Mostra i principali dati dell'item
Innovative treatments for resource recovery from waste electrical and electronic equipment
dc.contributor.author | Marra, Alessandra | |
dc.date.accessioned | 2018-02-23T14:52:12Z | |
dc.date.available | 2018-02-23T14:52:12Z | |
dc.date.issued | 2017-06-27 | |
dc.identifier.uri | http://hdl.handle.net/10556/2619 | |
dc.identifier.uri | http://dx.doi.org/10.14273/unisa-1013 | |
dc.description | 2015 - 2016 | it_IT |
dc.description.abstract | The ever-expanding population, the increasing consumption of resources and the shortage of primary raw materials have addressed the transition of waste management strategies from the linear model based on the “wear and tear” on a circular approach aiming at preventing waste and recycling materials. In this view, the attention has been focused on the use of anthropogenic stock resources in place of virgin materials as promoted by the concept of “urban mining”. Waste electrical and electronic equipment (WEEE) is regarded as the backbone stream in urban mining. It represents the waste stream characterized by the highest grow rate per year (3-5%) and by the most wide-ranging source of materials, since WEEE can contain more than 1000 different substances, including base, precious and critical metals. The recovery of metals defined critical raw materials as rare earth elements from electronic waste appears, thus, an important opportunity both in economic and environmental terms. However, the recycling of WEEE is challenged by the complex nature of such waste stream which, beside valuable materials, includes hazardous substances as well. The presence of these toxic components has raised great concern especially in developing countries where the informal recycling sector is still widespread, handling WEEE with unsafe and inadequate practices as a result of a lack of legislation. In high-income countries, separate collection is the first step of a system pursuing the WEEE sustainable management; mechanical processes are then applied to separate the different materials, including metals which are destined to further recycling by means of metallurgical processes. The metallurgical treatments currently used for metal recovery from WEEE are, however, claimed to have severe impacts on the environment due to the generation of secondary pollutants. Moreover, the industry of WEEE recycling is still in its early stage, especially if referred to the recovery of rare earth elements. All these reasons have contributed to increase the interest of both scientific and industrial research in addressing a cost-effective and environmental friendly treatment of end-of-life electrical and electronic products. In this background the present research work aimed to: the characterization of WEEE in terms of base and critical metal contents, in order to identify and quantify the valuable materials and the hazardous substances for addressing a sustainable recycling strategy; the assessment of critical metal fate during the conventional mechanical treatments of WEEE with reference to the sorting effectiveness and the recycling potential; the evaluation of the feasible application of innovative treatments in the field of hydro- and bio-metallurgy for the recovery of valuable and critical metals from WEEE. To this end, the experimental activity was developed in three main steps, matching the specific objectives of the research project: the first phase was focused on the characterization of WEEE in terms of base and critical metals. Representative samples were collected over the treatment chain of a full scale mechanical treatment plant operating in South Italy and analysed by their metal content; the data obtained from the metal characterization were, thus, used in the second phase to carry out a mass flow analysis in order to investigate the fate of metals, particularly the critical ones, during the conventional mechanical treatments; the third phase focused on hydro- and bio-metallurgical tests for the recovery of valuable and critical metals from WEEE. As the results from the previous phase pointed out that after the conventional mechanical treatments significant concentrations of precious metals and rare earth elements were gathered in dust stream originating from process air cleaning, dust was used as secondary source of critical metals and tested for the treatments proposed. Both chemical agents, including a non-conventional one as thiourea, and biological species were used to perform leaching processes. The use of dust, actually destined to landfill disposal, as well as the treatments investigated for the recovery of critical metals marked the novelty of the research. The first two phases