dc.description.abstract | Fibre-reinforced polymer (FRP) composites represent a class of advanced materials whose use has spread from the aeronautical, mechanical and naval industry to civil infrastructure, which has generated a new set of challenges.
Composites have unique features, such as high corrosion resistance, electromagnetic transparency, low maintenance costs and high strength-to-weight ratio. During the past few decades, pultruded fibre-reinforced polymer (PFRP) composites have been used in several successful applications related to corrosive environments such as cooling towers, mining and petrochemical facilities, water and wastewater treatment plants, as well as, off-shore structures. By mid-1990s, major applications of these materials were initiated in the field of seismic and corrosion repair and strengthening of existing reinforced concrete bridges and buildings.
Historically, off-the-shelf PFRP composites were developed and designed by the pultrusion industry and were intended for low-stress applications. Recently, composites have been introduced as primary structural members to replace or complement other conventional materials, such as steel, concrete and wood, in critical applications such as bridge decks, pedestrian bridges, and recently in highway bridges and other infrastructural systems. ... [edited by Author] | it_IT |