Show simple item record

dc.contributor.authorConte, A.
dc.contributor.authorProcaccini, C.
dc.contributor.authorIannelli, P.
dc.contributor.authorKisslinger, A.
dc.contributor.authorDe Amicis, F.
dc.contributor.authorPierantoni, G. M.
dc.contributor.authorMancini, F. P.
dc.contributor.authorMatarese, G.
dc.contributor.authorTramontano, D.
dc.date.accessioned2019-11-07T14:04:00Z
dc.date.available2019-11-07T14:04:00Z
dc.date.issued2015
dc.identifier.citationConte A, Procaccini C, Iannelli P, Kisslinger A, De Amicis F, Pierantoni G.M, Mancini F.P, Matarese G, Tramontano D. Effects of resveratrol on p66shc phosphorylation in cultured prostate cells. Translational Medicine @ UniSa 2015, 13(8): 47-58it_IT
dc.identifier.issn2239-9747it_IT
dc.identifier.urihttp://elea.unisa.it:8080/xmlui/handle/10556/3779
dc.identifier.urihttp://dx.doi.org/10.14273/unisa-2001
dc.description.abstractThere is increasing evidence that diet plays a crucial role in age-related diseases and cancer. Oxidative stress is a conceivable link between diet and diseases, thus food antioxidants, counteracting the damage caused by oxidation, are potential tools for fight age-related diseases and cancer. Resveratrol (RSV), a polyphenolic antioxidant from grapes, has gained enormous attention particularly because of its ability to induce growth arrest and apoptosis in cancer cells, and it has been proposed as both chemopreventive and therapeutic agent for cancer and other diseases. Even though the effects of RSV have been studied in prostate cancer cells and animal models, little is known about its effects on normal cells and tissues. To address this issue, we have investigated the effects of RSV on EPN cells, a human non-transformed prostate cell line, focusing on the relationship between RSV and p66Shc, a redox enzyme whose activities strikingly intersect those of RSV. p66Shc activity is regulated by phosphorylation of serine 36 (Ser36) and has been related to mitochondrial oxidative stress, apoptosis induction, regulation of cell proliferation and migration. Here we show that RSV inhibits adhesion, proliferation and migration of EPN cells, and that these effects are associated to induction of dose- and time-dependent p66Shc-Ser36 phosphorylation and ERK1/2 de phosphorylation. Moreover, we found that RSV is able to activate also p52Shc, another member of the Shc protein family. These data show that RSV affects non-transformed prostate epithelial cells and suggest that Shc proteins may be key contributors of RSV effects on prostate cells.it_IT
dc.format.extentP. 47-58it_IT
dc.language.isoenit_IT
dc.sourceUniSa. Sistema Bibliotecario di Ateneoit_IT
dc.subjectResveratrolit_IT
dc.subjectShcit_IT
dc.subjectProstateit_IT
dc.subjectAge-related diseasesit_IT
dc.titleEffects of resveratrol on p66shc phosphorylation in cultured prostate cellsit_IT
dc.typeJournal Articleit_IT
 Find Full text

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record