were carried out at the Sanitary Environmental Engineering Division (SEED) of Salerno University. The hydrometallurgical tests included in the third phase were performed at SEED laboratory as well, whereas the biometallurgical tests were conducted at the laboratory facility of the Institute for water education Unesco-IHE in Delft (Netherlands). Results of the experimental activity showed that rare earth elements contained in WEEE at trace concentrations do not enter the recovery chain as around 80% in mass were lost in dust streams during the conventional mechanical treatments. Similarly, 24% of precious metals entering the mechanical treatments were conveyed in the dust fraction. Therefore, this matrix appears a potential secondary source of valuable and critical metals to be further processed for metal recovery. Chemical and biological leaching processes proved their great potential in extracting up to 99% of the critical metals contained in the dust. These promising outcomes suggested that both hydro- and biometallurgical processes can be regarded as a suitable option for the management of the dust fractions, which currently represents a cost for the treatment plant. The treatment of dust through these processes provides, indeed, a way to reintroduce this matrix, actually sent to landfill, in the “loop” of product lifecycle, thus limiting the losses of resources in accordance with the new circular economy approach. Moreover, the results of this study are of relevant interest as they highlighted the potential of recovering valuable and critical metals from waste streams using low-cost and environmentally friendly processes in the filed of biometallurgy as an effective alternative to both pyrometallurgical and conventional chemical processes, especially for treating low grade materials as WEEE. [edited by author] | it_IT |
dc.description.abstract | La popolazione in continua espansione, il crescente sfruttamento delle risorse e la conseguente carenza di materie prime hanno orientato negli ultimi anni le strategie di gestione dei rifiuti da un approccio lineare basato sul modello del “estrai-produci-usa-getta” verso una visione circolare in cui i rifiuti di un’attività diventano materie prime per un’altra. L’attenzione è stata, pertanto, sempre più incentrata sulla possibilità di utilizzare i residui delle attività antropiche come scorte di materie secondarie in sostituzione di materiali vergini, così come promosso dal noto concetto dell’ “urban mining” o “miniere urbane”. In tale contesto, i rifiuti di apparecchiature elettriche ed elettroniche (RAEE) costituiscono ad oggi delle vere e proprie miniere urbane. Tale flusso di rifiuti è caratterizzato dai maggiori tassi di crescita per anno (35%) e dalla più varia composizione di materiali dal momento che i RAEE possono contenere più di 1000 differenti sostanze, tra cui metalli di base, metalli preziosi e metalli critici. La possibilità di recuperare dunque “materie prime critiche”, quali le terre rare presenti all’interno dei rifiuti elettronici, si configura come una importante opportunità sia in termini economici che ambientali. Tuttavia, il riciclaggio dei RAEE è ostacolato dalla loro complessa natura che, accanto a materiali di valore, prevede anche sostanze pericolose. La presenza, difatti, di componenti tossiche è motivo di grande preoccupazione specialmente in riferimento ai paesi in via di sviluppo dove il “canale informale” è ancora ampiamente diffuso ed i RAEE vengono gestiti in maniera inadeguata in conseguenza di una mancanza di riferimenti normativi. Nei paesi sviluppati, la raccolta differenziata è il primo step di un sistema che mira a perseguire una gestione sostenibile dei RAEE; processi di trattamento meccanico sono poi implementati per separare i metalli dai restanti materiali per il loro successivo recupero mediante processi metallurgici. I trattamenti metallurgici attualmente utilizzati per il recupero dei metalli dai RAEE hanno tuttavia gravi impatti sull’ambiente a causa della produzione di rifiuti secondari. Inoltre, l’industria del riciclo dei RAEE è ad oggi ancora nella sua fase iniziale soprattutto in riferimento al recupero delle terre rare. Tutte queste ragioni hanno contribuito ad accrescere l’interesse sia del mondo scientifico che di quello industriale verso lo sviluppo di tecnologie a basso costo e minor impatto per il trattamento dei RAEE. In tale contesto, il presente progetto di ricerca è stato mirato a: caratterizzare i RAEE in termini di metalli di base e metalli critici, in modo tale da identificare e quantificare il contenuto di materiali di valore e sostanze pericolose per sviluppare una valida e sostenibile strategia di trattamento; valutare