We need three necessary and sufficient conditions for first-order

transition:

1. Presence of a V HS (or at least a pronounced maximum in the DOS) to lead

to a jump in the magnetization as a function of the magnetic field.

2. Closeness to ferromagnetism to have a physically accessible critical magnetic

field. The Coulomb repulsion must be near the critical value for the ferromag-

netic transition.
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3. Presence of a second minimum atM different from zero in the functionalG(M).

The simplest way is to have a negative fourth order coefficient but other terms

in the Taylor expansion can generate it.

Moreover, if there is a M(U) with jump, then the M(h) always presents a smaller

jump. The calculation of M(U) is an easy way to find metamagnetism. In princi-

ple, for the metamagnetic transition is not necessary to have a V HS close to the

Fermi level. But, if the V HS is far from Fermi energy, we can have metamagnetism

just at huge critical magnetic field. A short distance of V HS from the Fermi level

and the closeness to ferromagnetism lower the critical magnetic field. Because the

experimental magnetic fields are relatively low in comparison to typical DOS scale

energy, this helps the appearance of metamagnetism. The biggest limitation follow-

ing this approach is the mean field approximation of the Hubbard model. All these

conditions might be verified in ruthenates, but the orthorhombic structure pulls the

dxy V HS close to the Fermi level favouring the first-order transition at relatively

low magnetic field. For completeness, we notice that this approach does not con-

sider instabilities toward nematic or spin spiral phase, and quantum critical effects

present in Sr3Ru2O7.
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3 Collective properties of eutectic ruthenates: role of nano-

metric inclusions

We study the modification of the electronic structure induced by nanometric inclu-

sions of Sr2RuO4 embedded as c-axis stacking fault in Sr3Ru2O7 and viceversa. The

change of the density of states near the Fermi level is investigated as a function of

the electron density, the strength of the charge transfer at the interfaces between the

inclusion and the host, and of the distance from the inclusion. Then, we examine

how the tendency towards long range orders is affected by the presence of the nano-

metric inclusions. This is done by looking at the basic criteria for broken symmetry

states such as superconductivity, ferromagnetism and metamagnetism. We show

that, according to the strength of the charge transfer coupling, the ordered phases

may be enhanced or hindered, as a consequence of the interplay between the host and

the inclusion, and we clarify the role played by the orbital degree of freedom showing

an orbital selective behaviour within the t2g bands. A discussion on the connections

between the theoretical outcome and the experimental observations is also presented.

3.1 Introduction

The Ruddlesden-Popper (R-P) ruthenates An+1RunO3n+1 are layered perovskite ox-

ides exhibiting a large variety of electric and magnetic phenomena as the cationic

element A and the number n of Ru-O layers forming the unit cell are varied.

Sr2RuO4, the n=1 member, is the only layered perovskite oxide that becomes su-

perconductor without Cu and it is an exemplary case of odd-parity spin-triplet

pairing among the solid state materials.[5] It is also quite peculiar among the per-

ovskite derived ruthenates since it occurs in an ideal undistorted structure. As a

result, substantially nested Fermi surfaces may be anticipated, both because of the

two-dimensional nature of the compound and because of the bonding topology of

the layered perovskite structure. This in fact is confirmed by different calculations

[30, 31, 32, 33, 34, 35, 36] and experimental evidences [37, 38] There are three bands,

crossing the Fermi energy, that correspond to the three 4d t2g orbitals, dxy, dxz and

dyz. The Fermi surface consists of three sections: these are a nearly circular cylin-

drical section centered around Γ, denoted as γ and two nearly square cylindrical

sections, α and β centered around Γ and X points, respectively.
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The n=2 R-P member, Sr3Ru2O7, is an enhanced Pauli paramagnet[24] on the

verge of a magnetic instability, which exhibits at low-temperature a field induced

anisotropic metamagnetic transition. Quantum critical behaviour and unconven-

tional properties with possible emergent nematic states occur in proximity of the

transition points.[19, 22] According to de Haas-van Alphen[39] and ARPES exper-

iments [40] the Fermi surface is rather complex if compared to the n = 1 system

with in total twelve sheets reflecting the large unit cell and the character of the

octahedral distortions.

Finally, the n = 3 R-P member, Sr4Ru3O10, exhibits a ferromagnetic behaviour

when an external magnetic field is applied along the c-axis; besides it manifests a

metamagnetic transition for applied magnetic field parallel to the Ru-O plane.[20,

41, 42] SrRuO3 (n = ∞) is the cubic member of the family, and it is an isotropic

ferromagnetic metal with Tc = 160 K.[43]

The electronic structure changes in a significant way moving from the n=1 to the

n=3 member of the Sr-based RP series especially as a consequence of the unit cell

increase and of the crystal symmetry modification from tetragonal to orthorhom-

bic. Evidence of a considerable orbital rearrangement within the t2g and in the

hybridizing O(2p) bands has been theoretically addressed and observed by means

of polarization-dependent O(1s) x-ray absorption spectroscopy.[44] This analysis re-

veals a complex interplay of dimensionality, structural distortions and correlations

that occur in the Sr-RP series as a function of n.

Concerning the collective behaviour, the crystal purity in ruthenate oxides turns out

to be of key importance in connection to the nature and the occurrence of broken

symmetry phases. For instance, the superconducting phase in Sr2RuO4 emerge only

in samples with extreme low residual resistivity.[45] Besides, highly pure single-

crystals of Sr3Ru2O7 have enabled the observation of quantum oscillations in the

resistivity both above and below the critical metamagnetic field.[46]

Recently, high quality eutectic systems based on ruthenates have been synthesized

in the shape of naturally occurring mesoscopic and nanoscopic interfaces between

members of the RP series or embedding domains with different chemical and struc-

tural composition. Such materials represent a natural way to interpolate between

the different integer members of the RP series opening novel routes for a quantum

tuning of collective properties due to unit cell substitution or to intrinsic interfaces

embedded within the same single crystalline phase. Indeed, the modification of the
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pairing wave function in the proximity of normal or magnetic systems as well as that

of the magnetic long range (ferromagnetism or metamagnetism) due to the interface

between the embedded phases may lead to novel quantum states of matter. The

main drive behind eutectic growth is given by the possibility of developing com-

posite materials with distinct properties from those of the pure constituents. The

first outcome in this direction concerning the ruthenates has been provided by the

fabrication of an eutectic phase where islands of pure Ru metal are embedded in

a single-crystal matrix of Sr2RuO4.[47, 48, 49] The superconductivity in the newly

grown eutectic system has been shown to occur at 3 K instead of 1.5 K as in the pure

Sr2RuO4 system. The increase in Tc is mainly believed to be due to interface states

between the Ru metallic islands and the host Sr2RuO4 domain though the lack of

the expected proximity behaviour has led to propose that the domains hosting the

3-K superconducting state are away from the Ru-Sr2RuO4 interface.[50, 51].

Then, the search for different types of eutectic systems with atomically sharp inter-

faces has led to the synthesis of Sr2RuO4/Sr3Ru2O7.[52, 53, 54] In this material

the two RP phases grow along their common c-axis. The performed magnetic

and transport analyses have provided evidence of an unusual behaviour related

to the degree of embedding of one phase into the other.[52, 53, 54] Furthermore,

Sr4Ru3O10/Sr3Ru2O7 eutectic crystals have been also successfully achieved.[55] As

for the n = 1-n = 2 eutectic system, the properties of the resulting material do not

correspond to the sum of the two constituents. For example, in a sample with a

majority of the n = 2 R-P phase with respect to the n = 3, the system is ferro-

magnetic with magnetization along the c-axis and a single metamagnetic transition

is observed at a critical magnetic field that is smaller to that obtained in the pure

Sr3Ru2O7 but greater than that in the Sr4Ru3O10.[56]

The eutectic material on the micrometric scale are made by domains of one crys-

talline phase with n=1 that almost perfectly arrange via sharp interfaces at the

boundary with the regions of the n=2 members of the R-P family along the c-axis,

due to the good matching of the in plane crystallographic axes. Nevertheless, at the

nanometric scale the system present defects where one or two unit cells of one phase

is replaced by that one of the other crystalline state of the eutectic. The presence

of nanometric stacking faults has been experimentally demonstrated by means of

transmission electron microscopy.[57, 58] The role of such planar impurity can be

highly not trivial in determining the collective behaviour of the system. Indeed,

for the Sr2RuO4/Sr3Ru2O7 eutectic the planar Sr2RuO4 defects in the Sr3Ru2O7

matrix have been considered as a source of resonant centers for pair scattering in
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a way that long-range pair correlations can be developed on a distance that it is

typically larger than that it is usually expected in a conventional proximity scenario

where the Cooper pairs can travel in the normal host up to a distance of the order

of the coherence length.[57]

Due to the observed differences in the collective behaviour of the eutectic systems

and to the light of the crystallographic composition it is worth to address the fol-

lowing issues: i) how does it change the electronic structure close to the Fermi level

due to the presence of c-axis stacking faults for both the defect and the host, ii)

how the low energy corrections influence the collective behaviour. To handle these

questions we study the electronic structure for inhomogeneous systems and we ad-

dress the change of the ordered configurations by means of basic criteria for broken

symmetry states based on the weak coupling theory of itinerant electron systems.

In particular, the analysis aims at underlining the role of the density ne of the Ru

bands and the orbital dependent charge transfer between the host and the impurity

assuming they are of the n=1 and n=2 type of the RP series. We demonstrate

that due to spectral weight redistribution the overall response is inhomogeneous

and not always concorde between the impurity and the host. Moreover, due to the

multi-orbital character of the ruthenates electronic structure the consequences on

the broken symmetry instabilities turns out to be highly orbital dependent too.

The chapter is organized as follows. In the paragraph 2 we introduce the model

used to analyse the change in the electronic structure and the consequences on the

collective properties. In the paragraph 3 the results related to the modification of

the density of states at the Fermi level for the planar inclusion and nearby the defect

are presented. The paragraph 4 is devoted to the concluding remarks.

3.2 Model

The eutectic system is modelled by means of an effective tight-binding inhomoge-

neous multiband Hamiltonian. The Hamiltonian includes only the orbital degree of

freedom close to the Fermi level originated from the t2g bands of the Ru ion and

takes into account the connectivity between the Ru atoms in terms of its first- and

second-nearest neighbors within both the single- and the bilayer domains.

We assume an orbital dependent hopping parameterization for the Ru-Ru kinetic
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Table 1: Hopping integrals along the direction [lmn] and on-site energy in eV associated

to the three orbitals of the t2g sector of the bulk Sr2RuO4 at experimental atomic positions

[59]. The connecting vector is expressed in terms of the integer set [l mn] and the lattice

constants a and c as d = l ax+may+ n c z.[9, 60, 11]

orbital index amplitude

[l mn] [000] [100] [010] [110] [200] [020] [ 12
1
2

1
2 ] [001]

xy-xy -0.4750 -0.3867 -0.3867 -0.1384 0.0094 0.0094 0.0017 -0.0013

yz-xy 0 0 0 0 0 0 0.0057 0

xz-yz 0 0 0 0 0 0 0.0057 0

yz-yz -0.3224 -0.0389 -0.2914 0.0165 0.0010 0.0612 -0.01876 0.0006

yz-xz 0 0 0 -0.0121 0 0 -0.01356 0

xz-xz -0.3224 -0.2914 -0.0389 0.0165 0.0612 0.0010 -0.01876 0.0006

term taking as reference the values obtained from a maximally localised Wannier

functions approach performed after having obtained the electronic structure by

means of GGA approximation. Otherwise, due to the lack of first principles anal-

ysis of the interface between the two R-P members, the charge transfer across the

interface between the n = 1 and n = 2 domain is considered as a tunable parameter.

Its variation can be ascribed to the degree of the octahedral distortions and to the

mismatch between the single and the bilayer unit cell occurring at the interface.

The system investigated is depicted in the Fig. 7 where it is reported the structure

with one n = 2 bilayer inclusion inside the n = 1 domain (Fig. 7a) as well as the

structure with one n = 1 monolayer inclusion inside the n = 2 domain (Fig. 7b).

The numerical simulation has been performed for a system having a total volume

of La × Lb × Lc with a number of sites for each direction given by La = Lb = 150

and Lc = 120 and 150. We have also modified the number of sites along the c-axis

to verify the dependence of the results by the boundary conditions.

The generic Hamiltonian describing our system can be expressed as:

H = H1 +H2 +H12 − λ
∑
i

ni

where Hn for the n = 1 and n = 2 components has the following tight-binding

structure,

Hn =
∑

σ{i,dn}

∑
{λ,ν}

tλβ(dn)(ciλσ
†ci+dnνσ + h.c.) (50)
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while H12 for the part connecting the n = 1 and n = 2 domains is given by:

H12 =
∑

σ{i,d12}

∑
{λ,ν}

t̃λβ(d12)(c
†
iλσci+d12νσ + h.c.) .

This term is the charge transfer from the Ru bands in the n = 1 phase to the first

neighbour of the n = 2 phase or viceversa.

We have adopted the following notation: c†iασ is the creation operator of an electron

with spin σ in the band α on the site i. d is a generic connecting vector given by

d = l ax +may + n c z in terms of integer triple l,m, n and the lattice constants

a, c with respect to the basis of the Bravais lattice associated to the single and

bilayer system. The indices α = xy, xz, yz label the three orbitals belonging to the

t2g sector. The chemical potential µ is fixed in a way to have the local electronic

density uniform and constant in each unit cell along the c-axis. The connectivity

matrix depends not only on the orbital index but also on the domain where the

Ru atom is placed, that is, if it belongs to the n = 1 or n = 2 crystalline phase,

respectively.

Hereafter, we have performed a GGA analysis followed by a maximally localised

Wannier function approach to determine the overlap amplitudes of the Ru t2g or-

bitals both for the n=1 and the n=2 system. We have verified that for n=1, the

results are in agreement with those obtained by a down-folding procedure as in Ref.

[36], while, for the n = 2, the results obtained reproduce the Fermi surface features

as given in Ref. [40]. We would like to point out that the amplitude of the relevant

hopping parameters for the single layer and the bilayer are quantitatively similar

along the various symmetry directions. Finally, since we do not have information

about how the electronic structure is modified at the interface of the n=1 and n=2

domain, we do assume that the orbital dependent hopping amplitude along the

[1
2

1
2

1
2
] direction across the interface, t̃αβ(

1
2

1
2

1
2
) is a tuning parameter that may used

to mimic the changes of the charge transfer occurring at the interface. The results

are presented as a function of t̃αβ(
1
2

1
2

1
2
), with respect to the hopping amplitudes of

the n = 1 system.

To analyse the changes in the collective behaviour induced by the presence of a

planar defect in the broken symmetry phases, we adopt the following procedure: for

the superconducting state we take into account the modification of the density of

states ρ(εF ) at the Fermi level εF , considering that for a BCS-type superconductor

the critical temperature and the order parameter are exponential functions of the

amplitude of the density of states (DOS) at εF as TSC ∼ exp[−1/λρ(εF )]. Indeed,
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Figure 7: Schematic structure of the eutectic system with stacking faults along the c-axis.

a) panel indicates the bilayer (n = 2) inclusion inserted in a monolayer (n = 1) matrix.

In the panel b) it is reported the schematic structure of the monolayer (n = 1) inclusion

embedded in a bilayer (n = 2) matrix. t̃αβ(
1
2

1
2

1
2) stands for the charge transfer amplitude

between the α and β bands of Ru atoms at the interface between the n = 1 and n = 2

layers.

assuming that there is no change in the pairing coupling and for the pairing mecha-

nism, the most significant effect on the strength of the superconducting order comes

from the modification of the DOS at the Fermi level on the band where the electrons

get paired. Hence, simply one would get an increase/decrease of TSC if the DOS

at εF grows or it becomes suppressed. This is typical considered in the analysis

of the superconducting critical temperatures when the size of the system is tuned

from micrometric to nanometric dimension or, for example, when superconductivity

occurs in reduced dimension and at the interface.[61, 62, 63, 64]

Referring to the magnetic part, taking into account the expansion of the free energy

for an interacting itinerant electron system within the Hartree-Fock approximation

in terms of the magnetization and in the presence of an applied field, it is possible to

identify the basic quantities that determine the tendency to the magnetic instability.

The Gibbs free energy G(T, h) can be expanded up to the sixth order in the total

magnetization as follows:[65]

G(T, h) = F0(M,T )− I M2 − hM (51)

F0(M,T ) = F0(0, T ) +
M2

2χ0(T )
+ g(T )

M4

4
+ c(T )M6... (52)

χ0(T ) =
1

2
ρ(εF )[1−

π2

6
RT 2 + ...] (53)

g(T ) =

[
F1

ρ(εF )3

]
[1 +

π2

6
R1 T

2 + ...] (54)
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Figure 8: (Color online) Left panel depicts the contour map of the density of states for

the dxy band at the Fermi level for the single bilayer inclusion embedded in the n = 1

host. The DOS is normalized to that of the analogue band of the uniform bilayer. Right

panel reports the DOS variation for the first neighbour of the defect, thus belonging to

the host of n=1 type, with respect to that for the analogue band of the uniform single

layered system. The map of the relative DOS variation is analyzed in terms of the total

electron density and as a function of the charge transfer ratio across the n=1 and n =2

interface. Top panel is the scale with maximum/minimum values of the order of about

2% with respect to the amplitude of DOS in the uniform case. The solid line is the locus

of zeros (i.e. no change with respect to the uniform case) within the contour map. The

area inside the solid line corresponds to positive variation of the DOS. The map in the

right panel contains only negative values.

R =

(
ρ

′
(εF )

ρ(εF )

)2

−
(
ρ

′′
(εF )

ρ(εF )

)
(55)

F1 =

(
ρ

′
(εF )

ρ(εF )

)2

−
(
ρ

′′
(εF )

3 ρ(εF )

)
(56)

R1 = 2F1 + 3R− F−1
1

[
3

(
ρ

′
(εF )

2ρ
′′
(εF )

ρ(εF )3

)
−

(
ρ

′′
(εF )

3 ρ(εF )2

)]
(57)

−7
[(

ρ
′
(εF ) ρ

′′′
(εF )

3 ρ(εF )2

)
+

(
ρ

′′′′

3 ρ

)]
. (58)

Here, FHF (M,T ) is the free energy obtained by decoupling the quartic term by

means of the Hartree-Fock approximation, the coupling I indicates the Coulomb

interaction, and h is the magnetic field, respectively. χ0(T ) is the zero momentum

susceptibility that, together with the Coulomb interaction, sets the instability to-

wards the formation of a ferromagnetic state since it enters the Stoner criterium

2 I χ0(T )− 1 = 0.
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Figure 9: (Color online) As for the Fig. 8 but for {dxz,dyz} bands. The area inside the

solid line corresponds to positive variation of the DOS.

The coefficient F1 of the term proportional to M4 is related to the instability to-

wards a metamagnetic state according to its sign and amplitude.[66, 23] Indeed,

the condition for the occurrence of a metamagnetic transition as a function of the

magnetic field requires that the coefficient F1 is negative assuming that the tem-

perature is enough low that it is possible to neglect the contribution from the term

∼ R1T
2. From equation (37), we have that if the relation 5 c(T )[1−2χ0(T ) I]

6χ0(T )
< (g(T )

4
)2 <

2 c(T )[1−2χ0(T ) I]
χ0(T )

holds for the amplitudes of the free energy coefficients, then the sys-

tem may undergo a metamagnetic transition, moving from a paramagnetic state to

another one at a given finite magnetization via a first order transition. It is worth

pointing out that the dependence on the Coulomb interaction I of the previous re-

lation makes accessible the metamagnetic regime especially in the vicinity of the

paramagnetic to ferromagnetic Stoner transition.

