Show simple item record

dc.contributor.authorGraber, Giuseppe
dc.date.accessioned2017-09-08T12:29:29Z
dc.date.available2017-09-08T12:29:29Z
dc.date.issued2016-05-06
dc.identifier.urihttp://hdl.handle.net/10556/2470
dc.identifier.urihttp://dx.doi.org/10.14273/unisa-870
dc.description2014 - 2015it_IT
dc.description.abstractOne of the mega trends over the past century has been humanity’s move towards cities. Public Administration and Municipalities are facing a challenging task, to harmonize a sustainable urban development offering to people in city the best living conditions. Smart cities are now considered a winning urban strategy able to increase the quality of life by using technology in urban space, both improving the environmental quality and delivering better services to the citizens. Mobility is a key element to support this new approach in the growth of the cities. In fact, transport produces several negative impacts and problems for the quality of life in cities, such as, pollution, traffic and congestion. Therefore, Sustainable Mobility is one of the most promising topics in smart city, as it could produce high benefits for the quality of life of almost all the city stakeholders. The boldest and imminent challenge awaiting mobility in smart cities is the introduction of the electricity as energy vector instead of fossil fuels, concerning both the collective and the private transports. Electric public transport include electric city buses, trolleybuses, trams (or light rail), passenger trains and rapid transit (metro/subways/undergrounds, etc.). Even though railway systems are the most energy efficient than other transport modes, the enhancement of energy efficiency is an important issue to reduce their contributions to climate change further as well as to save and enlarge competition advantages involved. One key means for improving energy efficiency is to deploy advanced systems and innovative technologies. Additionally, electrification of the private road transport has emerged as a trend to support energy efficiency and CO2 emissions reduction targets. According to the International Energy Agency, in order to limit average global temperature increases to 2°C - the critical threshold that scientists say will prevent dangerous climate change -, by 2050, 21% of carbon reductions must come from the transport sector. Full electric vehicles (EVs) use electric motor and battery energy for propulsion, which has higher efficiency and lower operating cost compared to the conventional internal combustion engine vehicle. Today, there are more than 20 models offered by different brands covering different range of sizes, styles, prices and powertrains to suit the wider range of consumers as possible. The continuous development of lithium ion battery and of fast charging technology will be the major facilitators for EVs roll out in the very near future. However, the present EVs industry meets many technical limitations, such as high initial price, long battery recharge time, limited charging facilities and driving range. Although it is desirable a fast development from the start of electric mobility, its impact on the existing power grid must be assessed beforehand to see if it is necessary prior an adjustment of power infrastructure or/and the introduction of new services in the power grid. In fact, the interconnection of EVs on the power grid for charging their batteries potentially introduces negative impacts on grid operation: uncontrolled charging can significantly increase average load in the existing power systems, with problems in terms of reliability and overloads. If uncontrolled EV charging is added to the system, this can have effects both at the distribution and at the generation level. Controlled or smart charging will allow a much greater number of cars in the cities, avoiding local overload and allowing a faster EVs penetration without requiring an imminent improvement of the electricity generating and grid capacity. Smart charging might also allow load balancing both at sub-station and at the grid level, particularly with charging at peak wind supply times. This kind of use of EV battery capacity for storing electric energy may ease the integration of large scale intermittent electricity sources such as renewable energy sources. The proposed PhD Dissertation is developed in the context just described, mainly focusing the attention on the impact that electric mobility will have on the power systems and the effectiveness of solutions aimed to increase the reliability and resilience in the smart grid. In particular, it is addressed a scenario analysis regarding the electric vehicles charging management and some innovative solutions to increase energy efficiency in electrified transport systems. The first chapter emphasizes on the key aspects related to the sustainable mobility in the smart cities of the future. It provides a brief overview on the transport sector energy consumption expected in the next years. In particular, the chapter shows the significant contribution that the