Utilizza questo identificativo per citare o creare un link a questo documento: http://elea.unisa.it/xmlui/handle/10556/6350
Titolo: Anomalies detection in credit risk data: an approach based on the Isolation Forest
Autore: De Stefanis, Sergio Pietro
Niglio, Marcella
Forte, Fabio
Parole chiave: Isolation forest;Credi risk;Machine learning techniques
Data: 16-dic-2019
Abstract: Come punto di partenza la definizione di rischio è stata introdotta: il rischio è il verificarsi di un evento inaspettato o con esito negativo. Dopo una breve introduzione della maggior parte delle categorie di rischio, come banche e autorità di vigilanza, la tesi si focalizza sui modelli di rischio di credito dove l’intero sistema finanziario sta investendo per evitare la prossima crisi finanziaria. Tra le metriche relative al rischio di credito, i Risk Weighted Assets (RWAs) possono essere considerati una rilevante misura nel panorama del rischio di credito. Infatti, questi, rappresentano una misura aggregata di vari fattori di rischio che influenzano la valutazione dei prodotti finanziari. L’accuratezza dei modelli di rischio di credito, come tutti i modelli, non dipende solo dalla parametrizzazione e la complessità di un modello, ma anche dai dati utilizzati come input. Ciò è spesso riassunto da "Garbage IN uguale a Garbage OUT". Per questo motivo l’attenzione è stata focalizzata sulle tecniche di data quality. Nel secondo capitolo, alcune tecniche di machine learning per analizzare le anomalie nei dati sono state introdotte. Una particolare attenzione è stata riservata ai Local Outlier Factor (LOF) ed Isolation Forests (IF). Nel terzo e quarto capitolo, questi algoritmi sono stati testati prima su di un serie di osservazioni generate artificialmente in modo da mostrarne le loro proprietà statistiche e poi su un dataset reale con informazioni relative al rischio di credito dove le anomalie relative agli RWAs sono state analizzate. [a cura dell'Autore]
As starting point the definition of Risk as the chances of having an unexpected or negative outcome has been introduced. After a brief introduction on most of the risk categories as Banks and regulators, the thesis focuses on credit risk models where the entire financial system is highly investing to avoid a further financial crisis. Among the Credit Risk metrics, Risk Weighed Assets (RWAs) can be considered an important measure in the current credit risk environment. Indeed they represent an aggregated measure of different risk factors affecting the evaluation of financial products. The credit risk model accuracy, as all models, does not depend only on the effectiveness, parametrization and complexity of the model, but from the data used as input. This situation is often summarized as "Garbage IN is equal to Garbage OUT". In the second chapter, several machine learning techniques for data anomalies detection have been introduced with a focus on Local Outlier Factor (LOF) and Isolation Forests. In the third and fourth chapters, these algorithms have been tested first on an artificial sample in order to show their statistical properties and then they have been applied on a real credit risk dataset where RWAs data anomalies have been analyzed. [edited by Author]
Descrizione: 2017 - 2018
URI: http://elea.unisa.it:8080/xmlui/handle/10556/6350
http://dx.doi.org/10.14273/unisa-4430
È visualizzato nelle collezioni:Economia e politiche dei mercati e delle imprese

File in questo documento:
File Descrizione DimensioniFormato 
tesi_di_dottorato_F_Forte.pdftesi di dottorato3,72 MBAdobe PDFVisualizza/apri
abstract in inglese F. Forte.pdfabstract in inglese a cura dell'autore54,37 kBAdobe PDFVisualizza/apri
abstract in italiano F. Forte.pdfabstract in italiano a cura dell'autore53,65 kBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.