It is possible to show from equation (34) that the maximum allowed critical metam-

agnetic field hc,max, in unit of the Bohr magneton, is a function of the only quadratic

and quartic terms of the free energy expansion as given by:

hc,max
∼= 1.2

√
( 1
2χ0(T )

− I)3

|g(T )|
. (59)

Hence, the critical metamagnetic field amplitude can be put in direct relation with

the modification of the density of states at the Fermi level as well as on its curvature

in such a way that at low temperature it decreases (increases) if the F1 or ρ(εF )

amplitudes grow (get suppressed). Due to the structure of the free energy, the mono-

tonic dependence of the metamagnetic critical field on ρ(εF ) and its derivatives still
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holds for intermediate amplitudes in the range [0, hc,max]. Concerning the amplitude

of the critical magnetic field, the strength of the applied field is physically accessible

only if the system is within the metamagnetic region of the phase diagram but close

to a ferromagnetic instability.

The strategy we adopt is the following: we determine the amplitude of the DOS

at the Fermi level and the strength of F1 at the planar position where the defect

is placed and nearby it, then we compare them to the values they assume in the

uniform case in order to provide indications on the modification of the collective

behaviour. This is done by determining the projections on the various bands that

are present at the Fermi level for the single and the bilayer system in order to extract

the orbital character of the contributions to the collective behaviour.

3.3 Results

Let us study the changes of the electronic structure at the defect and in its vicinity

by focusing on the DOS at the Fermi level as well as on its curvature being related

to the coefficient F1 in the expansion of the magnetic free energy.

The evolution of the electronic structure around the Fermi level, both for the planar

impurity and the neighbors, will be discussed in terms of the charge transfer ampli-

tude and of the change of the total electron filling ne in the Ru bands. Concerning

the study in terms of the hopping amplitude, we have analyzed how the electronic

structure for a given band is modified by changing the amplitude of the charge

transfer along the [1
2
, 1
2
, 1
2
] direction. We notice that the t2g bands can communicate

across the interface within various charge transfer processes: since the xy band is

mainly two-dimensional, the most relevant process involves the hybridization, via

the apical oxygens, with the γz bands; on the other hand, (xz, yz) orbitals mainly

link each other across the c-axis interface. For the renormalized DOS we focus on

the modifications induced by the change in the main channels of communication

across the interface for each band of the t2g Ru sector. To simplify the study of the

DOS we introduce a variable q that tunes the ratio between the symmetry allowed

hopping contributions of the xy and the γ z bands, evaluated with respect to the

correspondent in-plane hopping parameters. Then, we take into account the changes

of the electron density at the Ru site. This analysis can be performed in two pos-

sible way: i) it can be directly related to changes in the stoichiometry occurring at



36

ne

0.72

0.70

0.68

0.66

0.64

0.62

0.60

t
�

xy,xz I 12 , 1
2 , 1

2 M
txy,xy H1, 0, 0L

0.120.090.060.030

ne

0.72

0.70

0.68

0.66

0.64

0.62

0.60

t
�

xy,xz I 12 , 1
2 , 1

2 M
txy,xy H1, 0, 0L

0.120.090.060.030

Figure 10: (Color online) Left panel depicts the contour map of the density of states for

the dxy band at the Fermi level for the n = 1 inclusion embedded in the n = 2 host.

The DOS is normalized to that of the analogue band of the uniform bilayer. Right panel

reports the DOS variation for the first neighbour of the defect, thus belonging to the host

of n=1 type, with respect to that for the analogue band of the uniform single layered

system. The map of the relative DOS variation is analyzed in terms of the total electron

density and as a function of the charge transfer ratio across the n=1 and n =2 interface.

Top panel is the scale with maximum/minimum values of the order of about 2% with

respect to the amplitude of DOS in the uniform case. The solid line is the locus of zeros

(i.e. no change with respect to the uniform case) within the contour map. The area inside

the solid line corresponds to positive variation of the DOS.

the interface, due to oxygen vacancies or other types of defects that might lead to

valence fluctuations on the Ru ion; ii) it can be realized considering the modification

of the total Ru density can be seen as an effective energy scan for the DOS above

and below the Fermi level in the electron and the hole doping region.

We firstly consider the modification of the ρimp,α,2(εF ) DOS at the Fermi level for

the α band at the n=2 impurity embedded in the host of n=1 type, corresponding

to the case represented in Fig. 7a). The DOS, renormalized to the value ρu,α,2(εF )

taken at the Fermi level for the corresponding band of the uniform bilayer system,

for the xy and the γz bands is then separately determined.

In the left panel of Fig. 8 it is reported the ratio (ρimp,xy,2(εF )−ρu,xy,2(εF ))/ρu,xy,2(εF )
for the dxy band as a function of the charge transfer across the interface due to the

hybridization of the xy and the γz bands at various filling (or effective energy shifts).

As one can see, there is a slight decrease with a smooth variation as a function of

the hopping ratio at the interface up to a value of about 0.1 above which the DOS
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Figure 11: (Color online) As for the Fig. 10 but for {dxz,dyz} bands. The area inside the

solid line corresponds to positive variation of the DOS.

amplitude grows significantly both at the Fermi level and at energies (filling) above

it. The regime where the renormalized DOS increases can be thought as a region

where the structural change at the interface are such to yield a good interfacing

between the inclusion and the n = 1 domain. Thus a larger ratio for the hopping

matrix elements along the c-axis is required compared to the uniform systems. The

large increase of the DOS ratio above the Fermi level can be ascribed the shift of the

van Hove-like maximum in the density of states for the xy band due to the changes

in the charge transfer across the interface between the two R-P members domains.

The modification of the DOS for the γz bands is completely different from the same

quantity previously obtained for the xy band. because, close to the Fermi level, the

DOS is always reduced, compared to the uniform bilayer system. However, there

exists a small window, far from the Fermi level, where the DOS increases as for the

case of the xy band, as consequence of the energy shifts of the Van Hove singularities

in the quasi one-dimensional t2g bands.

The behaviour of the electronic structure for the first neighbour to the n=2 inclusion

is reported in the right panels of the Figs. 8, 9 for the xy and γz bands, respectively.

As one can notice the xy DOS decreases in the whole range of the parameters space

and it shows a significant reduction already in the regime where the ratio of the

interface hopping to the in-plane one becomes larger than about 0.06. On the

contrary, the normalized DOS for the γz bands does not change much at the Fermi

level, up to a value of the charge transfer ratio of about 0.3; above this value it

exhibits a significative reduction. We may conclude that an increase (a decrease) of

the renormalized DOS with respect to the uniform case occurs above (below) the
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Figure 12: Evolution of the amplitude F̃1 as a function of the ratio between the hopping

t̃(1/2, 1/2, 1/2) and the corresponding planar one, as parameterized by q. F̃1 is the value

of the coefficient F1 at a specific position normalized to its strength for the correspondent

uniform phase.

Fermi level, respectively.

Therefore, if we look at the modifications at the inclusion and near to it, for the

n = 2 impurity embedded in the n = 1 host, the change in the DOS is orbital and

position dependent. In the regime of bad/normal interfacing between the inclusion

and the n = 1 domain, the renormalized DOS is always suppressed for the inclusion

and its first neighbour both for the xy and γz bands. On the other hand, in a regime

of good matching at the host-inclusion interface, only the renormalized DOS for the

xy band has a significant enhancement at the Ru site placed in the n = 2 inclusion.

The results for the n = 1 inclusion interfaced to the n = 2 type domain, corre-

sponding to configuration depicted in Fig. 7b), are reported in Figs. 10, 11. As

one can notice, the renormalized DOS for the xy band (Fig. 10) of the n = 1

inclusion within the n = 2 host gets firstly reduced as the charge transfer is varied

from the regime of bad interfacing towards that of good matching along the c-axis.

In this last case, there is a significant increase of the DOS when the effective charge

transfer amplitude overcomes the value of about 0.1. Such behaviour turns out to

be quite insensitive to the change in the electron filling at the Ru site or equiva-

lently in the energy region around the Fermi level, both above and below it. The γz

bands for the Ru atoms at the n = 1 inclusion exhibit a similar trend though with
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Table 2: Tendency to strengthen or weaken the ordered configurations due to the presence

of monolayer (bilayer) defects in a bilayer (monolayer) host, respectively. The criteria are

based on the evolution of the density of states at the Fermi level and on its curvature

around the Fermi level. ↗ (↘) indicates the increase (decrease) of the tendency to get

ordered for the different broken symmetry solutions. ↗–↘ stands for a non-monotonous

behaviour.

Bad interface regime (q →0) n=2 impurity/n=1 host n=1 impurity/n=2 host

Single layer Bilayer Single layer Bilayer

dγz dxy dγz dxy dγz dxy dγz dxy

Superconductivity(BCS) ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
Ferromagnetism(Stoner) ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
Metamagnetism ↗ ↘ ↗–↘ ↗–↘

Good interface regime (q →1) n=2 impurity/n=1 host n=1 impurity/n=2 host

Single layer Bilayer Single layer Bilayer

dγz dxy dγz dxy dγz dxy dγz dxy

Superconductivity(BCS) ↘ ↘ ↘ ↗ ↗ ↗ ↘ ↗
Ferromagnetism(Stoner) ↘ ↘ ↘ ↗ ↗ ↗ ↘ ↗
Metamagnetism ↗ ↗ ↗ ↗

a non-monotonous behaviour, changing from positive to negative when the hop-

ping amplitude is varied, thus indicating a more subtle dependence on the interface

matching between the inclusion and the host. Further, the oscillatory effect is quite

stable around the Fermi level.

Concerning the first neighbour of the n = 1 inclusion, we notice that, while the DOS

for the xy band has a behaviour qualitative similar to that of the same band at the

Ru site of the inclusion, the γz ones exhibit a different behaviour again pointing

to the possibility of an inhomogeneous spatial tendency in the setting of broken

symmetry configurations. In particular, the renormalization of the DOS for the

γz orbitals is always negative getting significantly suppressed at large values of the

effective interface hopping.

The overall change of the DOS at and near the inclusion is the result of a subtle

interplay between the electronic structure mismatch at the interface, the different

Fermi surface between the inclusion and the host, as well as the charge redistribution

within the different bands in the two domains to keep the local charge homogeneity.
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To move further in the analysis, we have considered the change of the curvature at the

Fermi level by evaluating the ratio F̃1 between the amplitude of the coefficient F1 in the

expansion of the free energy for the DOS at the inclusion and close to it normalized to the

absolute value of the uniform solution |F1(n = 1)| or |F1(n = 2)|, both for the monolayer

and the bilayer systems, respectively. For the analysis we have followed the same procedure

as that for the normalized DOS. However, we noticed that, due to the symmetry of the

t2g bands, the overall behaviour can be captured and summarized in a more convenient

way by introducing a single parameter q that may tune, at the same time, the ratios

t̃xy,xz(
1
2

1
2

1
2))/txy,xy(1 0 0) and t̃xz,xz(

1
2

1
2

1
2))/txz,xz(1 0 0). With this parameterization, we

may scan different interesting cases, moving from the bad charge transfer conditions, at

the inclusion-host interface (q → 0), to the extreme situation of high hopping amplitude

through the interface (q → 1).

Fig. 12 reports F̃1, as a function of q, for the case of the n = 1 inclusion in the n = 2 host

and viceversa, both evaluated at the inclusion and in its vicinity. We have also determined

the orbital dependence of F1 by projecting its amplitude on the different t2g bands of the

Ru atoms at the inclusion and in the host. The effects on the curvature for the case of the

n = 1 inclusion in the n = 2 host are not significantly modified with respect to the uniform

case at small q. In the intermediate regime (q ∼ 0.5), F̃1, evaluated at the inclusion, tends

to be zero or positive, while that for its neighbour stays negative. This means that in such

region, the inclusion tends to lose the possibility to exhibit a metamagnetic behaviour due

to its sign change, whereas the modification of the bands close is still compatible with a

metamagnetic transition. It is interesting to notice that for such regime the possibility of

a quantum tricritical behaviour may emerge, if the quadratic coefficient is also tuned in

proximity of a paramagnet-ferromagnet transition.

For larger values of q, F̃1 becomes again negative with a large renormalization compared to

the uniform value. On a general ground, we may conclude that the increase of the ampli-

tude with respect to the uniform case means that the system can exhibit a metamagnetic

transition at a critical magnetic field having a smaller threshold.

The trend for the case of the n = 2 inclusion in the n = 1 host is similar to the previous one

with the exception of the small q regime where, if compared to the uniform solution, the

normalized coefficient is larger (smaller) at the inclusion (host), respectively. This means

that the effects of the inclusion in the host is to modify the amplitude of the critical field

in the opposite direction for the inclusion and its first neighbour.

A summary of the possible consequences of the electronic structure modification of the

DOS at the Fermi level, with respect to the onset or the change of the collective behaviour
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for the eutectic system compared with the uniform one, is reported in the Table 2. In this

Table, we have sum up the trend of the broken symmetry configurations for the different

Ru bands evaluated at the inclusion and at the first neighbour of the inclusion within the

host. The broken symmetry states considered are the ferromagnetic, the superconducting

and the metamagnetic ones as discussed in Sect. II. Therefore, assuming for example

that the uniform n = 1 or n = 2 system exhibits a ferromagnetic or a superconducting

ordering, according to the dependence of the critical temperature within the BCS picture

or the quantum critical point associated to the ferromagnet-paramagnet transition within

the Stoner, the change in the DOS may reinforce or hinder the stability of the broken

symmetry states under investigation.

Let us then discuss the tendency toward the metamagnetism. The result previously ob-

tained for the total DOS can be decomposed within the different orbital channels. In

this way it is possible to understand which bands is responsible for the metamagnetic

behaviour. We also notice that the orbital dependence plays an important role when one

wants to infer the anisotropic character of the metamagnetic response as due for exam-

ple to spin-orbit coupling. The results obtained reveal that the metamagnetic response,

differently from the case of the ferromagnetic and superconductor orders, is much more

sensitive to the type of the inclusion with respect to the host, to the orbital where the

electrons couple to lead to the metamagnetic response upon an applied field, as well as

to the strength of the charge transfer amplitude. As a general remark we point out that

the critical magnetic field decreases for the case of good inclusion-host matching, while

for the bad interface regime between host and inclusion behaves differently leading to a

distribution of critical magnetic fields above which the system discontinuously reaches a

non zero magnetization.

3.4 Conclusions

In conclusion we have studied the modification of the electronic structure induced at the

interface between the n=1 inclusion and the n=2 domain and viceversa as due to changes

of the charge transfer across the interface and in terms of possible modification of the

Ru electronic density. We have connected the behaviour of the DOS at the Fermi level

and the modification of its curvature to the criteria for the strengthening or hindering

of ordered states as superconductivity, ferromagnetism and metamagnetism close to the

inclusion compared to the behaviour for the uniform system. The analysis has shown that

the changes of the DOS at the Fermi level is orbital dependent for the three Ru bands

and the behaviour is not always concorde between the different t2g bands. In particular
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depending on the level of interbands matching at the inclusion-host interface the orbital

dependent DOS can get suppressed or significantly enhanced.

The results here presented indicate that if the charge transfer processes are inhibited at

the interface between the inclusion and the host, i.e. in the regime of q → 0, then the

general trend for all the bands is to have a suppression of the DOS at the Fermi level both

at the Ru sites in the inclusion and in its vicinity, meaning that both the ferromagnetism

and the superconductivity are inhibited. Otherwise, for the case of good matching at

the inclusion-host interface the tendency is dependent on the orbital involved and on the

position of the Ru site. Indeed, both for the n=1 impurity in the n=2 host and viceversa,

the DOS of all the t2g bands in the single layer increase with respect to the uniform

case, while in the neighbour n=2 unit cell the DOS grows for the dxy band but it is

suppressed for the γz ones. This behaviour can be interpreted as a possible strengthening

of the ferromagnetism or the superconductivity only at the inclusion or in its vicinity if

the electrons that tend to form the ferromagnetic or superconducting order belong to the

xy band.

Concerning the curvature changes compared to the uniform solution, both at the inclusion

and in its vicinity the effects on the DOS first and second derivative can lead to a large

increase of the coefficient of the M4 term of the free energy expansion that is related to

a significant modification of the metamagnetic response. There is an interesting regime

where the coefficient of the quartic term tends to zero leading to a possible emergence of

a quantum tricritical behaviour.

Let us consider the connection between the presented results and the experimental ob-

servations in the eutectic system made of interfaced n=1 and n=2 domains both at the

micrometric and the nanometric scale.

Concerning the superconducting behaviour the Sr3Ru2O7 domain cut from the eutectic

has been shown to exhibit an unusual temperature and magnetic field dependence below an

onset temperature that is above the nominal superconducting transition Tc ∼ 1.5 K of the

”pure” Sr2RuO4 single phase compound.[57] The modification of the onset Tc is an issue

that has been already established in the Sr2RuO4-Ru eutectic where micrometric metallic

islands of Ru are embedded in the Sr2RuO4 single phase and the superconductivity occurs

already at about 3 K in the region in the vicinity of the Sr2RuO4-Ru interface. [49, 67]

Similar effects are also induced by the uniaxial pressure on pure Sr2RuO4 leading to

an onset Tc above 3 K.[68] This emphasizes the role played by structural changes and

octahedral distortions as driving forces to induce a change of the superconducting state

in the eutectic systems made of Sr2RuO4 phase as one of its constituents. In this context,
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recent electric transport and muons measurements in the Sr2RuO4/Sr3Ru2O7 eutectic have

confirmed the occurrence of superconductivity at a temperature that is higher than that

observed in the pure Sr2RuO4 with an onset of about 2.5 K. [69] Though the origin and

the mechanisms for the superconducting behaviour in the Sr2RuO4/Sr23Ru2O7 eutectic

are still under debate, similarly to what has been deduced for the Sr2RuO4-Ru system or

in the pure Sr2RuO4 upon uniaxial pressure, it is plausible that the superconducting state

nucleates at the interface between the n=1 and n=2 domain as well as in the proximity

of it.

Within our analysis we can address the increase of the onset critical temperature by

assuming that a single layer embedded in the n=2 domain exhibits an increase of the

density of states at the Fermi level both for the xy and γz bands in the regime of good

n = 1-n = 2 interfacing or for enhanced charge transfer across the Sr2RuO4/Sr3Ru2O7

interface. The lack of first-principles calculations of the structural and electronic properties

at the Sr2RuO4/Sr2Ru2O7 interface does not allow one to have a quantitative estimate of

the octahedral relaxation and the effective charge-transfer in the vicinity of the interface.

Nevertheless, one might expect different effects to occur cooperatively at the interface

in such a way to achieve a regime of enhanced charge transfer amplitude. The good

in-plane lattice mismatch[58] can be one of the reason for good interfacing along the c-

axis. Moreover, both the reduction of the in-plane bandwidth, due to rotation and tilting

of the octahedra and the reduced dimensionality, as well as the renormalization of the

interband hopping across the interface, due to the c-axis mismatch between the n=1 and

n=2 phases and the variation of the apical oxygens positions, can lead an increase of the

effective hopping across the interface.

About the magnetic properties, preliminary measurements on the Sr2RuO4/Sr3Ru2O7

eutectic, with a majority of Sr3Ru2O7 and a small percentage of dispersed n=1 phase,

have shown a small downward shift of the metamagnetic critical field to lower values than

those of the pure Sr3Ru2O7 with a magnetic field applied in the ab plane.[70] As pointed

out above for the superconducting case, this observation may find an explanation in the

regime of good c-axis interfacing. Indeed, taking into account that the critical field depends

on the ratio between the DOS at the Fermi level and its curvature via the coefficient F1,

it is possible to deduce a reduction of the critical magnetic field when both the DOS and

the F1 coefficient grow as reported in the Table 2. In this framework we do expect that

depending on the interface achieved in the eutectic system the metamagnetic critical field

can either grow (i.e. in the intermediate regime) or decrease in amplitude if compared to

the case of the pure Sr3Ru2O7.