electrification of urban transport may provide to the sustainable mobility, and the serious concerns related to its impact on existing power systems. Chapter 2 proposes a solution method for an optimal generation rescheduling and load-shedding (GRLS) problem in microgrids in order to determine a stable equilibrium state following unexpected outages of generation or sudden increase in demand. The chapter mainly focuses on the mathematical formulation of the GRLS problem and the proposed solution algorithm. Finally, simulations results carried out by using a real case study data are presented and discussed. In Chapter 3, a simple and effective methodology is proposed to analyze data acquired during the fulfillment of the COSMO research project, and to identify typical load pattern for the EVs charging. The chapter also presents a novel scheduling problem formulation, flattening the demand load profile and minimizing the EVs charging costs, according to the electricity prices during the day. Finally, some simulations results are discussed, showing the effectiveness of the proposed methodology. Chapter 4 introduces some innovative solutions for energy efficiency in urban railway systems focusing, in particular, on energy storage systems and eco-drive operations in metro networks. The mathematical formulation of these optimization problems and the proposed solution algorithms are illustrated and discussed. The obtained results are part of the activity carried out in the SFERE research project. Finally, Chapter 5 ends the Dissertation with some concluding remarks and further developments of the proposed research activity. [edited by author]it_IT
dc.description.abstractUna delle grandi tendenze nel corso del secolo scorso è stata la concentrazione della popolazione nelle città. Attualmente, le Pubbliche Amministrazioni e i Comuni si trovano ad affrontare un compito impegnativo per armonizzare uno sviluppo urbano sostenibile e offrire agli abitanti delle città le migliori condizioni di vita. Le smart cities sono ormai considerate una strategia urbana vincente in grado di aumentare la qualità della vita utilizzando la tecnologia, sia per il miglioramento della qualità ambientale che per fornire servizi migliori ai cittadini. A tale scopo, la mobilità risulta essere un elemento chiave per sostenere questo nuovo approccio nella crescita delle città. Infatti, i sistemi di trasporto urbano producono diversi effetti negativi sulla qualità della vita urbana, come ad esempio, inquinamento, traffico e congestione. Pertanto, la mobilità sostenibile è uno degli argomenti più interessanti per le smart cities, in quanto in grado produrre elevati benefici per la qualità della vita di quasi tutte le parti interessate degli agglomerati urbani. La sfida più audace e imminente per la mobilità nelle smart cities del futuro è l'introduzione dell'elettricità come vettore energetico al posto dei combustibili fossili, per quanto riguarda sia il trasporto collettivo che quello privato. I mezzi per il trasporto pubblico comprendono autobus elettrici, filobus, tram, treni passeggeri e trasporto rapido (metropolitane, etc.). Anche se i sistemi di trasporto su ferro sono più efficienti rispetto ad altri modi di trasporto, l’incremento dell'efficienza energetica è un tema importante per ridurre ulteriormente il loro contributo alle emissioni inquinanti e al consumo di energia. Le più promettenti soluzioni per migliorarne l'efficienza energetica consistono nell’implementazione di sistemi avanzati per il recupero dell’energia di frenata e tecnologie di controllo innovative. D’altro canto, l'elettrificazione del trasporto individuale su strada è emersa come una tendenza finalizzata a sostenere gli obiettivi di efficienza energetica e di riduzione delle emissioni di CO2. Secondo l'Agenzia Internazionale per l'Energia, al fine di limitare, entro il 2050, l'aumento della temperatura media globale a 2 °C - la soglia critica che gli scienziati suggeriscono di non superare per evitare pericolosi cambiamenti climatici -, il 21% delle riduzioni di biossido di carbonio deve provenire dal settore trasporti. I veicoli elettrici (EV) utilizzano un motore elettrico e l'energia accumulata nelle batterie per la propulsione, in modo da avere una maggiore efficienza e minori costi operativi rispetto ai veicoli convenzionali con motore a combustione interna. Oggi, esistono in commercio più di 20 modelli offerti da diverse case produttrici che coprono una ampia gamma di modelli che differiscono per dimensione, stile, prezzo e motorizzazione in modo da soddisfare il maggior numero di consumatori possibile. Il continuo sviluppo delle batterie al litio e delle tecnologie di ricarica rapida saranno i principali fattori abilitanti per la diffusione degli EV in un futuro molto prossimo. Tuttavia, l'attuale industria dei veicoli elettrici incontra molte limitazioni tecnico-economiche, come elevati costi, autonomia e tempi di ricarica della batteria, capillarità delle infrastrutture di ricarica. Sebbene sia auspicabile un rapido sviluppo della mobilità elettrica, il