Utilizza questo identificativo per citare o creare un link a questo documento: http://elea.unisa.it/xmlui/handle/10556/1978
Titolo: Improving Network Anomaly Detection with Independent Component Analysis
Autore: Fiore, Ugo
Persiano, Giuseppe
De Santis, Alfredo
Parole chiave: Anomaly detection;Manifold learning;Security
Data: 4-mag-2015
Editore: Universita degli studi di Salerno
Abstract: Complexity, sophistication, and rate of growth of modern networks, coupled with the depth, continuity, and pervasiveness of their role in our everyday lives, stress the importance of identifying potential misuse or threats that could undermine regular operation. To ensure an adequate and prompt reaction, anomalies in network traffic should be detected, classified, and identified as quickly and correctly as possible. Several approaches focus on inspecting the content of packets traveling through the network, while other techniques aim at detecting suspicious activity by measuring the network state and comparing it with an expected baseline. Formalizing a model for normal behavior requires the collection and analysis of traffic, in order to isolate a set of features capable of describing traffic completely and in a compact way. The main focus of this dissertation is the quest for good representations for network traffic, representation that are abstract and can capture and describe much of the intricate structure of observed data in a simple manner. In this way, some of the hidden factors and variables governing the traffic data generation process can be unveiled and disentangled and anomalous events can be spotted more reliably. We adopted several methods to achieve such simpler representations, including Independent Component Analysis and deep learning architectures. Machine learning techniques have been used for verifying the improvement in classification effectiveness that can be achieved with the proposed representations. [edited by Author]
Descrizione: 2013 - 2014
URI: http://hdl.handle.net/10556/1978
È visualizzato nelle collezioni:Informatica

File in questo documento:
File Descrizione DimensioniFormato 
tesi_di_dottorato_U_Fiore.pdftesi di dottorato19,56 MBAdobe PDFVisualizza/apri
abstract_in_inglese_U_Fiore.pdfabstract in inglese a cura dell'autore101,23 kBAdobe PDFVisualizza/apri
abstract_in_italiano_U_fiore.pdfabstract in italiano a cura dell'autore100,2 kBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.