Due to the spatial dependence of the DOS variation and its derivatives at the inclusion
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and in its vicinity our results also indicate a tendency to an inhomogeneous magnetism

in the eutectic system with a possible distribution of critical metamagnetic fields. Hence,

a broadening of the first order transition can occur even at very low temperature where

a sharp change in the magnetization is expected. This behaviour might represent an

hallmark of the magnetic response for the Sr2RuO4/Sr3Ru2O7 eutectic.
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4 Metamagnetism of itinerant electrons: the realistic case

of multy-layer ruthenates

We study in detail the influence of the electronic correlation on electronic structure of

nanometric inclusions of Sr2RuO4 embedded as c-axis stacking fault in Sr3Ru2O7 and

viceversa. The metamagnetic properties in mean field theory approach using the realistic

density of state are analyzed.

4.1 Introduction

The issue of metamagnetism in itinerant electron systems was studied both theoretically

[66] and experimentally [71] long ago. The magnetic phase diagrams of itinerant electron

systems show both thermal and quantum phase transitions, and often non-Fermi-liquid

behaviour associated with quantum critical endpoints. Recently, the problem of quantum

criticality in the context of itinerant ferro- or metamagnetism has received considerable

attention [22, 72, 73], considering it from a new point of view. It has been suggested that

these systems might display a new type of quantum criticality, connected with a so-called

quantum critical end-point (QCEP ), in the vicinity of which the Landau Fermi-liquid

theory of metals breaks down.

The Sr3Ru2O7 compound displays a metamagnetic transition which bifurcates as a func-

tion of field angle to enclose an anomalous phase where the transport properties break the

symmetry of the crystal lattice[74, 75]. Intriguingly, this phase has been shown to have

a higher entropy than the surrounding normal phases[76], contrary to naive expectations.

The metamagnetism and anomalous phase are generally thought to be caused by the pres-

ence of a van Hove singularity just below the Fermi surface in one of the electronic bands

of the material[40, 23, 77, 78]. It is also a key ingredient of mean field treatments of the

anomalous phase such as the nematic instability[79, 80, 81, 82, 83]. However, the quan-

tum critical endpoint in the region of the anomalous phase[22] and the possible role of this

critical point remains largely unexplored. In addition, the region around the phase shows

signatures which may be attributed to the quantum critical point, such as a diverging

entropy and specific heat. Also the dependence of the metamagnetic transition on field

angle, as well as doping [84] and scanning tunneling microscope [85] studies, have cast

doubt on the simple picture of a fixed band structure with the field acting to Zeeman split

the spin species through a peak in the density of states. Theoretical results concerning the

properties of the QCEP have been obtained on the basis of phenomenological, low-energy
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field theories [86]. These issues raise the question of how far the properties of the material

may be explained by the density of states, without involving quantum fluctuations or more

exotic physics.

Some authors [23, 87] presented a mean field theory of uniform magnetism for itinerant

electrons with Fermi energy close to a V HS in the context of multilayer ruthenates. The

resulting phase diagram features first- and second-order ferromagnetic transitions, as well

as a line of (metamagnetic) critical end-points, which is pushed to zero temperature at

a QCEP . One of the characteristic features of Sr3Ru2O7 is an unusual phase with a

higher entropy than its surroundings. They consider how this may arise in the context of

a density of states picture and finds that it is possible to reproduce the thermodynamic

behaviour and first-order phase transitions.

We show, based on a mean field theory, that the low-temperature behaviour of the n-layer

ruthenates Srn+1RunO3n+1 can be understood as a result of the presence of a Van Hove

Singularity (V HS) near the Fermi level. We would like to emphasize that the origin of

this behaviour lies in the band structure. We will not consider instabilities toward other

phases such as the nematic or spin spiral but will concentrate on the bare homogeneous

metamagnetic transition. We will consider how these results may help to identify the cause

of the metamagnetic transition in Sr3Ru2O7 and may more generally help to distinguish

between DOS features and quantum critical effects. Differently from other papers that

used similar strategy, we will use a realistic DOS from ab-initio hopping parameters

calculated in Chapter 3. In the first paragraph, we will introduce the three bands Hubbard

model and the effective degrees of freedom generalizing the Stoner criterion. In the second

paragraph, we will calculate the magnetization versus Coulomb repulsion for Sr2RuO4,

Sr3Ru2O7 and the system with one Sr2RuO4 impurity embedded in the Sr3Ru2O7 host

and viceversa.

4.2 Metamagnetism in three band Hubbard model

Let us consider the homogeneous system, it is possible to generalize the same topic in

the non homogeneous case. We use the same notation of Chapter 3 for the Hamiltonian

describing our system. We add the three band Hubbard model to the single particle

Hamiltonian (50):

Ĥ =
∑

σ{i,dn}

∑
{λ,ν}

tλν(dn)(ĉ
†
iλσ ĉi+dnνσ + h.c.)− µ

∑
iλσ

n̂iλσ + U
∑
i

∑
λ

n̂iλ↑n̂iλ↓ (60)
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If we consider the pure system Sr2RuO4, we can diagonalize the single-particle Hamiltonian

to have

Ĥ = Ĥα + Ĥβ + Ĥγ + U
∑
i

∑
λ=xy,xz,yz

n̂iλ↑n̂iλ↓ (61)

where α,β and γ are the bands that generate the three strongly two-dimensional sheets in

the Fermi surface [30]. We are able to decouple the single-particle Hamiltonian in terms of

occupation numbers nασ, nβσ and nγσ, but we are not able to express the Hubbard term

respect to occupation number of the diagonalized band. The thermodynamic potential

will not a sum of single band potential. For this reason, the system is complicated by

multiband effects.

We will calculate the complete mean field theory of three band Hubbard model without

approximation, considering symmetry-constrained to reduce the degrees of freedom. In

mean field approximation, the thermodynamic functional generated from (60) depends

from the 6 occupation numbers (we have three bands with two spin channels). We impose

the geometrical symmetry and fix the filling.

nxz↑ = nyz↑ (62)

nxz↓ = nyz↓ (63)

ne =
∑
α,σ

nα,σ = 4 (64)

Now, we have 3 degrees of freedom and the system is composed by 2 effective bands (dxy

and dγz). We choose these degrees of freedom: the magnetization for the two bands and

the polarization p.

Mxy =
nxy↑ − nxy↓

2
(65)

Mγz =
nγz↑ − nγz↓

2
(66)

p =
(nγz↑ + nγz↓)− (nxy↑ + nxy↓)

2
(67)

Let us consider the paramagnetic phase, where the two magnetizations are zero and there

is just one degree of freedom that is the polarization. From ab-initio calculation, the

degree of freedom p is around 0.14 for Sr2RuO4.

Mxy(U = 0) = 0 (68)

Mγz(U = 0) = 0 (69)

p(U = 0) ≈ 0.14 (70)
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Similar values are found for Sr3Ru2O7 and the for the non homogeneous cases. When the

repulsion increases in the non magnetic case, we polarization goes to zero to minimize the

energy of the system described by (60):

Mxy(U −→ +∞) = 0 (71)

Mγz(U −→ +∞) = 0 (72)

p(U −→ +∞) = 0 (73)

Instead, when the repulsion increases in the magnetic case, the system becomes completely

polarized (nγz↑ = nxy↑ = 1) and the only degree of freedom left is p. We observe from our

calculation in the self-consistent solution, that p becomes smaller than the initial value.

This effect gives rise to a charge flow from the γz bands to xy band, thereby shifting the

xy V HS very close to Fermi energy.

Mxy(U −→ +∞) =
1

3
− p

2
(74)

Mγz(U −→ +∞) =
1

3
+

p

2
(75)

p(U −→ +∞) ≈ 0 (76)

It was already observed that p decrease in static [88] and dynamical mean field theory [89]

when Coulomb repulsion is added. This is a multiband effect not present in the Stoner

criterion or single band models. The paramagnetic DOS ρxy(εF , p(U)) depends on U

through p.

After the symmetry considerations, we have that any homogenous ruthenates system can

be described by the thermodynamic functional G(nγz↑, nγz↓, nxy↑, nxy↓, U). It was demon-

strated that the electron-like sheet γ is dominantly dxy [33]. If we identify the γ band

with the xy band, we can consider the thermodynamic functional generated using mean

field theory from Hamiltonian (61) like a sum of the dxy part and dγz part.

G(nγz↑, nγz↓, nxy↑, nxy↓, U) ≈ Gxy(nxy↑, nxy↓, U) +Gγz(nγz↑, nγz↓, U) (77)

= Gxy(Mxy, p, U) +Gγz(Mγz, p, U) (78)

But, the charge flow effect is again present and we need to neglect the dependence from p

to have 2 complete decoupled potential for the two effective bands.

G(nγz↑, nγz↓, nxy↑, nxy↓, U) ≈ Gxy(Mxy, p, U) +Gγz(Mγz, p, U) (79)

≈ Gxy(Mxy, U) +Gγz(Mγz, U) (80)
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Using these approximations, we can decouple the system but we lose important effects.

We will consider the full calculation having in mind that multiband effects plays a role

just throw the polarization p.

We will neglect the octahedral distortions present in multilayer ruthenates and will focus

on the xy band, supposed to be essential to understand the metamagnetic transition. If

we do not consider the octahedral distortions in Sr3Ru2O7, the xy DOS present a V HS

in the same point of the Sr2RuO4 [90]. In the distorted case, the hopping t100xy,xy decreases

and the V HS goes below the Fermi level changing the DOS. Following our model and

using the Stoner criterion, the dxy band must be ferromagnetic for

U > UStoner =
1

ρxy(εF , U = 0)
≈ 1.7 eV (81)

but two effects reduce this value: the charge flow and the first order transition. The

multiband effect make near the V HS to Fermi energy increasing ρxy(εF ) and the first

order transition appears at U smaller than UStoner. Considering the multiband effect, we

should obtain a second order transition at U ≈ 1.4 eV

Uρxy(εF , p(U)) = 1 =⇒ U ≈ 1.4 eV (82)

Instead, we will see a first order transition at lower U .

4.3 M(U) for ruthenates, role of Hubbard repulsion

In Chapter 2, we demonstrated that a jump in M(U) creates a smaller jump in the

M(h) for an example with a single band model. It is possible to demonstrate this in

general, but we do not show. In all the cases studied, we find a M(U) function strictly

increasing in the interesting regions as physically expected. We will have three phase:

the paramagnetic at low U , the metamagnetic before the transition and the ferromagnetic

phase. The calculation of the magnetic properties was never done before for realistic

model Sr3Ru2O7. We calculate theDOS from realistic model using the hopping parameter

derived in the Chapter 3. We analyse the properties of the pure phases and the properties

of the interfaces, studying the M(U) function.

4.3.1 Metamagnetic properties of pure phases

The DOS of Sr2RuO4 contains the two contributions of the dγz and dxy part. There is

a wider quasi-twodimensional xy, and two quasi-onedimensional bands of character γz.
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The V HS near the Fermi energy belongs to the partial DOS of the dxy band. The jump

in the magnetization happens when the Fermi level goes from one side to the other of the

V HS as we can see in Fig. 13 and Fig. 14. Since the hopping of the dxy bands out of

the plane are negligible, the Sr2RuO4 and Sr3Ru2O7 dxy bands are extremely similar in

tetragonal case, so, the two densities of state are not extremely different.

Now, we demonstrate that is the dxy to produce the metamagnetism. We analyse the

system as a function of the Coulomb repulsion. In particular, we analyse the behaviour of
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Figure 13: dxy DOS of pure phase of Sr2RuO4 at U=1.23. The ferromagnetic transition

happens at U=1.22. The Coulomb repulsion in mean field theory create a splitting of the

density of state between the majority (blue line) and minority (green line) spin. The V HS

create a jump in the magnetization.
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Figure 14: dxy DOS of pure phase Sr3Ru2O7 at U=1.23. The ferromagnetic transition

happens at U=1.22. The Coulomb repulsion in mean field theory create a splitting of the

density of state between the majority (blue line) and minority (green line) spin. The V HS

create a jump in the magnetization.
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Figure 15: Mxy(U) (solid line) and Mγz(U) (dashed line) for the Sr3Ru2O7 compound

(left panel). Schematic behaviour of the thermodynamic potential able to reproduce this

kind of jump in the magnetization.

the two magnetization degrees of freedom of the system Mxy(U) and Mγz(U) under the

symmetry constraint in self-consistent way.

In Fig. 15 (left panel), we compute the evolution of the magnetization degrees of freedom

as function of the Coulomb repulsion for the Sr3Ru2O7. We see that the dxy band produce

the first jump in the magnetization at critical value of Ucrit = 1.22 eV . The experimental

metamagnetic transition found in Sr3Ru2O7 can be associated to the first jump of M(U)

due to the dxy band. We showed in the Chapter 2, that the phase diagram can be separated

in three phase: the paramagnetic phase at low U , the metamagnetic phase at value smaller

than Ucrit, and the ferromagnetic phase at U > Ucrit. In the metamagnetic region we have

a nearly ferromagnetic metal, the system is paramagnetic at zero magnetic field and jumps

to the ferromagnetic minimum of the thermodynamic functional in applied magnetic field.

In Fig. 15 (right panel), we put a schematic view of the thermodynamic potential that

can create this kind of jump in the magnetization. We are not able to check how much

is bigger the metamagnetic region but it is present for a value of U arbitrarily near Ucrit.

If the value of U for Sr3Ru2O7 is around 1.20 eV , it is possible to have metamagnetic

transition in applied magnetic field. This value of U is in good agreement with other

values for not distorted ruthenates. It was found U=1.0 eV [91] and U=1.2 eV [92] for

the cubic structure of SrRuO3 by ab-initio technique. Other typical value used in the

literature for Sr2RuO4 are U = 1.2− 1.5 eV [93, 88, 89].

In Fig. 16 (left panel), we compute the evolution of the magnetization degrees of freedom

as function of the Coulomb repulsion for the Sr2RuO4. In Fig. 16 (right panel), we put

a schematic view of the thermodynamic potential that can create this kind of jump in
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Figure 16: Mxy(U) (solid line) and Mγz(U) (dashed line) for the Sr2RuO4 compound (left

panel). Schematic behaviour of the thermodynamic potential able to reproduce this kind

of jump in the magnetization.

the magnetization. The metamagnetism is not experimentally observed in Sr2RuO4. The

critical value of U for the Sr2RuO4 is Ucrit = 1.23 eV . There is a simple reason to explain

this incongruity: the octahedral rotations in multilayer ruthenates reduce the bandwidth

W increasing the ratio U
W in Sr3Ru2O7. The larger ratio U

W for Sr3Ru2O7 make possible

the metamagnetism. It is interesting to observe, that we can recover the particular case of

density of state of the one-dimensional tight binding studied in Chapter 2. The γz band is

extremely similar to one-dimensional tight binding. We can observe that Mγz goes from

a state with zero magnetization to a fully polarized state as expected. Using the formula:

Ucrit

t
= 2

2| sin((1− n)π)| − sin(2(1− n)π)

(1− n)2π
(83)

calculated in Chapter 2, we can estimate the critical value of U for the first-order transition

of the dγz band at filling n = 2
3 . We find Ucrit

t = 9
√
3

π . Now, we consider that the

bandwidth W 214
γz is approximatively 4t, than Ucrit ≈ W

Sr2RuO4
γz 9

√
3

4π = 1.8 eV . This is in

excellent agreement with our numerical result in Fig. 16 (left panel).

4.3.2 Magnetization at interface

We study the interface Sr2RuO4/Sr3Ru2O7 using the same technicality breaking the in-

variance along the c-axis. We use periodic boundary condition and the hopping of the

Sr2RuO4 bulk between the two phases to simulate the interfaces. The numerical simu-

lation has been performed for a system having a total volume of La × Lb × Lc with a

number of sites for each direction given by La = Lb = 140 and Lc = 32, 33 (depending

on the symmetry of the system). We have also modified the number of sites along the
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Figure 17: Mxy(U) (solid lines) and Mγz(U) (dashed lines) for the system

Sr2RuO4/Sr3Ru2O7. The blue curves represent the magnetization of the Sr3Ru2O7 host,

while the red curves represent the Sr2RuO4 impurity.
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Figure 18: Mxy(U) (solid lines) and Mγz(U) (dashed lines) for the system

Sr2RuO4/Sr3Ru2O7. The red curves represent the magnetization of the Sr2RuO4 host,

while the blue curves represent the Sr3Ru2O7 impurity.

c-axis to verify the dependence of the results by the boundary conditions. We study the

host Sr3Ru2O7 with an impurity of Sr2RuO4 and the host Sr2RuO4 with an impurity of

Sr3Ru2O7. The response of the impurity is not trivial. In both phases, the magnetization

jump at Ucrit = 1.22 eV differently from the pure phases. The Sr3Ru2O7 induce a jump

in the magnetization of Sr2RuO4 at Ucrit smaller than the value of the Sr2RuO4 bulk. We

can observe these results in Fig. 17 and 18. The system will have just one metamagnetic

transition at lower critical metamagnetic field. An only one metamagnetic transition it

is experimentally observed in some sample of Sr3Ru2O7 − Sr4Ru3O10 layered eutectic

crystal [94].
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Figure 19: Magnetization in the real space at U=1.23 eV as a function of the layer for the

Sr2RuO4/Sr3Ru2O7 system. Magnetization of Sr3Ru2O7 host with an impurity Sr2RuO4

(left panel) and viceversa (right panel).

In the pure phase, we have a homogenous magnetization. However, because of the in-

terface, the homogenous magnetization is not a self-consistent solution. The Sr3Ru2O7

host has a compact magnetic response as we can see in Fig. 19 (left panel), instead the

Sr2RuO4 host is strongly inhomogeneous as we can see in Fig. 19 (right panel). This is

due to the different hopping along the z-axis. The hopping intralayer in Sr3Ru2O7 is so

big, that second neighbour of the impurity can not see the impurity, so the response of the

Sr3Ru2O7 host to impurity is much more uniform and compact than the Sr2RuO4 host.

The metamagnetism need to a compact response to magnetic field, that is not possible

in Sr2RuO4 compound if it is not extremely pure. The results in Fig. 19 can not be

related to the change of the DOS calculated in Chapter 3 at U = 0, because we have the

Coulomb repulsion U that changes the polarization. The main influence of the host on

the impurity is a change of the polarization. We find that the polarization p in Sr2RuO4

locally decreases near the interface. Because this, the Sr2RuO4 DOS increases in some

region creating domain with higher magnetization respect to the bulk (right panel of Fig.

19).

4.4 Conclusions

We used ab-initio hopping parameters to make the density of state for tetragonal Sr2RuO4

and Sr3Ru2O7. We show that both the systems can present metamagnetism. The possibil-

ity to have or to do not have metamagnetism critically depends from the Hubbard U . The

purity of the sample Sr2RuO4 must be higher than the purity of Sr2RuO4 to, eventually

have metamagnetism. The metamagnetic transition of the system Sr2RuO4/Sr3Ru2O7
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can present quantitative differences from the pure phase behaviour, in particular, we find

one metamagnetic crossover in this heterostructure. Finally, we comment that, although

we have captured many of the qualitative features observed in multi-layer ruthenates, our

model remains a relatively crude simplification. Here we have neglected several aspects,

including spin-orbit coupling and rotation effects, which undoubtedly have a certain role

in real materials. One of the most important questions concerns the effects of spin fluc-

tuations, which are neglected within the mean field approximation. In the mean field

approximation, there is no dependence from dispersion relation and from the shape of

Fermi surface. The only important issue is the DOS and its derivatives at Fermi level.

To overcome these simplifications, we can compute M(U) ab-initio for the Sr2RuO4 and

the Sr3Ru2O7 compound tuning the octahedral distortion to improve the understanding

of the phenomena.
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5 Ab-initio study of the interface properties Sr2RuO4/Sr3Ru2O7

We study the fermiology of Sr2RuO4 and Sr3Ru2O7 from first principles: comparison,

main features and a detailed analysis of the low-energy physics are performed. We show

that the rotations in Sr3Ru2O7 strongly reduce the first-neighbour hopping parameter be-

tween the dxy orbitals, making near the Van Hove singularity to the Fermi level. Effect

of the octahedral rotation and dimensionality are analyzed studying ab-initio the interface

ruthenate Sr2RuO4/Sr3Ru2O7. The geometrical rearrangement and the modification of the

atomic bonds at the interface are shown.