suo impatto sulla rete elettrica esistente deve essere investigato a fondo per verificare la necessità di potenziamenti delle infrastrutture e/o l'introduzione di nuovi servizi nella rete elettrica. Infatti, l'interconnessione dei veicoli elettrici con la rete di distribuzione dell’energia necessaria per la ricarica delle batterie può causare effetti negativi sul normale funzionamento del sistema elettrico: una ricarica degli EV non controllata può aumentare significativamente il carico medio negli impianti esistenti, introducendo problemi di affidabilità e sovraccarico. La ricarica intelligente o controllata degli EV consente, invece, di gestire un numero molto maggiore di autovetture elettriche nelle città, riducendo le possibilità di sovraccarico locale e di velocizzare la penetrazione della mobilità elettrica senza che rendere necessari imminenti potenziamenti dei sistemi di produzione di energia elettrica e incrementi della capacità di rete. La ricarica intelligente, inoltre, può anche influire sul bilanciamento del carico sia a livello della sottostazione elettrica che a livello di rete di distribuzione, in particolare quando si verificano molte sessioni di ricarica nelle ore di punta. Infatti, l’utilizzo della capacità della batteria degli EV per l’accumulo di energia elettrica può facilitare l'integrazione su larga scala delle fonti di energia non programmabili, come quelle rinnovabili. Il lavoro di tesi si sviluppa nel contesto di riferimento appena descritto, focalizzando l'attenzione soprattutto sull'impatto che la mobilità elettrica ha sui sistemi elettrici e sull'efficacia di nuove soluzioni finalizzate all’incremento dell'affidabilità nelle smart grids. In particolare, viene proposta un'analisi di scenario per quanto riguarda la gestione intelligente delle ricariche dei veicoli elettrici e alcune soluzioni innovative per aumentare l'efficienza energetica nei sistemi di trasporto elettrificati. Il primo capitolo sottolinea gli aspetti chiave relativi alla mobilità sostenibile nelle smart cities del futuro e fornisce una breve panoramica sul consumo energetico del settore trasporti previsto nel prossimo futuro. In particolare, vengono evidenziate da un lato il significativo contributo che l'elettrificazione dei trasporti urbani può fornire alla causa della mobilità sostenibile, e dall’altro, le gravi preoccupazioni legate all’impatto sui sistemi elettrici esistenti di un notevole incremento della domanda. Il Capitolo 2 propone un metodo per la soluzione del problema congiunto di scheduling dei generatori e load shedding (GRLS) all’interno di microgrids portando in conto l’incertezza sia sulla domanda che lato generazione. Il fine è determinare un nuovo stato di equilibrio stabile in seguito a guasti, riduzione della generazione da fonte rinnovabile o improvviso aumento della domanda. Il capitolo si concentra principalmente sulla formulazione matematica del problema GRLS e sull'algoritmo di soluzione proposto. Infine, sono presentati e commentati i risultati di simulazione basati su un caso studio reale. Nel Capitolo 3, è proposta una metodologia semplice ed efficace per identificare profili di carico tipico relativi alla ricarica di veicoli elettrici: in particolare, l’analisi condotta si basa sull’analisi dei dati acquisiti durante lo svolgimento del progetto di ricerca COSMO. Il capitolo, inoltre, introduce una formulazione matematica del problema dello scheduling delle ricariche dei veicoli elettrici, che garantisce un appiattimento del profilo di carico e riduce allo stesso tempo il costo della ricarica per gli utenti. Infine, sono commentati i risultati delle simulazioni eseguite dimostrando l'efficacia della metodologia proposta. Il Capitolo 4 introduce alcune soluzioni innovative per l'efficienza energetica nei sistemi di trasporto urbani: l’attenzione viene posta, in particolare, sui sistemi di accumulo dell’energia e sulla condotta di guida Eco-Drive in reti metropolitane. In dettaglio, nel capitolo, vengono introdotti e commentati la formulazione matematica dei problemi di ottimizzazione proposti e i rispettivi algoritmi di soluzione. I risultati ottenuti fanno parte delle attività svolte nell’ambito del progetto di ricerca SFERE. Infine, il Capitolo 5 conclude la tesi con alcune osservazioni finali e con i possibili sviluppi dell'attività di ricerca proposta. [a cura dell'autore]it_IT
dc.language.isoenit_IT
dc.publisherUniversita degli studi di Salernoit_IT
dc.subjectSmart gridsit_IT
dc.subjectElectric vehiclesit_IT
dc.subjectElectrified transport systemsit_IT
dc.titleElectric Mobility: Smart Transportation in Smart Citiesit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurING-IND/33 SISTEMI ELETTRICI PER L'ENERGIAit_IT
dc.contributor.coordinatoreLongo, Maurizioit_IT
dc.description.cicloXIV n.s.it_IT
dc.contributor.tutorGaldi, Vincenzoit_IT
dc.contributor.cotutorMancarella, Pierluigiit_IT
dc.identifier.DipartimentoIngegneria dell’Informazione ed Elettrica e Matematica Applicatait_IT
 Find Full text

Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record