il destino dei metalli critici nel corso dei convenzionali trattamenti meccanici dei RAEE con particolare riferimento all’efficienza di selezione e al potenziale di recupero; investigare la fattibilità dell’applicazione di trattamenti innovativi nel campo dell’idro- e della bio-metallurgia per il recupero dei metalli critici e di valore dai RAEE. A tale scopo, l’attività sperimentale è stata sviluppata secondo tre fasi principali, funzionali al raggiungimento degli obiettivi specifici del progetto di ricerca: la prima fase è stata incentrata sulla caratterizzazione dei RAEE in termini di metalli di base e metalli critici. Campioni rappresentativi di RAEE sono stati prelevati presso un impianto di trattamento a scala reale localizzato nel Sud Italia e analizzati nel loro contenuto di metalli; i dati ottenuti dalla caratterizzazione sono stati quindi utilizzati nella seconda fase dell’attività, al fine di condurre un bilancio di massa per investigare il destino dei metalli, in particolare di quelli critici, durante i convenzionali trattamenti meccanici; la terza e ultima fase è stata focalizzata sull’applicazione dei processi idro- e bio-metallurgici per il recupero dei metalli critici e di valore dai RAEE. Dal momento che i risultati della fase precedente hanno evidenziato che a seguito dei convenzionali trattamenti meccanici significative concentrazioni di metalli preziosi e terre rare vengono raccolte nelle polveri originate dal processo di trattamento dell’aria, tale matrice è stata utilizzata come fonte secondaria di metalli critici per testare i trattamenti proposti. Sia agenti chimici, tra cui un agente non convenzionale come la tiourea, che agenti biologici sono stati utilizzati per eseguire le prove di lisciviazione. L’uso della polvere, al momento destinate a smaltimento a discarica, ed i trattamenti proposti per il recupero dei metalli critici hanno segnato l’innovazione della ricerca. Le prime due fasi sono state svolte presso la Divisione di Ingegneria Sanitaria Ambientale (SEED) dell’Università degli studi di Salerno. Le prove idrometallurgiche incluse nella terza fase dell’attività sperimentale sono state anch’esse condotte presso il laboratorio SEED mentre le prove biometallurgiche sono state svolte presso il laboratiorio dell’Istituto Unesco-IHE di Delf (Paesi Bassi). I risultati dell’attività sperimentale condotta hanno mostrato che le terre rare presenti in tracce all’interno dei RAEE non entrano nella catena di recupero, dal momento che circa l’80% in massa risulta concentrato in flussi, quali le polveri, non destinati al successivo recupero. In maniera analoga, il 24% dei metalli preziosi contenuti nei RAEE in ingresso al trattamento meccanico sono raccolti all’interno di tale frazione. Le polveri si configurano, pertanto, come una potenziale fonte secondaria di materiali critici e di valore da essere sottoposta a successivo recupero. I processi idro- e biometallurgici applicati hanno mostrato il loro grande potenziale nel recupare fino al 99% dei metalli critici concentrati nelle polveri. Tali promettenti risultati hanno evidenziato che i processi idro-e biometallurgici possono essere considerati come una valida opzione di gestione delle polveri derivanti dal trattamento meccanico dei RAEE che attualmente rappresentano un costo di smaltimento per l’impianto. Il trattamento delle polveri mediante tali processi fornisce una strategia per reintrodurre tale matrice, al momento smaltita in discarica, nella spirale del ciclo di vita dei prodotti, limitando la perdita delle risorse in essa contenute in accordo con l’approccio promosso dall’economia circolare. Inoltre, i risultati del presente studio sono di rilevante interesse dal momento che hanno mostrato, in particolare, il potenziale di recupero di metalli critici e di valore dai RAEE mediante processi a basso costo e basso impatto nel campo della biometallurgia, come valida alternativa ai convenzionali trattamenti piromentallurgici ed idrometallurgici. [a cura dell'autore] | it_IT |
dc.language.iso | en | it_IT |
dc.publisher | Universita degli studi di Salerno | it_IT |
dc.subject | Electronic waste | it_IT |
dc.subject | Critical materials | it_IT |
dc.subject | Circular economy | it_IT |
dc.title | Innovative treatments for resource recovery from waste electrical and electronic equipment | it_IT |
dc.type | Doctoral Thesis | it_IT |
dc.subject.miur | ICAR/03 INGEGNERIA SANITARIA-AMBIENTALE | it_IT |
dc.contributor.coordinatore | Faella, Ciro | it_IT |
dc.description.ciclo | XV n.s | it_IT |
dc.contributor.tutor | Belgiorno, Vincenzo | it_IT |
dc.contributor.cotutor | Naddeo, Vincenzo | it_IT |
dc.identifier.Dipartimento | di Ingegneria Civile | it_IT |