5.1 Introduction

In recent years a lot of attention has been devoted to the study of interfaces made by

transition metal oxides. The interest toward this topic is related to the fact that they

offer a unique opportunity to test the interplay between many different electronic degrees

of freedom. These interactions may produces several forms of symmetry breaking phases

leading to novel and unexpected phenomena. Furthermore, the reduced dimensionality

of the heterostructure may enhance the electronic correlations against the kinetic energy

giving rise to novel effects that cannot be observed in bulk systems.

On the other hand, the possibility of synthesizing eutectic systems may open new routes to

test the robustness of the ordered phases of the bulk components at the nanoscale, offering

the occasion to check if the hybrid materials exhibits distinct properties from those of the

pure bulk constituents. In this respect, the recently eutectically grown mixed ruthenate

oxides represent a natural chance to address this issue. Indeed, ruthenate oxides of the

Ruddlesden-Popper series (RP), given by the formula Srn+1RunO3n+1, display remarkable

unconventional properties. Indeed, the n = 1 member of the series, i. e. Sr2RuO4 is a

superconducting copper-free metal oxide showing an odd-parity spin-triplet pairing. The

n = 2 member, Sr3Ru2O7, exhibits unconventional magnetic properties being an enhanced

Pauli paramagnet undergoing, at low temperatures, in anisotropic metamagnetic state.

Sr4Ru3O10, the n = 3 member of the RP shows ferro- or metamagnetic behavior depending

on the direction of the applied magnetic field. Finally, the n =∞ member SrRuO3 is an

isotropic ferromagnetic metal.

On the experimental side, it has been shown that the eutectic phase made by single-

crystalline islands of pure Ru metal embedded in a single-crystal matrix of Sr2RuO4, the
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so called 3 Kelvin phase, reveals an onset of superconductivity at a temperature twice the

critical temperature of pure oxide. The synthesis of Sr2RuO4/Sr3Ru2O7 eutectic samples

allows to shown that this system exhibits unusual magnetic behavior as well as unconven-

tional transport response. Surprisingly, susceptibility measurements on Sr3Ru2O7 regions

cut from the eutectic crystal, show an almost complete superconducting screening fraction.

Nevertheless, the origin and the nature of the superconducting state in this eutectic com-

pound is still an open question. Finally, it is worth mentioning that Sr4Ru3O10/Sr3Ru2O7

eutectic crystals have been successfully grown. [55] The properties of this material are not

simply the sum of the two constituents. Indeed, in samples with a majority of the n = 2

RP member with respect to the n = 3, the system is ferromagnetic with magnetization

along the c-axis and a single metamagnetic transition is observed at a critical magnetic

field that is smaller to that obtained in the pure Sr3Ru2O7 but greater than that in the

Sr4Ru3O10. [56]

However, very little theoretical results are until now available. Namely, for the 3 Kelvin

phase a phenomenological theory has been proposed, whereas for the other eutectic com-

binations we may mention only the study devoted to the modification of the electronic

structure induced by nanometric inclusions of Sr2RuO4 embedded as c-axis stacking fault

in Sr3Ru2O7. Here, we try to fill part of this gap proposing an ab-initio study of the

Sr2RuO4/Sr3Ru2O7 hybrid structures. We firstly study the electronic structure and

the Fermi surface of the pure Sr2RuO4 and Sr3Ru2O7 phases by using density func-

tional theory (DFT). We remind that Sr2RuO4 has space group I4/mmm, whereas, due

the rotations of the octahedra, Sr3Ru2O7 presents an orthorombic symmetry of space

group Pban. To study the heterostructure, we perform the full relaxation of the bulk

Sr2RuO4 and Sr3Ru2O7 phases, in such a way to construct the supercell of the hybrid

Sr2RuO4/Sr3Ru2O7 system. However, we would like noticing that standard DFT func-

tionals overestimate the volume producing unacceptable ratio between c- and a- axis. [95]

We find the same problem for these ruthenate oxides, especially for the Sr3Ru2O7 phase.

Thus, since we need accurate lattice constants in the study of the supercell made by these

two RP members, we will use the exchange-correlation of Wu and Cohen, [96], a variant of

generalized gradient approximation by Perdew et al (PBE) [97] method optimized for the

relaxation of bulk systems. Referring to the estimated quantities, we have analyzed the

low energy physics of the system calculating the hopping parameters and the modifica-

tion of the location of van Hove singularity, which is related to the first-neighbor hopping

between two orbitals dxy.

The present chapter is organized as follows: In paragraph 2 we present some details

concerning the numerical calculations, and in paragraph 3 we deal with the analysis of the

achieved results, while the conclusions are reported in paragraph 4.
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5.2 Computational details

We perform unpolarized first-principles density functional theory calculations [6] using

the plane wave ABINIT package [9], the generalized gradient approximation (GGA)

exchange-correlation functional of Wu and Cohen [96], and ultrasoft pseudopotentials

[98]. We use a plane-wave energy cut-off of 80 Ry and a cold smearing of 0.045 Ry.

These values for the plane-wave cutoff and the smearing are used in all calculations.

As reported in the Introduction, we have firstly performed the calculation of the energy

spectra for pure Sr2RuO4 and Sr3Ru2O7 phases. Although, similar computations have

already been realized, we have calculated these quantities to compare our results with

the available data. In this way, we are confident that the results we will present for the

hybrid structure correctly reproduce those for pure phases. An 8 × 8 × 8 k-point grid

is used for Sr2RuO4, while a 8 × 8 × 2 grid used for Sr3Ru2O7 for the full relaxation.

Furthermore, the Sr2RuO4/Sr3Ru2O7 hybrid structures are studied with a 4 × 4 × 1 k-

point grid. We optimized the internal degrees of freedom by minimizing the total energy

to be less than 10−8 Hartree and the remaining forces to be less than 10−4 Hartree/Bohr,

and we require the external pressure to be less than 0.05 GPa to obtain the full relaxation

of the system. Finally, to extract the character of the electronic bands at the Fermi level,

we use the Slater-Koster interpolation scheme based on the maximally-localized Wannier

functions method. [11] The k-point grid used for the Slater-Koster interpolation scheme is

the same of the self-consistence for the bulk method, while a grid 10× 10× 1 is used for

the heterostructures.

5.3 Results

We study the electronic structure and the Fermi surface of the Sr2RuO4 and Sr3Ru2O7 bulk

phases by using density functional theory. We performed the full relaxation of the bulk

Sr2RuO4 and Sr3Ru2O7 to construct the supercell of the heterostructure Sr2RuO4/Sr3Ru2O7.

We compare the results at experimental atomic positions with the system after the full

relaxation. Finally, we study the heterostructures with fully relaxed atomic positions and

the electronic reconstruction at the interface.
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Figure 20: GGA (green line) and t2g (red line) band structure of Sr2RuO4. The eg levels

are 1 eV above the Fermi level. The Fermi level is set to zero.

5.3.1 Bulk Sr2RuO4 phase

The electronic structure of Sr2RuO4 has been already studied by several authors by means

of DFT in local density approximation (LDA) or GGA. [30, 31, 36] The tetravalent Ru has

four electrons in the 4d shell; the quasi-cubic crystal field splits the d levels into three-fold

degenerate t2g and two-fold degenerate eg states. At Fermi level, four electrons belong to

t2g bands, while eg bands are empty being higher in energy. DFT calculations show that

the three t2g bands can be divided in a wider quasi-two-dimensional xy, and two quasi-

one-dimensional bands of γz character. While the first band slight hybridizes with the

other bands, the two bands xz and yz strongly hybridize between them, and the resulting

bands are called α and β bands, whereas the band with strong character xy is called γ

band. The flatness of the band structure at M point, shown in Fig. 20, produces a van

Hove singularity (VHS) in the density of states (DOS) above the Fermi level. We have also

calculated the maximally localized Wannier functions (MLWF) starting from the initial

wave functions t2g, finding that MLWF are coincident with the t2g wave functions. The

Fermi surface is displayed in Fig. 21, where it is shown that one sheet is hole-like (α)

and the other two sheets, γ and β sheets, are electron-like. We notice that the γ sheet

is nearly cylindrical in shape, and because the VHS is above the Fermi level, this sheet

is electron-like. We have finally computed the hopping parameters, and reporting them

in Table1. We want to emphasize that the hopping t100xy,xy is -0.3867 eV. This hopping is

roughly proportional to the distance between the VHS from the bottom of the 3d band.

If this hopping decreases, then the VHS goes towards the Fermi level.
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Figure 21: Fermi surface of Sr2RuO4. Three sheets are observed, and the small dispersion

along the c-axis makes the system quasi-two-dimensional.
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Figure 22: GGA (green line) and t2g (red line) band structure of Sr3Ru2O7. The eg levels

are 1 eV above the Fermi level. In this case, the position of the VHS is located at half of

long direction Z-Γ (X point). The Fermi level is set to zero.

5.3.2 Bulk Sr3Ru2O7 phase

We have performed a detailed analysis of the electronic structure of the bilayer Sr3Ru2O7

for the case of fully distorted orthorhombic configuration. [99] To understand the charac-

ter of the band at low energy, we have used the Slater-Koster interpolation scheme. As

for the Sr2RuO4 case, the low energy physics is produced by the t2g electrons, while the

eg electrons are again 1 eV higher in energy, as plotted in Fig. 22. The analysis of the

band structure in Fig. 23 close to the Fermi level reveals a complex Fermi surface with

multiple sheets having electron- and hole-like character. We notice that the topology and

the volume of the Fermi surfaces here obtained are in good agreement with the recent

high resolution experimental measurements obtained by means of angle-resolved photoe-

mission. [40] In tetragonal environment, without rotation, the MLWF coincide with the t2g

bands when the Sr2RuO4 is considered. However, the MLWF of Sr3Ru2O7 are different:



61

Table 3: Hopping integrals along the direction [lmn] and on-site energy in eV associated

to the three orbitals of the t2g sector of the bulk Sr3Ru2O7 in the t2g basis. The unit is eV.

In the MLWF basis, the hopping parameters differ at most of 0.001 eV. The connecting

vector is expressed in terms of the integer set [l mn] and the lattice constants a and c as

d = l ax +may + n c z [9, 60, 11]. The direction 00d connect the two ruthenium atoms

of the same cell. The hopping parameters that are zero in the tetragonal phase have sign

dependent from the rotation (clockwise or anticlockwise). The hopping parameters t
1
2

1
2

1
2

can have different connections: depending from the rotations of the two octahedra the

hopping parameter can increase, decrease or be similar to the hopping of Sr2RuO4.

orbital index amplitude

[l mn] [000] [100] [010] [110] [200] [020] [ 12
1
2

1
2 ] [00d]

xy-xy -0.482 -0.292 -0.292 -0.134 -0.021 -0.021 0.002/0.001 -0.018

yz-xy 0 ±0.010 ±0.010 ±0.001 ±0.002 ±0.006 0.006/0.005/0.004 0

xz-yz 0 ±0.010 ±0.010 ±0.001 ±0.006 ±0.002 0.006/0.005/0.004 0

yz-yz -0.386 -0.020 -0.301 0.014 0.002 0.041 -0.023/-0.018/-0.014 -0.264

yz-xz 0 ±0.061 ±0.061 -0.013 ±0.007 ±0.007 -0.024/-0.015/-0.006 0

xz-xz -0.386 -0.301 -0.020 0.014 0.041 0.002 -0.023/-0.018/-0.014 -0.264

the rotation of the octahedra strongly modifies the dxy orbital as it can be checked looking

at Table 3. Moreover, the hopping t100xy,xy get smaller and VHS goes below the Fermi level.

We have also analyzed the electronic charge associated with any band, and we find that,

at Fermi level, the self-consistent charge of the band that originally has a dxy character,

tends to become similar to the dx2−y2 charge just at Γ point where the hybridization is

stronger.

This result allows to explain why many authors find appreciable weight of eg electrons [90,

40], although no eg bands are located near the Fermi level. Besides, the small hybridiza-

tion at Fermi level generates the pocket at Γ point. The effective Wannier interpolation

reproduces very well the low-energy regime, as we can see from Fig. 22, but the MLWF are

not aligned along the cartesian axes, but they show a small tilting following the distortion

of the orthorhombic structure. We point out that these conclusions are fully in agreement

with the result of [100].
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Figure 23: Fermi surface of Sr3Ru2O7. The Γ point is at centre of the picture. The V HS

is in X, along the direction Ru-Ru as in Sr2RuO4.

5.3.3 Sr2RuO4-Sr3Ru2O7hybrid structures

Here, we discuss the structural and electronic properties of heterostructures made by

Sr2RuO4 and Sr3Ru2O7. We will investigate two configurations: the het42 arrangement

composed by four Sr2RuO4 and two Sr3Ru2O7 cells, and het33 one composed by three

Sr2RuO4 and three Sr3Ru2O7cells.

As first outcome, we have compared the experimental lattice constants of the pure bulk

phases with the ones obtained by the full relaxation of the pure phases, het42 and het33 ;

the results are reported in Table 4. Let us consider the Sr2RuO4. Although we find a good

agreement between our results on pure phases with experimental results, we mention that

the in-plane lattice constant a we get is shorter than the available experimental value,

whereas the experimental value for the c axis is larger than the value obtained in our

calculations. Nevertheless, the computed volume is ∼0.7% larger than the experimental

one, so we are confident that the discrepancy between experimental lattice constants and

theoretical ones will not affect our conclusions. For completeness, we would like to point

out that the volume obtained using PBE is ∼1% larger than experimental value. [101]

When the Sr3Ru2O7 is considered, we find out that a lattice constant almost coincides

with the experimental value, while the experimental c lattice constant is slightly lower

than the numerical value. Also in this case, the theoretical volume is ∼0.7% larger than

the experimental one. When the het42 and het33 configurations are considered, we find
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that for het42 hybrid a lattice constant is comparable with the theoretical value obtained

for pure Sr2RuO4, while for het33, where the number of Sr3Ru2O7 cells is increased, a

gets reduced if compared to the theoretical values obtained for the pure Sr2RuO4 and

Sr3Ru2O7.

Then, we have looked at ∆z, the displacement along the c-axis of the Ru atom respect

to the planar oxygens, and at the Ru-O-Ru bond angle. The results are summarized in

Table 5. From these data we infer two different trends for ∆z in Sr2RuO4and Sr3Ru2O7.

Indeed, as far as ∆z for Sr2RuO4 is considered, we see that in the bulk of both the

hybrid het42 and het33 structures this quantity is zero, i. e. there is no variation of

the displacement of Ru-O planar atoms compared to the pure phase. Consequently, no

significant variation of the Ru-O-Ru bond angle is appreciated. On the other hand, at

the interface a small ∆z is produced, ∆z being larger for richest Sr2RuO4 heterostructure

het42. Concerning the Sr3Ru2O7, a different behavior is observed: because of the different

symmetry a displacement ∆z is present also in the bulk. We deduced at the interface as

well as in the bulk of both the hybrid structures a change of this ∆z. This effect may

have important consequences when the ordering of the bare energy levels of Sr3Ru2O7 is

investigated. We suggest that crystal field is slightly altered by this effect thus producing

a rearrangement of the energy ordering of the bare t2g-bands, with potentially relevant

physical consequences. Indeed, crystal field effects, associated with the elongation of the

RuO6 octahedra will tend to stabilize ferromagnetic spin configurations. Since the energy

of xz and yz orbitals is higher than the energy of xy orbital, and if the Coulomb repulsion

is larger than the energy splitting between xz and yz orbitals and yz orbital, to fill these

bands, one would occupy first the lower energy band and put the other hole in one of

the two degenerate xz and yz bands. In this case there is a gain in the kinetic energy if

the holes on the neighbor site have the same spin of the hole moving. This configuration

may induce the spins of neighbor sites to be fluctuating in amplitude and in phase, and

the net effect may be the appearance of ferromagnetic fluctuations that would be more

pronounced for the electrons in the xy band, while the orbital degeneracy for the xz and

yz bands would give rise to a kind of frustration in the spin sector reducing the strength

of the ferromagnetic correlations.

Furthermore, we argue that this modification of bond angle may modify the hopping

parameters, affecting the position of VHS in the Sr3Ru2O7 and in the Sr2RuO4 making

it near the Fermi level. We note that, if suitably located, the VHS may make larger

the DOS near the Fermi level at the interface, influencing the electronic response of the

hybrid structures. This conjecture has been tested, and in Fig. 24 we have plotted the

band structure for the Sr3Ru2O7 phases. To better understand the behavior of the VHS,

we summarize what we get concerning this singularity in bulk Sr2RuO4 and Sr3Ru2O7.
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Figure 24: Magnification of the band structure for the Sr3Ru2O7 bulk (green line) and

Sr3Ru2O7 interfaces (red line) for the het33 case. The VHS goes towards the Fermi level

because of the different rotation at Fermi level.

Table 4: Comparison of lattice constant between the experimental measurements and the

theoretical results. The unit is angstrom.

Exp. Sr2RuO4 [59] Th. Sr2RuO4 Exp. Sr3Ru2O7 [99] Th. Sr3Ru2O7 (Sr2RuO4)4(Sr3Ru2O7)2 (Sr2RuO4)3(Sr3Ru2O7)3

a 3.862 3.887 3.873 3.872 3.881 3.869

c 12.723 12.650 20.796 20.968 46.234 50.554

The theory does not catch the Ru-O-Ru angle in Sr3Ru2O7, for this reason the VHS is

located 150 meV below the Fermi level (experimentally is 7 meV below the Fermi level),

whereas in Sr2RuO4 the singularity is 30 meV above the Fermi level (experimentally is 57

meV above the Fermi level). When the interface is concerned, we find that the VHS in

both Sr2RuO4 and Sr3Ru2O7 moves towards the Fermi level. This effect is easily explained

considering that in Sr2RuO4 there is a displacement along z axis without any rotation of

the RuO6 octahedra that, in turn, produces a reduction of the hopping parameter between

xy orbitals. The final effect is that the energy position of the VHS shifts at lower energy.

The opposite behavior happens for Sr3Ru2O7: in this case the entity of the rotation is

less than the previous case so that the energy position of the VHS increases approaching

the Fermi level. Also in this case, our assumption is supported by the xy-xy hopping

parameter at the interface which is larger than the same parameter in the bulk case.

Now, considering the change of the atomic bonds above discussed, we show in Fig. 25

how Sr2RuO4 and Sr3Ru2O7 rearrange at the interface, along the c-axis. The figure
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Table 5: Measure of the Ru-O-Ru bond angles and displacement of Ru in the several case

studied. At the interface, the modification of the Ru-O-Ru bond angle in Sr2RuO4 it is

due to the Ru displacement along the c-axis, no rotations are found.

Exp. [59, 99] Th. Bulk Bulk het42 Interface het42 Bulk het33 Interface het33

∆z in Sr2RuO4 0 0 0 0.008 0 0.007

∆z in Sr3Ru2O7 0.017 0.033 0.032 0.039 0.030 0.037

Ru-O-Ru bond angle in Sr2RuO4 180.0◦ 180.0◦ 180.0◦ 179.5◦ 180.0◦ 179.6◦

Ru-O-Ru bond angle in Sr3Ru2O7 163.9◦ 158.1◦ 158.6◦ 158.8◦ 157.4◦ 157.5◦

Figure 25: Schematic view of the atomic rearrangement at the interface

Sr2RuO4/Sr3Ru2O7. The arrows indicate the most relevant displacements respect to the

bulk positions at the interface. The different geometrical configuration of the Sr-O plane

is shown (green line). This is more flat for Sr3Ru2O7, while there is a greater difference

between the Sr and the O atom along the c-axis in Sr2RuO4.

clearly suggests that all the positive charges move in the direction of Sr2RuO4, while the

negative ones go in the direction of Sr3Ru2O7; the net effect is the emergence of an electric

dipole moment. Besides, the creation of a dipole moment in the Sr3Ru2O7 phase of the

heterostrucuture, induce a small dipole moment in the first layer of Sr2RuO4. Nevertheless,

we point out that this static electric dipole moment is washed out by the itinerancy of

conduction electrons that produces a screening of the electrostatic field compensating this

effect.
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Figure 26: Notation about the atoms. We have three inequivalent oxygen atoms and two

inequivalent strontium atoms. We call it: the planar oxygen Opl, the apical oxygen Oap,

the intralayer oxygen Oin, the intralayer strontium Srin and the strontium Sr. Srin and

Oin are present only in Sr3Ru2O7 .

