Mostra i principali dati dell'item
MV-algebras, Grothendieck toposes and applications
dc.contributor.author | Russo, Anna Carla | |
dc.date.accessioned | 2017-02-02T14:07:58Z | |
dc.date.available | 2017-02-02T14:07:58Z | |
dc.date.issued | 2016-05-31 | |
dc.identifier.uri | http://hdl.handle.net/10556/2308 | |
dc.identifier.uri | http://dx.doi.org/10.14273/unisa-724 | |
dc.description | 2014 - 2015 | it_IT |
dc.description.abstract | This thesis is a contribution to the research program ‘toposes as bridges’ introduced in [12], which aims at developing the unifying potential of the notion of Grothendieck topos as a means for relating different mathematical theories to each other through topos-theoretic invariants. The general methodology outlined therein is applied here to study already existing categorical equivalences of particular interest arising in the field of many-valued logics and also to produce new ones. The original content of the disseration is contained in [22], [21] and [23]... [edited by Author] | it_IT |
dc.language.iso | en | it_IT |
dc.publisher | Universita degli studi di Salerno | it_IT |
dc.subject | MV-algebras | it_IT |
dc.subject | Lattice-ordered abelian groups | it_IT |
dc.subject | Toposes | it_IT |
dc.title | MV-algebras, Grothendieck toposes and applications | it_IT |
dc.type | Doctoral Thesis | it_IT |
dc.subject.miur | MAT/01 LOGICA MATEMATICA | it_IT |
dc.contributor.coordinatore | Caramello, Olivia | it_IT |
dc.description.ciclo | XIV n.s. | it_IT |
dc.contributor.tutor | Di Nola, Antonio | it_IT |
dc.contributor.tutor | Gehrke, Mai | it_IT |
dc.identifier.Dipartimento | Matematica | it_IT |