Show simple item record

dc.contributor.authorFinamore, Antonella Rosalia
dc.date.accessioned2023-02-02T13:09:32Z
dc.date.available2023-02-02T13:09:32Z
dc.date.issued2021-04-14
dc.identifier.urihttp://elea.unisa.it:8080/xmlui/handle/10556/6348
dc.identifier.urihttp://dx.doi.org/10.14273/unisa-4428
dc.description2016 - 2017it_IT
dc.description.abstractEnergy is essential to society for ensuring good quality of life by modern standards. Nowadays, fossil fuels are still the most used energy source, but, due to their depletion and contribution to climate change, the pursuit of a sustainable development has promoted an ever-growing trend to use new and pollution-free energy sources. Such a trend is impacting the energy scenario with massive transformations on a world scale. From the Kyoto protocol in 1997 to the COP 21 Paris agreement in 2015, great challenges have been introduced in terms of both emissions’ reduction and development of new energy sources, which are cleaner than the fossil ones. As a result, renewable energy sources (RESs) have seen a great development, favoured by a strong interest from governments, private companies, universities and public and private research centres. In fact, estimates suggest a RES penetration of over 55% in the next few years. Obviously, such a process is not likely to occur in the same fashion in all countries. As a matter of fact, RESs are not uniformly distributed, and incentive policies differ very much according to the single countries. Among RESs, wind power is the most widespread in the world after hydropower: over the last few decades, the global wind installed capacity has grown rapidly, particularly in Europe, Asia, and North America. However, the unpredictable and intermittent nature of wind is the main obstacle to its integration on a large scale: grid operators have difficulties keeping the grid in a safe state when large volumes of this energy are injected into the power system. Hence, in order to manage wind capacity, accurate wind power forecasting is necessary. However, forecasting the wind power production is quite challenging as wind is extremely variable and depends on weather conditions, terrain factors, and height above ground level. Furthermore, wind power strongly depends on wind speed, thus for a successful integration of this type of energy into any power system, it is important to design a wind speed prediction model with a forecasting error which is as low as possible. Unfortunately, wind is the most difficult meteorological phenomenon to predict: wind forecasting thus represents a great challenge for researchers, meteorologist, and wind power producers. In the literature, several forecasting models have been proposed, traditionally based on physical and statistical methods. In addition to those, a number of more advanced methods based on artificial intelligence have been investigated in recent years, in the attempt to attain more reliable wind-power forecasts. ...[edited by Author]it_IT
dc.language.isoenit_IT
dc.publisherUniversita degli studi di Salernoit_IT
dc.subjectWind energy forecastingit_IT
dc.subjectArtificial neural networksit_IT
dc.subjectMetereological datait_IT
dc.titleWind energy prediction: a forecasting model based on ANNs and meteorological data on mesoscaleit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurING-IND/33 SISTEMI ELETTRICI PER L'ENERGIAit_IT
dc.contributor.coordinatoreDonsì, Francescoit_IT
dc.description.cicloXXX cicloit_IT
dc.contributor.tutorGaldi, Vincenzoit_IT
dc.identifier.DipartimentoIngegneria Industrialeit_IT
dc.contributor.refereeBiplob, Rayit_IT
dc.contributor.refereeZauli, Francescoit_IT
 Find Full text

Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record