Finally, we present all the non-equivalent distances in the heterostructure compared with

the bulk properties in Table 6. We have used the notation of Fig. 26 to collect the data of

the geometrical rearrangement of the Sr, Ru and O atoms near and far from the interface,

for both the heterostructures considered. For comparison, in the same Table we also report

the experimental and the theoretical distances for pure phases (the first two columns).

Two bonds are strongly modified at the interface:

1. the distance between the ruthenium and the apical oxygen

2. the distance between the Sr atom and the apical oxygen along the c-axis

Other in plane modifications are smaller. In the first case, the distance becomes greater in

Sr2RuO4 and smaller in Sr3Ru2O7. In the second case, the distance between the Sr2RuO4
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Table 6: Inequivalent atomic bonds in ruthenates for the several concentrations studied.

The main difference between the bulk and the interface are the distances Ru-Oap and

Sr-Oap along the c-axis.

Exp. [59, 99] Th. Bulk Bulk het42 Interface het42 Bulk het33 Interface het33

Sr-OSr2RuO4
ap along c 2.429 2.433 2.433 2.423 2.431 2.416

Sr-OSr3Ru2O7
ap along c 2.452 2.449 2.455 2.472 2.447 2.469

Sr-Oap in Sr2RuO4 in ab 2.738 2.757 2.757 2.758 2.745 2.747

Sr-Oap in Sr3Ru2O7 in ab 2.744 2.743 2.755 2.755 2.739 2.740

Sr-Opl in Sr2RuO4 2.688 2.670 2.671 2.673 2.676 2.675

Sr-Opl in Sr3Ru2O7 2.506/2.896 2.473/3.002 2.478/2.997 2.480/2.997 2.470/3.015 2.473/3.017

Srin-Oin 2.738 2.738 2.747 2.747 2.737 2.736

Srin-Opl 2.607/2.986 2.548/3.064 2.556/3.062 2.553/3.055 2.545/3.074 2.543/3.068

Ru-Oap in Sr2RuO4 2.062 2.059 2.059 2.069 2.068 2.076

Ru-Oap in Sr3Ru2O7 2.038 2.059 2.058 2.050 2.063 2.056

Ru-Opl in Sr2RuO4 1.931 1.943 1.943 1.943 1.934 1.934

Ru-Opl in Sr3Ru2O7 1.956 1.972 1.977 1.977 1.973 1.972

Ru-Oin 2.026 2.045 2.043 2.045 2.049 2.052

oxygen and the Sr3Ru2O7 strontium decreases, while the opposite happens between the

Sr3Ru2O7 oxygen and the Sr2RuO4 strontium.

5.4 Conclusions

The pure phase Sr3Ru2O7 does not present eg bands at Fermi level, the rotations push

the V HS below the Fermi level. We performed a full relaxation of the heterostructure

Sr2RuO4/Sr3Ru2O7 at two different concentrations comparing it with the bulk phases.

At both concentrations of the heterostructure, we find a modification of the geometrical

position of the atoms. These effects are in the nearest layers at interfaces, while are negli-

gible in the bulk side of the heterostructures. One of the major effects is a displacement of

the Ru atoms. This displacement changes the Ru-O-Ru angle in Sr2RuO4. Moreover, the

rotation of the Sr3Ru2O7 octahedron is slight reduced at interface. These effects strongly

modify the position of the V HS in both compounds. We find that the VHS for both

phases go towards the Fermi level.
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6 First principles study of KCrF3

We study the tetragonal-monoclinic structural transition in the compound KCrF3. We

present the electronic structure and the volume relaxation study for the KCrF3 in the two

different crystalline phases. Following the usual definition of the orbital | θ >= cos θ
2 |3z

2−
1⟩ + sin θ

2 |x
2 − y2⟩, the calculation of the eg orbital gives θ = 110.5◦ for the tetragonal

structure. For the monoclinic phase, we find θ = 120.9◦ and 102.2◦ for the two types of

octahedron. We discuss similarities with KCuF3 and LaMnO3 in the orbital.

6.1 Introduction

The discovery of the colossal magnetoresistance effect in doped manganites caused a surge

of interest in these perovskite oxides especially due to their potential technological appli-

cations. The particular properties of the colossal magnetoresistance materials derive from

the intriguing physics of undoped parent compound LaMnO3 [102]. The presence of strong

electronic correlations and an orbital degree of freedom, to which the Jan-Teller effect is

directly related, gives rise to a rich phase diagram in function of the doping displaying

an incredible number of spin, charge, orbital and magnetically ordered phases [1]. KCrF3

is an insulator that exhibits a cooperative Jahn-Teller distortion [103]. It is similar to

LaMnO3 for its structural, electronic and magnetic properties because in the high spin

configuration Cr2+ is electronically equivalent to Mn3+. Both are tetravalent. At tem-

peratures higher than 973 K, KCrF3 is cubic, at temperatures between 973 and 250 K it

is tetragonal, and finally, at temperatures lower than 250 K it is monoclinic. We report

in Table 7 the values of the lattice constant for the tetragonal and monoclinic crystalline

structure. In this chapter, we perform ab-initio calculations to describe the structural,

electronic and magnetic properties of KCrF3. In the following, we present the crystal and

the magnetic structures from the experimental data in paragraph 2. In paragraph 3, we

expose the computational detail for the ab-initio calculations. In paragraph 4, we show

the ab-initio calculations fixing the volume and in paragraph 5 we perform the relaxation

of the system in all its structural and magnetic phases.
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Table 7: We report crystal structure data for KCrF3 at different temperatures. This

system has bigger volume than KCuF3. In this table we report lattice constants a,b and

c, the γ angle between the direct vector lattice a and b and the temperature at which the

measurement is taken. The volume per unit formula is given by V = (abc sin γ)
4 . The units

are angstrom, Kelvin and degree.

Crystalline structure Parameters

a(Å) b(Å) c(Å) T(K) γ(deg) V(Å3)

Tetragonal [104] 6.0464 6.0464 8.0230 300 90 73.3300

Tetragonal [105] 6.05230 6.05230 8.02198 room 90 73.4625

Monoclinic [104] 5.8069 5.8137 8.5871 10 93.671 72.3250

Monoclinic [105] 5.82642 5.83517 8.57547 150 93.686 72.7375

Figure 27: (a) The normal mode Q2 (Q2 > 0). (b) The normal mode Q3 (Q3 < 0). Q2

and Q3 are given by Q2=
1√
2
(X1-X4-Y2+Y5) and Q3=

1√
6
(2Z3-2Z6-X1+X4-Y2+Y5) where

X, Y , and Z are the coordinates of the surrounding oxygens with the subscript specifying

the atoms as shown in the figure.

6.2 Crystal structures and magnetism

The structural changes from the cubic to the tetragonal structure can be described in terms

of Q3-type tetragonal compression and a Q2-type Jahn-Teller distortion, which create a

long (l) and a short (s) bond Cr-F in the ab plane (with l=2.300 Å and s=1.975 Å at

300 K [104] ) as we can see in Fig. 27. These are the only distortions in the tetragonal

phase and are analogue to the LaMnO3 distortion [106]. The tetragonal structure is always

paramagnetic. At T = 0, the hypothetical tetragonal structure would be antiferromagnetic

with A-type order like in Fig. 28. Below 250 K, KCrF3 exhibits a phase transition to

a monoclinic structure, characterized by a pronounced tilting of the CrF6 octahedra. In

the monoclinic phase, the structure is drastically different from the tetragonal one: sites

1 and sites 2 became inequivalent (Fig. 29) and all the distances Cr-F are inequivalent,
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Figure 28: Antiferromagnetic A-type tetragonal crystal structure. Cr is in the centre

of F octahedra enclosed in a K cage. All Cr are equivalent, site 1 and 2 are related by

relation x←→ y. For this reason we call it type-1 octahedron and type-2 octahedron. The

pseudocubic axes are defined as xT = (aT + bT )/2, yT = (−aT + bT )/2 and zT = cT /2.

The pseudocubic axes connect first-neighbour Cr. For the type-1 octahedron the long

(short) bond is along xT (yT ) direction. The red arrows represent the spins. KCrF3 is

tetragonal between 250 and 973 K.

as we can see in Table 8. The octahedra CrF6 are rotated in the ab plane, and the

distance Cr-F along the c-axis (or xM axis) is different between the two octahedra. The K

atoms are not in the high symmetry position as in the tetragonal case, but are displaced

along the c-axis by 0.026 Å. We define different pseudocubic axis basis to compare the

tetragonal and monoclinic structure. The monoclinic structure shows alternating short

and long bonds occurring in the plane defined by xM and yM . The direction of xM is the

direction of the spins in the magnetic phase (below 79.5 K). In the tetragonal case the

modules of the pseudocubic axis are |xT | = |yT |>|zT |, and in the monoclinic case they

are |xM |∼=|yM |>|zM |. With decreasing temperature, four magnetic phase transitions are

observed at 79.5, 45.8, 9.5, and 3.2 K. Below TN=79.5 K, the Cr2+ moment orders in an

incommensurate antiferromagnetic arrangement, which can be defined by the magnetic

propagation vector (1/2 ± δ, 1/2 ± δ, 0). The incommensurate-commensurate magnetic

transition occurs at 45.8 K and the magnetic propagation vector locks into (1/2, 1/2, 0)

with the Cr moment of 3.34 µB. The two transitions below 10 K are due to the spin-orbit

coupling effect [104]. We will use the experimental atomic positions of the article [104] in

the next sections. The measurements are taken at T=300 K for the tetragonal case and

T=10 K for the monoclinic case.
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Figure 29: Antiferromagnetic A-type monoclinic crystal structure. Cr is in the centre of

F octahedra enclosed in a K cage. Cr in the octahedron 1 is not equivalent to Cr in the

octahedron 2. The pseudocubic axes are defined as xM = cM/2, yM = (aM − bM )/2

and zM = (aM + bM )/2 . For the octahedron 1 the long (short) bond is along xM (yM )

direction. The red arrows represent the spins, the direction of the spin-axis should be along

the xM vector but we plot it in this way for better visualization. KCrF3 is monoclinic

below 250 K.

Table 8: We report the distance Cr-F (dlmn) and the volume of the octahedra Voct for each

type [104]. The unit is angstrom. l,m and n are the coefficient of the connecting vectorT =

lxT+myT+nzT for the tetragonal case orT ∼ lxM+myM+nzM for the monoclinic phase.

The direction of these vectors is the direction of the Cr-Cr bond. This direction coincides

with the Cr-F direction in the tetragonal phase, but it is approximatively coincident in

the monoclinic phase because of the tilt.

d100(Å) d010(Å) d001(Å) Voct(Å
3)

Tetr. type-1 octahedron 2.300 1.975 2.006 12.151

Tetr. type-2 octahedron 1.975 2.300 2.006 12.151

Monoc. type-1 octahedron 2.319 2.000 1.975 12.218

Monoc. type-2 octahedron 1.975 2.278 2.046 12.271

6.3 Computational details: DFT , PAW and LSDA+ U

We perform unpolarized and spin-polarized first-principles DFT calculations [6] using the

GGA exchange-correlation functional of Perdew, Burke, and Ernzerhof [97]. Moreover,

we use LSDA and LSDA + U [107, 108] approach for the volume relaxation technique.

There are many extensions and simplifications of LSDA + U , but we use the rotational

invariant approach proposed by Liechtenstein [109] implemented in the Vienna ab-initio

simulation package (V ASP ) [10] . We use a plane-wave energy cut-off of 600 eV to avoid
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Pulay stress and a k-point grid of 8× 8× 6 for the relaxation of magnetic supercells with

20 atoms. We fix the volume and optimize the internal degree of freedom by minimizing

the total energy are less than 5 ∗ 10−3 eV and the remaining forces are less than 9 ∗ 10−3

eV/Å. We scan the volume to calculate the energy vs. volume curve.

Calculations of hopping parameters are made with PAW code ABINIT [110, 60, 111]

computing the overlap operator for Wannier90 [11] interface using a 8× 8× 8 k-point grid

centered on the Γ point.

In all calculations, we find that the band structure obtained using V ASP match very well

to the ABINIT band structure. In Fig. 30 and 31 we show the band structure for the non

magnetic case. We can see that they match very well near the Fermi level but the V ASP

bandwidth is 3-4% larger than the ABINIT bandwidth when we are far from the Fermi

level. The bandwidth of t2g is around 1.0 eV, the bandwidth of t2g is around 2.2-2.3 eV

and the total bandwidth for d electron is around 3.0 eV. Small difference can be observed

between the monoclinic and the tetragonal phase. In both approaches, we have that the

total bandwidth Wd and the bandwidth of the eg Weg became smaller in the monoclinic

case. Instead, the bandwidth Wt2g becomes bigger in the monoclinic case.

Using ABINIT , we find that the bandwidths of the tetragonal phase are Wd ≈ 2.96,

Wt2g ≈ 0.99 and Weg ≈ 2.28 while the bandwidths of the monoclinic phase are Wd ≈ 2.86,

Wt2g ≈ 1.03 and Weg ≈ 2.22. Using V ASP , we have that the bandwidths of the tetragonal

phase areWd ≈ 3.00, Wt2g ≈ 0.98 andWeg ≈ 2.27, while, the bandwidths of the monoclinic

phase are Wd ≈ 2.92, Wt2g ≈ 1.07 and Weg ≈ 2.24.

Since the γ angle is slightly different by 90◦ and because the lattice constants a ≈ b,

the two Brillouin zones for the tetragonal and monoclinic phase are not so different. We

choose k-point path in the band structures similar for the two phases.

6.4 Ground state, orbital order and magnetic properties

We use the pseudocubic axis as reference system to compare the properties of the two

phases. We use the notation of the article [112]

| θ >= cos
θ

2
|3z2 − 1⟩+ sin

θ

2
|x2 − y2⟩ (84)

to calculate the orbital. After performing self-consistent calculations within LSDA + U

approach, we use the occupation matrix to obtain orbital parameters using (84). The
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Figure 30: Comparison between V ASP band structure (green) and ABINIT band struc-

ture (red) in the tetragonal (up) and monoclinic (down) phase in LDA calculations near

the Fermi level. The Fermi level is set at zero.

occupation matrix calculated by V ASP on the basis of the real atomic basis set is the

following for LSDA+ U in the monoclinic phase:

n↑
occ =



0.9142 0.0000 0.0024 0.0000 −0.2380
0.0000 0.9599 0.0000 −0.0002 0.0000

0.0024 0.0000 0.9654 0.0000 0.0084

0.0000 −0.0002 0.0000 0.9599 0.0000

−0.2380 0.0000 0.0084 0.0000 0.2111


(85)

n↓
occ =



0.0301 0.0000 0.0003 0.0000 0.0238

0.0000 0.0136 0.0000 −0.0002 0.0000

0.0003 0.0000 0.0375 0.0000 0.0003

0.0000 −0.0002 0.0000 0.0133 0.0000

0.0238 0.0000 0.0003 0.0000 0.1037


(86)
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Figure 31: Comparison between V ASP band structure (green) and ABINIT band struc-

ture (red) in the tetragonal (up) and monoclinic (down) phase in LDA calculations near

the Fermi level. The V ASP bandwidth is 3-4% bigger. The Fermi level is set at zero.

Diagonalizing (85) and (86), we get:

n↑
occ =



0.99 0 0 0 0

0 0.97 0 0 0

0 0 0.96 0 0

0 0 0 0.96 0

0 0 0 0 0.14


(87)

n↓
occ =



0.11 0 0 0 0

0 0.04 0 0 0

0 0 0.02 0 0

0 0 0 0.01 0

0 0 0 0 0.01


(88)
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and we can approximate the matrix (87) to

n↑
occ ≃



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0


(89)

We have four eigenvectors with eigenvalues near 1 (occupied state). The eigenvectors of

n↑
occ in terms of the basis (dxy dxz dyz d3z2−1 dx2−y2) are (in the same order of approxi-

mation) :

(1 0 0 0 0)

(0 1 0 0 0)

(0 0 1 0 0)

(0 0 0 a1 a2)

(0 0 0 a3 a4)

(90)

We can see that three occupied states are t2g and one occupied stats is eg. We use the

projections of the eigenvector of the eg state on real atomic orbitals to reconstruct the θ

angle

tan
θ

2
=

sin θ
2

cos θ
2

=
projection on dx2 − y2

projection on dz2 − 3r2
=

a2
a1

(91)

We calculate the θ angle for the two experimental structures [104] in the A-type antifer-

romagnetic configuration along the z-axis for the tetragonal phase and the experimental

antiferromagnetic structure. We have θ = −110.5◦ and θ = +110.5◦ for the tetragonal

structure respectively for type-1 and type-2 octahedron, that is very similar to the value

of the LaMnO3. The two values of the theta angle must be opposite in all the systems

where the sites are equivalent, but, the direction of one orbital is rotate of 90 degrees with

respect to the other orbital. For the monoclinic phase, as we have two inequivalent Cr,

we have two different values for the two octahedra. We find θ = −120.9◦ and +102.2◦,

respectively for the first and the second octahedron. We can observe that the mono-

clinic type-1 octahedron is extremely elongated in the xM -direction (l=2.319 Å ). This

would be correlated to the orbital because we have θ ≃ −120◦ for the type-1 octahedron

(| −120◦ >= −|3x2 − 1⟩).

We study the antiferromagnetic A-type configuration in the tetragonal and monoclinic

structure. We find a magnetic moment of 3.65 µB (3.87 µB) in LSDA (LSDA+ U). For

the monoclinic phase, we find a magnetic moment of 3.636 and 3.653 µB (3.867 and 3.874

µB) in LSDA (LSDA + U) respectively for the first and the second octahedron. So, all

the Cr2+ ions are in the high spin t32ge
1
g state, in accordance with Hund’s rule.

The biggest difference between LaMnO3 and KCrF3 is the orbital order. While in LaMnO3
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and KCuF3, the order is C-type in according with the Goodenough-Kanamori-Anderson

rules, in KCrF3 the order is G-type. The G-type order is predicted for the hypothetical

ferromagnetic phase of LaMnO3 [139].

6.5 Volume relax

We perform the relaxation of the volume of KCrF3 in LDA, LSDA and LSDA+U (only

AFM A-type solution) for all crystal phases using a conjugate-gradient algorithm. All

the data shown in this paragraph are obtained from V ASP but some tests have been done

with ABINIT using the same technique. The two results obtained are in agreement. We

can observe two general results: 1) The non magnetic solutions (LDA) are very high in

energy respect to the magnetic solution how we can see from Fig. 32. 2) The equilibrium

volume of the monoclinic case is always smaller than the tetragonal case. Moreover, the

ground state is cubic in LDA, monoclinic in LSDA and monoclinic in LSDA+ U .
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Figure 32: Energy vs. volume curves for the magnetic and non magnetic case. The

ground state is shifted at zero energy level. The label T and M , on the x-axis, are

experimental volume respectively of the tetragonal and monoclinic structure. The non

magnetic solutions are in the top on the left side and the magnetic solutions are in the

bottom on the right side.

6.5.1 LDA

In the LDA case all the solutions are metallic. We perform the relaxation the system

fixing the volume shape and the internal degree of freedom, if we do not fix it we obtain

that the tetragonal volume (or the monoclinic volume) becomes cubic because the cubic

symmetry is lower in energy. The low symmetry phase (tetragonal o monoclinic) can
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converge to the high symmetry phase (cubic) but the opposite is forbidden. The ground

state is the cubic structure (Fig. 33) but the equilibrium volume is not so accurate. The

experimental volume of the cubic structure is 75.78 Å
3
[103]. We can see that, at the

experimental volume, the tetragonal phase is energetically favored in comparison to the

monoclinic phase contrarily to the magnetic case. These non-magnetic solutions are 2 eV

higher than the magnetic solutions, therefore energetically unstable. DFT theory is a zero

temperature theory and can not accurately reproduce transitions at high temperature, but

the message is that tetragonal and monoclinic phases are very close in energy. Moreover,

the equilibrium volume of the monoclinic phase is always smaller than the tetragonal phase

in agreement with the experimental results in Table 7.
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Figure 33: Energy vs. volume curves for the non magnetic case (above panel) and mag-

nification (below panel). The ground state is shifted at zero energy level. The labels T

and M , on the x-axis, are the experimental volume respectively of the tetragonal and

monoclinic structure. The square dots represent the curve of the tetragonal phase (green),

the circles represent the monoclinic phase (pink) and the square dots with dashed lines

represent the cubic phase (grey).
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6.5.2 LSDA and LSDA+ U

All the solutions are insulating except for the cubic LSDA, that is metallic. In the mag-

netic case, we find an equilibrium volume larger than the experimental one. The energy

difference are bigger for the LSDA+U case. For the monoclinic magnetic phase, we per-

form the relaxation of the system in two ways: preserving the shape volume and allowing

the system to change shape volume. We can see from Fig. 34 that the monoclinic solution

with fixed shape (blue curve and triangle dot) and the variable shape (blue curve and

circle dot) are different, so, LDA can not describe accurately the shape of the monoclinic

system. Instead, LSDA + U can describe the shape of the monoclinic phase very well.

The ground state is the monoclinic structure in LSDA and LSDA + U , but the energy

difference between two phases is very small (10 meV in LSDA and 20 meV in LSDA+U

per formula unit) as we can see in Fig. 34.
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Figure 34: Energy vs. volume curves for the antiferromagnetic case (above panel) and his

magnification (below panel). The blue curves are LSDA calculations and the red curves

are LSDA + U . The ground state in LSDA and LSDA + U are shifted at zero energy

level. The labels T and M , on the x-axis, are the experimental volume respectively of the

tetragonal and monoclinic structure. The square dots represent the curve of the tetragonal

phase, the triangles represent the monoclinic phase with fixed shape and the circles the

monoclinic phase with variable shape. The dashed lines with square dots are the solutions

with cubic cell.



79

6.5.3 High volume

In the non magnetic case, we can see from Fig. 33 that the energy difference increases

at a higher volume compared to the equilibrium volume. The equilibrium volume for the

monoclinic phase is smaller than the equilibrium volume for the tetragonal phase. We

check that a similar behaviour takes place in the magnetic case, when the volume per

formula unit is 85 Å
3
and the tetragonal phase gives the ground state in LSDA. At 85

Å
3
, in LSDA + U the ground state is again the monoclinic but the difference in energy

between the two structures is smaller. 85 Å
3
is a huge volume (+16% in comparison to the

experimental one), but it tells us that the tetragonal structure is favored at high volume,

also in the magnetic case. Based on the experimental data, the tetragonal phase is present

at high temperature when the volume of the system is greater in comparison to the volume

of the monoclinic phase.

6.5.4 The hypothetical ferromagnetic phase

In the paper [113] using ultrasoft pseudopotential plane wave method, they found that

the ferromagnetic phase of KCrF3 is the ground state for the cubic structure in LSDA.

We find that the cubic half-metallic ferromagnetic phase is 20 meV lower than all the

antiferromagnetic LSDA energies, but the problem is solved in LSDA + U , where the

ferromagnetic phase is 500 meV higher than the antiferromagnetic phases. This problem

is due to an overestimation of the kinetic energy in LSDA.

In the tetragonal and monoclinic structures, the hypothetical ferromagnetic phase of

KCrF3 is insulating. This is a large difference with LaMnO3, where the hypothetical

ferromagnetic phase is half-metallic and it is found experimentally doping the system. We

can speculate that doping the KCrF3 compound will be more difficult to reproduce the

half-metallic ferromagnetic phase respect to the LaMnO3.

6.6 Conclusions

Performing density functional calculations, we have determined the electronic, magnetic,

orbital and volume properties of KCrF3. We found that KCrF3 is a strongly correlated

antiferromagnetic insulator with the monoclinic structures as ground state. The tetragonal

symmetry shows many similarities with LaMnO3 from the electronic, magnetic and orbital
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point of view. But, the monoclinic symmetry has two different Cr sites with two different

orbitals: one is KCuF3-like and the other is more similar to LaMnO3 orbital order. The

orbital order in the KCrF3 compound is G-type in the non-cubic phases. The equilibrium

volume for the monoclinic phase is smaller than the equilibrium volume for the tetragonal

phase in agreement with experimental data.



81

7 Calculation of model Hamiltonian parameters for KCrF3

We present and compare the hopping parameters for the cubic, tetragonal and monoclinic

structures of KCrF3 using the eg basis and the Maximally localised Wannier functions.

Moreover, we analyse the strength of electronic correlation using the Cococcioni method

based on linear response approach. Although, the atomic number of chromium is relatively

small, it is observed experimentally that the spin-orbit effect can play a non trivial role at

low temperature. We go beyond the spin collinear approximation, the spin-orbit coupling

and the weak ferromagnetism are also examined.

7.1 Introduction

The formalism of the Maximally localised Wannier functions (MLWF ) has been applied in

many and diverse fields. Linear scaling quantum Montecarlo, photonic crystal and metal-

insulator interfaces are some relevant example. Furthermore, it is efficient interpolator for

the anomalous Hall effect and elcetron-phonon coupling, and a powerful tool for the study

of large scale systems. In addition, MLWFs are playing an increasing role in bridging

density-functional approaches and strongly correlated ones, to derive model Hamiltonian

or as a starting point for LDA+ U , LDA+DMFT or LDA+ CDMFT [11]. Here, we

deepen the study of KCrF3, started in previous chapter, studying the low-energy physics

and the non-collinear properties of its ground state.

We find that KCrF3, like LaMnO3, in the antiferromagnetic A-type configuration is an in-

sulator for both phases in LSDA approach. We calculate hopping parameters in the LDA

non magnetic case in two ways: first using the eg basis and second using the Maximally-

Localized Wannier Functions basis. In the pictures of the Wannier functions we only show

just the short bond Cr-F, not the long bond. All the plots of Wannier functions are made

using xcrysden [114]. In Fig. 35, 36 and 37 we show, respectively, the interpolated band

structure for the cubic, tetragonal and monoclinic phases. We have 3d bands of Cr at

Fermi level, but at 1 eV above the Fermi level there is a 4s Cr band as we can see clearly

in Fig. 35. Fortunately, the 4s Cr band does not go below the Fermi level. The strongly

believe that the unusual 4s band near the Fermi level, comes from the presence fluorine

that force the configuration Cr2+. Indeed, due to its low ionization, potential divalent

chromium is rarely found in solid state physics. In the cubic case, we can observe the

twofold degenerate eg level and the threefold degenerate t2g level at Γ point due to the

absence of the tetragonal crystal field. We can also see the 4s Cr band that is below

the eg at Γ point and does not hybridize with the eg because all are eigenstates of the



82

Hamiltonian with different symmetry. When we analyse the tetragonal and monoclinic

phases, the eigenstates of the Hamiltonian are not eg, t2g, 4s ... but a mix of all these

states. The result is that the band that has a strong 4s character hybridizes with the

bands of eg character. We use frozen windows in the calculation of hopping parameters,

in this way we impose the perfect interpolation of the band structure, so these hopping

parameters for the 3d bands contain the hybridization with the 4s band. In the other case,

the interpolations are not perfect at Γ point, due to the hybridization with the 4s band

that is impossible to eliminate with our technique. We call |j, i, T ⟩ (|j, i,M⟩) the state of

the orbital j (j = x2 − y2, 3z2 − 1) on the site i of the tetragonal (monoclinic) structure.

Figure 35: LDA band structure (red) and eg bands obtained using the MLWFs (green)

for the cubic case. The Fermi level is set at zero. The level of eg bands in the cubic band

structure is higher in energy respect to the other phases.

Figure 36: LDA band structure (red) and eg bands obtained using the MLWFs (green)

for the tetragonal case. The Fermi level is set at zero.

The remainder of this chapter is organised as follows. In paragraph 2 and 3, we calculate

ab-initio the hopping parameters using respectively the eg basis and the MLWF basis.

We evaluate the Coulomb repulsion using the Cococcioni method in paragraph 4. In
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Figure 37: LDA band structure (red) and eg bands obtained using the MLWFs (green)

for the monoclinic case. The Fermi level is set at zero.

paragraph 5, we calculate magnetocrystalline anisotropy effect to estimate the strengthen

of the spin-orbit coupling.

7.2 eg basis

We use the eg basis as trial functions |g(r)⟩; these trial functions are projected onto the

cell-periodic part of the N Bloch eigenstates |umk(r)⟩ calculated using the DFT technique.

We have four eg trial functions (two functions for each of the two sites). N is the number

of Bloch states in the energy window.

|ϕnk(r)⟩ =
N∑

m=1

⟨umk(r)|gn(r)⟩|umk(r)⟩ n = 1, 2, 3, 4 (92)

Orthonormalising the resulting four functions |ϕnk(r)⟩ via a Löwdin transformation we

find

|ϕON
nk ⟩ =

4∑
m=1

(S−1/2)mn|ϕmk⟩ n = 1, 2, 3, 4 (93)

where Smn = ⟨ϕmk|ϕnk⟩ is the overlap matrix. The resulting |ϕON
nk ⟩ are used for the

disentanglement procedure and the result is integrated into the k-space to obtain the

Wannier functions |ωeg
nR⟩. We use |ωeg

nR⟩ as a basis to calculate hopping parameters for the

tetragonal phase and the monoclinic phase. We can observe in Fig. 38, 39 and 40 that

|ωeg
nR⟩ are almost equal to eg basis.
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7.2.1 Tetragonal phase

We show the basis of the tetragonal case in Fig. 38 for the type-1 octahedron. Since the

Cr sites are equivalent, the other elements of the basis for the type-2 octahedron have the

same shape, but rotated by 90◦. We present the hopping parameters in Table 9 using this

basis. We use notation of the Table 9 for the hopping parameter. Moreover, we add

Figure 38: |ωeg
nR⟩ for the tetragonal case for the site 1 used as basis to calculate hopping

parameters. We have two orbitals on the site 1; we call |x2 − y2, 1, T ⟩ the state similar to

|x2− y2⟩ (left panel) and |3z2−1, 1, T ⟩ the state similar to |3z2−1⟩ (right panel). The Cr
sites are equivalent but the two octahedra have different orientation, so the total number

of elements of the basis is 4. We call |x2 − y2, 2, T ⟩ and |3z2 − 1, 2, T ⟩ the states that are

on the site 2.

Table 9: The basis is composed by |x2 − y2, 1, T ⟩, |x2 − y2, 2, T ⟩, |3z2 − 1, 1, T ⟩ and

|3z2 − 1, 2, T ⟩. Hopping integrals ti,i
′

j,j′ from a site i with orbital j to neighboring site i′

with orbital j′ for the tetragonal structure. The orbital 1 is |x2 − y2⟩, the orbital 2 is

|3z2 − 1⟩. The connecting vector is T = lxT + myT + nzT ; the hopping integrals are

tabulated up to the first neighbors. ϵij is the energy on site for the orbital j on the site i.

All energies are in eV.

lmn t1,21,1 t1,21,2 t1,22,1 t1,22,2

100 -0.1712 0.1566 0.1089 -0.0952

010 -0.1712 -0.1089 -0.1566 -0.0952

001 0.0465 -0.0729 0.0729 -0.2921

lmn ϵ11 = ϵ21 ϵ12 = ϵ22 t1,11,2 t2,21,2

000 0.7915 1.1018 0.3900 -0.3900
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Figure 39: |ωeg
nR⟩ for the monoclinic case for the site 1 used as basis to calculate hopping

parameters. We have two orbitals on the site 1; we call |x2− y2, 1,M⟩ the state similar to

|x2 − y2⟩ (left panel) and |3z2 − 1, 1,M⟩ the state similar to |3z2 − 1⟩ (right panel).

the coefficient lmn of the direction of the connecting vector to make the notation tlmni,i
′

j,j′

for the hopping parameters. We can observe in Table 9 that hopping t100
1,2
1,1 = t010

1,2
1,1=-

0.1712, t100
1,2
1,2 = −t010

1,2
2,1=0.1566 .... duo to the symmetry. The hopping t100

1,2
1,2 and t100

1,2
2,1

are different. The first is the hopping between the |x2 − y2, 1, T ⟩ and |3z2 − 1, 2, T ⟩ in
the direction 100 that is the long bond for the site 1, while, the second is the hopping

between the |x2−y2, 2, T ⟩ and |3z2−1, 1, T ⟩ in the direction 100 that is the short bond for

the site 2. The hopping integrals are larger in the plane xTyT respect to the hopping in

the direction zT . The only exception is the hopping t00122 =-0.2921 eV because is between

two orbital elongated in the zT direction. The main hopping parameters of the KCrF3

compound are t100
1,2
1,1, t

0101,2
1,1 and t00122 in all the phases.

7.2.2 Monoclinic phase

In the monoclinic case we have 4 different elements of the basis. We define this basis in

Fig. 39 and 40. We tabulate the hopping parameters in Table 10. In comparison to the

tetragonal case with eg basis, the main hopping integrals shrink by 10-20%. In this case,

we have also the reduction of the bandwidth.
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Figure 40: |ωeg
nR⟩ for the monoclinic case for the site 2 used as basis to calculate hopping

parameters. We have two orbitals on the site 2; we call |x2− y2, 2,M⟩ the state similar to

|x2 − y2⟩ (left panel) and |3z2 − 1, 2,M⟩ the state similar to |3z2 − 1⟩ (right panel).

Table 10: The basis is composed by |x2 − y2, 1,M⟩, |x2 − y2, 2,M⟩, |3z2 − 1, 1,M⟩ and
|3z2 − 1, 2,M⟩. Hopping integrals ti,i

′

j,j′ from a site i with orbital j to neighboring site i′

with orbital j′ for the monoclinic structure. The orbital 1 is |x2 − y2⟩, the orbital 2 is

|3z2 − 1⟩. The connecting vector is T = lxM + myM + nzM ; the hopping integrals are

tabulated up to the first neighbors. ϵij is the energy on site for the orbital j on the site i.

All energies are in eV.

lmn t1,21,1 t1,21,2 t1,22,1 t1,22,2

100 -0.1638 0.1207 0.0835 -0.0721

010 -0.1630 -0.0866 -0.1667 -0.0673

001 0.0330 -0.0723 0.0522 -0.2532

lmn ϵ11 ϵ21 ϵ12 ϵ22 t1,11,2 t2,21,2

000 0.7329 0.8435 1.1988 1.1014 0.4136 -0.3156

7.2.3 Cubic phase

We tabulate the hopping parameters in Table 11 for the cubic phase at the experimental

volume of the tetragonal phase. The d3z2−1 and the dx2−y2 must be degenerate at Γ

point, therefore the energy on site is equal for the two orbitals. Some hopping between

the d3z2−1 and the dx2−y2 orbital are zero because of the symmetry. Moreover, the high

symmetry makes equivalent the direction 100 and 001 up to a phase factor. The main

hopping parameters are larger, but, because of the null hopping the total bandwidth is
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smaller than the other phases.

Table 11: The basis is composed by |x2 − y2, 1, C⟩, |x2 − y2, 2, C⟩, |3z2 − 1, 1, C⟩ and
|3z2 − 1, 2, C⟩. Hopping integrals ti,i

′

j,j′ from a site i with orbital j to neighboring site i′

with orbital j′ for the cubic structure. The orbital 1 is |x2− y2⟩, the orbital 2 is |3z2− 1⟩.
The connecting vector is T = lxC +myC + nzC ; the hopping integrals are tabulated up

to the first neighbors. ϵij is the energy on site for the orbital j on the site i. All energies

are in eV.

lmn t1,21,1 t1,21,2 t1,22,1 t1,22,2

100 -0.2231 0.1238 0.1238 -0.0801

010 -0.2231 -0.1238 -0.1238 -0.0801

001 -0.0087 0.0000 0.0000 -0.2944

lmn ϵ11 = ϵ21 ϵ12 = ϵ22 t1,11,2 t2,21,2

000 0.9906 0.9906 0.0000 0.0000

At high symmetry, we can observe that many hopping parameters are zero. At the same

time the main hopping parameters t001
1,2
2,2 = −0.2944 and t100

1,2
1,1 = −0.2231 increase

respect to the other phases. The reduction of the main hopping parameters due to the

lowering of the symmetry is a very general concept. The low symmetry produces new

hopping that are zero (or lower) at higher symmetry, and make lower the main hopping

parameters. We observed the same in strontium ruthenate oxide compound, where the

rotations in multilayer ruthenates make lower the hopping t100xy,xy.

7.3 The MLWF basis

As in the previous paragraph, we calculate hopping parameters for the tetragonal and

monoclinic phases, but we now use the MLWF basis. We can observe that the MLWF

basis and hopping parameters are similar to the previous case for the tetragonal structure

but are completely different for the monoclinic. We call |j, i, T ⟩ (|j, i,M⟩) the state of the

orbital j on the site i of the tetragonal (monoclinic) structure. We do not have the crystal

field basis, but the MLWF basis. We put j=1 for the wave function in plane (similar to

x2 − r2) and j=2 for for the wave function out of plane (similar to 3z2 − 1).
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7.3.1 Tetragonal phase

We show the MLWF basis for the tetragonal case in Fig. 41 and the hopping parameters

in Table 12. Basically, the MLWF basis and eg basis are very similar, therefore, the

Figure 41: MLWFs for the tetragonal case for the site 1 used as basis to calculate hopping

parameters. We have two orbitals on the site 1; we call |1, 1, T ⟩ (left panel) and |2, 1, T ⟩
(right panel). The Cr sites are equivalent but the two octahedra have different orientation,

so the total number of elements of the basis is 4. We call |1, 2, T ⟩ and |2, 2, T ⟩ the states

that are on the site 2.

hopping parameters too are extremely similar. We can observe that the biggest difference

between two basis is a different wave function behaviour along the two different Cr-F bond

in the plane xTyT .

Table 12: Hopping integrals ti,i
′

j,j′ between the state |j, i, T ⟩ and the state |j′, i′, T ⟩ for
the tetragonal structure. The connecting vector is T = lxT + myT + nzT ; the hopping

integrals are tabulated up to the first neighbors. The MLWF basis is composed by

|1, 1, T ⟩, |1, 2, T ⟩, |2, 1, T ⟩ and |2, 2, T ⟩. ϵij is the energy on site for the MLWF |j, i,M⟩.
All energies are in eV.

lmn t1,21,1 t1,21,2 t1,22,1 t1,22,2

100 -0.1739 0.1384 0.1241 -0.0968

010 -0.1739 -0.1241 -0.1384 -0.0968

001 0.0439 -0.0896 0.0896 -0.2921

lmn ϵ11 = ϵ21 ϵ12 = ϵ22 t1,11,2 t2,21,2

000 0.8343 1.0590 0.3984 -0.3984
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Figure 42: MLWFs for the monoclinic case for the site 1 used as basis to calculate

hopping parameters. We have two orbitals on the site 1; we call it |1, 1,M⟩ (left panel)

and |2, 1,M⟩ (right panel).

Figure 43: MLWFs for the monoclinic case for the site 2 used as basis to calculate

hopping parameters. We have two orbitals on the site 2; we call it |1, 2,M⟩ (left panel)

and |2, 2,M⟩ (right panel).

7.3.2 Monoclinic phase

In the monoclinic case we have four different MLWFs. We define this basis in Fig. 42

and 43. We tabulate the hopping parameters in Table 13. Unlike the previous case, we

have nodes in the |2, i,M⟩ Wannier functions along the Cr-F long bond. The Wannier

functions of the type-2 octahedron are similar to the Wannier functions of the previous

cases, but the Wannier functions of the type-1 octahedron are completely different (Fig.

42). For this reason, Table 13 is significantly different from the previous tables. On site

1 (Fig. 42), we have that the orbital is |θ⟩ ≈ |3l2 − 1⟩. We can observe that the MLWFs

are like |3l2 − 1⟩ and |s2 − z2⟩ present in KCuF3 [115]. In the KCrF3 we have 2 electrons
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Table 13: The Hopping integrals ti,i
′

j,j′ between the state |j, i,M⟩ and the state |j′, i′,M⟩
for the monoclinic structure. The connecting vector is T = lxM + myM + nzM ; the

hopping integrals are tabulated up to the first neighbors. The MLWF basis is composed

by |1, 1,M⟩, |1, 2,M⟩, |2, 1,M⟩ and |2, 2,M⟩. All energies are in eV. ϵij is the energy on

site for the MLWF |j, i,M⟩.

lmn t1,21,1 t1,21,2 t1,22,1 t1,22,2

100 -0.1957 0.1516 0.0204 -0.0169

010 -0.0818 -0.0537 -0.2253 -0.1072

001 0.0007 0.0467 0.0633 -0.2568

lmn ϵ11 ϵ21 ϵ12 ϵ22 t1,11,2 t2,21,2

000 0.5266 0.8510 1.4248 1.0743 0.0972 -0.3021

Figure 44: Experimental picture of orbital order G-type for the monoclinic and AFM

phase of KCrF3. From [104].

in the 3d shell, instead, in KCuF3 we have one hole in the 3d shell. In Table 13, we can

observe a difference in the crystal field splitting in comparison to the other cases. The

amount ϵ12−ϵ11=0.90 eV is the difference of the energy on-site for the two Wannier functions

of site 1, this value is greater than others value for this material (0.2-0.3 eV). Another

observation is that the hopping integrals for the |3l2 − 1⟩ are large in the direction of the

long (-0.1957 and 0.1516 eV) while are small in the direction of the short (-0.0818 and

-0.0537 eV). We have the opposite for the |s2 − z2⟩, the hopping are large along the short

(-0.2253 and -0.1072 eV) and extremely small in the direction of the long bond (0.0204

and -0.0169 eV).

All these results confirm the experimental picture of orbital order in Fig. 44. In particular,

it is sufficient to check the energy on site of MLWF in Table 13. We have that ϵ11=0.5266

for the |3l2 − 1⟩ orbital on site 1 (Fig. 42 left panel), while ϵ21=0.8510 and ϵ22=1.0743 for

the site 2 where we have an orbital similar to LaMnO3.
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7.4 Cococcioni method

The evaluation of the Coulomb repulsion is an important task to understand the physics

of the strongly correlated system. We apply the Coccoccioni method [116] to calculate the

Coulomb repulsion in self-consistent way. We compute the values of Ueff = U − J for the

Cr atoms in the simplified Dudarev LSDA+U approach for the estimation of the Coulomb

repulsion. The result of Cococcioni method depends on the value of occupation numbers,

for this reason the algorithm is not so stable and the value of U greatly depends on the

kind of atomic positions used for the calculation (experimental, relaxed, full relaxed).

Other methods based on polarization and band structure may be more accurate [117].

For the experimental atomic positions of reference [104] we have: UTetragonal
eff = 3.2 eV,

UMonoclinicSite1
eff = 3.4 eV and UMonoclinicSite2

eff = 4.0 eV while Ueff used is 5.12 eV. Starting

from the experimental atomic positions of LaMnO3, we obtain ULaMnO3
eff = 2.7 eV. In the

Cococcioni method the Ueff is calculated from the curvature of the energy vs. occupation

number, but LSDA + Ueff does not reduce the curvature to a great extent. To reduce

this curvature completely, we need to recalculate Ueff using LSDA + Ueff . Using this

technique the value of Ueff for these systems is around 9 eV and is 6.3 eV for LaMnO3. The

quantitative values of the Hubbard U calculated by Cococcioni method can not be taken

as absolute reference, but we can deduce that KCrF3 is more correlated than LaMnO3.

7.5 Spin-orbit coupling and magnetic anisotropy

The role of the interplay between the observed lattice distortion and magnetocrystalline

anisotropy, as well as the anisotropic and isotropic exchange interactions in this kind of

compound is crucial [118]. At low temperature there are several different phases not

completely understood in KCrF3, it was proposed that the spin-orbit can be crucial to

distinguish between these phases. We calculate the spin-orbit coupling effect and we

observe that influence of the spin-orbit coupling is 2-3 orders of magnitude less than the

volume effect. Spin-orbit coupling effects are greater in the monoclinic phase. We calculate

magnetocrystalline anisotropy effect (MAE) for the monoclinic phase, in particular, the

energy difference between the same system with different spin orientations. SxM , SyM
and

SzM are the spin orientations along the three pseudocubicaxis. We compute:

EMAE = E(SzM )− E(SxM ) ≈ E(SzM )− E(SyM
) = −0.3 meV (94)

As experimentally found in KCrF3 and LaMnO3, we have the spin orientation in the plane

xMyM as we compute in equation (94). But, we find spin along the yM axis:

EMAE = E(SxM )− E(SyM
) = −0.03 meV (95)
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while experimentally it is observed along the direction between xM and yM [104]. Other

spin directions are been examined and do not give a lower energy. We find also the weak

ferromagnetism orthogonal to the spin orientation, the net magnetization is M ≈ 10−4 −
10−5 µB

Cr atom along zM for the ground state. Experimentally, the weak ferromagnetism of

KCrF3 is 2.5 ∗ 10−3 emu
g = 2.5 ∗ 10−3Am2

Kg [104] that is equivalent to 7 ∗ 10−5 µB
Cr atom .

7.6 Conclusions

We obtained the hopping parameters for all the structural phases of KCrF3. We calculate

MLWFs for the tetragonal and monoclinic structures. The results of our calculations

clearly show that LaMnO3 and the tetragonal phase of KCrF3 are not only structurally

but also electronically very similar. We find MLWFs similar to LaMnO3 for the tetrag-

onal phase, instead, the monoclinic phase has two different orbitals. One octahedron has

MLWFs that are KCuF3-like (|3l2 − 1⟩ and |s2 − z2⟩), while the other octahedron of

the monoclinic phase has also the orbital similar to LaMnO3. The orbital order is G-

type different from LaMnO3 and KCrF3. Using the Cococcioni method, we find that the

Coulomb repulsion for KCrF3 is greater than the Coulomb repulsion for LaMnO3 in all

the phases. The spin orientation is in the plane xMyM for the monoclinic phase and the

weak ferromagnetism is along the direction zM as for LaMnO3.
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8 Orbital order and ferromagnetism in LaMn1−xGaxO3

We study from first principles the magnetic, electronic, orbital and structural properties

of the LaMnO3 doped with gallium atoms. The gallium atoms reduce the Jahn-Teller

effect, and accordingly reduce the charge gap. Surprisingly, the system does not go towards

a metallic phase because of the kinetic energy reduction. The doping tends to reduce

the orbital order by weakening the antiferromagnetic phase and by favoring an unusual

insulating ferromagnetic phase.

8.1 Introduction

In recent years the series La1−xAxMnO3 , where A is a divalent metal, has been the object

of a systematic investigation [119]. This is not only due to the discovery of the giant

magnetoresistance in several members of the series but also to a strong interplay among

orbital, lattice, spin and charge degrees of freedom. This interplay results in a large variety

of magnetic arrangements and phase transitions depending on the hole doping. The giant

magnetoresistance phenomena is observed in the ferromagnetic metallic phase [120] . The

correlation between ferromagnetism and metallic behaviour has been explained by the

double exchange mechanism [121] and the electron-phonon coupling is mainly due to the

Jahn-Teller effect [122, 112]. The mother compound LaMnO3 has been considered the

prototype example of a cooperative Jahn-Teller system and orbital-order state [7]. The

parent compound LaMnO3, shows an orthorhombic unit cell with a cooperative tetragonal

deformation of the MnO6 octahedra, Jahn-Teller like, at room temperature. The structural

parameter are shown in Table 14. This compound develops long-range magnetic ordering

Table 14: Structural parameters of the Pbnm (No. 62 in the International Tables) struc-

ture of the parent compound LaMnO3 as reported by Elemans et al. [123], a = 5.532 Å,

b = 5.742 Å, c = 7.668 Å at 4.2 K.

Atoms & Wyckoff site x
a

y
b

z
c

La (4c) -0.010 0.049 1
4

Mn (4b) 1
2 0 0

O(1) (4c) 0.070 0.486 1
4

O(2) (8d) 0.724 0.309 0.039

below TN = 140K that is antiferromagnetic (AFM) of type A. The manganese moments

are aligned in the [010] direction with the spins coupled ferromagnetically in the ab plane
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and antiferromagnetically along the c-axis.

Surprisingly, the replacement of Mn3+ by a non-magnetic non Jahn-Teller trivalent ion

such as Ga3+ also induces long range ferromagnetism [124, 125, 126, 127, 128] without

carrying hole doping. Without hole doping, the double-exchange mechanism is not active.

Nevertheless, the ferromagnetic interactions can not be ascribed to any of the previous

mechanisms. It was studied in the past, and it was shown the relationship between the

static Jahn-Teller distortion of the MnO6 octahedron and the orthorhombic distortion

of the unit cell in the LaMn1−xGaxO3 series [124]. The replacement of manganese by

the smaller gallium reduces both distortions and it is coupled with the appearing of a

spontaneous magnetization [127]. The maximum ferromagnetic moment is achieved for x=

0.500. For x > 0.6 the lack of Jahn-Teller effect makes the system cubic [128]. Moreover,

these samples are also electrically insulators, unusual for a ferromagnetic compound. The

gallium doping has dramatic effect at low concentration too, where one Ga atom increases

the magnetic moment in an applied magnetic field up to 16 µB per Ga atom [126]. This

result is still not fully understood.

Here, we study from first principles the properties of the LaMn1−xGaxO3 at x= 0.000,

0.125, 0.250, 0.500 considering different size supercells and substituting the Ga atom

to the Mn atom in the centre of the octahedron, and we use the experimental volume

from [123, 127] to construct the supercells. Due to the construction of the supercell, the

net magnetic moment will be different from zero at x= 0.125, 0.250. This chapter is

organized as follows: we present the computational detail for the ab-initio calculations

in the paragraph 2, while in the paragraph 3 we present the results from first principle

studies, focusing on the octahedral distortions, the density of state (DOS) and the orbital

order. Finally, in paragraph 4 we propose the possible origin of experimentally detected

ferromagnetic phase.

8.2 Computational details

We perform spin-polarized first-principles density functional theory (DFT ) calculations

[6] using the Quantum Espresso program package [8], the GGA exchange-correlation func-

tional of Perdew, Burke, and Ernzerhof [97], and the Vanderbilt ultrasoft pseudopotentials

[129] in which the La(5s, 5p) and Mn(3s, 3p) semicore states are included in the valence.

We used a plane-wave energy cut-off of 35 Ry and a Gaussian broadening of 0.01 Ry as

in the reference[130]. These values for the plane-wave cutoff and the Gaussian broadening

are used in all calculations presented in this chapter. The 10×10×10 k-point grid is used
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in all DOS calculations, while a 8×8×8 grid used for the relaxation of the internal degrees

of freedom. We optimized the internal degrees of freedom by minimizing the total energy

are less than 10−4 Hartree and the remaining forces are inferior to 10−3 Hartree/Bohr,

while fixing the lattice parameter a, b and c to the experimental values [123, 127]. After

obtaining the DFT Bloch bands within GGA, we use the occupation matrix to obtain

the orbital order parameter. For the DOS calculations, we used a Gaussian broadening

of 0.02 eV to have an accurate measurement of the band gap.

The basic approach ofDFT is the local spin density approximation (LSDA). To go beyond

LSDA, it has been proposed to include the Coulomb repulsion U into the LSDA theory

giving rise to the so-colled LSDA+U theory. The first LSDA+U was introduced by Anisi-

mov and his coworkers [107, 108]. Here, we use the rotational invariant form introduced by

Lichtenstein[109] in his spherically averaged and simplified Dudarev approach[131]. In the

Dudarev approach, there is just an adjustable parameter Ueff = U − J . The functional

energy in LSDA+ U (ELSDA+U ) is the sum of the energy functional in LSDA (ELSDA)

plus the Hubbard term as we can see in expression (96):

ELSDA+U = ELSDA +
Ueff

2

∑
mσ

(nmσ − n2
mσ) (96)

where nmσ is the occupation number of the orbital m with spin σ. Basically, the Dudarev

approach neglects the off diagonal ⟨mm′| 1
r1−r2

|m′′m′′′⟩ terms and performs the approxi-

mations of equation (97) and (98) in comparison to the Lichtenstein approach [109]:

⟨mm| 1

r1 − r2
|m′m′⟩ = Umm′ = U (97)

⟨mm′| 1

r1 − r2
|m′m⟩ = Jmm′ = J (98)

A self-consistent method for the determination of Ueff was proposed by Cococcioni [116].

Starting from the observation of the non piecewise behaviour of the energy as function of

the occupation number [108], he implemented a method to take in account the electron

screening in the Hubbard repulsion. We used the refined approach suggested by Cococcioni

seeking internal consistency for the value of Ueff . Once calculated the first value of

Ueff from LSDA calculation, we performed the Cococcioni technique for the functional

LSDA+Ueff obtaining a correction to the Ueff value and repeating the procedure until the

correction for the final value of Ueff vanishes. We construct several supercells required

by the Cococcioni method and we calculate Ueff from the AFM configuration using

experimental volume and atomic position from [132]. The well converged value for the

AFM configuration of LaMnO3 is Ueff=6.3 eV. The Ueff obtained in the AFM phase is in

good agreement with other values used for LaMnO3. In the literature, we find Ueff=7.12

eV [133], Ueff=4.25 eV [134, 135] and a scanning between 3.25 and 6.25 eV [112]. We
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use the value U=6.3 eV in all the configurations and at all the doping concentrations of

LaMn1−xGaxO3.

8.3 The ab-initio study of the electronic and structural properties of

LaMn1−xGaxO3

We perform the relaxation of the atomic positions at fixed experimental volume for some

doping concentrations in LSDA in the AFM spin configuration using several supercells.

After the relaxation, we calculate the density of state, the distortion and the orbital order

in LSDA + U using the U calculated by the Cococcioni method. Pickett [132] shows

that, in LSDA approximation, the gap of AFM phase of LaMnO3 is entirely due to

the octahedral distortion. We find the same result, so, we can conclude that the gap in

LSDA+Ueff is a rough sum of the contribution due to the distortion plus the contribution

due to the Coulomb repulsion Ueff . The undoped LaMnO3 has an experimental gap of 1.2

eV [136], so, we expect that its ferromagnetic phase is insulating, but, it is a half-metal

[130]. We find a metal also in the LSDA + U approach, instead, the LaMn1−xGaxO3

is an insulator. We are not able to reproduce a ferromagnetic insulator within an ab-

initio approach. It is known in literature [106], that it is a hard task to reproduce the

magnetic stability of LaMnO3 because the half-metal ferromagnetic phase is very stable.

For these reasons, we will examine the influence of the Ga doping on the AFM phase. In

the LaMnO3 compound, the tetravalent Mn3+ is in the high spin configuration t32ge
1
g. For

every Mn atom present in the supercell, there is one occupied eg level with majority spin.

8.3.1 Octahedral Distortion

We calculate the geometrical properties of the system: the Mn-O-Mn bond angle, the

Ga-O-Mn bond angle and the octahedra parameters. The geometric angles, shown in

Table 15, tend to increase going towards 180◦ when the Jahn-Teller is completely lost.

Experimentally, the lack of the Jahn-Teller distortion at x > 0.6 is observed [128]. It is

very interesting to observe that this effect is more evident in the plane without Ga atoms,

because we have that the Mn-O-Mn bond angle is greater than the Ga-O-Mn.

We calculate, in Table 16 and 17 ,the Mn-O and the Ga-O distances for all the kinds of

octahedra: the gallium octahedron, the octahedron of the Mn first-neighbour in the ab

plane of the Ga atom, the octahedron of the Mn first-neighbour along the c direction of

the Ga atom and the Mn octahedra far from the gallium. We find the reduction of the
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Table 15: Geometric angles as a function of the doping in the plane ab. There are empty

spaces in the table, because these values are not allowed by the geometrical arrangement

of the atoms in the used supercells.

Doping Mn-O-Mn angle Ga-O-Mn angle

x= 0.000 160◦

x= 0.125 163◦ 162◦

x= 0.250 164◦ 162◦

x= 0.500 164◦

Jahn-Teller effect, the long bonds are shorter than the undoped case and the short bonds

become longer. However, this reduction does not exhibit a monotonic and homogeneous

trend. For instance, the first-neighbour in the ab plane at x= 0.250 is distorted similarly

to the mother compound. This is due to the alternate distortions induced by gallium atom

as we will see in the orbital order.

Table 16: Geometric distances of the gallium octahedra and Mn octahedra that are not

first-neighbours of gallium. We call it long (l), short (s) and medium (m). The unit is

angstrom. There are empty spaces in the table, because these values are not allowed by

the geometrical arrangement of the atoms in the used supercells.

Doping Mn-l Mn-s Mn-m Ga-l Ga-s Ga-m

x= 0.000 2.120 1.949 1.989

x= 0.125 2.10 1.95 1.97 2.061 1.949 2.007

x= 0.250 2.094 1.947 2.000 2.088 1.924 2.021

x= 0.500 2.053 1.947 2.005

Table 17: Geometric distances of the first-neighbours of Ga octahedra. Mn ab is the

manganese atom first-neighbour of the Ga atom in the ab plane, instead Mn c is the

manganese atom first-neighbour along the c-axis. We call it long (l), short (s) and medium

(m). The unit is angstrom. There are empty spaces in the table, because these values are

not allowed by the geometrical arrangement of the atoms in used supercells.

Doping Mn ab-l Mn ab-s Mn ab-m Mn c-l Mn c-s Mn c-m

x= 0.000

x= 0.125 2.119/2.088 1.945/1.975 2.005/1.975 2.095 1.950 1.965

x= 0.250 2.137 1.960 1.977 2.093 1.948 1.965

x= 0.500 2.067 1.952 2.002
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8.3.2 Density of states

We calculate the density of state of the AFM LaMn1−xGaxO3 to investigate the effect

of the reduced Jahn-Teller distortion. We put the Ga atom in the spin up plane, and

this spatial inhomogeneity breaks the equivalence between the spin up and spin down

properties. The spin up and spin down DOS contributions are different also for an AFM

phase. We observe in Fig. 45 that the Ga atoms do not have any influence at low energy,

the last occupied bands have an eg character, once more, as for the mother compound.

Basically, the Ga atoms are effective vacancies for the system at low energy. The Ga

DOS is different from zero because of small hybridization with the manganese atoms.

This is observed in the metallic system La 2
3
Sr 1

3
MnO3 too, where the Ga doping removes

electronic states at Fermi level creating an insulator compound [137]. Because of the

Coulomb repulsion, the oxygen contributions are between the t2g and the eg to make a

charge-transfer insulator. The Jahn-Teller distortion decreases as x increases. Since part

of the gap is due to the distortion the lack of the distortion reduces the gap when we add

the gallium doping.

However, when we increase the Ga concentration, once more, the gap increases again

because the diminution of the coordination number as we can see in Fig. 46. At x= 0.125,

there is a gap only because of the Coulomb repulsion. At this concentration, the LSDA

simulations give us a metal. The gap in the plane where is present the Ga atom (∆↑) is

always greater than the gap in the other plane (∆↓), because the Ga atom in the spin

channel ↑ reduces the coordination number. Moreover, the diminution of the coordination

number strongly suppress the bandwidth of the eg electron near the gap for the electron in

the Ga plane W↑, while the eg electron of the other spin present a greater bandwidth W↓

as we can see in the Table 18. At x= 0.500 there is a decrement of the bandwidth in both

spin channels because both contain a Ga atom that reduces the coordination number.

8.3.3 Orbital order

To calculate the orbital order, we use the notation of the article [112]

| θ >= cos
θ

2
|3z2 − 1⟩+ sin

θ

2
|x2 − y2⟩ (99)

where |3z2 − 1⟩ and |x2 − y2⟩ represent the eg eigenstates of manganese. We use the 5×5
occupation number matrix to determine | θ > by formula (99). We calculate the θ angle

for all the octahedra at several concentrations. Now, let us consider two equivalent atoms

with the direction of one orbital rotated of 90 degrees with respect to the other orbital.
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Figure 45: Plotting of the density of state of gallium atom (upper panel) and total density

of state (lower panel) per formula unit. The low energy gallium contribution is negligible.

The DOS contribution between -6 eV and -2 eV is due to the oxygens, while from -8 eV

to -6 eV is due to the t2g of the majority spin.

Using this notation in this case, the θ values for the two atoms are opposite. The sign gives

us information just about the direction of the orbital. Considering that all the orbitals

are in the direction of the long bond in LaMnO3, we will just consider the modulus of the

theta value in all the cases studied.

We find, for the undoped case, θ = 103◦ while the experimental orbital order is θ = 108◦

[138]. When θ tends to 90◦, we find a modification of the orbital order and a reduction
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Figure 46: Evolution of the gap as a function of the doping. We find a strong reduction of

the gap at x= 0.125 due to the breaking of the cooperative Jahn-Teller effect. At x= 0.250

the gap increases again because the coordination number decreases. The spin channel ↑
has a greater gap in comparison to the spin channel ↓, because the Ga atom in the spin

channel ↑ reduces the coordination number.

Table 18: Bandwidths of the eg electrons. The unit is eV. The plane with spin up Mn

contains the Ga atom at x= 0.125 and x= 0.250. Instead, at x= 0.500 both planes contain

a Ga atom.

Doping W↑ W↓

x= 0.000 1.45 1.45

(experimental atomic positions)

x= 0.000 1.48 1.48

(relaxed position at exp. volume)

x= 0.125 1.32 1.68

x= 0.250 0.52 1.70

x= 0.500 0.66 0.66

of the length of the orbital. This is correlated, from a structural point of view, to the

reduction of the Jahn-Teller effect. We present the results at x= 0.125 and x= 0.250 in

Fig. 47 and 48, where we observe changes of the orbital order at long range too. In all

the cases we observe a G-type structure of the orbital order. The G-type orbital order

is the order for the hypothetical ferromagnetic phase in LaMnO3 [139], that can be also

insulating. Therefore, the gallium doping can induce an instability towards a new kind of

orbital order that can drive the ferromagnetism in LaMn1−xGaxO3. In the article [139]
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Figure 47: Orbital order for the Mn atoms at x= 0.125 . The Ga atom is pink. Ga-s and

Ga-l are the short and the long bond of the gallium octahedron. The dz2 − r2 orbital up

the gallium octahedron is strongly suppressed, because does not hybridize with the gallium

atom. Excluding the latter octahedron a G-type orbital order structure is observed.

this order is predicted for low value of J ′ (interaction between the t2g spin), in our case

the reduction of the coordination number might reduce the effective value J ′. This G-

type orbital order is in agreement with the geometrical distance calculated in the previous

paragraph, stronger is the Jahn-Teller and higher is θ. The only one octahedron that is

not in agreement with the G-type orbital order is the Mn above the Ga atom at x= 0.125.

In this case the |3z2 − 1⟩ is strongly suppressed. The same does not happen at x= 0.250

where there is a different experimental volume and a different symmetry. At x= 0.500, the

θ value for the two equivalent Mn is 93◦ and the orbital order is strongly suppressed. The

reduced coordination suppresses the cooperative Jahn-Teller effect and strongly modify

the orbital order, this is a different behaviour in comparison to the cubic LaMnO3, where

the orbital order is still present although there are no distortions [140]. Therefore, the Ga

impurity is more effective than the pressure to reduce to modify the orbital order.

If we look at the DOS and at the orbital order together, we conclude that the local DOS

of atom with θ near 90◦ has a small gap. This result further suggest that the reduction of

octahedron distortion, and subsequently of the θ value, tends to close the gap.
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Figure 48: Orbital order for the Mn atoms at x= 0.250. The Ga atom is pink. Ga-s

and Ga-l are the short and the long bond of the gallium octahedron. The octahedra with

the same orbital order are symmetrically equivalent. We do not have an octahedra with

θ = 132◦ because of the different symmetry and different experimental volume.

8.4 Magnetism

At low concentration, a large value for the magnetization is found in applied magnetic

field [126], while ferromagnetism it is found at intermediate concentration and superpara-

magnetism at high concentration [127]. We need to discuss separately the two first cases.

8.4.1 Low concentration of Ga

We calculate the energy difference between the antiferromagnetic phase and the ferromag-

netic phase for all the concentrations. The ab-initio magnetic ground state of LaMnO3 is

a non trivial problem [106], but we clearly find that the antiferromagnetic phase becomes

weaker when we increase the gallium doping. At low concentration, we have an isolated

gallium atom surrounded by the manganese atoms. It has been suggested that the large

magnetic moment in an applied magnetic field can be due to a spin-flip of the manganese

above the Ga atom [141], instead, we find this is strongly forbidden energetically. So, we

propose at low concentration and in applied magnetic field that a spin-flip can happen,

but, in the plane of the gallium impurity. This is possible because of the low energy differ-
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ence between the configuration with a spin-flip and the antiferromagnetic configuration.

This picture can be easily understood within the Ising approximation of the Mn localised

moments. The in-plane ferromagnetic coupling in LaMnO3 is very strong [142], so it is

hard to break the ferromagnetic bounds if there are four first-neighbors, instead, the Ga

atom reduces the coordination and the Mn magnetic moment becomes easier to orientate

in an applied magnetic field.

8.4.2 Intermediate concentration of Ga

At intermediate concentrations a long-range ferromagnetic phase it is experimentally

found. We analyse the possible occurrence of a correlated disordered configuration for

the Ga-doping by inserting the two Ga atoms at different distances in the supercell at x=

0.250 in the AFM phase. Also in this case, we perform the relaxation of the atomic posi-

tion at fixed experimental volume, but, all the calculations of this paragraph are carried

out in LSDA because they are performed using big supercells. In the AFM configuration,

two types of doping are possible: a ferromagnetic doping and a non magnetic doping. In

the first case, two Ga atoms substitute two Mn atoms with the same spin, creating a

non-compensated ferromagnetism. In the second case, the two Ga atoms substitute two

Mn atoms with different spin leaving the net magnetization equal to zero. We can observe

all the possible configurations with supercells of 8 octahedra in Fig. 49. In Fig. 50, we

set to zero the ground state energy and plot the energy of the system per formula unit as

a function of the Ga-Ga distance in the supercell. Of course, also in this case we fix the

experimental volume and minimize the force acting on the atoms to find the equilibrium

atomic positions. We find that the ground state is when two Ga atoms are at distance d1,

therefore when they are first-neighbour in the ab plane. This is a ferromagnetic ground

state. This result is very easy to understand if we consider that, moving the only planar

oxygen between the two Ga atoms, it is possible to reduce the distortion of the Ga octa-

hedra without disturbing the Mn octahedra. In this way, the system minimizes the elastic

energy and the total energy, hence creating a ferromagnetic ground state. We notice that

all other configurations are higher in energy. In particular, when the Ga-Ga distance is

d5 we have the two Ga atoms first neighbour along the c-axis, but, the movement of the

apical oxygen can not give us a great gain of elastic energy because the distortions are

greater in the ab plane. Indeed, the bigger structural change between the real orthorhom-

bic structure of LaMnO3 and a hypothetical cubic structure is the position of the planar

oxygens.

Then, the Ga substitution can creates a non-compensated ferromagnetism. This effect,
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Figure 49: Non equivalent space configurations for the two Ga atoms in the supercells at

x= 0.250. The red line links two Ga atoms in the same spin channel and the green line

links two Ga atoms on two different spin channels.

together with a weaker AFM phase and the instability towards a G-type structure of

the orbital order, can destroy the AFM phase favoring the onset of a long-rang ferro-

magnetic order. The non-compensated ferromagnetism alone is not sufficient to explain

the ferromagnetic moment experimentally found at intermediate doping [127], that has a

large magnetic moment per Mn atoms, but helps the system to cross to the ferromagnetic

insulating phase. Near x= 0.500 the system has an insulating ferromagnetic phase which

is quite difficult to reproduce by using ab-initio approaches. Differently from the metallic

ferromagnetic phase, the non-compensated ferromagnetism is one possibility to reproduce

a ferromagnetic insulator. This insulating ferromagnetic phase is also different from the

cubic phase obtained under pressure by orbital splitting. Indeed, up to a pressure of 32

GPa, the system is a paramagnetic metal at room temperature and an antiferromagnetic

metal at low temperatures, though this region of the phase diagram is not well explored

[143].
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Figure 50: Energy differences as a function of the Ga-Ga distance in the supercells with 8

octahedra at x= 0.250. We plot the energy differences per Ga atom. The red points are

the magnetic configuration, while the green points are the non magnetic configuration. di

with i=1,..,7 are the distances defined in the Fig. 49. The lines are guides for the eyes.

The ground state is the magnetic configuration when two Ga atoms are first-neighbours

in the ab plane.

8.5 Conclusions

We have calculated the density of state, the evolution of the orbital order and the oc-

tahedral distortion for several concentrations of LaMn1−xGaxO3. The Ga doping is an

effective orbital and electronic vacancy. We find that the gallium doping, that reduces

octahedral distortion, energetically disfavors the antiferromagnetic phase. The Ga doping

weakens the Jahn-Teller effect highlighting electronic correlation. We argue that the large

magnetization at low concentration in an applied magnetic field can be explained by a

spin-flip of the in-plane first-neighbours of the gallium. We find that the ferromagnetic

phase at high doping is due to a non-compensated ferromagnetism of the gallium site

position.
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9 Conclusions

In this Ph.D. thesis I have studied the interplay between structural distortion and spin-

orbital degrees of freedom in tetravalent atoms based perovskite systems. This investi-

gation has proved to be relevant to deeply understand the properties of these transition

metal oxides. The applied methodology has made use of ab-initio like approaches as well

as model Hamiltonian effective theories for both homogeneous and disordered configura-

tions. In this context, we have considered different issues concerning the n=1 and n=2

ruthenates members of the Ruddlsden-Popper series (i.e. Sr2RuO4 and Sr3Ru2O7) and

the derived eutectic phases Sr2RuO4/Sr3Ru2O7, as well as the Ga-doped LaMnO3 and

the KCrF3 compound. We started this analysis looking at the necessary and sufficient

conditions to have metamagnetism in the mean field theory of single band. We continued

applying this theory to the class of Sr-based ruthenates within a weak-coupling effective

theory of multi-orbital itinerant systems. We have derived the criteria and the phase di-

agram related to the occurrence of paramagnetism, metamagnetism and ferromagnetism

with respect to the strength of the Coulomb repulsion and the features of the electronic

structure taking into account the know-how from the ab-intio study. We have studied the

metamagnetic transition of the eutectic system Sr2RuO4/Sr3Ru2O7, finding a metamag-

netic crossover. This result has been related to the behaviour of the DOS at the Fermi

level and the modification of its curvature close to the inclusion. Moreover, the changes

of the DOS at the Fermi level are orbital dependent for the three t2g Ru bands. In par-

ticular, depending on the level of interbands matching at the inclusion-host interface, the

orbital dependent DOS can get suppressed or significantly enhanced. Due to the spa-

tial dependence of the DOS variation and its derivatives near and at the inclusion, our

results also indicate a tendency to an inhomogeneous magnetism in the eutectic system

with a possible distribution of critical metamagnetic fields. Hence, a broadening of the

first order transition can occur even at very low temperature where a sharp change in the

magnetization is expected.

The pure phase Sr3Ru2O7 does not present eg bands at Fermi level, the rotations push

the V HS below the Fermi level if compared to the Sr2RuO4 case. We are able to repro-

duce within LDA the key aspects of the Fermi surface topology as well as to understand

the origin of the enhanced DOS close to the Fermi level and its role with respect to the

metamagnetic instability. Starting from the complete analysis of the electronic structure

for the bulk Sr2RuO4 and Sr3Ru2O7 systems we have faced the problem of the electronic

reconstruction at their interface. This problem turns out to be relevant for understanding

the change in the physical properties observed in the eutectic phase made of crystalline

domains of Sr2RuO4 interfaced to those of Sr3Ru2O7. We have found a significant vari-
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ation in the atomic positions for the heterostructure Sr2RuO4/Sr3Ru2O7 . These effects

are more relevant in the nearest layers to the interface and in the Sr3Ru2O7 domain, while

are negligible on the rest of the Sr2RuO4 part. The most important effect is the off centre

displacement of the Ru atoms along the c-axis. Moreover, the rotation of the octahedron

within the Sr3Ru2O7 domain is slight reduced at interface. This rotation reduction can

strongly modify the position of the V HS near the Fermi energy and consequently affect

the properties of the Sr3Ru2O7 phase especially with respect to the metamagnetic behav-

ior. The determination of the electronic structure represents an important issue to be

undertaken in the feature for getting a deeper understanding of the collective properties

of the eutectic Sr2RuO4/Sr3Ru2O7.

We comment that our model for analyzing the metamagnetism in the Sr3Ru2O7, though

has been constructed by combining the input from the ab-initio electronic structure with

the effective correlated multi-orbital model Hamiltonian, still requires further refinements

to catch some of the detailed aspects of the metamagnetic behavior observed in the

Sr3Ru2O7. Indeed, the anisotropy of the metamagnetic critical field would definitely

imply an important role of the spin-orbit coupling. Still, the phenomenology observed

around the quantum critical point goes beyond the target of the presented results. On

the other hand, in the context of the heterostructures or surfaces based on the ruthenates

the obtained outcome is fully novel. Apart from extra refinements and a direct bridge

between the ab-initio analysis and the effective model for the nano-inclusion, the results

can be of great interest as a platform for new experimental investigations.

Concerning the KCrF3 compound, we know that it is a strongly correlated antiferro-

magnetic insulator with the monoclinic structure as ground state. For this system, the

estimated Coulomb is stronger than that for the isoelectronic LaMnO3 pointing to a pos-

sible major role of the electron-correlations with respect to the Jahn-Teller effect. The

tetragonal phase shows many similarities with LaMnO3 from the point of view of the elec-

tronic, magnetic and orbital properties. On the other hand, the monoclinic phase has two

inequivalent Cr sites in the unit cell with two different orbitals on the two inequivalent

sites: one is KCuF3 -like and the other is more similar to LaMnO3 orbital. We have been

able to demonstrate that the equilibrium volume for the monoclinic phase is smaller than

the equilibrium volume for the tetragonal phase in agreement with experimental data.

The performed analysis reveals also the possibility of a weak-ferromagnetism as driven

by the spin-orbit coupling. Because the strong Coulomb interaction, we argue that the

structural tetragonal-monoclinic transition might be driven by pure electronic correlation

mechanism.

With the aim to explore the tunability of the Jahn-Teller effect and in turn of the or-
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bital order in the LaMnO3 we have considered the role of the substitution of gallium with

manganese. We have shown that such atomic substitutions acts like an effective orbital

and electronic vacancy reducing the degree of manganese coordination. We have found

that the gallium doping by reducing the octahedral distortions tends to energetically dis-

favor the antiferromagnetic phase. The gallium doping weakens the Jahn-Teller effect thus

pointing to a potential dominance of the electronic correlations in controlling the collec-

tive behaviour. We have argued that that the large magnetization at low concentration

in an applied magnetic field can be explained as a spin-flip rearrangement of the in-plane

manganese that are first-neighbours of the gallium. We have found that the ferromagnetic

phase at high doping is due to a non-compensated ferromagnetism originated by a corre-

lated positional disorder of the gallium atoms that to minimize the energy associated to

the Jahn-Teller effect tend to be located at specific distances rather than distribute in a

complete random way.

About the 3d shell compound, both the topic treated in this thesis have been little stud-

ied. Because some similarities with LaMnO3, the doped KCrF3 might be a very interesting

research channel for the future, theoretically and experimentally. Despite this, the under-

standing of the nature of structural transition is a very interesting point. At the same

time, we hope to see more studies on LaMnO3 doped with elements of the same group

of gallium, to understand if the correlated impurity can be relevant in other compounds.

Moreover, there are interesting directions to be covered, as:

1. the change in the magnetic and orbital order,

2. the possible occurrence of metal-insulator transitions,

3. the achievements of new phases with unconventional transport properties as a func-

tion of the degree of substitution,

4. the role of electronic correlation in the strong coupling regime, etc...

To the light of the presented studies similar ideas can apply both to the LaMnO3 and

the KCrF3 to get a deeper understanding of the fundamental interactions in Jahn-Teller

correlated systems.
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A Properties of one-dimensional density of state

We demonstrate some useful relation to calculate the analytic thermodynamic functional

for the one-dimensional density of state for tight binding approach. We consider the

density of state for single spin in equation (41) and calculate the filling n(εF ).

n(εF ) =

∫ εF

−2t+ε0

dε

π
√
(2t)2 − (ε− ε0)2

=

=
1

π

∫ εF−ε0
2t

−1

dx√
1− x2

=

=
1

π
[arcsin(x)]

εF−ε0
2t

−1 =

=
1

π

(
arcsin

(
εF − ε0

2t

)
+

π

2

)
The quantity n(εF ) is in the range [0, 1]. All the simplifications became from the DOS

integrability. We can use the following trigonometric identity:

arccos(x) + arcsin(x) =
π

2
(100)

to obtain

n(εF ) =
1

π

(
arcsin

(
εF − ε0

2t

)
+ arcsin

(
ε0 − εF

2t

)
+ arccos

(
ε0 − εF

2t

))
=

1

π
arccos

(
ε0 − εF

2t

)
(101)

Inverting the previous one

cos(πn) =
ε0 − εF

2t
(102)

and calculating the sine we have the final formula:

2t sin(πn) =
√

(2t)2 − (εF − ε0)2 (103)
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B Gibbs free energy of the one-dimensional Hubbard model

in mean field approximation

It also possible to obtain the thermodynamic functional for the one-dimensional density

of state in an other way. There are four equation to solve self-consistently

h = µ↑ − µ↓ − 2U

(
n↑ − n↓

2

)
(104)

n↑ =

∫ µ↑

−2t+ε0

dε

π
√

(2t)2 − (ε− ε0)2

n↓ =

∫ µ↓

−2t+ε0

dε

π
√

(2t)2 − (ε− ε0)2

n =
n↑ + n↓

2

where the equation (104) became from mean field approximation.

Using equation (102), it is possible to reduce the 4 equations to 2 equations with just two

unknowns: n↑ and n↓{
h = 2t(cos(πn↓)− cos(πn↑)) + U(n↓ − n↑)

n =
n↑+n↓

2

We find 4 self-consistently solutions: n↑ = 1, n↓ = 1, n↑ = n↓ and a not analytic solution

for the non completely polarized ferromagnet. The first three solutions are extreme points

of the thermodynamic functional. The non completely polarized solution is at edge of the

domain and can be a relative minimum without be an extreme point. The paramagnetic

solution always exist. It is possible to show that all the ferromagnetic solutions appear for

U >

{
1−cos(2nπ)

n for n < 1
2

1−cos(2(1−n)π)
(1−n) for n > 1

2

The not completely polarized ferromagnetic solution is a maximum of the energy under

the Stoner criterion and a minima when the criteria is satisfied, but is never the ground

state.

The energy of the solutions can be derived from equation (6),(7) and (104) in the limit of

zero temperature:

G(U, n↑, n↓, h) =
2t
π (n↑π cos(πn↑)− sin(πn↑)) +

2t
π (n↓π cos(πn↓)− sin(πn↓))

−2t cos(πn↑)n↑ − 2t cos(πn↓)n↓ + Un↑n↓ − h
n↑−n↓

2

Now, we can insert the values of n↑ and n↓ found self-consistently to have the Gibbs free

energy. We obtain the same result using equation (47) if we set G(0) = 0.
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